Data mining in geoinformatics

Lecture notes for students

in Cartography and Geoinformatics

Dr. Ungvari Zsuzsanna, PhD

assistant professor

Eo6tvos Lorand University Budapest, Faculty of Informatics,
Institute of Cartography and Geoinformatics

Budapest, 2025

Contents

Data mining in ge0INTOIMALICSccviiieiicie e re e 1
Chapter 1. Introduction to data MININGcccoiiiiiiiieieee e 4
Chapter 2. OVERPASS TURBO AP ...ttt 5
Chapter 3. GTFS SPECITICALIONcveivieiecic et ne e 23
Chapter 3. GEOCOUING SEIVICES.......cuviuieieieieite ittt sb bbb 34
Chapter 4: Working with statistical data using pandas and matplotlib modules...................... 39
Chapter 5: Working with statistical data with pandas and matplotlib modules: Water level

CRANGES ...t h bbb Rt e bbb bbbt 44
Chapter 6. Working with photos metadata (Flickr photos metadata)ccccocevvevieiieennenn, 48
Chapter 7. Working with Python OGR mMOdUIEc.cccoeiieiiie e 53
Chapter 8. The structure of KIML fIlESccoiiiiiiiiieee e 59
Chapter 9. Installing Python modules from WHEEL files...........cccccooviviiiiiiiiiececeec e, 61

Requirements, prerequisites

This course focuses on data mining in spatial datasets. Thus it is different fromit will not be
the same as a standard data mining course.

When designing the course material, | focused on the recent challenges of cartography and
geoinformatics. To create visualizations from spatial datasets, you often need some
programming to preprocess these data. These tasks are performed with some programming in
Python on this course.

To successfully complete this course, you should have basic knowledge of QGIS, Python, and
SQL.

Recommended literature
If you want to learn more about data mining, here is a suggested reading.

Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining. Pearson

Education Limited, PDF book, 2014.
\ 4
=,
N

| 4

Reviewed by Dr. Gede Matyas.

1. Chapter 1. Introduction to data mining

Data mining is a young science: it was brought to life by big databases. Data mining includes
all the tools, methods, and algorithms to process large databases and automate certain
processing steps. The result allows to get new information and conclusions from the original
dataset.

The data mining process can be split to the following subprocesses:

Input data - Pre-processing - Data mining methods - Postprocessing = Information/result

Selection, dimensional Visualization, finding
reduction, conversion and filtering patterns,
data analysis

The purpose of pre-processing is to bring data stored in different formats into a single system,
making them suitable for further processing. Pre-processing includes cleaning raw dataset,
putting it into a common format, reducing noise, removing or correcting errors, filtering the
dataset by different conditions.

Data mining includes the processing of the data using mathematical methods. In the post-
processing phase, experts share the result as maps or diagrams as well.

Data Science

Data science is an interdisciplinary field that uses scientific methods, algorithms, processes,
and systems to extract insights and knowledge from structured and unstructured data. It
combines elements of statistics, mathematics, computer science, and domain expertise to
analyze and interpret complex data.

Big Data

Big Data refers to extremely large and complex datasets that are difficult to process using
traditional data management tools. These datasets are generated at high volume from various
sources such as social media, 10T devices, sensors, and online transactions. This term includes
not only the large amounts of data, but the hardware and sorfware infrastructure, and even the
data processing methods. Big data can be stored in the cloud, or in distributed systems. A
distributed system is a network of independent computers that work together as a single system
to achieve a common goal. These systems share resources, communicate over a network, and
are designed for scalability, reliability, and fault tolerance.

What will we be dealing with?

e Data extraction from online databases, with a special focus on pre-processing.

e Conversion of textual and other formats (in the case of location-related data) into
geospatial data types.

e Extracting information from pre-processed data using some basic statistical
methods.

e Post-processing and data visualization.

e Programming tasks in Python environment, including data preparation.

e Geoprocessing tasks in QGIS environment.

Chapter 2. OVERPASS TURBO AP|

Overpass Turbo API is a website where users can run queries on the OpenStreetMap (OSM)
database. The response is displayed on a map and in a data window, and the result can be
downloaded in several formats. Overpass Turbo uses a special query language called Overpass
QL (Query Language). Overpass can also work with Overpass XML, but this language is much
more complex. Queries sent a HTTP GET requests over the network. The documentation is
available here:

https://wiki.openstreetmap.org/wiki/Overpass turbo

How to begin to use Overpass Turbo API?

Open the Overpass Turbo website from here: https://overpass-turbo.eu/

< Share 4 Export & Wizard @ Style B Save & Load & Settings ? Help overpass turbo @ u Data

" e o
% ¥ / 3 5 ¢ Roo 1k
Ao Vs Y * [+ 8
% VY 3 SRt s s p
& sm:;m% ¥ ,'m, c » 2 4 o
300 m 3 s

The website consists of two main parts: on the left, you can see the Code Editor window, and
on the right, at map is displayed.

The menu system includes the Wizard and Export functions. In Overpass Turbo API, queries
can be constructed in two ways: you can write a script in Overpass QL or use the Wizard in
parallel.

In the next subchapters, we will explore both options together.

Exporting data

To export the results of queries, use the Export menu. You can save the data in GeoJSON,
GPX, KML, and OSM database (XML) formats.

GeoJSON Format: It is a text-based GIS format.

GeoJSON supports the following geometry types: Point, LineString, Polygon, MultiPoint,
MultiLineString, and MultiPolygon. Geometric objects with additional properties are called
Feature objects. A single text file can store different geometry types of data.

Here you can read more about the GeoJSON format: https://geojson.org/

https://wiki.openstreetmap.org/wiki/Overpass_turbo
https://overpass-turbo.eu/
https://geojson.org/

An exaple for the file structure:

{
"type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [125.6, 10.1]
b
"properties": {
"name": "Dinagat Islands"
}
}

KML: Keyhole Markup Language (KML) is an XML notation for expressing geographic
annotation and visualization within two-dimensional maps and three-dimensional Earth
browsers. KML was developed for use with Google Earth. A KML file specifies a set of features
(placemarks, images, polylines, polygons, 3D models, textual descriptions, etc.) that can be
displayed on maps in geospatial software implementing the KML encoding. Geometries are
described by longitude and latitude coordinates. Other data can make a view more specific,
such as tilt, heading, or altitude, which together define a "camera view" along with a timestamp
or timespan.

An example for KML structure

<?xml version="1.0" encoding="UTF-8"?2>

<kml xmlns="http://www.opengis.net/kml/2.2">

<Document>

<Placemark>
<name>New York City</name>
<description>New York City</description>
<Point>

<coordinates>-74.006393,40.714172,0</coordinates>

</Point>

</Placemark>

</Document>

</kml>

GPX: GPS Exchange Format (GPX) is an XML schema designed as a common GPS data
format for software applications. It can be used to describe waypoints, tracks, and routes.

An example for GPX format:

<?xml version="1.0" encoding="UTF-8" standalone="no" 2>
<gpx xmlns="http://www.topografix.com/GPX/1/1" version="1.1"
creator="Wikipedia"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.topografix.com/GPX/1/1
http://www.topografix.com/GPX/1/1/gpx.xsd">
<!-- Comments look like this -->
<wpt lat="52.518611" lon="13.376111">
<ele>35.0</ele>
<time>2011-12-31T23:59:597Z</time>
<name>Reichstag (Berlin)</name>
<sym>City</sym>
</wpt>
</gpx>

Basics of Overpass QL
Data types in OSM

OSM data can be nodes, ways, and relations (rel). The attributes of these geometry types are
called tags. Tags are, in fact, key-value pairs.

Read more about nodes: https://wiki.openstreetmap.org/wiki/Node

Nodes: nodes describe the elementary points that build up any more complex geometry.

Here is an example:

<node 1d="6454986742" 1lat="46.0725973" lon="18.2051926">
<tag k="entrance" v="main"/>

another example:

<node 1id="1760195778" 1lat="46.0690616" 1lon="18.2160408">
<tag k="amenity" v="restaurant"/>
<tag k="dog" v="yes"/>
<tag k="name" v="Szent Gydrgy Fogadd"/>
<tag k="toilets:wheelchair" v="yes"/>
<tag k="website" v="http://www.szentgyorgyfogado.hu/"/>
<tag k="wheelchair" v="yes"/>

Way: A way is one of the fundamental elements of the map. In everyday language, it is a line.
A way normally represents a linear feature on the ground (such as a road, wall, or river).
Technically, a way is an ordered list of nodes. It normally also has at least one tag or participates
in a relation. A way can be open or closed.

https://wiki.openstreetmap.org/wiki/\Way

Open way: In an open way (a linear representation of a feature), the first and last node are not
identical. Common examples of linear representation with open ways include most roads,
streams, and railway lines, because these start at one place and finish at another.

<way 1id="375355485">
<nd ref="27313594"/>
<nd ref="4042642645"/>
<nd ref="3787287460"/>
<tag k="HU:ed direction" v="forward"/>
<tag k="highway" v="primary"/>
<tag k="maxspeed" v="90"/>
<tag k="ref" v="71"/>
<tag k="ref:HU:edid" v="71lu2k276m"/>

<tag k="source:maxspeed" v="HU:rural"/>
<tag k="surface" v="asphalt"/>
<tag k="toll:hgv" v="yes"/>

</way>

Closed way: In a closed way, the last node is identical to the first node. A closed way may be
interpreted either as a closed polyline (a linear representation of a feature) or as an area, or both,
depending on its tags and the tags of containning relations. A typical example is a roundabout.

Area: An area (also polygon) is an enclosed filled area of territory defined as a closed way.
Most closed ways are considered to be areas even without an area=yes tag. For example, a
park, forest area, or building.

 <way 1d="143854005">

https://wiki.openstreetmap.org/wiki/Node
https://wiki.openstreetmap.org/wiki/Way

<nd ref="1574148556"/> <nd ref="1574148670"/>
<nd ref="1574148682"/> <nd ref="2621432173"/>
<nd ref="2621432172"/> <nd ref="2621432167"/>
<nd ref="2621432168"/> <nd ref="1574148558"/>
<nd ref="1574148556"/>
<tag k="building" v="university"/>
<tag k="name" v="K-épiulet"/>

</way>

— Ve
f

Rel (relation). Relations are structured collections of objects — nodes, ways, and other relations.
Relations are groups, for example, bus routes.

https://wiki.openstreetmap.org/wiki/Relation

<relation 1id="9684822">
<member type="node" ref="1382931855" role="platform"/>

<member type="node" ref="1382931862" role="platform"/>
<member type="way" ref="819269604" role=""/>

<member type="way" ref="819269609" role=""/>

<tag k="from" v="Kerepes HEV-&4llomés"/>

<tag k="name" v="Helyi jarat "As": Kerepes HEV-4lloméas
=> Patkd Cséarda => Iskola => Berzsenyi uca =>
Szilasliget-Kemping"/>

<tag k="operator" v="Regio 2007 Kft."/>

<tag k="public transport:version" v="2"/>

<tag k="ref" v="Helyi jarat"/>

<tag k="route" v="bus"/>

<tag k="to" v="Szilasliget-Kemping"/>

<tag k="type" v="route"/>

<tag k="via" v="Patkdé Csarda -> Iskola -> Berzsenyi
uca"/>

</relation>

https://wiki.openstreetmap.org/wiki/Relation

A basic query using Overpass QL

If you want to retrieve data from OSM, you have to write queries. In a query, you usually
specify all geometry types in OSM. For example, if you want to know the location of bars in a
small area (let’s move the view to the city center of Budapest), "amenity" is the key, and "bar"
is the value. You can build the query in the Wizard: amenity=bar. Click on Build and run the

query.

#. Query Wizard
The wizard assists you with creating Overpass queries. Here are some usage examples:

Examples

Drinking wWater

amenity=drinking water and type:node
(highway=primary or highway=secondary) and type:way
tourism=hotel

tourism=museum in Vienna

"Drinking water”™ in London

Q, amenity=bar

add query comments cancel

If the query is built, its text is available in the code editor. It can be viewed in the following
way:

(

node ["amenity"="bar"] ({{bbox}});
way["amenity"="bar"] ({{bbox}});
relation["amenity"="bar"] ({{bbox}})
) ;

out;

In 2023, NWR was introduced to make shorter statements. So, the query below is same as
above, but in a shorter form.

nwr ["amenity"="bar"] ({{bbox}}):;
out;

NWR: A new element in Overpass QL. It includes nodes, ways and relations. Because of its
simplicity, I prefer this.

How to give the area of the query?

Let’s write a query for restaurants in the Wizard: amenity=restaurant. If you do not define the
exact target area, the query will run automatically for the map canvas extent/bounding box.

// query part for: “amenity=restaurant”-> This is a comment!

node["amenity"="restaurant"] ({{bbox}});
way["amenity"="restaurant"] ({{bbox}});
relation["amenity"="restaurant"] ({{bbox}});

)
// print results
out body;

bbox (bounding box). The extent of the canvas is a rectangle. The definition looks like this:

 ({{bbox}});

If you want, you can specify a bounding box manually by coordinates. First, provide the
southern (bottom) edge, then the western (left) edge, followed by the northern (top) edge, and
finally the eastern (right) edge. Separate each coordinate with a comma, and enclose all
coordinates in parentheses (round brackets). End the line with a semicolon.

§(47.4, 18.5, 47.8, 19.3);

If the area divided into two parts by the meridian 180°, then divide your query into two parts
as well:

m

m

Searching radius

In this case, you have to provide a coordinate and a search distance called radius, and the query
will run in a circle-shaped area.

%(around: 2000, 47.4866, 19.0567);

Alternatively, you can give a location instead of coordinates. Let’s find restaurants within a
500-meter circle of Budapest Deak Ferenc tér 1. In this case, you are performing geocoding and
using the geocodeCoords parameter.

{{radius=5001}}
(

node["amenity"="restaurant"] (around: {{radius}}, { {geocodeCoords:Buda
pest Deédk Ferenc tér 11}1});
); out;

It is also possible to use an irregular area as a bounding area (mask layer), e.g., a country, a
county, or other administrative areas. In this case, you use geocoding again, in the following
way:

{{geocodeArea:Ercsi}}->.searchArea
node["amenity"="restaurant"] (area.searchArea) ;

The geocodeArea variable was renamed to .searchArea, and it was used as a bounding area.

If you use the Wizard, query the restaurants for Budapest in following way:
amenity=restaurant in Budapest.

§[out:json][timeout:25];
. // fetch area “Budapest” to search in

10

§{{geocodeArea:Budapest}}—>.searchArea;
. // gather results
§nwr["amenity"="bar"](area.searchArea);
. // print results

§out geom;

The OpenStreetMap Wikipedia page

It is important to know the source, where you can browse/check every features. Please visit the
website, and study it! This page explains how physical features on the ground, such as roads or
buildings, are represented in OpenStreetMap using tags attached to its basic data structures
(nodes, ways, and relations). Each tag describes a geographic attribute of the feature being
shown by that specific node, way, or relation.

https://wiki.openstreetmap.org/wiki/Map features

Giving the values of the keys, types of relations

If you search for an exact key—value pair in OSM, use the equal sign.

["building"="castle"]

In SQL, there is a LIKE operator, which is used in a WHERE clause to search for a specified
pattern in a column. In OSM and Overpass QL, there is a very similar way to find patterns in
the text. If the value is partially given, for example, you know that the word contains 'bicycle’
(e.g., bicycle_parking, bicycle_repair_station, bicycle_rental), but the other part of the value

is not known, or you do not want to specify it exactly. In this case, use amenity:bicycle or:

["amenity"~"bicycle"]

If you want to query all values in a key in Wizard use amenity=*. In the Overpass QL query,
you get simply this:

§["amenity"]

If you want to make an inverted selection for elements, specify a value, and use != operator.
Retrive all data except bicycle_rentals in the view of ELTE Lagymanyos Campus, where the
amenity!=bicycle_rental.

 ["amenity"!="bicycle rental"]

Be careful! Use a very small area in the bounding box because many results will be retrieved!
The situation is same in the following query. amenity!~bicycle returns data from every
category for the selected area (except bicyle-related things).

§["amenity"!~"bicycle"]

If you want to query all key and data for the target area, except the values in a given key (e.g.
amenity), use this: amenityl=%*,

§["amenity"!~".*"]

11

https://wiki.openstreetmap.org/wiki/Map_features

The timeout

[timeout:180]

The maximum allowed time for the query in seconds. If it is exceeded, the query will stop. It
is not an obligatory part of the query.

[out:json] or [out:xml]

The query can be opened by [out:json], and the retrived data will be in JSON format
do not add [out:json], the data will retrived in XML.

. Ifyou

[out:Jjson] [timeout:25]; //JSON data format

(

// query part for: “amenity=restaurant”
node["amenity"="restaurant"] ({{bbox}});

way ["amenity"="restaurant"] ({ {bbox}});
relation["amenity"="restaurant"] ({{bbox}});

)i
out body;
1

"version": 0.6,

"generator”: "Overpass API ©.7.62.5 1bd436f1",
4 "osm3s": {
5 "timestamp_osm_base": "2025-05-11T19:33:02Z",
6 "copyright”: "The data included in this document is from www.openstreetmap.org. The data is made available under ODbL."
7 g
8 "elements™: [
9
o {
11 "type”: "node”,
12 "id": 5351760340,
1 "lat": 47.4978111,
14 "lon": 19.0671955,
15 "tags": {
16 "addr:city": "Budapest"”,
17 "addr :housenumber™: "13",
18 "addr:postcode": "10872",
19 "addr:street™: "Klauzal utca",
20 "amenity”: "restaurant”,
21 “name": "Barack & Szilva",
22 "opening_hours”: "Mo-Sa 18:00-24:00",
23 "phone™: "+36 1 798 8285;+36 30 258 965",
24 "website": "https://barackesszilva.hu/",
25 "wheelchair": "yes"
26 ¥
27}
28
29]
3}
31

[timeout:25]; //XML data format

(

) 7

// query part for: “amenity=restaurant”

node ["amenity"="restaurant"] ({{bbox}});
way["amenity"="restaurant"] ({{bbox}});
relation["amenity"="restaurant"] ({{bbox}}):;

out body;

12

1 <?xml version="1.8" encoding="UTF-8"?>

2 <osm version="@.6" generator="Overpass API ©.7.62.5 1bd436f1">

3 <note>The data included in this document is from www.openstreetmap.org. The data is made available under ODbL.</note>
4 «<meta osm_base="2025-05-11T19:35:03Z"/>
5

<node id="535176@340" lat="47.4978111" lon="19.0671955">

7 <tag k="addr:city" v="Budapest"/>

8 <tag k="addr:housenumber" v="13"/>

9 <tag k="addr:postcode” v="1872"/>

10 <tag k="addr:street" v="Klauzal utca"/>

11 <tag k="amenity" v="restaurant"/>

12 <tag k="name" v="Barack & Szilva"/>

13 <tag k="opening hours" v="Mo-Sa 18:00-24:00"/>

14 <tag k="phone" v="+36 1 798 8285;+36 30 258 0965"/>
15 <tag k="website" v="https://barackesszilva.hu/"/>
16 <tag k="wheelchair" v="yes"/>

17 </node>

19 </osm>

Closing the query: out; and its mutations

Every query has to be closed with out;. This is the shortest form to close them. If you want to
specify how to plot the data in the data view, you can use the following supplements:

out body; Print all information necessary to use the data.

out skel; Print the minimum information necessary for geometry: for nodes: id and
coordinates; for ways: id and the ids of its member nodes; for relations: id of the relation, and
the id, type, and role of all of its members.

out tags; Print only ids and tags for each element and not coordinates or members.
out ids; Print only the ids of the elements in the set
See more here:

https://wiki.openstreetmap.org/wiki/Overpass API/Overpass QL#Output format (out:)

Recursivity

The recurse down standalone query is written as a single greater than. It takes an input set. It
produces a result set. Its result set is composed of:

« all nodes that are part of a way which appears in the input set; plus

« all nodes and ways that are members of a relation which appears in the input set;
plus

« all nodes that are part of a way which appears in the result set

In particular, you can change the input and/or result set with the same notation as for the
recurse up standalone query.

—

For further syntax check: https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_ QL

13

https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_QL#Output_format_(out:)
https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_QL

Practice

The following practices work in Overpass Turbo QL, in the Overpass Turbo API. Light blue
text hightlights can be written in the Wizard tool. Here is a short description, how to use the
Wizard:

https://wiki.openstreetmap.org/wiki/Overpass turbo/Wizard

There may be some changes in syntax. Please open Overpass Turbo in a new tab of your
browser: https://overpass-turbo.eu/

Unit 1. Exercise the different views.
Task 1.1

Set the map view to the centre of Budapest, and find the bars.

The bars are amenity features. In Wizard type: amenity=bar. In the code editor, you can build
the query.

(
node ["amenity"="bar"] ({{bbox}});
way["amenity"="bar"] ({{bbox}});

relation["amenity"="bar"] ({{bbox}}):;
L;t;

or.

nwr ["amenity"="bar"] ({{bbox}});

out;

The viewing area is given in round bracket as a the canvas extent: ({{bbox}});

Task 1.2

Now, query all bars in Budapest and its sorrounding. The coordinates of the bounding box
are: 47.4,18.7,47.8, 19.2.

nwr ["amenity"="bar"] (47.4, 18.7, 47.8, 19.2);
out;

14

https://wiki.openstreetmap.org/wiki/Overpass_turbo/Wizard
https://overpass-turbo.eu/

Task 1.3

Let’s include in the query the availability of the bars with wheelchair. The bounding box is
same as in the task 1.2.

In the Wizard, amenity=Dbar and wheelchair=yes have to be written. You search for two tags
of one feature, therefore the logical relation is AND.

nwr [,amenity”="bar"]
[wheelchair=yes] (47.4, 18.7, 47.8, 19.2);
out;

Task 1.4
Query the bars whose address contains Budapest! (addr:city)

In the Wizard: amenity=bar AND addr:city=Budapest. You search for two tags of one
feature, therefore the logical relation is AND.

node["amenity"="bar"]
["addr:city"="Budapest"]
(47.4, 18.7, 47.8, 19.2);
out;

Task 1.5

Look for the bars near you (search radius is 2 km). Your location: 47.4866° és 19.0567°. The
bars have to be wheelchair accessible.

nwr ["amenity"="bar"]
["wheelchair"="yes"]
(around:2000,47.4866, 19.0567) ;
out body;

Task 1.6

Look for the bars near you (search radius is 500 m). Your location is in Budapest Deak Ferenc
tér 1.

[out:json] [timeout:25];
{{radius=500}}
(

node["amenity"="restaurant"] (around: { {radius}}, { {geocodeCoords:Buda
pest Dedk Ferenc tér 11}1});
way["amenity"="restaurant"] (around: {{radius}}, { {geocodeCoords:Budap
est Dedk Ferenc tér 1}});
relation["amenity"="restaurant"] (around: {{radius}}, { {geocodeCoords:

Budapest Dedk Ferenc tér 1}1});
)
out body;

15

or:

{{radius=500}}

nwr ["amenity"="restaurant"] (around: {{radius}}, {{geocodeCoords:Budap
est Dedk Ferenc tér 1}1});

out body;

Task 1.7*

Add a new style to the nodes in Task 1.6. Every nodes has a red fill color, and the label is
written to the left of the node. Font-size is 16 pt.

The nodes and the ways can be styled by the MapCSS language. This language has only a few
options for styling; therefore you have only one task in this topic. But if you want to read
more about MapCSS, please visit:

https://wiki.openstreetmap.org/wiki/MapCSS/Examples

node ["amenity"="bar"]

["wheelchair"="yes"]

["addr:city"="Budapest"]

(47.4, 18.7, 47.8, 19.2);
{{style:
node { fill-color: red; color: blue, fill-opacity 1; font-

size:16; text: name; text-position:left; 1}
}}
out body;

Task 1.8

Query two features at the same time in Budapest city center. These features are the restaurants
and bars. Use the OR logical operator!

You have to use a round brackets to group the items that you query.

In the Wizard: amenity=bar OR amenity=restaurant.

(

nwr ["amenity"="restaurant"] ({ {bbox}});
nwr ["amenity"="bar"] ({{bbox}});

) ;

out;

or:
(
node["amenity"="restaurant"] ({{bbox}});
way["amenity"="restaurant"] ({{bbox}});
relation["amenity"="restaurant"] ({{bbox}});
node ["amenity"="bar"] ({{bbox}});
way ["amenity"="bar"] ({{bbox}});
relation["amenity"="bar"] ({{bbox}}):;

)

out body;

16

https://wiki.openstreetmap.org/wiki/MapCSS/Examples

Unit 2. An exercise on buildings
Task 2.1

Buildings can be retrieved as nodes, ways, and relations. Plot the residential buildings in the

city center of Budapest.

In the Wizard: building=residential.

(

node ["building"="residential"] ({{bbox}}):;
way["building"="residential"] ({{bbox}});
relation["building"="residential"] ({{bbox}}):;

) ;

out body;

or:

nwr ["building"="residential"] ({{bbox}});

out;

Query the university buildings! building=university or amenity=university.

(

node["building"="university"] ({{bbox}});
way["building"="university"] ({{bbox}});
relation["building"="university"] ({{bbox}});
)
out body;

or: (to get the right result, use the recurse up sign!)

nwr ["building"="university"] ({{bbox}});
nwr ["amenity"="university"] ({{bbox}});
>

out;

Unit 3.

Task 3.1

Query the forest areas in Buda Hills. Set the map view to the western part of Budapest!

In the Wizard: landuse=forest

(

node ["landuse"="forest"] ({ {bbox}});
way["landuse"="forest"] ({ {bbox}});
relation["landuse"="forest"] ({{bbox}});
) ;
>
out body;
or:
nwr["landuse"="forest"] ({{bbox}}):;
>
out body;

17

Task 3.2

Query the forest areas in the city of Ercsi.

In the Wizard: landuse=forest in Ercsi

{{geocodeArea:Ercsi}}->.searchArea;

(

node["landuse"="forest"] (area.searchArea) ;
way["landuse"="forest"] (area.searchArea) ;
relation["landuse"="forest"] (area.searchArea) ;
) ;
out body;
or:
{{geocodeArea:Ercsi}}->.searchArea;
nwr ["landuse"="forest"] ({ {bbox}});
>
out body;
Task 3.3

Let’s find the castles in Nograd county! Castles can be found both building and in historic
categories as well.

building=castle or building historic=castle in Nograd

{{geocodeArea:Nbégrad}}->.searchArea;

(

node ["building"="castle"] (area.searchArea) ;
way["building"="castle"] (area.searchArea);
relation["building"="castle"] (area.searchArea) ;
node["historic"="castle"] (area.searchArea) ;
way["historic"="castle"] (area.searchArea) ;
relation["historic"="castle"] (area.searchArea);

) ;

out body;

or.

{{geocodeArea:Nbégrad}}->.searchArea;

(

nwr ["building"="castle"] (area.searchArea) ;
nwr ["historic"="castle"] (area.searchArea) ;

) ;>

out body;

or:

larea
["boundary"="administrative"]
["admin level"="6"]
["name"="Nbégrad varmegye"]->.a;

out body;

(

18

nwr ["historic"="castle"] (area.a)

’
’

: nwr ["building"="castle"] (area.a)
) i>;
éout body;

Unit 4. Administrative boundaries

Task 4.1

Query the data of Hungary, set the map view to the Carpathian Basin. The data is retrieved in
the place tag as nodes (it does not contain the boundary). The tag ’place’ contains the name of
the country in several languages.

(

node["place"="country"] ["name"="Magyarorszag"] ({ {bbox}});
way["place"="country"] ["name"="Magyarorszag"] ({ {bbox}});
relation["place"="country"] ["name"="Magyarorszag"] ({{bbox}});

) ;

out body;

Task 4.2

Query all boundaries from the admin_level 2 to 9 in Hungary. Set the map view to Hungary,
then zoom in on a county. If you query the administrative regions, it is necessary to known the
admin_level parameter value. To get familiar with the admin_levels in Hungary, see the table
below.

In the Wizard: boundary=administrative and admin_level="?

For Hungary:

Admin_level | Administrative region Admin_level Administrative region

2 country border 6 Counties / catpital city
borders — NUTS 3

3 - 7 Districts

4 NUTS 1 borders 8 Settlements

5 Regions - NUTS 2 9 Districts of Budapest

For the rest of the world, check the specific country in the following table, where you can see
the admin_level numbers and types (from 2 to 11):

https://wiki.openstreetmap.org/wiki/Tag:boundary%3Dadministrative#admin level=* Countr
y specific values

Let’s start with counties (admin_level: 6):

nwr ["boundary"="administrative"] ["admin level"="6"] ({{bbox}});
>
out body;

Now, carry on with the admin_level 7, these are the districts.

19

https://wiki.openstreetmap.org/wiki/Tag:boundary%3Dadministrative#admin_level=*_Country_specific_values
https://wiki.openstreetmap.org/wiki/Tag:boundary%3Dadministrative#admin_level=*_Country_specific_values

(

node ["boundary"="administrative"] ["admin level"="7"] ({{bbox}});

way["boundary"="administrative"] ["admin level"="7"] ({{bbox}});
relation["boundary"="administrative"] ["admin level"="7"] ({{bbox}});
) ;

>

out body;

Settlement can be found at admin_level 8.

node ["boundary"="administrative"] ["admin level"="8"] ({{bbox}});
way["boundary"="administrative"] ["admin level"="8"] ({{bbox}});
relation["boundary"="administrative"] ["admin level"="8"] ({{bbox}});
) ;

>

out body;

There are two types of regions in Hungary, corresponding to different NUTS levels. There are
3 regions in the admin_level 4 (West Hungary, East Hungary, Central Region of Hungary)
and 7 regions at admin_level 5.

(

node ["boundary"="administrative"] ["admin level"="5"] ({{bbox}});
way["boundary"="administrative"] ["admin level"="5"] ({{bbox}});
relation["boundary"="administrative"] ["admin level"="5"] ({{bbox}}):;
)

>

out body;

National borders are represented at admin_level 2.

(

node ["boundary"="administrative"] ["admin level"="2"] ({{bbox}});
way["boundary"="administrative"] ["admin level"="2"] ({{bbox}});
relation["boundary"="administrative"] ["admin level"="2"] ({{bbox}}):;
) ;

>;

out body;

Plot the border of the county Nograd!

{{geocodeArea:Nbégrad}}->.searchArea;

(

node ["boundary"="administrative"] ["admin level"="6"] (area.searchAre
a);
way["boundary"="administrative"] ["admin level"="6"] (area.searchArea
)i
relation["boundary"="administrative"] ["admin level"="6"] (area.searc
hArea) ;

)i

>

out body;

or zoom in to Nograd and plot its boundary!

(
node ["boundary"="administrative"] ["admin level"="6"] ["name"="Nbégrad
varmegye"] ({ {bbox}});

20

way["boundary"="administrative"] ["admin level"="6"] ["name"="Nbégrad
varmegye"] ({{bbox}});
relation["boundary"="administrative"] ["admin level"="6"]["name"="No6
grad varmegye"] ({{bbox}});

) ;

>

out body;

Let’s find the borders of the village Apc. Village borders are at the admin_level 8.

Zoom in to East Hungary:

(

node ["boundary"="administrative"] ["admin level"="8"]["name"="Apc"] (
{{bbox}1});
way["boundary"="administrative"] ["admin level"="8"]["name"="Apc"] ({
{bbox1}1});
relation["boundary"="administrative"] ["admin level"="8"] ["name"="Ap

c"] ({{bbox}});
)

>

out body;

or with geocoding:

[out:json] [timeout:25];
{{geocodeArea:Apc}}->.searchArea;

(

node ["boundary"="administrative"] ["admin level"="8"] (area.searchAre
a);
way["boundary"="administrative"] ["admin level"="8"] (area.searchArea
)
relation["boundary"="administrative"] ["admin level"="8"] (area.searc
hArea) ;

) ;

>

out body;

Unit 5.
Task 5.1

Let’s find the bars with the 1117 postal code!

area["boundary"="postal code"]["postal code"="1117"]->.a;
out;

nwr ["amenity"="bar"] (area.a);

out body;

Task 5.2

Let’s find the peaks of the Dolomites!

Larea
[place=region]

21

Task 5.3
Let’s find the peaks of Nograd varmegye!

Task 5.4

Query all settlements from Nograd varmegye!

Chapter 3. GTFS specification

The General Transit Feed Specification (GTFS) is an Open Standard used to distribute relevant
information about transit systems to riders. It allows public transit agencies to publish their
transit data in a format that can be consumed by a wide variety of software applications.

GTFS consists of two main parts: GTFS Schedule and GTFS Realtime.
GTFS Realtime

GTFS Realtime (General Transit Feed Specification Realtime) is an extension of the GTFS
(General Transit Feed Specification) format that provides real-time public transit data. It
allows transit agencies to share live updates about their services.

Key Components of GTFS Realtime:

e Trip Updates — Provides real-time updates on vehicle delays, cancellations, or
changes to scheduled trips.

e Vehicle Positions — Gives the current location, speed, and heading of transit
vehicles.

e Service Alerts — Communicates disruptions, detours, or other service changes
affecting the transit system.

Use Cases

e Public transit apps (like Google Maps, Transit, Moovit) use GTFS Realtime to show
live bus/train locations.

e Smart city and transportation analytics platforms use it to monitor transit performance.

e Developers and researchers analyze it for insights into transit efficiency and rider
experience. What information can you get from the GTFS?

GTES Schedule

GTFS Schedule is a feed specification that defines a common format for static public
transportation information. It is composed of a collection of simple files, mostly text files (.txt)
that are contained in a single ZIP file.

Each file describes a particular aspect of transit information such as stops, routes, trips, etc. At
its most basic form, a GTFS Schedule dataset is composed of 7 files: agency.txt, routes.txt,
trips.txt, stops.txt, stop_times.txt, calendar.txt and calendar_dates.txt.

The documentation of GTFS:

https://gtfs.org/documentation/overview/

http://developers.google.com/transit/gtfs/

AGENCY.TXT

A jaratiizementetd adatai.

23

https://gtfs.org/documentation/overview/
http://developers.google.com/transit/gtfs/

. Identifies a transit brand which is often synonymous with a transit
agency id

agency.
agency_name Full name of the agency
agency_lang Two letters language code.

agency_phone Phone number
agency email Email.
agency fare url \Website

STOPS.TXT
. Identifies a location: stop/platform, station, entrance/exit, generic
stop id)
- node or boarding area
stop_name Name of the stop.

stop lat & stop 1on Latitude and longitude of the stop

stop_code Short text or a number that identifies the location for riders.

location type 0 or blank: stop; 1: station; 2: entrance/exit; 3:generic; node; 4:
boarding area

wheelchair boarding

wheelchair accessibility

ROUTES. TXT
agency id Agency 1D

Short name of a route. Often a short, abstract identifier (e.g.,
"32", "100X", "Green") that riders use to identify a route

route short name

Full name of a route. This name is generally more descriptive
route_long_name than the route_short_name and often includes the route's
destination or stop.

route_id Route ID

route color &

route text color Printing colors of the routes in a map

TRIPS.TXT
route id Foreign key for route ID
trip_id Tripm ID

24

service id

trip headsign

direction id

block id

shape id

Identifies a set of dates when service is available for one or more
routes.

Text that appears on signage identifying the trip's destination to
riders. This field is recommended for all services with headsign
text displayed on the vehicle which may be used to distinguish
amongst trips in a route.

Indicates the direction of travel for a trip. This field should not be
used in routing; it provides a way to separate trips by direction
when publishing time tables. Valid options are:

0 - Travel in one direction (e.g. outbound travel).
1 - Travel in the opposite direction (e.g. inbound travel).

Identifies the block to which the trip belongs. A block consists of
a single trip or many sequential trips made using the same vehicle,
defined by shared service days and block _id. A block id may
have trips with different service days, making distinct blocks.

Identifies a geospatial shape describing the vehicle travel path for
atrip.

wheelchair accessible Wheelchair accessibility

STOP_TIMES. TXT
trip id
stop_id

arrival time &
departure time

stop headsign

stop_sequence

shape dist traveled

SHAPES. TXT

shape id

Foreign key for trip ID
Foreign key for Stop ID

Arrival and departure time in the stop

Text that appears on signage identifying the trip's destination to
riders.

Order of stops

Actual distance traveled along the associated shape, from the
first stop to the stop specified in this record. This field specifies
how much of the shape to draw between any two stops during a
trip. (in meter)

Id of the shape

25

Sequence in which the shape points connect to form the shape.

shape_pt_sequence Values must increase along the trip but do not need to be

shape pt lat &
shape pt lon

consecutive.
Latitude and longitude of a shape

Actual distance traveled along the shape from the first shape

shape dist_traveled point to the point specified in this record. Used by trip planners

to show the correct portion of the shape on a map (in meter).

FEED_INFO.TXT

The file contains information about the dataset itself, rather than the services that the dataset
describes. In some cases, the publisher of the dataset is a different entity than any of the
agencies.

GTFS text files are essentially tables (similar to those in database management systems).
They contain many primary and foreign keys, which connect the files. If you want to work
with these text files, it is easiest to import them into QGIS or another database management
system (e.g., PostgreSQL). Below, you will see some examples of these solutions.

First, get familiar with the tables:

The stops can be found in the stops.txt file with coordinates.

The path or route of the bus/tram/underground railways, etc., can be found in the
shapes table. According to the shape_id field, you can generate the polyline for the
path.

The routes.txt file contains the name/number of the route in the route_short_name
column.

The "Joker" table is the trips table. It connects routes, shapes, and stop_times tables
with foreign keys. The trip_headsign field contains the text or label on the front of the
bus/tram, etc. You can also use the route_short_name from routes.

Stop_times can be connected to trips, allowing you to query the arrival and departure
times of a route.

Working with GTFS data in QGIS using GTFS GO

GTFS Go is a QGIS plugin to display paths and stops. First, install this plugin:

1.

In QGIS Plugins - Manage and Install Plugins > GTFS-GO->Install Plugin

2. Then, open the plugin and load data from a preset repository. For example, use

[USA][New York][Brooklyn].

3. Select the GTFS data source, then set an output directory on your computer.

26

@) G6TFs GO X

Repository: | Preset b
Feed Selection

GTFS-Datasource [usA][Mew York]Brooklyn hd

Output directory |C:\Users\ungvarizs\Downloads'proba a
®) simple routes and stops

ignore shapes. txt ignore isolated stops

aggregate route frequency

V| filtter by day | 2/16/23 | unify similar stops stop_id delimiter | _
time filter |00:00:00 <=departure_time< |11:59:59
Extract on QGIS

Now, you have the Brooklyn layers, with a stops layer and a routes layer. The stops layer
contains the stop_id and the name, and routes contains the data from shapes path layer, and
the route_short name field.

Lo
=
ﬂchmnn Rd + Chestnut 5t o
=
Washington Ave + Chestnut St
= Clinton Rd + Chesinut St
Clinton Rd + Poplar St Charles Lindbergh Blvd +WestburyB(_\ @ Charles Lindbergh @ 60
on Ave + Chesinut St Clinton Rd + Paplar St O Qak St & Westbury Blvd; (—
® (Q]) ZChas Lindbergh Bud @ Wes bury Bl
. Washington Ave + Garden St ‘Westbury Blvd Opp Warren St @ Chas Lindbergh Bvd &WestburyBwd #55
sshington Ave + Garden Stﬁ\ Westbury Blvd + Warren St

E Ovington Blvd Opp Coliseum Park = Earle O
Clinton St + Meadow St D

— Wesibury Blvd + Faindew Ave
Clinton Rd + Meadow St @ @ v
tilton PI. ‘ ‘Westbury Bivd + Commander St Hempstead Tpke Opp Walt
3 N Frankin v o 2 St @ Washington Ave +Meadow St Westbury Blud + Pilot St__ Hempstaad Tpke + Walton A=)
ranklin Ave + 2n |

9 —. Washington Ave + Lincoln Blvd L Westbury Blvd + Myrtle Ave Hempstead Tpke + Earle Ovington E”V('\ (E) C

= =
Washington Ave + SeitzAve (Z) @ Clinton St + Dartmouth St =) Uniondale
Wastbury Bivd + Harvard Ava Hofstra Hempstead Tpke + C"""’m'ao \Umondale;

Washington Ave +\ﬂ=m Cott St

lith Ste) o Westbury Blvd Opp Hanard Ave C, Oak S5t @ NQS::::; Cchr)crl’: E(’Eie West @ Hofstra Hempstead Tkpgt Californi:

N Franklin St + Union PI @ Clinton St + Yale St -) Uniondale Ave Opp Gerald St (@

=

Hempstead Tpke + Oak St

lantic Ave. Washington Ave + Colymbia St Fulton St + Duncan Rd.

th St @ Clinton St + Lant Ave @ ®Weslburyﬂlvd + Vermont Ave ®U \Uninndz

Jackson St + Bennett Ave @ Jackson St+Bennett Ave

Qempstead Trans |1 Cenler @ ‘©)

Fulton Ave + Warner Ave Fulton St + Kernochan Ave Uniondale Ave + Braxion St

Fulton Ave + Manor Ave
' Columbia St @ @ @@Imlon St+ Jack% St Fulton Ave + Tennessee fve Fulton St + Hendrickson Ave (® ur
olumbia St+ Franklin St Hemps'ead Transit Center Front St + Duncan Rd. | Front St + California Ave

@‘ ront St + emenle
tatNassau CountyDistictC % n); i, @t u Eullice A:.@ ®ﬂ ltan fua + Rnhe nfbl s.—‘ ° Pln Cn n @ @‘) @ (-) 0@ ®) i

What is the projection of the data? It uses geographic coordinates; therefore, the custom
CRS of this data is WGS84, EPSG: 4326.

Now, let’s load the budapest _gtfs.zip from CANVAS or from this link:
https://bkk.hu/gtfs/budapest_gtfs.zip

Select the Local ZIP file option, and find the GTFS. You will get this:

27

https://bkk.hu/gtfs/budapest_gtfs.zip

@ M @ T. &+ T »

~ || [l budapest_gtfs_2022051'
v © stops
= v 3/ routes
— (105
93A
— 174
9094
-2
a-1228
— 5907
M3A
— 031
—0O6A
- 024
2410
61
85
220
w066
123A
- 75
13
—7E
1408
20E
— 755
105
164

B A N A N A N N A SN A

914 -

v Miskolci utca /,Csoméri ut5zug|ﬁ utca / Cinkot

A 4 e
Nezsider park

LN Fiirész utca Rakospatak utca / Csémori t
I

anka utca Kassaite ‘ter mKassai tér ”
= urész utca . »
= '@ / Miskolci utca [Szuglo |

i at M) (pKassai ter @F\ ‘Nagy Lajos kiraly utja / Czobor utcaw = Fiirész Utca
f3 Kerékgyartd utca / K " Komi
at M)D: Nagy Lajos kiraly Gtja / €zobor utca | Bosnyak ter omacsy Jtca ,3
- Bosnyak tér \
o Kerékgyarto.utca @ Bosnyak tér £
X Mexiki ut M @ Telepes utca’ @' Bosnyak tér @
n A : {Uzsoki Utcai Korha
b ﬂt"\\n Mill. FAV jarmitelep (kapu) ! ! P b U@osnyak ter Egressy Ut / Vezér 31;

1Iu|Jaro ;. Erzsébet kirdlyné Utja, aluljaré Szugle ulca“f Nagy Lajos kiraly dtja (\ N

] = Erzsebet kiralyne dtja, aluljaro

= ' Tlsza Istvén ter
me= E ressy tér
|h-\]aro = @ Korong utca T|sza Istvan tér g Y /

-
Amerikai ut é) Amerikai Ot Egressy tér @‘Eg\resisy tér

tdsi Durer' sor @
) Ajtosi Diirer sor,
Réna utea - R“”ﬂ utca jeszenakslanos

"
=ZU \o vasutallomas
Zuglo Vﬂs%masﬁm{; R Jeszendk Jénos utca (
~Zichy Géza utca uglés vasUtallomag Posta Jarmutelep Jeszenak Janc

\Zug\o vasutallomas""z'-'glc vastallomas

Turan utca @®

Tu

Szugld utca / Rona utca

utca \Stefama ut / Thakaly ut Posta Jarmiitelep Pongratz Ge
@ T6rokor utca Kaffka Margit utt
- Thikoly u@ =, Egressy ut/ Hungana korat C@ Kaffka Margit utc
/ Thoksly Ot Stefania at / Thakoly ut @@ Térokor utca @ o
X (9) Egressy t/ Hungarlaw Egressy (it / Hungria kért Mogyorodi ut, VB telephely @
Egressy at/ Stefénlak'. = Réna,utéa Ror
dras utca @ #(SEgrossy ut/ Stefania it Bilands ut P ut
illangd utca illangd utca
Egressy Gt / Sle'ama‘lh@Szobranc koz)’
%_ Verseny utca Szobranc kéz \ Varna utca ____ Rillangé utca Moy, ang6 utca (i
Puskas Ferenc Stad|on M O‘ Omagz.ytca) — = Pillangd utca

._.

l Gum\gyar Puskas Ferenc Stad@m L@ Pl@gﬁ utca M¥~ Pillangé utca
o ""Puskas Ferenc Stadion'M \erepesi Ot

Puskas Ferenc Stadion M
Gumlgyar Hés utca

Hds utca Hos utca

Hds utca

\

@3'/

Opening of BKK data in QGIS

Let’s remove all data from QGIS or open a new project. First, import the stops.txt and shapes.txt
files in Data Source Manager as Delimited Text files. The delimiter character is ',' (comma),
and the geometry definition is Point coordinates. Set the X field to shape_pt_lon and the Y field
to shape_pt_lat. The projection (CRS) is 4326. Once you are ready, open the Processing menu
and find the Points to Path algorithm. This algorithm creates polylines from the points of a
path. Add the input layer, which is the shapes layer. The Order field specifies the order of points,
indicated by the shape_pt_sequence field, and the Group field shows the identification number
of lines (this value is the shape_id). After running the algorithm, you will get this:

How can | find out, which bus it is and where it goes?

Let’s make joins between layers. First, please import the routes.txt, trips.txt, and
stop_times.txt files as Delimited Text layers. All settings are the same, except the Geometry
Definition is "No geometry." Connect the shapes and the trips tables. The shapes table has the
primary key: shape_id, and join it to the trips.shape_id foreign key.

Shapes layer 2Project - Properties = Joins—> Join the table trips with shape_id to target

field shape_id. Apply the Joins.

Now, you can join the routes table with routes.route_id to the target column route_id (from the
trips table). You can now use the Identify Feature button. If you click on a route, you can read
the information in the small window (route_short_name, trip_headsign).

£ 20 g

Feature
= Paths
= shape_id
b (Derived)
b (Actions)
shape_id
begin
end
v Path_trip [1212]

|dentify Results

(7 S =

Feature
= Paths
shape_id
b (Derived)
b [Actions)
shape_id
begin
end
* Path_trip [1212]
* route_id
b (Actions)
fid
route_id
trip_id
service_id
trip_headsign
direction_id
block_id
shape_id
wheelchair_accessible
bikes_allowed
boarding_door
¥ route_id
¥ route_id
b route_id
b route id

Mode | Current Layer

View | Tree

QGIS Database (DB) Manager

Value

X483

X485
314,205
314,300

Walue

X435

X485
314,205
314,300

3400

1,269

5400

C11578100
C1157BKTHCKMEK-031
Keleti palyaudvar

1

C11578_5400_03_22
X485

1

2

MULL

5400

3400

5400

5400 '

[I'you can not see it in the menus, activate it in the Plugins—> Manage and install plugins]

Open the DB Manager: Database - DB Manager.

29

Here on the left, you can see the project layers in the virtual layers tree. Open a new SQL

Query.
ﬁ | @Impurt La

iders | sl Window

-
&% ConDsrTEAs

Let’s answer the following questions with queries!

1) Print the stops in *Ors vezér tere’.

2) How many different name does *Ors vezér tere’ stop have?

3) Display all stops from *Ors vezér tere’ in the QGIS main window!

4) What is the number of the route called *Csepel-Kiralyerdd’ ? (trips and routes,
trip_headsign)

If you want to show the geometry in the QGIS window, first, put the geometry field after the
SELECT statement, then go to Load as New Layer, and set the geometry column (geometry).
Finally, click on Load!

1 select gecmetry from stops

Execute 5960 rows, 0.000 seconds Qear Query History

geometry

Point (19.1 47.500:

Point (18.12789100000000175 47.48313900000000132)
Point (19.10340599999999966 47.5003680000000017)
Point (19.09103599999999901 47.51398900000000248)
Point (19.12144693999999986 47.59877800000000292)

Point (19.13663700000000034 47.5051599999999965)

FTo [0 [& [w [~]| =

V| Load as new layer

Retrieve

Column with unique values v | |V Geometry column | geometry - o
Layer name (prefix) Set fiter
Avoid selecting by feature id Load
Cancel

1.) select * from stops where stop name like "Ors vezér tere%"

2.) select stop name, count(*) from stops where stop name like "Ors
vezér tere%" group by 1

3.) select stop name, count(*), geometry from stops where stop name
like "Ors vezér tere%" group by 1

4.) select * from trips Jjoin routes on

trips.route id=routes.route id where trip headsign='Csepel-
Kirdlyerdd'

A database index is a data structure that improves the speed of data retrieval operations on a
database table at the cost of additional writes and storage space to maintain the index data
structure. Indexes are used to quickly locate data without having to search every row in a

30

database table every time the table is accessed. Indexes can be created using one or more
columns of a database table, providing the basis for both rapid random lookups and efficient
access to ordered records. If you do not use indexes in a database, queries run slowly. QGIS
does not use indexes on tables; therefore, the next queries will be run in PostgreSQL+PostGIS
with DBeaver.

The easiest option to import Shapefiles into PostgreSQL is to use the PostGIS Bundle
program. In a Windows environment, it can be easily started from the Start menu. First, please
save your data as Shapefiles. If the file does not have geometry, the DBF file can be written.
Right-click on the layer name - Export - Save Features As 2> Esri Shapefile. You will get
an error message about missing geometry. Ignore it. Check whether you have the DBF file!

In DBeaver
Create a new empty database. Right- click on databases—> Create an empty database.

Add the POSTGIS extension to the table.
Open PostGIS Bundle. Set the connection details.

g PostGIS Shapefile Import/Export Manager — X

PostGIS Connection

View connection details...

Import Export

Import List
Shapefile Schema Table Geo Column SRID Mode Rm

Add File

Options... Import About Cancel

Log Window

Add the files. Below the white box, you can choose DBF as the file type. Now, you are able to
import the data.

31

Set the SRID to 4326 on bkk_shapes and bkk_stops tables (They have geometry!). Finally,

import them.

0 PostGIS Shapefile Import/Export Manager

PostGIS Connection
View connection details...
Import Export
Import List
Shapefile Schema Table Geo Column SRID Mode Rm
DAADATOKNBENTI\zsuzsi\oktatas\adatbanyaszat, felho_al public bkk_shapes geom 4326 Create J
D:A\ADATOKNBENTI\zsuzsi\oktatas\adatbanyaszat, felho_al public bkk_stops geom 4326 Create O
DA\ADATOKNBENTI\zsuzsi\oktatas\adatbanyaszat, felho_al public bkk_routes geom 0 Create)
D:\ADATOKNBENTI\zsuzsi\oktatas\adatbanyaszat, felho_al public bkk_stop_times geom 0 Create O
DAADATOKNBENTI\zsuzsi\oktatas\adatbanyaszat, felho_al public bkk_trips geom 0 Create J
Add File
Options... Import About Cancel

Log Window

Connecting: host=localhost port=5432 user=postgres password=""****' dbname=bkk client_encoding=UTF8
Connection succeeded.

Now, you answer the following questions with queries:

5.) Which routes go to *Goncz Arpad varoskoézpont’? Order in ascending order!

6.) When do buses arrive at ’Egyenes utcai lakotelep’?

7.) Which buses stop at ’Egyenes utcai lakotelep’?

8.) Make a list of the departure times of bus routes *276E’ at’Egyenes utcai lakotelep’!
9.) Query the route of bus line *276E’!

Key:

5.) select route short name from trips Jjoin routes on
trips.route id=routes.route id where trip headsign like 'GOncz
Arpad varoskdzpont%' group by 1 order by 1

6.) select arrival time from stops join stop times on
stops.stop id=stop times.stop id where stop name=’'Egyenes utcai
lakételep’ order by 1

7.) select distinct routes.route short name from stop times join
stops on stops.stop id=stop times.stop id join trips on
trips.trip id=stop times.trip id join routes on

routes.route id=trips.route id where stop name like 'Egyenes utcai

lakdételeps'

32

8.) select distinct arrival time from stop times join stops on
stops.stop id=stop times.stop id join trips on
trips.trip id=stop times.trip id join routes on

routes.route id=trips.route id where stop name like 'Egyenes utcai
lakételeps' and route short name='276E'’

9.) select geometry from shapes path join trips on

trips.shape id=shapes path.shape id join routes on

routes.route id=trips.route id where route short name='276E’

33

Chapter 3. Geocoding services

What is geocoding?
Geocoding is the process of assigning coordinates to a given address or geographic name.

What is reverse geocoding?

Reverse geocoding is the process of finding an address or geographic name close to given
coordinates.

The result of geocoding and reverse geocoding depends on the accuracy (level of detail)
of the source geodatabase. It is worth mentioning that even if the source database is very
accurate and detailed, if the given address is not exact or incomplete (e.g., missing district
name), the result may not be as good as expected. Let’s try to find the following address in
OpenStreetMap or Google Maps: Budapest Jokai utca 6.

Budapest Jokai utca 6.
Results:

As you can see, there are several Jokai streets in Budapest. JOKAI Mor was a popular writer
in the 19th century, and therefore his name appears in several street names in Hungary:
OpenStreetMap Search:

https://nominatim.openstreetmap.org/ui/search.html?g=Budapest+J%C3%B3kai+utca+6.&ex
clude place ids=71360719%2C173383115%2C24319190%2C259704147%2C226370159

Add the district to the address: Jokai utca 6., Budapest, X V1. keriilet OpenStreetMap Search
with District:

Jokai utca 6., Budapest, XVI. keriilet

https://nominatim.openstreetmap.org/ui/search.html?g=+J%C3%B3kai+utca+6.%2C+Budape
st%2C+XV1.+ker%oC3%BClet

Now, | found what | wanted.

The address should contain the country, (county or district), city, postal code, street, and
house number.

The website of OSM Nominatim

Nominatim works with the OpenStreetMap address database. You can easily try it out on this
website. You can send queries here both in simple and structured forms. Simple means the
concatenated address. Structured form means that you separate each part of the address into
different boxes, such as address, postal code, city, etc.
https://nominatim.openstreetmap.org/ui/search.html

34

https://nominatim.openstreetmap.org/ui/search.html?q=Budapest+J%C3%B3kai+utca+6.&exclude_place_ids=71360719%2C173383115%2C24319190%2C259704147%2C226370159
https://nominatim.openstreetmap.org/ui/search.html?q=Budapest+J%C3%B3kai+utca+6.&exclude_place_ids=71360719%2C173383115%2C24319190%2C259704147%2C226370159
https://nominatim.openstreetmap.org/ui/search.html?q=+J%C3%B3kai+utca+6.%2C+Budapest%2C+XVI.+ker%C3%BClet
https://nominatim.openstreetmap.org/ui/search.html?q=+J%C3%B3kai+utca+6.%2C+Budapest%2C+XVI.+ker%C3%BClet
https://nominatim.openstreetmap.org/ui/search.html

How can you geocode in QGIS?

Install *’Geocoding’ plugin from the Plugin Repository. (Plugins ->Manage and Install
Plugins).

Open the Geocoding plugin.

Enter the address, run the geocoding request, and select the desired result from the list. For
example: 1117 Budapest Pazmany Péter sétany 1/a.

There are several addresses; please select one from the set of addresses!

This plugin uses the OpenStreetMap Nominatim geodatabase.

(2 Dialog x

The server found more than one places, please choose one or all

ELTE Tarsadalomtudomanyi Kar, 1/4, Pazmany Péter sétany, Lagymanyos, X, kerdlet, Budapest, Kdzép-Magyarorszag, 1117, Magyarorszag

ELTE Lagymanyosi Campus - Eszaki tamb, 1/a, PAzmény Péter sétény, Ligymanyos, XI. keriilet, Budapest, KGzép-Magyarorszég, 1117, Magyarorszag
ELTE Természettudomanyi Kar, 1/4, Pazmany Péter sétany, LAgymanyos, Xl. kerllet, Budapest, Kbzép-Magyarorszag, 1117, Magyarorszag

1/a, Pazmany Péter sétany, Lagymanyos, XI. kerllet, Budapest, Kbzép-Magyarorszag, 1117, Magyarorszag

ELTE TTK mihaldvevd allomas, 1/a, Pazmany Péter sétany, Lagymanyos, X1, kerllet, Budapest, K&zép-Magyarorszag, 1117, Magyarorszag

ELTE TTK Kémiai Intézet, 1/a, Pazmany Péter sétany, Lagymanyos, ¥, kerllet, Budapest, Kézép-Magyarorszag, 1117, Magyarorszag

ELTE TTK Fizikai Intézet, 1/a, Pdzmény Péter sétany, Lagymdnyos, X, kerilet, Budapest, Kozép-Magyarorszag, 1117, Magyarorszag

1/A, Pazmany Péter sétany, Lagymanyos, XI. kerllet, Budapest, Kozép-Magyarorszag, 1117, Magyarorszag

fLTETTK Kémiai Intézet, 1/a, Pazmany Péter sétany, Lagymanyos, XI. kerilet, Budapest, Kozép-Magyarorszag, 1117, Magya
@LTE TTK mUholdvevé allomds, 1/a, Pazmany Péter sétany, Lagymanyos, XI. kerllet, Budapest, Kozép-Magyarorszag, 1117, Mag
<E Lagymanyosi Campus - Eszaki tomb, 1/a, Pazmany Péter sétany, Lagymanyos, XI. keriilet, Budapest, Kozép-Magyarorszag,
;LTE Természettudomanyi Kar, 1/A, Pazmany Péter sétany, Lagymanyos, X|. kerilet, Budapest, Kézép-Magyar

JA, Pézmany Péter sétény, Lagymanyos, XI. kerilet, Budapest, Kézép-Magyarorszag, 1147, Magyarorszig .IfA. Pazméany Péter sétany, Lagymanyos, XI. kerulet, Budapest, Kézép-Magyarorszag, 1117, Magyarorszag
ELTE TTK Fizikai Intézet, 1/a, Pazmany Péter sétany, Lagymanyos, XI. kerllet, Budapest, K6zép-Magyarorszag, 1117, Magyarorszag

@ /a, Pazmény Péter sétany, Lagymanyos, XI. kerllet, Budapest, K6zép-Magyarorszag, 1117, Magyarorszag

MMQGIS
Install "'MMQGIS’ plugin from Plugin Repository. (Plugins ->Manage and Install Plugins)

| have a dataset with all kindergartens, primary and secondary schools in Hungary. |
downloaded this file from the website of the Oktatasi Hivatal (Office of Education).
https://dari.oktatas.hu/

This quite a big file, so I reduced the size to 100 rows!

MMQGIS is a plugin where you can run geocoding requests. In this plugin, you can read
excel tables, and after the geocoding, you will get a new QGIS layer with the points of
schools.

But, before you start the geocoding, first redesign the basic Excel table!

35

https://dari.oktatas.hu/

=

Reduce the file size, keep only 100 rows.

2. Add a new country field, and fill it with the text "Magyarorszag’ (Hungary). This
helps to increase the success of geocoding.

3. Save the file in CSV format. The delimiter character is comma.
(Set in Excel or Notepad++ > Search->Find - Replace)

4. Set the character encoding to UTF-8 in Excel or use Notepad++.

Open MMQGIS in the Menu bar - Geocode - Geocode CSV with web service

Give the following options:

Address: utca és hazszam (Street and housenumber)
City: varos (city)

State: megye (county)

e Country: orszag (new country field)

Set the geocoding service to OSM Nominatim. This is a free option. There are other
possibilities, like Google Map sor ESRI, but you need activation key (API key) to these
geocoder first before you can use them.

The Output file name and not found output list = it is a list with the addresses, where the
geocoding was not succesful

The result is a new layer with the point coordinates of the schools.

Python geoPy

The next part of this task involves using the Python module geoPy. Please install it before
you begin the work. geoPy may have dependencies, so please install them as well.

geoPy is a module for geocoding and reverse geocoding in Python. The main advantage of
this module is that it allows to use more than 30 geocoding services, including the most
important ones like Nominatim, Google Maps, Esri, TomTom, etc. The geocoding request
itself is a very short and simple in every case.

Now, you will work with the schools Excel table.
You do not need any preprocessing (please work only with 100 records).

Please install pandas, openpyxl, and GDAL/OGR module, if you have not done so
earlier.

Python pandas works with tables, and openpyx1 is necessary to open XLS or XLSX files
with pandas.

GeoPy Documentation

https://geopy.readthedocs.io/en/stable/

If you have questions about installation, please read the ,,Installing modules on Python”
Chapter.

36

https://geopy.readthedocs.io/en/stable/

Abstract of the task: Read schools.XLSX file. Geocode the full addresses with OSM
Nominatim. Create a Shapefile with the following attributes: name of the school, full address.
Open this Shapefile in QGIS.

The detailed description of the task:

1. Open the Excel table. Read the file.
2. Concatenate the address cells of the Excel table. Send itt to geocoder
3. Write the answer in a Shapefile. Locations have to be displayed as points.

Import the modules in the code header. GDAL/OGR package is called osgeo. GDAL works with
raster data, OGR works with vector data. Use Nominatim for geocoding.

from geopy.geocoders import Nominatim
from osgeo import ogr

from osgeo import osr

import pandas as pd

geolocator = Nominatim(user agent="Myapp")

Read schools.xlsx table. Import the data into the DataFrame. DataFrame is a special two-
dimensional matrix to store table format data. DataFrame allows us easy access to data.

§df=pd.read_excel('schools.xlsx')

Rename all columns according to their header (the first line). This means the index of the
columns inherited from the header name.

~df.rename (columns=df.iloc[0]).drop(df.index[0])

Before you begin the geocoding, first create the Shapefile. Define the driver.

§driver = ogr.GetDriverByName ("ESRI Shapefile")

Create the Shapefile datasource.

§ds = driver.CreateDataSource ("schools.shp")

Give the spatial reference system (WGS84, EPSG: 4326)

srs = osr.SpatialReference ()
srs.ImportFromEPSG (4326)

Create a layer, define the data type.

§layer = ds.Createlayer ("points", srs, ogr.wkbPoint)

Add the attribute table definition. Create an ID field with integer data type. Create a column
with the full address.

idField = ogr.FieldDefn ("id", ogr.OFTInteger)
layer.CreateField (idField)
featureDefn = layer.GetLayerDefn ()

Create a do_geocode function that performs geocoding. If the geocoder is unavailable, it
makes several attempts, before giving up.

§def do _geocode (address, attempt=1l, max attempts=5):
! try:

37

return geolocator.geocode (address)
except GeocoderTimedOut:
if attempt <= max attempts:
return do geocode (address, attempt=attempt+1)
raise

Let’s write the for loop, geocode the addresses. First concatenate the full address.

for 1 in range(1,99):

addr=' Magyarorszag, '+df.loc[i] [COUNTY']+' varmegye
'+df.loc[i]['CITY']+', '+str(df.loc[i]['POSTAL CODE'])+"'
'+df.loc[i1] ["ADDRESS']+" '

Call the geocoder.

location = do geocode (addr)

Check the returned address. If you have a result (if the location variable is not empty), write
the Shapefile. The location variable contains the latitude, longitude and the full address.

if location!=None:
feature = ogr.Feature (featureDefn) #create the feture
point = ogr.Geometry(ogr.wkbPoint) #give the geometry type
pont.AddPoint (location.longitude, location.latitude) #add

the coordinates
feature.SetGeometry (pont) #add geometry to feature
feature.SetField ("id", 1) #set field data
layer.CreateFeature (feature) #add feauter to layer

ds = None #close the Shapefile

38

Chapter 4: Working with statistical data with pandas
and matplotlib modules

This chapter demonstrates how to work with statistical data and how to create diagrams using
matplotlib. The source dataset was downloaded from this website:

https://www.ketszintu.hu/publicstat.php

This website contains the results of final exams in Hungarian secondary schools for various
subjects including mathematics, biology, Hungarian literature and grammar, chemistry, etc.
The exams areconducted at two levels: standard and advanced. Today, we will work with the
results of a mathematics exam from 2018. The data are available in CSV format.
https://www.ketszintu.hu/publicstat.php?stat= 2018 1&reszletes=1&eta_id=3&et] szint=K

Steps:

First, familiarize yourself with the dataset.
Second, calculate the average score for the entire country!
o Sum the points from the ‘I. rész’ and ‘II. rész’ sections to get the total score.
o Use only the data where the student was present at the exam (vizsgazo
megjelent = megjelent)and where the written score is valid (irasbeli
pontszam != '—')
- Print the average scoress for each county!
- Plot a bar chart based on the average scores!
- Save these scoress to a textfile, and create a coropleth map in QGIS using the
hungary.gpkg dataset.

Let’s see the detailed code!

Import the pandas and matplotlib (as plt) modules in the header of your code. Read the
CSV file into the DataFrame. Specify the source, the delimiter, the character-encoding and the
header line.

import pandas as pd
import matplotlib.pyplot as plt

df = pd.read csv('matek 2017 2.csv',
delimiter=";",encoding="cpl250", header=0) #load the data in the
Dataframe

Drop the original column index (which is initially an integer index), and set the header as the
new index. The Hungarian Math final exam consists of two parts: 'Lrész’and ’II. rész’.
These columns contain students' scores, but the values are stored as strings. Aggregation
functions such as min, max, avg can not process string values. Therefore, you need to convert
the strings to integers. First, create a new empty column, as a pandas Series.

df.rename (columns=df.iloc[0]) .drop(df.index[0])
df['l.rész']=pd.Series (dtype='int')
df['2.rész']=pd.Series (dtype="int"')
df['ossz']=pd.Series (dtype="int"')

Then, fill the Series with numbers. Create a for loop that iterates through all records (length of
the DataFrame minus 1). Inside the loop, use an If condition whether the student attended the
exam and received a valid score. If so, update the Series with the corresponding values.

39

https://www.ketszintu.hu/publicstat.php
https://www.ketszintu.hu/publicstat.php?stat=_2018_1&reszletes=1&eta_id=3&etj_szint=K

After that, you can call the aggregation funtions. Let’s try min, max, and avg on the total
score (sum of ‘I rész’and ‘Il rész’), now applied to the entire dataset.

v=0;
for 1 in range(l,len(df)-1):
if df['vizsgazd részvétele'] [i]=="megjelent' and df['irédsbeli
pontszam'][i]!="-"
v=v+1
df['"l.rész'][i]l=int (df['I. rész'][i])
df['"2.rész'"] [i]l=int (dEf['"II. rész'][i])
df['ossz'] [1]=df['l.rész'][i]+df['2.rész"][1]
print (df['ossz'].sum () /Vv)
print (df['ossz'].aggregate ('mean'))
print (df['ossz'].aggregate ('max"'))
print (df['ossz'].aggregate ('min'))
print (df['ossz'].max ())
print (df['ossz'].min ())

If you want to group the data in a table, use the groupby function. Group the data by county
('intézmény megyéje").

print (df.groupby('intézmény megyéje') ['ossz'].aggregate ('mean'))
print (df['l.rész'].sum()/v)
print (df['2.rész'].sum()/v)

Now, create a diagram using matplotlib. Store the groupby result in a variable called
df_diagram. The plot function requires three parameters:

e X-axis — county ('intézmény megyéje’)

e y-axis — total score

e diagram type — bar chart.

Use PIt.show() to display the diagram.

df diagram=df.groupby ('intézmény
megyéje') ['ossz'] .aggregate ('mean')

df diagram.plot(x='intézmény megyéje', y='ossz', kind='bar')
plt.show ()

Finally, write the total scores by county to a file using the function to_csv(filename).

§df_diagram.to_csv('ujmatek.csv')

If you want to save the diagram as a file, use savefig(filename) function. The file format can
be JPG, PNG, PDF, etc.

fig = df diagram.plot(x='intézmény megyéje', y='ossz',
kind='bar') .get figure ()
fig.savefig('figure.pdf')

40

[respe

' i op » i i 1
g L | ’ E
] §

If you have prepared the CSV file, create a choropleth map in QGIS. You need hungary.gpkg
as a basemap. Open the county layer (megye).

EEEEEEER
0 O O L
L A L i

H

P —
Zatrmae-perey

Open the data Source manager and navigate to the Delimited textfile submenu. Import the
delimited textfile as an attribute table.

(2 Data Source Manager | Delimited Text x
i e File name F:\ADATOK\BENTT \zsuzsi'pktatas\adatbanyaszat, felho_alapu_adatok\temakorok\5_statisztikak ujmatek. csv &
roee Layer name |ujmatek Encoding | UTF-8 -
‘m Vector
w File Format
! Raster
i, Meet () €SV (comma separated values) Tab Colon Space
__+ viesh B
(' Regular expression delimiter Semicolon v Comma Others
* Point Cloud _ - -
* @) Custom delimiters Quote Escape
Delimited
1= w Record and Fields Options
‘% GeoPackage =
Number of header lines to discard 0 =| || Decmal separator is comma
- : GPS V| First record has field names Trim fields
V| Detect field types Discard empty fields

i':_ SpatiaLite

Geometry Definition
PostgreS0OL v i
*
(! Point coordinates
MSSOL :
* (1 Well known text (WKT)

* Oracle ' Mo geometry (attribute only table)
m Virtual Layer P Layer Settings
+ SAP HAMA Sample Data
intézmény megyéje ossz -

1 |Baranya 27.911392405063292
2 |Borsod-Abatj-Zemplén 18,140493867768596
3 |Budapest 27.832941176470587
4 |Bacs-Kiskun 28.823529411764707
5 |Békés 17.404040404040405
6 |Csongrad 22.863158878504674

* XYZ T |Fejer 21.318181818181817
2 | Gydr-Moson-Sopron 24,068181818181817 b

n
2aF, Vector Tile

Y

ArcGIS REST
/% Server

GeoMode Close Add Help

Join this table to the county layer, using the county name as the target field.

41

(== e @ Edit Vector Join X
f@ @ T G~ B L | @ Layer Properties— mo — megye — Joins
= 1 | Join layer 5] ujmatek -
E"“"e" Setting Value | ‘
_ ? . - .
mo—Mmeave — + Join layer ujmatek Join field | abe int2zmény megyeje .|
() information
Target field | abe ney |
A source
@ Souree V| Cache join layer in memory
Create attribute index on join field
Dynamic form
» || Editable join layer
w |V Joined fields
- :
N 3D View v ossz
Diagrams
w V| Custom fisld name prefix
notations 4 Rendering I I
_ oK Cancel Help
'
! T & wmponl :
Variables
a Metadata
T Dependencies
- &= 7]
Legend
Stle -] ok || cancel || apply || Hep |

Go to the layer symbology, and apply graduated styling. Test different classification methods,

create 5 groups. Explain, which classification method works best for this dataset and why?

() Layer Properties — mo — megye — Symbology X

:— Graduated - |

Value

e |
Legend farmat | %1 - %2 | |ecision : €@ |2 V] Trim
Colorramp | B}

| Classes ‘ Histogram

112 gssz -] |E|

Symbol ~ Values Legend
Vi 15,0723 - 17,7767 15,07 - 17,78
vI[] 17,7767 - 21,1773 17,78 - 21,18
: v 21,1773 - 22,5061 21,18- 22,51
1 Diagrams v/l 22,5061 - 27,8337 22,51- 27,83
E Ficd v R 27,8337 - 28,8235 27,83 - 28,82
ields

E Attributes Form

Rendering

8 emponal

Variables

Mode | §18Equal Count (Quantie) ~ | Classes |5 2]

a' Metadata | cessty ||| =| pelet=ar | [aAdvanced ~|

“ Traiors V| Link class boundaries
i pendencies

P Layer Rendering

Legend

'| Style

z ok || cancel || Aoy | Heb |

42

Homework: If there are values in the column (’szobeli pontszam’), add them to the total

score! What is the new total score? Create a diagram showingthe new average total score by
county.

43

Chapter 5: Working with statistical data with pandas
and matplotlib modules: Water level changes

The OVF Hungarian Hydrological Forecasting Service continously monitors the water
level of lakes and rivers in Hungary. Their website, Hydroinfo (https://www.hydroinfo.hu/),
allows everyone to track these water level changes. They also store archived water level data
here: https://www.hydroinfo.hu/vituki/archivum/index.html (K6zponti Hidrologiai Adattar —
Cenral Hydrological Archive)

We are currently using the Lake Balaton water level data from 2000 to 2004. During this
period, the Carpathian Basin experienced a dry era, which caused the water level of Lake
Balaton to drop to extremely low levels. These changes are well illustrated in a diagram.
Therefore, we will create a diagram showing the monthly average water levels for the
mentioned years.

First, let’s check the data format on the website. Please select the ’Balaton dtlag’ (=Balaton
average) and enter 2000 in the textbox, followed by (2001, 2002, 2003 and 2004).

Kozponti Hidrologiai Adattar N
i __ARCHIVUM __ . . sl

F : Balaton atlag
1988-2021
Vizgyiijto teriilet: 5774.0 km?

A vizmérce "0" pontjanak jelenlegi
magassaga: 103.42 mBf

oo Jox

irja be a keresett évet!

Eszlelt vVizZALLASOK Evszém: 2000

adatok jégkdddal [cm] Idopont: 7:88 i 3:88 KEI

/interpolaciéval/ Kinyomtatva: = 0 @—---------mmo——o—mooooo-
2884-J0n-24 11:42 vizgylijto terllet: 5774.8 km2

Allomds kéd: 142300 Tavolsag a torkolattdl:

Allomds név: BALATON ATLAG A nullpont magassdga:

Vvizfolyds: BALATON Ervényes: 2080@-Dec-31

5
g
g

Nap Jan Feb Mér Apr M&j Jin 14l Aug Sze O

1 118 182 182 111 leq 98 85 78 64 59 68 62
2 111 182 182 111 1es 98 85 78 65 1] 61 62
3 111 181 183 111 leq 97 85 78 65 6@ 68 62
4 111 181 183 111 le4 97 84 78 65 1] 68 62
5 111 181 184 111 leq 97 83 77 64 6@ 61 62
6 111 181 184 111 leq 97 83 76 64 6@ 61 62
7 118 181 184 111 1e3 96 83 76 63 59 61 62
=3 118 188 184 111 le3 96 82 75 63 59 62 62
£ 118 188 184 118 1e3 96 82 74 62 59 62 62
18 118 181 185 1e9 le3 95 82 74 62 59 62 62

This table has a header and footer, which we will disregard. The table contains the days and
the months (Jan, Feb, Mar...). | saved this table and uploaded it to Canvas. Please download
the file Evizallas_balaton.zip and unzip it!

44

https://www.hydroinfo.hu/
https://www.hydroinfo.hu/vituki/archivum/index.html

These files contain the water levels, but some preprocessing is required before generating the
diagrams. Open the file in Notepad++. The header row should contain the months.

- Remove the empty lines.
- Replace the tabs with commas
- Replace the spaces/double spaces with commas. (Be careful in lines 29,30 and 31!)

- Add a comma before the day. This will cause a mismatch in the number of columns between
the header and the data rows. To fix this, insert a new column at the beginning of the file
header (use "Nothing™ as the header name).

The cleaned file should look like this:

| vizallas_balaton_2000.txt - Jegyzettomb - m} *

Fajl ~Szerkesztés Formdtum Nézet Sdgé
Semmi,Nap,Jan,Feb,Mar,Apr,Maj,Jan,Jal, Aug,Sze,0kt,Nov,Dec
,1,11@,102,102,111,104,98,85,78,64,59,60,62
,2,111,102,102,111,105,98,85,78,65,60,61,62
»3,111,101,1e3,111,104,97,85,78,65,60,60,62
,4,111,101,103,111,104,97,84,78,65,60,60,62
,5,111,101,104,111,104,97,83,77,64,60,61,62
,6,111,101,104,111,104,97,83,76,64,60,61,62
,7,116,101,104,111,103,96,83,76,63,59,61,62
,8,118,100,104,111,1063,96,82,75,63,59,62,62
,9,116,160,104,110,103,96,82,74,62,59,62,62
,1e,110,101,105,109,103,95,82,74,62,59,62,62
,11,11e,101,105,108,103,95,81,74,62,60,62,63
,12,110,100,106,109,103,95,81,74,62,61,62,63
,13,169,100,106,109,102,95,81,73,62,60,62,63
,14,1@9,100,106,109,102,95,81,73,62,60,62,63
,15,168,1e00,106,109,162,95,80,73,62,60,62,63
,16,1e8,100,106,109,101,94,81,73,62,59,62,63
,17,1e8,1e0,106,109,101,92,81,72,63,59,61,63
.18.108.100.107.109.101.91.81.71.63.59.61.64
Sor 1, oszl: 1 120% Windows (CRLF) UTF-2

Ensure that the number of columns in the header matches the number of columns in the data
rOws.

45

To create a bar chart that displays the monthly average water levels for the years 2000—
2004, follow these steps:

& Figure 1

ZD ‘l““|
[’

mmmmmm

Import vizallas_balaton_2000.txt

e Import the required libraries: pandas and matplotlib.
e Use read_csv function with the following parameters:

o utf8 character encoding,

o header: the first line,

o delimiter: comma (,).
e Remove the empty columns using del command.

import pandas
import pandas as pd

#2000-2004
df0=pd.read csv('vizallas balaton 2000.txt',
delimiter=",",encoding="utf8", header=0)

dfl=pd.read csv('vizallas balaton 2001.txt',
delimiter=",",encoding="utf8", header=0)
df2=pd.read csv('vizallas balaton 2002.txt',
delimiter=",",encoding="utf8", header=0)
df3=pd.read csv('vizallas balaton 2003.txt',
delimiter=",",encoding="utf8", header=0)
df4=pd.read csv('vizallas balaton 2004.txt',
delimiter=",",encoding="utf8", header=0)

del dfO['Semmi']

del dfO0['Nap']
del dfl['Semmi']
del dfl['Nap']
del df2['Semmi']
del df2['Nap']
del df3['Semmi']
del df3['Nap']
del df4['Semmi']
del df4]['Nap']

46

Aggregate the data by calculating the mean for each month.

df diagram0O=df0.aggregate('mean')
df diagraml=dfl.aggregate('mean')
df diagram2=df2.aggregate('mean')
df diagram3=df3.aggregate('mean')
df diagram4=df4.aggregate('mean')

Print the aggregated data.

print (df diagramO)

>>

Jan 107.967742
Feb 100.724138
Mar 106.129032
Apr 108.400000
Maj 101.419355
Jun 92.400000
Jul 81.322581
Aug 71.741935
Sze 62.033333
Okt 59.548387
Nov 61.600000
Dec 63.677419

dtype: floatb64

Combine data from all files:
e For the years 2000 to 2004, concatenate the DataFrames using the pd.concat() function.

e First, add the aggregated data from each file to a list.

Plot the bar diagram using the combined data.

sumdfl=[df diagramO,df diagraml,df diagram2,df diagram3,df diagramé
1

result=pd.concat (sumdfl)

result.plot (xlabel="'Evek', ylabel='vizmagassag',6kind="bar')
plt.show ()

47

Chapter 6. Working with photos metadata (Flickr
photos metadata)

Please check this article, focus on images. (page 1, and 17-19.)

Gede Matyas: Where do tourists go — Visualizing and analysing the Spatial Distribution of
Geotagged Photography.

https://www.researchgate.net/publication/262972685 Where Do Tourists Go Visualizing a
nd Analysing the Spatial Distribution of Geotagged PhotographyWhat will we do?

What will we do?

Flickr is a very popular image sharing website, where users can uploads photographs, and can
mark, where the photo was taken. These metadata can be downloaded from Flickr website. We
create a grid on an sample area, and count, how many photographs(=points are in the cell).
According to the number of points, the cell height will be set in a Google KML format.

Downloading the photo metadata

In QGIS go to Plugins - Manage and Install Plugins = Install Flickr Metadata
Downloader (FMD).

Open FMD.

FMD works with SQL.ite layers. Therefore, first, create an empty SQL.ite file by navigating to
Layer = Create Layer = New SpatiaLite Layer. Provide a file name and a default layer
name. (Note: We will not use this layer, as FMD will create a new layer. However, this
SQL.ite file is necessary since FMD cannot create the SQL.ite file itself.)

Start FMD.

Provide your Flickr API key (if you have one) or use the default key. Select the SQL.ite
database file and provide the layer name. Set the coordinates for the bounding box. Finally,
start the downloading process.

¥ Flickr Metadata Downloader H

Flickr API key: |ee27f5b7187c0c765d3c8 1732 5483 Help [

Area to download: DB: ||_adatok\temakeorok\7_flickr\flickr .sqlite

Mlat |a7.5
Table name: |photos_test
Slat |47.3
Checking connection to Flickr APL...
Wion [17.0 Connection OK.

old table dropped if there was one
photos_test table created
Elon [17.3 next BBox: [17.0°, '47.3, '17.3, '47.6]
page 1 from 5 inserted
page 2 from 4 inserted
page 3 from 4 inserted
| page 4 from 5 inserted
page 5 from 5 inserted
Close I think it's ready...

100%

| stop

48

https://www.researchgate.net/publication/262972685_Where_Do_Tourists_Go_Visualizing_and_Analysing_the_Spatial_Distribution_of_Geotagged_Photography
https://www.researchgate.net/publication/262972685_Where_Do_Tourists_Go_Visualizing_and_Analysing_the_Spatial_Distribution_of_Geotagged_Photography

After downloading, open the photo_test layer. You will see several points indicating where

each photo was taken. Make sure to check the attribute table as well!

Generate a grid, count the points in the grid cells

Use the Create Grid tool in the Processing Toolbox to define a grid. The current projection is
WGS84 EPSG:4326, therefore the optimal grid size in this area is 0.01°

That means 1x1 km cell size:

1°~>111.1 km
0.1°~>11.1 km

Choose the Rectangle type for the grid. Set the grid’s extent to inherit from the photo_test

layer.

The result:

0.01°~> 1.1 km
0.001°~> 111 m

) Create Grid

Parameters Log
Grid type
Rectangle {Polygon)
Grid extent
17.004140854, 17, 296686172,47, 30036 1633,47. 599319183 [EPSG:4326]

Haorizontal spacing

0.010000 -

Vertical spadng

0.01 -

Horizontal overlay
0.000000
Vertical overlay
0.000000
Grid CRS
EPSG:4326 - WG5S 84
Grid
[Create temporary layer]

v Onen outnut file after runnina alaarithm

0%

Run as Batch Process. ..

degrees A\
degress /N
degress I\
degress A\

" Create grid

This algorithm creates a vector
layer with a grid covering a given
extent. Elements in the grid can
be points, lines or polygons. The
size and for placement of each
element in the grid is defined
using a horizontal and vertical
spacing. The CRS of the output
layer must be defined. The grid
extent and the spacing values
must be expressed in the
coordinates and units of this
CRS. The topeft point {minX,
maxY) is used as the reference
point, That means that, at that
point, an element is guaranteed
to be placed. Unlezs the width
and height of the selected extent
is a multiple of the selected
spacing, thatis not true for the
other points that define that
extent.

Cancel

Close Help

49

@ *Untitled Project — QGIS

Project Edit View Layer Settings Plugins Vector

DEB RN

VeL2pRPP "4

REeV.ZwE D 4

© @ =

Layers

¢« @ e TVE-HALD

» 59 Count
v! [Grid
V| @ flickr— photos_test
~ V| ¥ OpenStreetMap

Raster Database Web Mesh Processing Help

Bae tOR

20 B ®

) 2 2o r @
RS- 1§ (T -
ARG
e® - Fertod e
- \\ L Csorna
(1] \} \ er ——
) | \
Y
/‘/ Tét
o~
\»
¥
f
Csepreg
Bk
) .
) Papa
Shrvar, (elldom\olk

Coordinate | 1,921,537,6,012,657 |9 Scale | 1:481,588 |~

& Magnifier | 100%

%A 3°C Id6nként felh6s

<! Rotation |0.0°

=TS
Processing Toolbox @®
a0 "N

A points in poly a
» (O Recently used

~ @ Vector analysis
#% Count points in polygon
~ @ Vector creation
Generate points (pixel centroi...
andom points in polygons
Random points inside polygons
%% Raster pixels to points
~ (@ Vector geometry
i Add geometry attributes

‘toolbox,

3| VIRender @®epsGia3ze @

First, count the points in a polygon using the "Count Points in Polygon™ (Processing) tool.
This tool writes the number of points into the attribute table. Create a Shapefile layer as the

output.

(3} Count Points in Pelygon

Parameters Log
Polygons
[Count [EPSG:4328]
Selected features only
Points
" flickr — photos_test [EPSG:4326]
Selected features only

Weight field [optional]

Class field [optional]

Count field name
NUMPOINTS

Count

[Create temporary layer]

v | Open output file after running algorithm

Run as Batch Process

0%

- g R [

A L

Count points in
polygon

This algorithm takes a paints
layer and a paolygon layer and
counts the number of peints
from the first one in each
polygons of the second ene.

A new polygons layer is
generated, with the exact
same content as the input
polygens layer, but containing
an additional field with the

- points count corresponding to
each polygon.

An optional weight field can be
= used to assign weights to each
point. If set, the count

generated will be the sum of
the weight field for each point
contained by the polygon.

Alternatively, a unique dass
field can be spedified. If set,
points are classified based on
the selected attribute, and if
several points with the same
attribute value are within the
polygon, only one of them is

rvimbod The fanlcovnt af
Cancel
| Run | Close Help

In Python, we will write a program that reads this NUMPOINTS field and the geometry
to generate a KML file. The KML will contain spatial bar diagrams.

50

To do that, we use the OSGEO GDAL/OGR Python modules. Please install them before usage.

First, import the ogr module, which handles vector data. The Osr module is used for
projections.

from osgeo import ogr
from osgeo import osr

The KML file will be written as a text file. First, | define the header and styles.

The bar diagram columns will have the following colors: yellow, red, and brown. In
hexadecimal notation: colors=['ffOOffff', 'ffOO00ff', 'ff336699].

colors=['ff00f£f£ff', '££f0000ff', '"££336699"']

f = open("pelda.kml", "w")

f.write('<?xml version="1.0" encoding="utf-8" ?2><kml
xmlns="http://earth.google.com/kml/2.2"><Document> <name>Pontok a
polyban</name>")

for i in range (0, len(colors)):

f.write('<Style id="PolyColor'+str(i)+'"> \n ")
f.write (' <LineStyle> \n ')
f.write('<width>1.5</width> \n ')
f.write('</LineStyle> \n ')

f.write ('<PolyStyle>")
f.write('<color>'+colors[i]+'</color> \n ')
f.write(' </PolyStyle> \n ')

f.write(' </Style> \n ')

Next, define a driver and open the Shapefile for reading. Retrieve the layer and count the
number of features in it.

driver = ogr.GetDriverByName ("ESRI Shapefile")
dataSource = driver.Open('pointsingrid.shp', O0)
layer = dataSource.GetLayer ()

featureCount = layer.GetFeatureCount ()

Iterate over the features. If NUMPOINTS is null, no column is created. If NUMPOINTS is
greater than 0:

-Start writing the placemark.

- Determine the column height. (we use NUMPOINTS *20 , to emphasize the column
size through vertical exaggeration). Finally, set the appropiate style.

for feature in layer:
geom = feature.GetGeometryRef ()
numPoints=feature.GetField ("NUMPOINTS")
if numPoints!=0:

f.write('<Placemark>")
if numPoints*20<=20:
f.write('<styleUrl>#PolyColor0</styleUrl> ")
elif numPoints*20>20 and numPoints*20<=100:
f.write('<styleUrl>#PolyColorl</styleUrl> ")
elif numPoints*20>100:
f.write('<styleUrl>#PolyColor2</styleUrl> ')
else:
pass

51

The polygon is a rectangle (defined by five coordinates, where the first and last are the same)
and is extruded to the corresponding height, determined by the NUMPOINTS value.

The GetPoint() function provides the coordinates (latitude and longitude) of the point. The
third coordinate represents the height.

Finally, close the placemark...

f.write ('<Polygon><extrude>1</extrude><tessellate>1
</tessellate><altitudeMode>relativeToGround
</altitudeMode><outerBoundaryIs><LinearRing><coordinates>")
geom=feature.GetGeometryRef ()
ring=geom.GetGeometryRef (0)
points=ring.GetPointCount ()

for p in range (0,points) :
lon= ring.GetPoint (p) [0]
lat= ring.GetPoint (p) [1]
f.write(str(lon)+', '+str(lat)+"', "+str (numPoints*20) +"'
\n')

f.write('</coordinates></LinearRing></outerBoundaryIs></Polygon></P
lacemark>")

... and the files.

f.write('</Document></kml>")
f.close ()
dataSource.Destroy ()

52

Chapter 7. Working with Python OGR module

This chapter introduces the Python GDAL /0GR module. GDAL is a specialized for raster data,
while OGR is used for vector data. Why is it important to familiarize youself with this OGR
module? Geoinformatics software do not provide processing algorithms for every possible
task, and sometimes you encounter unique problems. In such cases, you may need to write
scripts to solve them.

The OGR module provides the fundamental tools of geoinformatics software in Python
environment, which you can extend with your own functions.

Suggested literature
GDAL/OGR Cookbook
https://pcjericks.qithub.io/py-gdalogr-cookbook/index.html

GDAL Documentation
https://qdal.org/
Python OGR

https://gdal.org/api/python/osgeo.ogr.html

The first step to use OGR is learning how to handle the basic geometry types. In the next
section, we will explore how to read different geometry types including single and multi-
geometries. We will use Shapefiles in our examples.

The initial step for reading a file are always the same. Define a driver, which facilitates
reading the file. Then, open the file for reading. Retrieve the layer (every Shapefile contains
only one layer, but before proceeding, you must store it in a variable). Count number of the
features in the layer.

from osgeo import ogr

driver = ogr.GetDriverByName ("ESRI Shapefile™)
dataSource = driver.Open('grid.shp', 0)

layer = dataSource.GetLayer ()

featureCount = layer.GetFeatureCount ()

Reading point features

Iterate over the features. Get geometry using the GetGeometryRef() function, and store it in
the variable geom. Use the GetField(fieldname’) function to get the attribute data from a
field. GetX() and GetY() functions retrieve the coordinates.

for feature in layer:
geom = feature.GetGeometryRef ()
fieldl=feature.GetField("p_ id")
lon= geom.GetX ()
lat= geom.GetY ()

53

https://pcjericks.github.io/py-gdalogr-cookbook/index.html
https://gdal.org/
https://gdal.org/api/python/osgeo.ogr.html

Reading line (LineString) features

Iterate over the features. Get geometry using the GetGeometryRef() function, and store it in
the variable geom. Use the GetField(fieldname’) function to get the attribute data from a
field. Count how many vertices the line has. Write another for loop to iterate over the nodes of
the line. Use GetPoint(node), which returns a list. The first element of the list contains the
longitude, while the second one contains the latitude.

for feature in layer:
geom = feature.GetGeometryRef ()
fieldl=feature.GetField ("id")
points=geom.GetPointCount ()
for p in range (0,points) :
lon= geom.GetPoint (p) [0]
lat= geom.GetPoint (p) [1]

Reading polygon features

Iterate over the features. Get geometry using the GetGeometryRef() function, and store it in
the variable geom. Use the GetField(fieldname’) function to get the attribute data from a
field. Count the rings of the polygon using GetGeometryCount(). (The first ring is always the
outer ring, and if the polygon has holes, these are the inner rings). Read the nodes of each ring
using GetPoint(node) which returna a list. The first element of the list contains the longitude,
while the second one contains the latitude.

for feature in layer:
geom = feature.GetGeometryRef ()
fieldl=feature.GetField ("id")
for 1 in range (0,geom.GetGeometryCount ()) :
ring=geom.GetGeometryRef (1)
points=ring.GetPointCount ()
for p in range(0,points) :
lon= ring.GetPoint (p) [0]
lat= ring.GetPoint (p) [1]

Reading MultiPoints features

Iterate over the features. Get geometry using the GetGeometryRef() function, and store it in
the variable geom. Use the GetField(fieldname’) function to get the attribute data from a
field. Count the parts of the geometry, and iterate over them. Using the GetX() and GetY(),
print the coordinates.

for feature in layer:

geom = feature.GetGeometryRef ()

fieldl=feature.GetField ("id")

numgeom=geom.GetGeometryCount ()

print (numgeom)

for i in range (0,numgeom) :
lon=geom.GetGeometryRef (1) .GetX ()
lat=geom.GetGeometryRef (1) .GetY ()

54

Readin MultiLineString features

Iterate over the features. Get geometry using the GetGeometryRef() function, and store it in
the variable geom. Use the GetField(fieldname’) function to get the attribute data from a
field. Count the parts of the geometry and iterate over them. Count the number of nodes in the
line part. Read the part’s geometry and print the latitude and longitude.

for feature in layer:
geom = feature.GetGeometryRef ()
fieldl=feature.GetField ("id")
numgeom=geom.GetGeometryCount ()
for 1 in range (0, numgeom) :
line=geom.GetGeometryRef (1)
points=line.GetPointCount ()
for p in range(0,points) :
lon= line.GetPoint (p) [0]
lat= line.GetPoint (p) [1]

Reading the MultiPolygon features

Iterate over the features. Get geometry using the GetGeometryRef() function, and store it in
the variable geom. Use the GetField(fieldname’) function to get the attribute data from a
field. Count the parts of the geometry using GetGeometryCount(), and iterate over them.
Count the number of rings, and iterate over them. Create one more for loop to iterate over the
ring’s geometry. Print the coordinates of each nodes.

In cases where the file contains Polygons and MultiPolygons, we need to add a condition to
check the number of geometries. If it consists of one part, it is a Polygon, requiring fewer
loops. If it consists of more than one part, it is a MultiPolygon and we use the method
mentioned above.

for feature in layer:
geom = feature.GetGeometryRef ()
fieldl=feature.GetField ("id")
numgeom=geom.GetGeometryCount ()
if numgeom>1:
for ng in range (0,numgeom) :
poly=geom.GetGeometryRef (ng)
for 1 in range (0,poly.GetGeometryCount ()) :
ring=poly.GetGeometryRef (1)
points=ring.GetPointCount ()
for p in range(0,points) :
lon= ring.GetPoint (p) [0]
lat= ring.GetPoint (p) [1]
else:
for 1 in range (0,geom.GetGeometryCount ()) :
ring=geom.GetGeometryRef (1)
points=ring.GetPointCount ()

for p in range(0,points) :
lon= ring.GetPoint (p) [0]
lat= ring.GetPoint (p) [1]

55

Writing Shapefiles
This chapter demonstrates ho to write point, line and area objects into a file.
Writing points

Read the sample points.shp file and filter the features based on the date field (p_date). Write
the result in a new Shapefile.

This code is partially similar to the codes in chapter Reading points, therefore I won’t explain
it detail again. The srs variable defines the coordinate reference system. At the beginning of
the program, define the output file. The file driver is a Shapefile driver. Specify the type of
the file such as ogr.wkbPoint, ogr.wkbLineString or ogr.wkbPolygon. Create a new field in
the file and define the data type in the attribute table (e. g. OFTInteger, OFTString,
OFTDateTime). More information about the data types can be found here:
https://gdal.org/java/org/gdal/ogr/ogrConstants.html.

from osgeo import ogr

from osgeo import osr

driver = ogr.GetDriverByName ("ESRI Shapefile")
dataSource = driver.Open('points.shp', 0)
layer = dataSource.GetLayer ()

featureCount = layer.GetFeatureCount ()

srs = osr.SpatialReference ()
srs.ImportFromEPSG (4326)

ds = driver.CreateDataSource("selected points.shp")
layeruj = ds.Createlayer ("pontok", srs, ogr.wkbPoint)
dateField = ogr.FieldDefn ("datum", ogr.OFTDateTime)
layeru]j.CreateField (dateField)

featureDefn = layeruj.GetLayerDefn ()

Filter the data using the following expression (p_date>"2010-01-01"). Create a new feature
and define its type. Assign coordinates from the original feature. Set the geometry and
attributes of the feature, then append it to the layer. Finally, close the file and complete the
writing process.

for feature in layer:

geom = feature.GetGeometryRef ()

fieldl=feature.GetField ("p date")

if fieldl1>'2010-01-01":
lon= geom.GetX ()
lat= geom.GetY ()
feature = ogr.Feature (featureDefn)
pont = ogr.Geometry (ogr.wkbPoint)
pont.AddPoint (lon, lat)
feature.SetGeometry (pont)
feature.SetField ("datum", fieldl)
layeruj.CreateFeature (feature)

ds.Destroy ()

56

https://gdal.org/java/org/gdal/ogr/ogrConstants.html

Line Simplification

Read the lines.shp file and call the Simplify(0.01) funtion on the original features. Simpifying
a line means performing automatic shape generalization using the Douglas—Peucker
algorithm. The parameter is similar to the unit of the layer’s CRS; here, we use degrees. The
file reading process is similar to that in the Reading lines Chapter.

from osgeo import ogr
from osgeo import osr
driver = ogr.GetDriverByName ("ESRI Shapefile")

dataSource = driver.Open('lines.shp', 0)

layer = dataSource.GetLayer ()

featureCount = layer.GetFeatureCount ()

srs = osr.SpatialReference ()

srs.ImportFromEPSG (4326)

ds = driver.CreateDataSource ("simplified line.shp")
layeruj = ds.Createlayer("line", srs, ogr.wkbLineString)

idField = ogr.FieldDefn ("id", ogr.OFTInteger)
layeruj.CreateField (idField)
featureDefn = layeruj.GetLayerDefn ()

In this case, use the simplified geometry when writing to the new file (it is unnecessary to
read the line node by node). Set the geometry and the attribute data, append the new feature to
the layer and finalize the writing process with Destroy().

for feature in layer:
geom = feature.GetGeometryRef ()
newgeom=geom.Simplify (0.01)
fieldl=feature.GetField ("id")
feature = ogr.Feature(featureDefn)
feature.SetGeometry (newgeom)
feature.SetField ("id", fieldl)
layeruj.CreateFeature (feature)

ds.Destroy ()

Writing polygons

Generate the bounding boxes of each line in lines.shp and write these polygons into a new
Shapefile.

from osgeo import ogr
from osgeo import osr
driver = ogr.GetDriverByName ("ESRI Shapefile™)

dataSource = driver.Open('lines.shp', 0)

layer = dataSource.GetLayer ()

featureCount = layer.GetFeatureCount ()

srs = osr.SpatialReference ()
srs.ImportFromEPSG (4326)

ds = driver.CreateDataSource ("bounding boxes.shp")
layeruj = ds.Createlayer ("line", srs, ogr.wkbPolygon)

idField = ogr.FieldDefn ("id", ogr.OFTInteger)
layeruj.CreateField (idField)
featureDefn = layeruj.GetLayerDefn ()

57

https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm

Iterate over the features and call the GetEnvelope() function, which returns the four bounding
coordinates: [West, East, South, North]. First, create a LinearRing and add these coordinates
to the ring considering the correct order. The first and the last coordinates of the ring should
be the same. Next, create a polygon and add this ring to the polygon. Create a new feature
from the polygon. and write into the new file.

for feature in layer:

geom = feature.GetGeometryRef ()
env=geom.GetEnvelope ()
ring = ogr.Geometry (ogr.wkbLinearRing)

ring.AddPoint (env[0],env[3])
ring.AddPoint (env[0],env[2])
ring.AddPoint (env[1l],env[2])
ring.AddPoint (env[1l],env[3])
ring.AddPoint (env[0],env[3])

poly = ogr.Geometry (ogr.wkbPolygon)
poly.AddGeometry (ring)

fieldl=feature.GetField ("id")
feature = ogr.Feature (featureDefn)
feature.SetGeometry (poly)
feature.SetField ("id", fieldl)
layeruj.CreateFeature (feature)

ds.Destroy ()

Useful links in this topic:

https://www.qgis.usu.edu/~chrisg/python/2009/lectures/ospy slidesl.pdf

https://www.qgis.usu.edu/~chrisg/python/2009/lectures/ospy slides2.pdf

https://www.qgis.usu.edu/~chrisg/python/2009/lectures/ospy slides3.pdf

https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy slides4.pdf

https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy slides5.pdf

https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy slides6.pdf

https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy slides7.pdf

58

https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides1.pdf
https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides2.pdf
https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides3.pdf
https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides4.pdf
https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides5.pdf
https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides6.pdf
https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides7.pdf

Chapter 8. The structure of KML files

For more examples and explanations, please visit the official documentation:

https://developers.google.com/kml/documentation

A KML (Keyhole Markup Language) file is an XML-based format used to store geographic
data and display it in applications like Google Earth, Google Maps, and GIS software. The
KML file structured as follows:

<property> value </property>

All elements have an opening and a closing tag, with the value placed between them.

The header of the file depends on whether we want to use animation or not. However, it is
generally recommended to use the longer header, which allows for animation and gx
elements.

<?xml version="1.0" encoding="UTF-8"?2>
<kml xmlns="http://www.opengis.net/kml/2.2"
xmlns:gx="http://www.google.com/kml/ext/2.2">

The KML file always contains a header. After the headers, there is a Style definition followed
by the geometry. Each geometry is a Placemark element.

In the style definition, always add an id for reference:

<Style id="poligongroupl">

<PolyStyle>
<color>64B40014</color>
<fill>1</fill>
<outline>0</outline>

</PolyStyle>

</Style>

To apply this style to a Placemark, use styleUrl withn the element:

 <styleUrl>#poligongroupl</styleUrl>

KML can contain the following geometries (types of a Placemark): Point, LineString,
Polygon, MultiPoint, MultiLineString, MultiPolygon, GeometryCollection.

Let’s check an example, which contains a polygon element with style definition, name and
description. A poupup window will open if the Placemark (feature) has a description.

<Placemark>
<name>Give me a name!</name>
<description>This is a polygon with a style. </description>
<styleUrl>#PolyColor0</styleUrl> <Polygon>
<extrude>l</extrude>
<tessellate>1l</tessellate>
<altitudeMode>relativeToGround</altitudeMode>
<outerBoundaryIs>
<LinearRing>
<coordinates>17.00414,47.559819,20.0
17.01414,47.559819,20.0
17.014140,47.549819,20.0
17.004140,47.549819,20.0

59

https://developers.google.com/kml/documentation

17.004140,47.559819,20.0
</coordinates>
§</LinearRing><

. /outerBoundaryIs>

. </Polygon>

§</Placemark>

Let’s get familiar with the 3D elements. If the Z coordinate is not 0, the feature can be a 3D
element. If we apply the altitudeMode=relativeToGround, the elevation is interpreted above
the ground. Extrude=1 means that the feature is connected to the ground. Extrude=0 means
the element is floating above the ground. If the altitudeMode is clampToGround the features
can not be visualized as 3D elements, only as 2D elements. Other possible values of
altitudeMode are: absolute which means the absolute height above the ellipsoid surface, and
clampToSeaFloor or relativeToSeaFloor which are very similar to clampToGround and
relativeToGround.

When tessellate is set to 1 (true), the geometry follows the terrain and adapts to the Earth's
curvature. When tessellate is set to 0 (false), the geometry is drawn as a straight line in 3D
space, which may appear to float above the ground.

There are two types of animations: TimeStamp and TimeSpan.

TimeSpan animation works with beginning and closing dates. These defines that the features
appear in the scene.

<TimeSpan>
<begin>1986</begin>
<end>2023</end>
</TimeSpan>

The gx:track animation is used to visualize moving object along a path. It requires a
timestamps and coordinate pairs. A good example is a hiker moving along a trail.

The timestamp looks like this: year-month-dayThour:minute:secondZ

The gx:coord format differs from the regular coordinates: it has no comma between longitude,
latitude, and elevation.

<Placemark>

<gx:Track>
<when>2017-01-02T17:00:22%Z</when>
<when>2017-01-02T17:03:227Z</when>

<gx:coord>19.03814980042824 47.46165145965755 0</gx:coord>
<gx:co00rd>19.03837381154784 47.46229927027417 0</gx:coord>

</gx:Track>
<name>Take a virtual walk together!</name>
<description> Lets explore the Buda Castle quarter!
</description>
<Style>
<IconStyle>
<Icon><href>traveller.png</href></Icon>
</IconStyle>
</Style>
</Placemark>

60

Chapter 9. Installing Python modules from WHEEL files

Installing Python modules depends on the software environment. The easiest way is through
PyCharm, where you can install modules directly within the program.

However, sometimes certain modules cannot be installled this way. In such cases, here’s how
you can manually install them.

Installing Python modules manually

If you have Windows operation system, please open Windows Command Line Prompt
(cmd.exe).

Download the WHEEL file from Python Package Index website (https://pypi.ora/

) or from this unoffical collection (https://www.lfd.uci.edu/~gohlke/pythonlibs/).
What is a WHEEL file?

A Wheel file (.whl) is a binary package format for Python distributions. It is a faster and more
efficient way to install Python packages compared to the traditional source distribution
(.tar.gz or .zip).

How to install geoPy from WHEEL file?

1. Download the .whl file and save it in the C:/Users/Y OURUSERNAME folder.
2. Navigate tot he folder in the Command Prompt usidng cd command.

' C:\Users\ungvarizs>

3. Install the package using PIP.

py -m pip install C:\Users\ungvarizs\Downloads\geopy-2.2.0-py3-
none-any.whl

If the new Python module has dependencies, PIP will automatically install them.
Modules covered in this course

GDAL: https://pypi.orag/project/ GDAL/#files

pandas: https://pypi.org/project/pandas/#files

openpyxl1: https://pypi.org/project/openpyxl|/

geoPy: https://pypi.org/project/geopy/

61

https://pypi.org/
https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://pypi.org/project/GDAL/#files
https://pypi.org/project/pandas/#files
https://pypi.org/project/openpyxl/
https://pypi.org/project/geopy/

