

1st semester 2nd semester 3rd semester 4th semester

Obligatory courses

Ad Hoc Networks (2+2+1)

Tamás LUKOVSZKI

Component-based software

development (2+2+1)

László Zsolt VARGA

Lab I-II.(8 kr.) Lab III-IV. (8 kr.)

Data mining and information

retrieval (2+2+1)

András BENCZÚR

Interactive media design and

development (2+2+1)

Márta TURCSÁNYI-SZABÓ

Building distributed

systems (2+2+1)

Tamás KOZSIK

Advanced cryptography

(2+2+2)

Péter SZIKLAI

Thesis (20 kr.)

Type models (2+0+0)

László Zsolt VARGA

Advanced functional

programming (2+2+1)

Zoltán HORVÁTH

Advanced Java

programming (2+2+1)

Tamás KOZSIK

Applied cryptography

project seminar (2+2+2)

Péter SZIKLAI

Synthesis and verification

(2+0+1)

Tibor GREGORICS

Agile project management in

informatics (2+2+1)

Zoltán ISTENES

Analysis of distributed

systems (2+2+1)

Máté TEJFEL

Cryprography protocols

(2+2+0)

Attila KOVÁCS

High assurance object oriented

software engineering (2+2+1)

Sándor SIKE

Formal semantics (2+0+1)

Zoltán HORVÁTH

Design of distributed

systems (2+2+1)

Zoltán HORVÁTH

Cryptography and its

applications (2+2+0)

Attila KOVÁCS

Web engineering (2+2+1)

Zoltán ILLÉS

Formal methods in software

development (2+2+1)

Zoltán ISTENES

Optional courses

Optional course (2+2+1) Optional course (2+0+0) Optional course (2+2+0)

Total credits

30 credits 30 credits 32 credits 28 credits

Name of the course: Ad Hoc Networks

Faculty member responsible for the course: Dr. Tamás Lukovszki, associate professor

Responsible department: Faculty of Informatics, Department of Information Systems

Total credits: 5

Total hours: 5

Type of the course

lecture

practice

consultation

Hours per week 2 2 1

Type of testing exam practice

Topics:
Ad hoc networks do not use any extra infrastructure. The nodes of the network use a wireless

communication interface and communicate directly and provide the routing necessary to deliver

messages over multiple hops. We discuss medium access, routing algorithms, and methods

dealing with the mobility of participants. The topics of the course: Modeling networks, capacity

of wireless networks, topology control, routing, distributed localization, energy, dilation,

congestion, mobility models.

Literature:
H. Karl and A. Willig: Protocols and Architectures for Wireless Sensor Networks. Wiley, ISBN:

978-0-470-09510-2, 2005.

Y. Wang: Topology Control for Wireless Sensor Networks. Book Chapter of Wireless Sensor

Networks and Applications, Series: Signals and Communication Technology, edited by Li,

Yingshu; Thai, My T.; Wu, Weili, Springer-Verlag, ISBN: 978-0-387-49591-0, 2008.

XiuZhen Cheng, Xiao Huang, and Ding-Zhu Du (Editors): Ad Hoc Wireless Networking,

Kluwer Academic Publishers, 2004.

X.-Y. Li and Y. Wang: Wireless Sensor Networks and Computational Geometry. Book Chapter

of Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems, CRC Press,

edited by Mohammad Ilyas et al., 2004.

Ch. Scheideler: Overlay Networks for Wireless Systems. Book Chapter of Performance

Analysis of Mobile and Ad Hoc Networks, Wireless Networks and Mobile Computing Series,

Vol. 7, Nova Science Publishers, edited by Chansu Yu, 2007.

Name of the course: Data mining and information retrieval

Faculty member responsible for the course: Dr. András Benczúr, professor

Responsible department: Faculty of Informatics, Department of Information Systems

Total credits: 5

Total hourse: 5

Type of the course

lecture

practice

consultation

Hours per week 2 2 1

Type of testing exam practice
Prerequisites:

The course requires basic knowledge in calculus, probability theory, and linear algebra. Knowledge of

graphs and basic algorithms is an advantage.

Topics:

The aim of the course is to provide a basic, but comprehensive introduction to data mining. By the end

of the course, students will be able to build models, choose algorithms, implement and evaluate them.

Detailed Program and Class Schedule:

1. Motivations for data mining. Examples of application domains. Methodology of knowledge

discovery in databases (KDD) and data mining (DM). Formulation of main problems of data mining.

2. Understanding data: preparation and exploration. Sampling.

3. Basics of classification. Concepts of training and prediction. Decision trees.

4. Models and algorithms for classification: k-NN, naïve-Bayes. Measuring quality and comparison of

classification models.

5. Introduction to the WEKA data mining software. Classification with WEKA.

6. More models and algorithms for classification: neural networks, linear separation methods, support

vector machine (SVM).

7. Basics of cluster analysis. Type of variables, measuring similarity and distances. Partitioning

clustering algorithms, k-means, k-medoids.

8. Introduction to frequent itemset mining. The APRIORI algorithm. Applications for finding

association rules.

9. Advanced classification methods: Bagging, boosting, AdaBoost.

10. Support Vector Machine. Kernel methods, graph kernels. Protein function prediction.

11. Dimensionality reduction by spectral methods, singular value decomposition, low-rank

approximation.

12. Search engines, web information retrieval, PageRank and beyond.

Literature:
Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining, Addison-Wesley, 2006.

Jiawei Han és Micheline Kamber: Data Mining: Concepts and Techniques, 2
nd

 ed., Morgan Kaufmann

Publishers, 2006.

T. Hastie, R. Tibshirani, J. H. Friedman: The Elements of Statistical Learning: Data Mining, Inference,

and Prediction, Springer-Verlag, 2001.

Name of the course: Type models

Faculty member responsible for the course: Dr. László Zsolt Varga, associate professor

Responsible department: Faculty of Informatics, Department of Software Technology And

Methodology

Total credits: 2

Total hours: 2

Type of the course

lecture

practice

consultation

Hours per week 2

Type of testing exam

Topics:
Object oriented programming and development. Abstract data type. The algebraic theory of

abstract type. Type specification methods. Analyzis of type specifications. Concrete data type.

Datatype class morphism. Information hiding. Reusing, inheritance, aggregation.

Synchronization interface of data types.

Literature:
Krisztof R. Apt, Ernst-Rüdiger Olderog: Verification of Sequential andConcurrent Program

(Springer-Verlag, 1997, ISBN 0-387-94896-1)

Williem-Paul de Roever et al.: Concurrency Verification

(CambridgeUniversity Press, 2001, ISBN 0-521-80608-9)

Recommended literature:
Ehrig H. Mahrch B.: Fundamentals of Algebraic Specification 2, Module Specification and

Constraints (Springer-Verlag, 1990, ISBN-0-387-51799-5)

Jacques Loeckx, Hans-Dieter Ehrich, Markus Wolf: Specification of Abstract Data Types

(John Wiley and Sons, ISBN0-471-95067-X, 1996.6)

Annabelle Mclver, Caroll Morgan ed. Programming Methodology, Monographs in computer

science (Springer-Verlag, 2003, ISBN-0-387-95349-3)

Name of the course: Synthesis and verification

Faculty member responsible for the course: Dr. Tibor Gregorics, associate professor

Responsible department: Faculty of Informatics, Department of Software Technology And

Methodology

Total credits: 3

Total hours: 3

Type of the course

lecture

practice

consultation

Hours per week 2 1

Type of testing exam

Topics:
Introduction. Basic notions of programs. The syntax and semantics of nondeterministic

programs. The basic notion of correct programs. The Floyd method for proving partial

correctness of flow charts programs. Examples.

The Floyd method for proving total correctness of flow charts programs: partial correctness +

termination. Examples.

Formal definition of Floyd methods. Examples.

Partial and total correctness of structured programs by Hoare methods. Examples.

The Hoare’s methods are corrects and sounds. Theorems.

The basic notions of parallel and concurrent programs. Hardware architectures and software

architectures. Strategies of implementations and languages tools. Examples.

Process interactions. The correctness of concurrent programs. Behavioural analysis of

concurrent programs using shared variables: busy waiting. Examples.

Behavioural analysis of concurrent programs using semaphores, monitors, resources, remote

procedure calls, message passing. Examples.

Owicki’s and Gries’s method for proving the partial correctness of parallel programs. Examples.

Owicki’s and Gries’s method for proving the total correctness of parallel programs. Free from

deadlock and starvation, problems of termination. Examples.

Formal derivation of weakly and strongly correct concurrent programs. Examples.

A method for solving synchronization problems of concurrent programs. The implementation

methods of derived abstract programs using semaphores: changing variables, split binary

semaphores, passing the baton. Examples.

Contracts and proofs.

Contracts as a way of modeling a collection of agents.

Summary.

Literature:
Kröger, F.: Temporal Logic of Programs (Springer-Verlag, 1987)

McIver, A., Morgan, C.: Programming Methodology (Springer-Verlag, 2003)

Name of the course: High assurance object oriented software engineering

Faculty member responsible for the course: Dr. Sándor Sike, associate professor

Responsible department: Faculty of Informatics, Department of Software Technology And

Methodology

Total credits: 5

Total hours: 5

Type of the course

lecture

practice

consultation

Hours per week 2 2 1

Type of testing exam practice

Topics:
Lifecycle of software development. Models for software development.

Object oriented analysis and design by UML diagrams. Architecture.

Patterns (OO desing patterns, architectural patterns, concurrent patterns, anti patterns,

refactoring patterns).

Patterns in software development.

Literature:
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides:

Design Patterns - Elements of Reusable Object-Oriented Software

(Addison-Wesley Longman, Inc. 1995)

I. Sommerville:

Software Engineering

(Addison-Wesley 8th edition, 2007)

J. Warmer, A. Kleppe:

The Object Constaint Language, Precise Modeling with UML

(Addison-Wesley, 1999)

Mark Grand:

Patterns in Java Vol. 1-2

(John Wiley & Sons, 1999)

Name of the course: Web engineering

Faculty member responsible for the course: Dr. Zoltán Illés, associate professor

Responsible department: Faculty of Informatics, Department of Media & Educational

Informatics

Total credits: 5

Total hours: 5

Type of the course

lecture

practice

consultation

Hours per week 2 2 1

Type of testing exam practice

Topics:
This curriculum introduces the students with the modern, state-of-the-art client and server side

web technologies, methodologies of web engineering, the programming and design patterns,

especially with the web service oriented architectures. By the end of the course the student has a

global overview of the up-to-date web trends and technologies, and, with the help of them, is

able to develop a web application and web information systems.

Introduction to Web Technologies and Web Engineering: specialties, characteristics, categories

of web applications.

Web Architectures: multi-tier, data-centric architectures,

Requirement Analysis of Web Applications

Specialties of Large Enterprise and Small and Medium Enterprise Web Applications

Development Process of Web Applications

Model-Based Web Application Design and Development, WebML

Testing, Quality Management.

Design of Web 2.0 és Enterprise 2.0 Applications

Web Business Models

Web project management

Design of Mobile Web Applications

Semantic Web Applications, integration to Web Information Systems

Web Application Models, Cloud computing

Service Oriented Architectures, Web Information Systems

Literature:
Kappel, G., Pröll, B., Reich, S., Retschitzegger W. (Eds.): Web Engineering: The Discipline of

Systematic Development. John Wiley & Sons Inc., Chichester (2006).

Mendes, E., Mosley, N. (Eds.): Web engineering. Springer-Verlag, Berlin (2005).

Murugesan, S., Deshpande, Y. (Eds.): Web Engineering: Managing Diversity and Complexity of

Web Application Development. LNCS 2016, Springer-Verlag, Berlin (2001).

Name of the course: Component-Based Software Development

Faculty member responsible for the course: Dr. László Zsolt Varga, associate professor

Responsible department: Faculty of Informatics, Department of Software Technology And

Methodology

Total credits: 5

Total hours: 5

Type of the course

lecture

practice

consultation

Hours per week 2 2 1

Type of testing exam practice

Topics:
Component-Based Software Development

Introduction, basic notions. The notion of software development model. The UML as a primary

model-based notation for all analysis and design activities. The notions of meta model and

verified components.

The tasks and types of the component models. The interface description language (IDL). The

notion and roles of the middleware. The short overview of CORBA, COM/DCOM and

JavaBeans/EJB.

The notions and types of software architectures. The relationships of reference models,

architectural patterns, reference architectures and software architectures. The main

characteristics of the J2EE/EJB architecture.

Principles of the KobrA Method. Context realization defines the environment of the target

system by enterprise or business process model, by usage model, by structural model and by

interaction or behavioural model.

The main descriptive artifacts in a component specification are a functional model, a behavioral

model and a structural model

The main descriptive artifacts in a component realization are an interaction model, a

behavioural or algorithmic model and a structural model.

COTS component: a commercial off-the shelf component is a ready-to-use physical component

from a third party that can be incorporated into an application.

SYNTHESIS: a tool for creating correct system from COTS components.

The new version of the SYNTHESIS tool.

Propositional Temporal Logic: sytax and semantics. Axiomatization of Propositional Temporal

Logic.

First-Order Temporal Logic and its Semantics. Temporal semantics of concurrent programs. A

correctness proof method: the sometime system.

The tableau-based methods for synthesizing correct concurrent programs.

Model checking as an automatic technique for verifying finite state concurrent systems

Component verification by model checking

Literature:
Bass, L., Clements P., Kazman R.: Software Architecture in Practice (Addison-Wesley, 2003)

Clarke, E. M. Jr., Grumberg, O., Peled, D. A.: Model Checking (The MIT Press, 1999)

Gross, H-G.: Component-based Software Testing with UML (Springer-Verlag, 2005)

Recommended literature:
Kröger, F.: Temporal Logic of Programs (Springer-Verlag, 1987)

McIver, A., Morgan, C.: Programming Methodology (Springer-Verlag, 2005)

Meyer, G.B.: Object-Oriented Software Construction, Second edition (Prentice Hall, 1997)

Name of the course: Interactive Media Design and Development

Faculty member responsible for the course: Márta Turcsányi-Szabó, associate professor

Responsible department: Faculty of Informatics, Department of Media & Educational

Informatics

Total credits: 5

Total hours: 5

Type of the course

lecture

practice

consultation

Hours per week 2 2 1

Type of testing exam practice

Topics:
The course introduces Human–Computer Interaction (HCI) involving the study, planning, and

design of the interaction between people (users) and computers.

Its aim is to understand the theoretical basics of Perception, Multimedia design, Information

Visualization, Interaction Design, the Virtual Continum, Serious Games, Tangible,

Collaborative, Location-based, and Gesture-based technologies, etc.) and recent innovations in

these areas.

Activities involve the exploration of emerging interactive technologies designed for

demonstration, education, entertainment, navigation, narrative, support …etc. purposes and

their variety of creative applications in different disciplines and user interest groups.

Students from different disciplines form groups to design and implement a specified innovative

project that could well serve the basis of an industrial entrepreneurship.

Literature:
C. Ware. Information Visualization - Perception for Design. (ed 3) 536 pp. Morgan Kaufmann. 2012.

ISBN 978-0-12-381464-7

Ed. Ioannis Deliyannis, Interactive Multimedia, ISBN 978-953-51-0224-3, Hard cover, 312 pages,

Publisher: InTech, Chapters published March 07, 2012 under CC BY 3.0 license OpenAccess:

http://www.intechopen.com/books/interactive-multimedia

Lester Madden, Professional Augmented Reality Browsers for Smartphones: Programming for Junaio,

Layar and Wikitude (Wrox Programmer to Programmer) ISBN-13: 978-1119992813

L. Annetta and S. C. Bronack, (eds.), Serious Educational Game Assessment: Practical Methods

and Models for Educational Games, Simulations and Virtual Worlds, 1–18. © 2011 Sense Publishers.

ISBN: 978-94-6091-327-3 (paperback)

The Functional Art: An Introduction to Information Graphics and Visualization (Peachpit/Pearson

http://www.intechopen.com/books/interactive-multimedia

Education, 2012): http://www.thefunctionalart.com/ ISBN-13: 978-0321834737

Ed. Xin‐ Xing Tang, Virtual Reality - Human Computer Interaction, ISBN 978-953-51-0721-7, Hard

cover, 306 pages, Publisher: InTech, Chapters published September 05, 2012 under CC BY 3.0 license,

OpenAccess: http://www.intechopen.com/books/virtual-reality-human-computer-interaction

Recommended literature:

The Encyclopedia of Human-Computer Interaction, 2nd Ed. At: http://www.interaction-

design.org/books/hci.html

Journal of Virtual World Research: http://jvwresearch.org/

Horizon Reports: http://www.nmc.org/horizon-project

Papers submitted to conferences:

- Museums and the Web: http://www.museumsandtheweb.com/

- CHI: http://chi2013.acm.org/

- iED: http://europe.immersiveeducation.org/events/ied-europe-summit-2012

- DIS: http://www.dis2012.org/

- ISMAR: http://ismar2011.vgtc.org/

Name of the course: Advanced Functional Programming

Faculty member responsible for the course: Dr. Zoltán Horváth, professor

Responsible department: Faculty of Informatics, Department of Programming Languages And

Compilers

Total credits: 5

Total hours: 5

Type of the course

lecture

practice

consultation

Hours per week 2 2 1

Type of testing exam practice

Topics:
Algebraic types, type classes.

Higher-order types, existential types.

Uniqueness typing.

Dynamics, generic programming.

Purely functional data structures.

Parallel and distributed programming.

Combinators, combinator libraries.

Monadic programming.

Interactive programs, Functional Reactive Programming.

Embedded domain-specific languages.

Literature:
Koopman, P., Plasmeijer, R., van Eekelen, M., Smetsers, S. Functional Programming in Clean,

2002.

Plasmeijer, R., van Eekelen, M., von Groningen, J. Clean Language Report 2.2, December

2011.

Hudak, P. The Haskell School of Expression, 1st Edition. Cambridge University Press, February

http://www.thefunctionalart.com/
http://www.intechopen.com/books/virtual-reality-human-computer-interaction
http://jvwresearch.org/
http://www.nmc.org/horizon-project
http://www.museumsandtheweb.com/
http://chi2013.acm.org/
http://europe.immersiveeducation.org/events/ied-europe-summit-2012
http://www.dis2012.org/
http://ismar2011.vgtc.org/

2000.

Gibbons, J., de Moor, O. The Fun of Programming (Cornerstones of Computing). Palgrave

Macmillan, June 2005.

Hutton, G. Programming in Haskell. Cambridge University Press, 2007.

Thompson, S. Haskell: The Craft of Functional Programming, 3rd Edition. Addison-Wesley,

June 2011.

Marlow, S. Parallel and Concurrent Programming in Haskell. Proc. of the 4th Central

European Functional Programming School, CEFP 2011, Budapest, Hungary, June 2011,

Revised Selected Papers.

Recommended literature:
O'Sullivan, B., Stewart, D., Goerzen, J. Real World Haskell, 1st Edition. O'Reilly Media,

November 2008.

Lipovaca, M. Learn You a Haskell for Great Good! – A Beginner's Guide, 1st Edition. No

Starch Press, April 2011.

Name of the course: Agile project management in informatics

Faculty member responsible for the course: Dr. Zoltán Istenes, associate professor

Responsible department: Faculty of Informatics, Department of Software Technology And

Methodology

Total credits: 5

Total hours: 5

Type of the course

lecture

practice

consultation

Hours per week 2 2 1

Type of testing exam practice

Topics:

Classical Project Management Basic

Agile Introduction

Scrum overview

Roles, responsibilities

Scrum events, meetings, environment

Artifacts, documents

Product backlog, Sprint backlog

Sprint planning, running, review, retrospective

Estimation, Velocity

Backlog grooming

Release planning

Different burndown charts and agile metrics

Scrum of Scrums

Scrum simulation

Areas of application, scaling Scrum

Distributed projects

Agile transformation steps

Common pitfalls

Other topics

Lean and agile?

Kanban

Kanban vs Scrum

Exercises

Requirement engineering basics and refresher

User stories - introduction

User stories - fine tuning

Exercises

Name of the course: Formal semantics

Faculty member responsible for the course: Dr. Zoltán Horváth, professor

Responsible department: Faculty of Informatics, Department of Programming Languages And

Compilers

Total credits: 3

Total hours: 3

Type of the course

lecture

practice

consultation

Hours per week 2 1

Type of testing exam

Topics:
Introduction: motivation, approaches to semantics definitions

Translational semantics, attribute grammars and their applications

Denotational and operational semantics of expressions

Natural semantics of imperative statements

Structural operational semantics of imperative statements

Semantics of abort, nondeterministic and parallel execution

Denotational semantics of imperative statements

Domain and fixed point theory

Semantics of functional language elements

Modeling blocks and procedures

Modeling exceptions

Full abstraction

Classification of semantic descriptions. Attribute grammars.

Translational semantics using attribute grammars.

Two-level grammar defining the syntax and semantics of programming languages.

The semantics of arithmetic expressions. Semantics of binary numbers. Principles of

compositional definitions and structural induction. Properties of the semantics: free variables,

substitutions.

Denotational semantics. Direct style semantics. Requirements ont he fixed point.

Fixed point theory, definitions, theorems.

Direct style semantics: existence.

Extensions of While language with blocks declaring local variables and procedures. Examples.

Continuation style semantics for While language.

Operational semantics. Natural semantics. The derivation tree. The notion of semantically

equivalence. Examples.

Structural operational semantics and its properties. An equivalence result: For every statement S

of While language we have SnsS = SsosS.

Extensions of While language: abortion, non-determinism, parallelism. Operational semantics

of a collection of agents that work within the limits set by the contract. Examples.

For every statement S of While language the structural operational semantics and the direct

style denotational semantics are equivalent. Theorems.

The operational approach: Vienna Definition Language (VDL).

Summary.

Literature:
Hanne Riis Nielson and Flemming Nielson: Semantics with Applications - A Formal

Introduction (John Wiley & Sons, 1992)

Kenneth Slonneger and Barry L. Kurtz: Formal Syntax and Semantics of Programming

Languages (Addison Wesley Longman, 1995)

Glynn Winskel: The Formal Semantics of Programming Languages - An Introduction

(Foundations of Computing Series, MIT Press, 1993)

John C. Reynolds: Theories of Programming Languages (Cambridge University Press, 1998)

Name of the course: Formal methods in software development

Faculty member responsible for the course: Dr. Zoltán Istenes, associate professor

Responsible department: Faculty of Informatics, Department of Software Technology And

Methodology

Total credits: 5

Total hours: 5

Type of the course

lecture

practice

consultation

Hours per week 2 2 1

Type of testing exam practice

Topics:
Characteristics of the formal methods, their types and their place in the software development.

Formal specification methods. Specification languages and systems. Theorem proving systems.

Formal development. Basics of the B-method, main characteristics, use on simple problems.

Specification, refinement, implementation, poof of correctness. Description of data, description

of methods, architecture, components. Code generation. Event-B.

Tools: AtelierB, Click’n’prove, ProB, B4free, Rodin.

Literature:
Jean-Raymond Abrial:The B Book - Assigning Programs to Meanings (Cambridge University

Press, 1996)

Wordsworth J.: Software Engineering with B (Addison-Wesley, 1996)

Name of the course: Building distributed applications

Faculty member responsible for the course: Dr. Tamás Kozsik, associate professor

Responsible department: Faculty of Informatics, Department of Programming Languages And

Compilers

Total credits: 5

Total hours: 5

Type of the course

lecture

practice

consultation

Hours per week 2 2 1

Type of testing exam practice

Topics:
The course presents some important application domains for distributed programming, with

special regard to present software industry challenges and scientific computations. After the

completion of the course the students will not only understand the theoretical issues of

distributed computing, but they will also be capable of designing and implementing distributed

applications in general, and distributed object systems in particular. They will also learn

common technologies used in the software industry. The following topics will be addressed

(related technologies that can be used for illustration purposes are in parentheses).

Multi-tier application model: Modularization of large software systems, optimal use of

distributed architectures in the design of the components (with respect to efficiency and high

availability). Transactional applications backed by information systems. (Java EE, JDBC, JPA,

JTA)

Remote Procedure Call: (Java RMI, EJB)

Message-based communication: (JMS, PVM/MPI)

Web-programming: Web-applications (Java servlet, JSP, JSF) , web-services (JAX-WS)

Component lookup: (JNDI, Jini).

Code mobility: (Java applet)

Grid systems: fulfilling high computational requirements.

Aspect-oriented programming: Used in the implementation of the above technologies. (AspectJ)

Literature:
Jendrock, E., Ball, J., Carson, D., Evans, I., Fordin, S., Haase, K.: The Java EE 5 Tutorial, Third

Edition (Addison-Wesley, 2007)

http://java.sun.com/javaee/5/docs/tutorial/doc/

Foster, I.: The Grid: Blueprint for a New Computing Infrastructure, 2nd Edition (Morgan

Kaufmann, 2004)

Name of the course: Advanced Java Programming

Faculty member responsible for the course: Dr. Tamás Kozsik, associate professor

Responsible department: Faculty of Informatics, Department of Programming Languages And

Compilers

Total credits: 5

Total hours: 5

Type of the course

lecture

practice

consultation

Hours per week 2 2 1

Type of testing exam practice

Topics:
The purpose of the course is to acquire knowledge on, and enhance

competence in, Java Standard Edition, beyond the fundamental language

concepts and standard libraries.

- Generic definitions

- Annotations

- Reflection

- Multithreading

- Memory management, garbage collection

- Input-output, serialization

- Database management and persistence: JDBC and the fundamentals of JPA

- Network programming: TCP and UDP; HTTP

- Program design principles and best practices

- Exceptions, assertions

- Logging and testing

Literature:
James Gosling, Bill Joy, Guy Steele, Gilad Bracha. The Java Language

Specification, Third Edition. Addison-Wesley, 2005. ISBN 0-321-24678-0

Linda DeMichiel, Michael Keith. JSR 220: Enterprise JavaBeans, Version

3.0, Java Persistence API. Sun Microsystems, Inc., 2006.

Name of the course: Analysis of Distributed Systems

Faculty member responsible for the course: Dr. Máté Tejfel, assistant professor

Responsible department: Faculty of Informatics, Department of Programming Languages And

Compilers

Total credits: 5

Total hours: 5

Type of the course

lecture

practice

consultation

Hours per week 2 2 1

Type of testing exam practice

Topics:
The goal of the subject is to give an overview for the student about how can we explain the

parallel behaviour by algebraic methods and Petri-nets, and how work applications based on

that models in practice.

The basic concepts of the course are processes, computational processes, parallelism, operations

of processes, compositions of processes and properties of processes (liveness, deadlock-free,

etc.). The theory of Petri-nets is explored more partially with many modelling example. The

behavioural and structural properties, methods of analysis, famed subclasses and relationships

between these subclasses are investigated. We define theorems about liveness, safetyness and

reachability and present transformation, which preserve these properties. The course introduces

the Petri-boxes, a special class of Petri-nets, which help us to model the program structures

(sequences, branches and loops). Some tools for simulation and analysis of Petri-nets are also

investigated. The second part of the course introduces the theory of algebraic models through a

given example. The properties of the models, the methods of descriptions of processes and the

possible compositions are examined. The denotational, operational and axiomatic semantics of

the model is given and the relationships of these different descriptions are investigated.

Teaching methods: There will be lectures introducing the formal specification and properties of

Petri nets and algebraic models and exercises where the students will create concrete examples.

There will be also programming exercises where the students can use the learned methods.

Literature:
Murata, T.: Petri Nets, Properties, Analysis and Applications (Proc. of the IEEE. Vol. 77., no. 4,

ASpr 1989, 541-580)

Best, E., Devillers, R., Koutny, M.: Petri Net Algebra (Springer 2001)

Hennessy M.: Algebraic Theory of Processes (MIT, 1989)

Hoare, C.A.R.: Communicating Sequential Processes (Prentice-Hall, 1985)

Name of the course: Design of Distributed Systems

Faculty member responsible for the course: Dr. Zoltán Horváth, professor

Responsible department: Faculty of Informatics, Department of Programming Languages And

Compilers

Total credits: 5

Total hours: 5

Type of the course

lecture

practice

consultation

Hours per week 2 2 1

Type of testing exam practice

Topics:
Students will be able to express and verify the properties of the distributed programs using

formal methods, apply different ways to create advanced compositions of simple programs, and

solutions for interesting and difficult problems in a distributed way.

Dining/drinking philosophers, formal specification of distributed problems, properties of

distributed systems, safety and progress properties of distributed programs, verification of

safety critical properties, program compositions from components with proven properties,

computing the value of an associative function, message channels, pipelined networks

programming exercises where the students apply the learned methods in the practice.

Literature:
Misra, J.: A discipline of multiprogramming: programming theory for distributed applications

(Springer, 2001)

K. Mani Chandy and Jayadev Misra: Parallel Program Design: A Foundation (Addison-Wesley,

Reading, MA, Reading, Mass., 1988)

Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Software

Engineers (Addison-Wesley 2002)

Schmidt, D., C. et al.: Pattern-Oriented Software Architecture: Patterns for Concurrent and

Networked Objects (Wiley & Sons, 2000)

Name of the course: Advanced cryptography

Faculty member responsible for the course: Dr. Péter Sziklai, associate professor

Responsible department: Faculty of Science, Institute of Mathematics, Department of

Computer Science

Total credits: 6

Total hours: 6

Type of the course

lecture

practice

consultation

Hours per week 2 2 2

Type of testing exam practice

Topics:
The course have two main goals: discovering the mathematical background beyond several

cryptographic constructions and introducing novel cryptographic primitives using interesting

results from various topics of mathematics or computer science. For the first part, we present

the necessary exact definitions, precise assumptions and rigorous proofs of security. For the

second part, we present recent results, methods and its connections to cryptographic problems

from finite fields to linear algebra.

Perfect and computational security, proofs by reduction, security definitions,

pseudorandomness, message authentication codes, collision-resistant hash functions, one-way

functions, cryptographic hardness assumptions, primality testing, factoring and computing

discrete logarithms, arithmetics in finite fields and its applications, elliptic curve based

cryptography, lattice based constructions, secure multiparty computation, secret sharing

problems, applications for e-commerce.

Literature:
Berlekamp, E.R.: Algebraic Coding Theory. McGraw Hill, 1968

Huffman, W.C. –Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University

Press, 2003

van Lint, J.H.: Introduction to coding theory. Springer Verlag, 1982

McWilliams, F.J. – Sloane, M.J.A.: The theory of error-correcting codes. North-Holland, 1977

Roman, S.: Coding and information theory. Springer Verlag, 1992

Beutelspacher, A.: Cryptology. The Mathematical Association of America, 1994

Brassard, G.: Modern cryptology. Springer Verlag, 1988

van Tilborg: An introduction to cryptology. Kluiver Academic Publisher, 1988

Name of the course: Applied cryptography project seminar

Faculty member responsible for the course: Dr. Péter Sziklai, associate professor

Responsible department: Faculty of Science, Institute of Mathematics, Department of

Computer Science

Total credits: 6

Total hours: 6

Type of the course

lecture

practice

consultation

Hours per week 2 2 2

Type of testing exam practice

Topics:
The objective of the course is to develop and strengthen the ability to complete miniprojects,

working in small groups (3 persons approx.). The practical aspects of the learned

cryptographical solutions is emphasized, as well as focused team work concentrated on

modeling and solving a security problem originated in a real, practical situation.

Literature:
Berlekamp, E.R.: Algebraic Coding Theory. McGraw Hill, 1968

Huffman, W.C. –Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University

Press, 2003

van Lint, J.H.: Introduction to coding theory. Springer Verlag, 1982

McWilliams, F.J. – Sloane, M.J.A.: The theory of error-correcting codes. North-Holland, 1977

Roman, S.: Coding and information theory. Springer Verlag, 1992

Beutelspacher, A.: Cryptology. The Mathematical Association of America, 1994

Brassard, G.: Modern cryptology. Springer Verlag, 1988

van Tilborg: An introduction to cryptology. Kluiver Academic Publisher, 1988

Name of the course: Cryptographic protocols

Faculty member responsible for the course: Dr. Attila Kovács, associate professor

Responsible department: Faculty of Informatics, Department of Computer Algebra

Total credits: 4

Total hours: 4

Type of the course

lecture

practice

consultation

Hours per week 2 2

Type of testing exam practice

Topics:

This course gives an overview of the basic building blocks used to engineer cryptographic

protocols, and discusses in details the operation of mainstream cryptographic protocols used in

wired and wireless computer networks. In particular, TLS and IPsec are covered, as well as

security protocols in WiFi networks. We also study protocols used in emerging wireless

networks, such as wireless sensor networks and RFID systems.

Basic concepts and crypto primitives

Basic concepts and crypto primitives (cont'd)

Block encryption modes

Message authentication and authenticated encryption

Key exchange protocols

Random number generation

Verification of key exchange protocols with ProVerif

Public Key Infrastructres

TLS

WiFi security

IPsec

Security protocols for wireless sensor networks

Secure routing and wormhole detection

RFID security and privacy

Literature:
G. Schaefer, Security in Fixed and Wireless Networks, Wiley, 2004.

J. Edney and W. A. Arbaugh, Real 802.11 Security: WiFi Protected Access and 802.11i,

Addison-Wesley, 2003.

L. Buttyán, JP. Hubaux, Security and Cooperation in Wireless Networks, Cambridge University

Press, 2008.

J. Lopez and Z-H. Zhou (eds), Wireless Sensor Network Security, IOS Press, 2008.

A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC Press,

1996.

Name of the course: Cryptography and its applications

Faculty member responsible for the course: Dr. Attila Kovács, associate professor

Responsible department: Faculty of Informatics, Department of Computer Algebra

Total credits: 4

Total hours: 4

Type of the course

lecture

practice

consultation

Hours per week 2 2

Type of testing exam practice

Topics:

Paradigms of provable security algorithmic reduction, algorithmic indistinguishability,

simulatability.

Universal composability (UC) security framework:

The underlying computational model: PPT interactive Turing machines.

The model of protocol execution.

Protocol emulation. Special approaches: black box adversary, dummy adversary.

Ideal functionality and ideal protocol. Defining the security protocols: emulation of the ideal

functionality.

Hybrid protocol.

The UC theorem.

UC with joint state (JUC).

Definition of ideal functionalities for cryptographic tasks.

Examples: UC-realization, composition, technique of hybrid protocols.

Literature:
[1] R.Canetti: Universally Composable Security: A New Paradigm for Cryptographic Protocols,

IACR Archieve, 2005

[2] M.Backes, B. Pfitzmann, M.Waidner: A Universally Composable Cryptographic Library,

IACR Archieve, 2003

[3] O.Goldreich: Foundations of Cryptography, Cambridge Press, 2004

