
DOCTORAL SCHOOL OF INFORMATICS 

COMPLEX EXAM SUBJECT 

 

Data Mining (recommended subject) 

 

Textbook: 

Mining of Massive Datasets  

Jure Leskovec. Anand Rajaraman, Jeffrey D. Ullman,  

3rd Edition, Stanford University http://i.stanford.edu/~ullman/mmds/book0n.pdf 

2nd Edition, Stanford University http://infolab.stanford.edu/~ullman/mmds/bookL.pdf 

 

 

Related course at Stanford University:  

Mining of Massive Datasets, CS246, Jure Leskovec, Anand Rajaraman, Jeff Ullman 

http://www.mmds.org/ 

 

 

Topics: 

  
1. What is Data Mining?  

Modeling, Statistical Modeling, Machine Learning, Computational Approaches to Modeling, 

Feature Extraction, Statistical Limits on Data Mining, Total Information Awareness, 

Bonferroni’s Principle, An Example of Bonferroni’s Principle, Importance of Words in 

Documents, Hash Functions, Indexes, Secondary Storage 
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2. MapReduce and the New Software Stack 

Distributed File Systems, Physical Organization of Compute Nodes, Large-Scale File-System 

Organization, MapReduce, The Map Tasks, Grouping by Key, The Reduce Tasks, Combiners, 

Details of MapReduce Execution, Coping With Node Failures, Algorithms Using 

MapReduce, Matrix-Vector Multiplication by MapReduce, If the Vector v Cannot Fit in Main 

Memory, Relational-Algebra Operations, Computing Selections by MapReduce, Computing 

Projections by MapReduce, Union, Intersection, and Difference by MapReduce, Computing 

Natural Join by MapReduce, Grouping and Aggregation by MapReduce, Matrix 

Multiplication, Matrix Multiplication with One MapReduce Step, Extensions to MapReduce, 

Workflow Systems, Spark, Spark Implementation, TensorFlow, Recursive Extensions to 

MapReduce, Bulk-Synchronous Systems, The Communication-Cost Model, Communication 

Cost for Task Networks, Wall-Clock Time, Multiway Joins, Complexity Theory for 
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MapReduce, Reducer Size and Replication Rate, An Example: Similarity Joins, A Graph 

Model for MapReduce Problems, Mapping Schemas, When Not All Inputs Are Present, 

Lower Bounds on Replication Rate, Case Study: Matrix Multiplication, 
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3. Finding Similar Items 

Applications of Set Similarity, Jaccard Similarity of Sets, Similarity of Documents, 

Collaborative Filtering as a Similar-Sets Problem, Shingling of Documents, k-Shingles, 

Choosing the Shingle Size, Hashing Shingles, Shingles Built from Words, Similarity-

Preserving Summaries of Sets, Matrix Representation of Sets, Minhashing, Minhashing and 

Jaccard Similarity, Minhash Signatures, Computing Minhash Signatures in Practice, Speeding 

Up Minhashing, Speedup Using Hash Functions, Locality-Sensitive Hashing for Documents, 

LSH for Minhash Signatures, Analysis of the Banding Technique, Combining the Techniques, 

Distance Measures, Definition of a Distance Measure, Euclidean Distances, Jaccard Distance, 

Cosine Distance, Edit Distance, Hamming Distance, The Theory of Locality-Sensitive 

Functions, Locality-Sensitive Functions, Locality-Sensitive Families for Jaccard Distance, 

Amplifying a Locality-Sensitive Family, LSH Families for Other Distance Measures, LSH 

Families for Hamming Distance, Random Hyperplanes and the Cosine Distance, LSH 

Families for Euclidean Distance, More LSH Families for Euclidean Spaces, Applications of 

Locality-Sensitive Hashing, Entity Resolution, An Entity-Resolution Example, Validating 

Record Matches, Matching Fingerprints, A LSH Family for Fingerprint Matching, Similar 

News Articles, Methods for High Degrees of Similarity, Finding Identical Items, 

Representing Sets as Strings, Length-Based Filtering, Prefix Indexing, Using Position 

Information, Using Position and Length in Indexes 
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4. Mining Data Streams 
The Stream Data Model, A Data-Stream-Management System,Examples of Stream Sources, 

Stream Queries, Issues in Stream Processing, Sampling Data in a Stream, A Motivating 

Example, Obtaining a Representative Sample, The General Sampling Problem, Varying the 

Sample Size, Filtering Streams, A Motivating Example, The Bloom Filter, Analysis of Bloom 

Filtering, Counting Distinct Elements in a Stream, The Count-Distinct Problem, The Flajolet-



Martin Algorithm, Combining Estimates, Space Requirements, Estimating Moments, 

Definition of Moments, The Alon-Matias-Szegedy Algorithm for Second Moments, Why the 

Alon-Matias-Szegedy Algorithm Works, Higher-Order Moments, Dealing With Infinite 

Streams, Counting Ones in a Window, The Cost of Exact Counts, The Datar-Gionis-Indyk-

Motwani Algorithm, Storage Requirements for the DGIM Algorithm, Query Answering in the 

DGIM Algorithm, Maintaining the DGIM Conditions, Reducing the Error, Extensions to the 

Counting of Ones,  Decaying Windows, The Problem of Most-Common Elements, Definition 

of the Decaying Window, Finding the Most Popular Elements 
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5. Link Analysis 

PageRank, Early Search Engines and Term Spam, Definition of PageRank, Structure of the 

Web, Avoiding Dead Ends, Spider Traps and Taxation, Using PageRank in a Search Engine, 

Efficient Computation of PageRank, Representing Transition Matrices, PageRank Iteration 

Using MapReduce,  Use of Combiners to Consolidate the Result Vector, Representing Blocks 

of the Transition Matrix, Other Efficient Approaches to PageRank Iteration, Topic-Sensitive 

PageRank, Motivation for Topic-Sensitive Page Rank, Biased Random Walks, Using Topic-

Sensitive PageRank, Inferring Topics from Words, Link Spam, Architecture of a Spam Farm, 

Analysis of a Spam Farm, Combating Link Spam, TrustRank, Spam Mass, Hubs and 

Authorities, The Intuition Behind HITS, Formalizing Hubbiness and Authority 
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6. Frequent Itemsets 

The Market-Basket Model, Definition of Frequent Itemsets, Applications of Frequent 

Itemsets, Association Rules, Finding Association Rules with High Confidence, Market 

Baskets and the A-Priori Algorithm, Representation of Market-Basket Data, Use of Main 

Memory for Itemset Counting, Monotonicity of Itemsets, Tyranny of Counting Pairs, The A-

Priori Algorithm, A-Priori for All Frequent Itemsets, Handling Larger Datasets in Main 

Memory, The Algorithm of Park, Chen, and Yu, The Multistage Algorithm, The Multihash 

Algorithm, Limited-Pass Algorithms, The Simple, Randomized Algorithm, Avoiding Errors 

in Sampling Algorithms, The Algorithm of Savasere, Omiecinski, and 

Navathe, The SON Algorithm and MapReduce, Toivonen’s Algorithm, Why Toivonen’s 

Algorithm Works, Counting Frequent Items in a Stream, Sampling Methods for Streams, 

Frequent Itemsets in Decaying Windows, Hybrid Methods 
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7. Clustering 

Introduction to Clustering Techniques, Points, Spaces, and Distances, Clustering Strategies, 

The Curse of Dimensionality, Hierarchical Clustering, Hierarchical Clustering in a Euclidean 

Space, Efficiency of Hierarchical Clustering, Alternative Rules for Controlling Hierarchical 

Clustering, Hierarchical Clustering in Non-Euclidean Spaces, K-means Algorithms, K-Means 

Basics, Initializing Clusters for K-Means, Picking the Right Value of k, The Algorithm of 

Bradley, Fayyad, and Reina, Processing Data in the BFR Algorithm, The CURE Algorithm, 

Initialization in CURE, Completion of the CURE Algorithm, Clustering in Non-Euclidean 

Spaces, Representing Clusters in the GRGPF Algorithm, Initializing the Cluster Tree, Adding 

Points in the GRGPF Algorithm, Splitting and Merging Clusters, Clustering for Streams and 

Parallelism, The Stream-Computing Model, A Stream-Clustering Algorithm, Initializing 

Buckets, Merging Buckets, Answering Queries, Clustering in a Parallel Environment 
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8. Advertising on the Web 

Issues in On-Line Advertising, Advertising Opportunities, Direct Placement of Ads, Issues for 

Display Ads, On-Line Algorithms, On-Line and Off-Line Algorithms, Greedy Algorithms, 

The Competitive Ratio, The Matching Problem, Matches and Perfect Matches, The Greedy 

Algorithm for Maximal Matching, Competitive Ratio for Greedy Matching, The Adwords 

Problem, History of Search Advertising, Definition of the Adwords Problem, The Greedy 

Approach to the Adwords Problem, The Balance Algorithm, A Lower Bound on Competitive 

Ratio for Balance, The Balance Algorithm with Many Bidders, The Generalized Balance 

Algorithm, Final Observations About the Adwords Problem, Adwords Implementation, 

Matching Bids and Search Queries, More Complex Matching Problems, A Matching 

Algorithm for Documents and Bids 
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9. Recommendation Systems 

A Model for Recommendation Systems, The Utility Matrix, The Long Tail, Applications of 

Recommendation Systems, Populating the Utility Matrix, Content-Based Recommendations, 

Item Profiles, Discovering Features of Documents, Obtaining Item Features From Tags, 

Representing Item Profiles, User Profiles, Recommending Items to Users Based on Content, 

Classification Algorithms, Collaborative Filtering, Measuring Similarity, The Duality of 

Similarity, Clustering Users and Items, 

Dimensionality Reduction, UV-Decomposition, Root-Mean-Square Error, Incremental 

Computation of a UV-Decomposition, Optimizing an Arbitrary Element, Building a Complete 

UV-Decomposition Algorithm, The Netflix Challenge 
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10. Mining Social-Network Graphs 

 

Social Networks as Graphs, What is a Social Network?, Social Networks as Graphs, Varieties 

of Social Networks, Graphs With Several Node Types, Clustering of Social-Network Graphs, 

Distance Measures for Social-Network Graphs, Applying Standard Clustering Methods, 

Betweenness, The Girvan-Newman Algorithm, Using Betweenness to Find 

Communities,Direct Discovery of Communities, Finding Cliques, Complete Bipartite Graphs, 

Finding Complete Bipartite Subgraphs, Why Complete Bipartite Graphs Must Exist, 

Partitioning of Graphs, What Makes a Good Partition?, Normalized Cuts, Some Matrices That 

Describe Graphs, Eigenvalues of the Laplacian Matrix, Alternative Partitioning Methods, 

Finding Overlapping Communities, The Nature of Communities, Maximum-Likelihood 

Estimation, The Affiliation-Graph Model, Discrete Optimization of Community Assignments, 

Avoiding the Use of Discrete Membership Changes, Simrank, Random Walkers on a Social 

Graph, Random Walks with Restart, Counting Triangles, Why Count Triangles?, An 

Algorithm for Finding Triangles, Optimality of the Triangle-Finding Algorithm, Finding 

Triangles Using MapReduce, Using Fewer Reduce Tasks, Neighborhood Properties of 

Graphs, Directed Graphs and Neighborhoods, The Diameter of a Graph, Transitive Closure 

and Reachability, Reachability Via MapReduce, Seminaive Evaluation, Linear Transitive 

Closure, Transitive Closure by Recursive Doubling, Smart Transitive Closure, Comparison of 
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