List of topics for the

FINAL EXAM
of the Computer Science BSc course of ELTE

Last modified: July 7, 2020

. Limits and continuity of functions. Limits and continuity of functions. Properties of
continuous functions defined on a compact set: theorems of Weierstrass and Bolzano.
Power series, theorem of Cauchy-Hadamard. Analytical functions.

. Differential and integral calculus. Differentiation of functions. Partial derivatives,
gradient, Jacobi matrix. Extreme values, discussion of functions. Riemannian integral,
integration by parts, integration with substitution. Newton-Leibniz formula.

. Numerical methods. Iterative methods of solving nonlinear equations: fixed point
iterations, Newton’s method. Interpolation: Lagrange and Newton forms. Least
squares methods. Numerical integration: interpolation formulas, Newton—Cotes for-
mulas, simple and composite quadrature formulas.

. Number theory, graphs. Sets, relations, functions and operations. Complex numbers.
Enumeration problems. Undirected and directed graphs, trees, Eulerian and Hamil-
tonian graphs, representation of graphs. Basic concepts in number theory: divisibility,
congruence, primes. Polynomials: definition and operations, including division with
remainder.

. Basics of probability and statistics. Discrete and continuous random variables, law
of large numbers, central limit theorem. Statistical estimates, classical statistical tests.

. Artificial intelligence. Pathfinding problems and their modelling with directed graphs
(the state space model). Heuristic pathfinding algorithms: local search (hill climbing,
tabu search, simulated annealing), backtracking algorithms, heuristic graph search (4,
A*, A®, B algorithm). Two-player games.

. Algorithmic patterns. Concept of enumerator. Enumerators of well-known collec-
tions (interval, array, sequence, sequential input file). Algorithmic patterns on enu-
merators (summation, counting, maximum search, conditional maximum search, lin-
ear search, selection). Technique of analogy. Testing programs created with algorith-
mic patterns.

. Object oriented modeling. Aspects of object oriented modeling: static model (class di-
agram, object diagram, package diagram, component diagram); dynamic model (state
diagram, sequence diagram, use case diagram).

1/3



10.

11.

12.

13.

14.

15.

16.

17.

Object oriented design. Development phases of software systems, development method-

ologies. Architectural patterns (MV, MVC etc.). Role and classification of design pat-
terns (creational, structural, behavioral); demonstrate two design patterns for each
category.

Fundamentals of programming languages. Compilation and linking of code. Lexical,
syntactic and semantic rules of a programming language. Evaluation of expressions.
Statements, control stuctures. Representation of basic types. Compound types. Pro-
gram structure, scope and visibility. Storing variables in memory, lifetime of variables.
Parameter passing. Exceptions.

Object oriented programming languages. Classes and objects. Encapsulation, mem-
bers, constructors. Information hiding. Overloading. Memory management, garbage
collection. Inheritance, multiple inheritance. Subtyping. Static and dynamic type, type
checking. Overriding, dynamic binding. Generics. Subtype and parametric polymor-
phism. Comparing and copying of objects.

Formal languages and automata. Generative grammars and Chomsky hierarchy. Nor-
mal forms of grammars. Regular expressions. Finite automata. Pushdown automata.
Closure properties of language classes. Algorithmic problems in the regular and the
context-free language classes.

Theory of computation. Turing machines and the Church-Turing thesis. Variants of
Turing machines: multitape, nondeterministic, counting, offline. Recursive and re-
cursively enumerable languages. Undecidable problems. Time and space complexity
classes: P, NP, PSPACE. NP-complete problems.

Basic algorithms. Efficiency of algorithms, growth of functions. Comparison sorts,
insertion sort, merge sort, quicksort, heap sort, lower bounds for the number of com-
parisons. Sorting in linear time (bucket, counting, and radix sorts). Data compression
(naive, Huffman, LZW). String Matching (brute-force, quicksearch, KMP).

Data structures and data types. Arrays, stacks, queues, linked lists; binary trees,
traversals, representations; binary heaps, priority queues; binary search trees, AVL
trees, B+ trees; hash tables, hash functions, collision resolution by chaining, open ad-
dressing, probe sequences; representations of graphs.

Advanced algorithms. Elementary graph algorithms: breadth-first search, depth-first
search and its applications. Minimum spanning trees, a general algorithm, Kruskal,
Prim. Single-Source Shortest Paths: Queue-based Bellman-Ford, Dijkstra, DAG short-
est paths. All-Pairs Shortest Paths: Floyd-Warshall algorithm. Transitive closure of a
graph.

Operating systems. Processes and implementations, scheduling algorithms. Multi-
tasking, parallelism, critical sections, mutual exclusion and implementations. Peter-

2/3



18.

19.

20.

21.

22,

son algorithm. Semaphores, shared memory, message passing. Input-Output devices
and scheduling, deadlocks. Memory management, virtual memory. Paging and seg-
mentation. Paging algorithms (e.g. LRU- Least Recently Used, etc). Storage systems,
redundant solutions, filesystems and their basic types, properties.

Computer networks. Layer models. Physical layer: baseband, broadband, digital
encoding, modulation. Datalink layer: framing, error control (detection, correction),
CRC, flow-control, dynamic channel allocation. Network layer: distance vector pro-
tocol, link-state routing protocol, BGP, path-vector protocol, IPv4 vs IPv6. Trans-
port layer: UDP, TCP (connection management, congestion); Application layer: DNS,
HTTP, DHCP, ARP.

Concurrent programming. Multithreaded programs. Scheduling, context switch.
Race condition. Synchronization. Blocking operations. Use of memory (stack and
heap) in threads. Programming language support for threads. Data types for synchro-
nization and communication.

Databases—design and query. Relational model, entity—relationship model, transfor-
mation from ER to relational model. Relational algebra, SQL. Procedural extension of
SQL (PL/SQL, PSM). Designing relational models, normal forms, decompositions.

Databases—optimization and concurrency control. Functions and components of
database management systems. Index structures, executing queries, optimization strate-
gies. Processing transactions, journaling and restoring, concurrency control.

Functional programming. Properties of functional programming languages: eager
and lazy evaluation strategies, referential transparency. Static typing, currying. Off-
side rule. Basic types, conversions. Function definitions and the typing of functions.
Pattern matching, guards, case distinction. Recursion. Local definitions. Higher-order
functions, lambda functions. Function composition. ZF-expressions. Type classes,
parametric and ad-hoc polimorphism. Type synonyms. Definition of algebraic data

types.

3/3



