
 

 

 

 

 

 

 

 

 

 

 

 

 

Data mining in geoinformatics  

Lecture notes for students  

in Cartography and Geoinformatics 
 

Dr. Ungvári Zsuzsanna, PhD 

assistant professor 

Eötvös Loránd University Budapest, Faculty of Informatics, 

Institute of Cartography and Geoinformatics 

Budapest, 2025 



2 

 

 

Contents 
Data mining in geoinformatics ................................................................................................... 1 

Chapter 1. Introduction to data mining ...................................................................................... 4 

Chapter 2. OVERPASS TURBO API ........................................................................................ 5 

Chapter 3. GTFS specification ................................................................................................. 23 

Chapter 3. Geocoding services ................................................................................................. 34 

Chapter 4: Working with statistical data using pandas and matplotlib modules...................... 39 

Chapter 5: Working with statistical data with pandas and matplotlib modules: Water level 

changes ..................................................................................................................................... 44 

Chapter 6.  Working with photos metadata (Flickr photos metadata) ..................................... 48 

Chapter 7. Working with Python OGR module ....................................................................... 53 

Chapter 8. The structure of KML files ..................................................................................... 59 

Chapter 9. Installing Python modules from WHEEL files ....................................................... 61 

 

 

  



3 

 

Requirements, prerequisites 

This course focuses on data mining in spatial datasets. Thus it is different fromIt will not be 

the same as a standard data mining course.   

When designing the course material, I focused on the recent challenges of cartography and 

geoinformatics. To create visualizations from spatial datasets, you often need some 

programming to preprocess these data. These tasks are performed with some programming in 

Python on this course.   

To successfully complete this course, you should have basic knowledge of QGIS, Python, and 

SQL. 

Recommended literature 

 If you want to learn more about data mining, here is a suggested reading. 

Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining. Pearson 

Education Limited, PDF book, 2014.  

 

 

Reviewed by Dr. Gede Mátyás. 

 

  



4 

 

1. Chapter 1. Introduction to data mining 
 

Data mining is a young science: it was brought to life by big databases. Data mining includes 

all the tools, methods, and algorithms to process large databases and automate certain 

processing steps. The result allows to get new information and conclusions from the original 

dataset. 

The data mining process can be split to the following subprocesses: 

Input data → Pre-processing → Data mining methods → Postprocessing → Information/result 

 

    

 

The purpose of pre-processing is to bring data stored in different formats into a single system, 

making them suitable for further processing. Pre-processing includes cleaning raw dataset, 

putting it into a common format, reducing noise, removing or correcting errors, filtering the 

dataset by different conditions.  

Data mining includes the processing of the data using mathematical methods. In the post-

processing phase, experts share the result as maps or diagrams as well. 

Data Science 

Data science is an interdisciplinary field that uses scientific methods, algorithms, processes, 

and systems to extract insights and knowledge from structured and unstructured data. It 

combines elements of statistics, mathematics, computer science, and domain expertise to 

analyze and interpret complex data. 

Big Data 

Big Data refers to extremely large and complex datasets that are difficult to process using 

traditional data management tools. These datasets are generated at high volume from various 

sources such as social media, IoT devices, sensors, and online transactions. This term includes 

not only the large amounts of data, but the hardware and sorfware infrastructure, and even the 

data processing methods. Big data can be stored in the cloud, or in distributed systems. A 

distributed system is a network of independent computers that work together as a single system 

to achieve a common goal. These systems share resources, communicate over a network, and 

are designed for scalability, reliability, and fault tolerance. 

What will we be dealing with? 

• Data extraction from online databases, with a special focus on pre-processing. 

• Conversion of textual and other formats (in the case of location-related data) into 

geospatial data types. 

• Extracting information from pre-processed data using some basic statistical 

methods.  

• Post-processing and data visualization.  

• Programming tasks in Python environment, including data preparation.  

• Geoprocessing tasks in QGIS environment. 

 

Selection, dimensional 

reduction, conversion 

 

Visualization, finding 

and filtering patterns, 

data analysis 



5 

 

Chapter 2. OVERPASS TURBO API 
 

Overpass Turbo API is a website where users can run queries on the OpenStreetMap (OSM) 

database. The response is displayed on a map and in a data window, and the result can be 

downloaded in several formats. Overpass Turbo uses a special query language called Overpass 

QL (Query Language). Overpass can also work with Overpass XML, but this language is much 

more complex. Queries sent a HTTP GET requests over the network. The documentation is 

available here: 

https://wiki.openstreetmap.org/wiki/Overpass_turbo 

How to begin to use Overpass Turbo API? 

Open the Overpass Turbo website from here: https://overpass-turbo.eu/ 

 

The website consists of two main parts: on the left, you can see the Code Editor window, and 

on the right, at map is displayed. 

The menu system includes the Wizard and Export functions. In Overpass Turbo API, queries 

can be constructed in two ways: you can write a script in Overpass QL or use the Wizard in 

parallel. 

In the next subchapters, we will explore both options together.  

Exporting data 
 

To export the results of queries, use the Export menu. You can save the data in GeoJSON, 

GPX, KML, and OSM database (XML) formats. 

GeoJSON Format: It is a text-based GIS format. 

GeoJSON supports the following geometry types: Point, LineString, Polygon, MultiPoint, 

MultiLineString, and MultiPolygon. Geometric objects with additional properties are called 

Feature objects. A single text file can store different geometry types of data. 

 

Here you can read more about the GeoJSON format: https://geojson.org/ 

https://wiki.openstreetmap.org/wiki/Overpass_turbo
https://overpass-turbo.eu/
https://geojson.org/


6 

 

An exaple for the file structure: 

{ 

  "type": "Feature", 

  "geometry": { 

    "type": "Point", 

    "coordinates": [125.6, 10.1] 

  }, 

  "properties": { 

    "name": "Dinagat Islands" 

  } 

} 

KML: Keyhole Markup Language (KML) is an XML notation for expressing geographic 

annotation and visualization within two-dimensional maps and three-dimensional Earth 

browsers. KML was developed for use with Google Earth. A KML file specifies a set of features 

(placemarks, images, polylines, polygons, 3D models, textual descriptions, etc.) that can be 

displayed on maps in geospatial software implementing the KML encoding. Geometries are 

described by longitude and latitude coordinates. Other data can make a view more specific, 

such as tilt, heading, or altitude, which together define a "camera view" along with a timestamp 

or timespan. 

An example for KML structure 

<?xml version="1.0" encoding="UTF-8"?> 

<kml xmlns="http://www.opengis.net/kml/2.2"> 

<Document> 

<Placemark> 

  <name>New York City</name> 

  <description>New York City</description> 

  <Point> 

    <coordinates>-74.006393,40.714172,0</coordinates> 

  </Point> 

</Placemark> 

</Document> 

</kml> 

GPX: GPS Exchange Format (GPX) is an XML schema designed as a common GPS data 

format for software applications. It can be used to describe waypoints, tracks, and routes. 

An example for GPX format: 

<?xml version="1.0" encoding="UTF-8" standalone="no" ?> 

<gpx xmlns="http://www.topografix.com/GPX/1/1" version="1.1" 

creator="Wikipedia" 

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

    xsi:schemaLocation="http://www.topografix.com/GPX/1/1 

http://www.topografix.com/GPX/1/1/gpx.xsd"> 

 <!-- Comments look like this --> 

<wpt lat="52.518611" lon="13.376111"> 

  <ele>35.0</ele> 

  <time>2011-12-31T23:59:59Z</time> 

  <name>Reichstag (Berlin)</name> 

  <sym>City</sym> 

 </wpt> 

</gpx> 

 



7 

 

Basics of Overpass QL 
Data types in OSM 

OSM data can be nodes, ways, and relations (rel). The attributes of these geometry types are 

called tags. Tags are, in fact, key-value pairs. 

Read more about nodes: https://wiki.openstreetmap.org/wiki/Node 

Nodes: nodes describe the elementary points that build up any more complex geometry.  

Here is an example: 

<node id="6454986742" lat="46.0725973" lon="18.2051926"> 

    <tag k="entrance" v="main"/> 

another example: 

<node id="1760195778" lat="46.0690616" lon="18.2160408"> 

    <tag k="amenity" v="restaurant"/> 

    <tag k="dog" v="yes"/> 

    <tag k="name" v="Szent György Fogadó"/> 

    <tag k="toilets:wheelchair" v="yes"/> 

    <tag k="website" v="http://www.szentgyorgyfogado.hu/"/> 

    <tag k="wheelchair" v="yes"/> 

Way: A way is one of the fundamental elements of the map. In everyday language, it is a line. 

A way normally represents a linear feature on the ground (such as a road, wall, or river). 

Technically, a way is an ordered list of nodes. It normally also has at least one tag or participates 

in a relation. A way can be open or closed. 

https://wiki.openstreetmap.org/wiki/Way 

Open way: In an open way (a linear representation of a feature), the first and last node are not 

identical. Common examples of linear representation with open ways include most roads, 

streams, and railway lines, because these start at one place and finish at another. 

<way id="375355485"> 

    <nd ref="27313594"/> 

    <nd ref="4042642645"/> 

    <nd ref="3787287460"/> 

    <tag k="HU:ed_direction" v="forward"/> 

    <tag k="highway" v="primary"/> 

    <tag k="maxspeed" v="90"/> 

    <tag k="ref" v="71"/> 

    <tag k="ref:HU:edid" v="71u2k276m"/> 

    <tag k="source:maxspeed" v="HU:rural"/> 

    <tag k="surface" v="asphalt"/> 

    <tag k="toll:hgv" v="yes"/> 

  </way> 

Closed way: In a closed way, the last node is identical to the first node. A closed way may be 

interpreted either as a closed polyline (a linear representation of a feature) or as an area, or both, 

depending on its tags and the tags of containning relations. A typical example is a roundabout. 

Area: An area (also polygon) is an enclosed filled area of territory defined as a closed way. 

Most closed ways are considered to be areas even without an area=yes tag. For example, a 

park, forest area, or building. 

<way id="143854005"> 

https://wiki.openstreetmap.org/wiki/Node
https://wiki.openstreetmap.org/wiki/Way


8 

 

    <nd ref="1574148556"/> <nd ref="1574148670"/> 

    <nd ref="1574148682"/> <nd ref="2621432173"/> 

    <nd ref="2621432172"/> <nd ref="2621432167"/> 

    <nd ref="2621432168"/> <nd ref="1574148558"/> 

    <nd ref="1574148556"/> 

    <tag k="building" v="university"/> 

    <tag k="name" v="K-épület"/> 

  </way> 

 

Rel (relation). Relations are structured collections of objects – nodes, ways, and other relations. 

Relations are groups, for example, bus routes. 

https://wiki.openstreetmap.org/wiki/Relation 

<relation id="9684822"> 

    <member type="node" ref="1382931855" role="platform"/> 

    … 

    <member type="node" ref="1382931862" role="platform"/> 

    <member type="way" ref="819269604" role=""/> 

    … 

    <member type="way" ref="819269609" role=""/> 

    <tag k="from" v="Kerepes HÉV-állomás"/> 

    <tag k="name" v="Helyi járat &quot;A&quot;: Kerepes HÉV-állomás 

=&gt; Patkó Csárda =&gt; Iskola =&gt; Berzsenyi uca =&gt; 

Szilasliget-Kemping"/> 

    <tag k="operator" v="Regio 2007 Kft."/> 

    <tag k="public_transport:version" v="2"/> 

    <tag k="ref" v="Helyi járat"/> 

    <tag k="route" v="bus"/> 

    <tag k="to" v="Szilasliget-Kemping"/> 

    <tag k="type" v="route"/> 

    <tag k="via" v="Patkó Csárda -&gt; Iskola -&gt; Berzsenyi 

uca"/> 

  </relation> 

 

  

https://wiki.openstreetmap.org/wiki/Relation


9 

 

A basic query using Overpass QL 

If you want to retrieve data from OSM, you have to write queries. In a query, you usually 

specify all geometry types in OSM. For example, if you want to know the location of bars in a 

small area (let’s move the view to the city center of Budapest), "amenity" is the key, and "bar" 

is the value. You can build the query in the Wizard: amenity=bar. Click on Build and run the 

query. 

 

If the query is built, its text is available in the code editor. It can be viewed in the following 

way:  

( 

node["amenity"="bar"]({{bbox}}); 

way["amenity"="bar"]({{bbox}}); 

relation["amenity"="bar"]({{bbox}}); 

); 

out; 

In 2023, NWR was introduced to make shorter statements. So, the query below is same as 

above, but in a shorter form.  

nwr["amenity"="bar"]({{bbox}}); 

out; 

NWR: A new element in Overpass QL. It includes nodes, ways and relations. Because of its 

simplicity, I prefer this. 

 

How to give the area of the query? 
 

Let’s write a query for restaurants in the Wizard: amenity=restaurant. If you do not define the 

exact target area, the query will run automatically for the map canvas extent/bounding box.   



10 

 

( 

  // query part for: “amenity=restaurant”→ This is a comment! 

  node["amenity"="restaurant"]({{bbox}}); 

  way["amenity"="restaurant"]({{bbox}}); 

  relation["amenity"="restaurant"]({{bbox}}); 

); 

// print results 

out body; 

bbox (bounding box). The extent of the canvas is a rectangle. The definition looks like this: 

({{bbox}}); 

If you want, you can specify a bounding box manually by coordinates. First, provide the 

southern (bottom) edge, then the western (left) edge, followed by the northern (top) edge, and 

finally the eastern (right) edge. Separate each coordinate with a comma, and enclose all 

coordinates in parentheses (round brackets). End the line with a semicolon. 

(47.4, 18.5, 47.8, 19.3); 

If the area divided into two parts by the meridian 180°, then divide your query into two parts 

as well:

 

Searching radius 

In this case, you have to provide a coordinate and a search distance called radius, and the query 

will run in a circle-shaped area. 

(around: 2000, 47.4866, 19.0567);  

Alternatively, you can give a location instead of coordinates. Let’s find restaurants within a 

500-meter circle of Budapest Deák Ferenc tér 1. In this case, you are performing geocoding and 

using the geocodeCoords parameter. 

{{radius=500}} 

( 

node["amenity"="restaurant"](around:{{radius}},{{geocodeCoords:Buda

pest Deák Ferenc tér 1}}); 

); out; 

It is also possible to use an irregular area as a bounding area (mask layer), e.g., a country, a 

county, or other administrative areas. In this case, you use geocoding again, in the following 

way:  

{{geocodeArea:Ercsi}}->.searchArea  

node["amenity"="restaurant"](area.searchArea); 

The geocodeArea variable was renamed to .searchArea, and it was used as a bounding area. 

If you use the Wizard, query the restaurants for Budapest in following way: 

amenity=restaurant in Budapest. 

[out:json][timeout:25]; 

// fetch area “Budapest” to search in 



11 

 

{{geocodeArea:Budapest}}->.searchArea; 

// gather results 

nwr["amenity"="bar"](area.searchArea); 

// print results 

out geom; 

 

The OpenStreetMap Wikipedia page 

It is important to know the source, where you can browse/check every features. Please visit the 

website, and study it! This page explains how physical features on the ground, such as roads or 

buildings, are represented in OpenStreetMap using tags attached to its basic data structures 

(nodes, ways, and relations). Each tag describes a geographic attribute of the feature being 

shown by that specific node, way, or relation. 

https://wiki.openstreetmap.org/wiki/Map_features 

 

Giving the values of the keys, types of relations 

If you search for an exact key–value pair in OSM, use the equal sign. 

["building"="castle"] 

In SQL, there is a LIKE operator, which is used in a WHERE clause to search for a specified 

pattern in a column. In OSM and Overpass QL, there is a very similar way to find patterns in 

the text. If the value is partially given, for example, you know that the word contains 'bicycle' 

(e.g., bicycle_parking, bicycle_repair_station, bicycle_rental), but the other part of the value 

is not known, or you do not want to specify it exactly. In this case, use amenity:bicycle or: 

["amenity"~"bicycle"] 

If you want to query all values in a key in Wizard use amenity=*.  In the Overpass QL query, 

you get simply this: 

["amenity"] 

If you want to make an inverted selection for elements, specify a value, and use != operator. 

Retrive all data except bicycle_rentals in the view of ELTE Lágymányos Campus, where the 

amenity!=bicycle_rental. 

["amenity"!="bicycle_rental"] 

Be careful! Use a very small area in the bounding box because many results will be retrieved! 

The situation is same in the following query. amenity!~bicycle returns data from every 

category for the selected area (except bicyle-related things). 

["amenity"!~"bicycle"] 

If you want to query all key and data for the target area, except the values in a given key (e.g. 

amenity), use this: amenity!=*, 

["amenity"!~".*"] 

 

  

https://wiki.openstreetmap.org/wiki/Map_features


12 

 

The timeout 

[timeout:180] 

The maximum allowed time for the query in seconds. If it is exceeded, the query will stop. It 

is not an obligatory part of the query. 

[out:json] or [out:xml] 

The query can be opened by [out:json], and the retrived data will be in JSON format.  If you 

do not add [out:json], the data will retrived in XML. 

[out:json][timeout:25]; //JSON data format 

 ( 

  // query part for: “amenity=restaurant” 

  node["amenity"="restaurant"]({{bbox}}); 

  way["amenity"="restaurant"]({{bbox}}); 

  relation["amenity"="restaurant"]({{bbox}}); 

); 

out body; 

 

[timeout:25]; //XML data format 

 ( 

  // query part for: “amenity=restaurant” 

  node["amenity"="restaurant"]({{bbox}}); 

  way["amenity"="restaurant"]({{bbox}}); 

  relation["amenity"="restaurant"]({{bbox}}); 

); 

out body; 



13 

 

 

Closing the query: out; and its mutations 

Every query has to be closed with out;. This is the shortest form to close them. If you want to 

specify how to plot the data in the data view, you can use the following supplements: 

out body; Print all information necessary to use the data. 

out skel; Print the minimum information necessary for geometry: for nodes: id and 

coordinates; for ways: id and the ids of its member nodes; for relations: id of the relation, and 

the id, type, and role of all of its members. 

out tags; Print only ids and tags for each element and not coordinates or members. 

out ids; Print only the ids of the elements in the set 

See more here: 

https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_QL#Output_format_(out:) 

Recursivity 

The recurse down standalone query is written as a single greater than. It takes an input set. It 

produces a result set. Its result set is composed of:  

• all nodes that are part of a way which appears in the input set; plus 

• all nodes and ways that are members of a relation which appears in the input set; 

plus 

• all nodes that are part of a way which appears in the result set 

In particular, you can change the input and/or result set with the same notation as for the 

recurse up standalone query.  

>; 

For further syntax check: https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_QL 

 

  

https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_QL#Output_format_(out:)
https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_QL


14 

 

Practice 
The following practices work in Overpass Turbo QL, in the Overpass Turbo API. Light blue 

text hightlights can be written in the Wizard tool. Here is a short description, how to use the 

Wizard: 

https://wiki.openstreetmap.org/wiki/Overpass_turbo/Wizard 

There may be some changes in syntax. Please open Overpass Turbo in a new tab of your 

browser:  https://overpass-turbo.eu/ 

Unit 1. Exercise the different views. 

Task 1.1 
 

Set the map view to the centre of Budapest, and find the bars.  

The bars are amenity features. In Wizard type: amenity=bar. In the code editor, you can build 

the query. 

( 

node["amenity"="bar"]({{bbox}}); 

way["amenity"="bar"]({{bbox}}); 

relation["amenity"="bar"]({{bbox}}); 

); 

out; 

or: 

nwr["amenity"="bar"]({{bbox}}); 

out; 

The viewing area is given in round bracket as a the canvas extent: ({{bbox}}); 

 

Task 1.2 
 

Now, query all bars in Budapest and its sorrounding. The coordinates of the bounding box 

are: 47.4, 18.7, 47.8, 19.2. 

nwr["amenity"="bar"] (47.4, 18.7, 47.8, 19.2); 

out; 

 

  

https://wiki.openstreetmap.org/wiki/Overpass_turbo/Wizard
https://overpass-turbo.eu/


15 

 

Task 1.3 
 

Let’s include in the query the availability of the bars with wheelchair. The bounding box is 

same as in the task 1.2.  

In the Wizard, amenity=bar and wheelchair=yes have to be written. You search for two tags 

of one feature, therefore the logical relation is AND. 

nwr[„amenity”="bar"] 

     [wheelchair=yes](47.4, 18.7, 47.8, 19.2); 

 out; 

 

Task 1.4 
Query the bars whose address contains Budapest! (addr:city) 

In the Wizard: amenity=bar AND addr:city=Budapest. You search for two tags of one 

feature, therefore the logical relation is AND. 

node["amenity"="bar"] 

     ["addr:city"="Budapest"] 

     (47.4, 18.7, 47.8, 19.2); 

 out; 

 

Task 1.5 
 

Look for the bars near you (search radius is 2 km). Your location: 47.4866° és 19.0567°. The 

bars have to be wheelchair accessible. 

nwr["amenity"="bar"] 

    ["wheelchair"="yes"] 

     (around:2000,47.4866, 19.0567);  

 out body; 

 

Task 1.6 
 

Look for the bars near you (search radius is 500 m). Your location is in Budapest Deák Ferenc 

tér 1.  

[out:json][timeout:25];  

{{radius=500}}   

 ( 

node["amenity"="restaurant"](around:{{radius}},{{geocodeCoords:Buda

pest Deák Ferenc tér 1}}); 

way["amenity"="restaurant"](around:{{radius}},{{geocodeCoords:Budap

est Deák Ferenc tér 1}});  

relation["amenity"="restaurant"](around:{{radius}},{{geocodeCoords:

Budapest Deák Ferenc tér 1}}); 

); 

out body; 



16 

 

or: 

{{radius=500}}   

  

nwr["amenity"="restaurant"](around:{{radius}},{{geocodeCoords:Budap

est Deák Ferenc tér 1}});  

out body; 

 

Task 1.7* 
 

Add a new style to the nodes in Task 1.6. Every nodes has a red fill color, and the label is 

written to the left of the node. Font-size is 16 pt. 

The nodes and the ways can be styled by the MapCSS language. This language has only a few 

options for styling; therefore you have only one task in this topic. But if you want to read 

more about MapCSS, please visit: 

https://wiki.openstreetmap.org/wiki/MapCSS/Examples 

 node["amenity"="bar"] 

     ["wheelchair"="yes"] 

     ["addr:city"="Budapest"] 

     (47.4, 18.7, 47.8, 19.2); 

{{style: 

    node { fill-color: red; color: blue, fill-opacity 1; font-

size:16; text: name; text-position:left; } 

}} 

 out body;  

Task 1.8 
 

Query two features at the same time in Budapest city center. These features are the restaurants 

and bars. Use the OR logical operator! 

You have to use a round brackets to group the items that you query. 

In the Wizard: amenity=bar OR amenity=restaurant. 

( 

  nwr["amenity"="restaurant"]({{bbox}}); 

  nwr["amenity"="bar"]({{bbox}});  

); 

out; 

or: 

 ( 

  node["amenity"="restaurant"]({{bbox}}); 

  way["amenity"="restaurant"]({{bbox}}); 

  relation["amenity"="restaurant"]({{bbox}}); 

  node["amenity"="bar"]({{bbox}}); 

  way["amenity"="bar"]({{bbox}}); 

  relation["amenity"="bar"]({{bbox}}); 

); 

out body; 

 

https://wiki.openstreetmap.org/wiki/MapCSS/Examples


17 

 

Unit 2.  An exercise on buildings 

Task 2.1 
 

Buildings can be retrieved as nodes, ways, and relations. Plot the residential buildings in the 

city center of Budapest. 

In the Wizard: building=residential. 

( 

  node["building"="residential"]({{bbox}}); 

  way["building"="residential"]({{bbox}}); 

  relation["building"="residential"]({{bbox}}); 

); 

out body; 

or: 

nwr["building"="residential"]({{bbox}}); 

out; 

Query the university buildings! building=university or amenity=university. 

( 

  node["building"="university"]({{bbox}}); 

  way["building"="university"]({{bbox}}); 

  relation["building"="university"]({{bbox}}); 

); 

out body; 

or: (to get the right result, use the recurse up sign!) 

nwr["building"="university"]({{bbox}}); 

nwr["amenity"="university"]({{bbox}}); 

>; 

out; 

Unit 3. 

Task 3.1 
 

Query the forest areas in Buda Hills. Set the map view to the western part of Budapest! 

In the Wizard: landuse=forest 

( 

  node["landuse"="forest"]({{bbox}}); 

  way["landuse"="forest"]({{bbox}}); 

  relation["landuse"="forest"]({{bbox}}); 

); 

>; 

out body; 

or: 

  nwr["landuse"="forest"]({{bbox}}); 

 >; 

out body; 

 



18 

 

Task 3.2 
 

Query the forest areas in the city of Ercsi.  

In the Wizard: landuse=forest in Ercsi 

{{geocodeArea:Ercsi}}->.searchArea; 

 ( 

  node["landuse"="forest"](area.searchArea); 

  way["landuse"="forest"](area.searchArea); 

  relation["landuse"="forest"](area.searchArea); 

); 

out body; 

or: 

{{geocodeArea:Ercsi}}->.searchArea; 

  nwr["landuse"="forest"]({{bbox}}); 

 >; 

out body; 

 

Task 3.3 
 

Let’s find the castles in Nógrád county!  Castles can be found both building and in historic 

categories as well.  

building=castle or building historic=castle in Nógrád 

{{geocodeArea:Nógrád}}->.searchArea; 

 ( 

  node["building"="castle"](area.searchArea); 

  way["building"="castle"](area.searchArea); 

  relation["building"="castle"](area.searchArea); 

 

  node["historic"="castle"](area.searchArea); 

  way["historic"="castle"](area.searchArea); 

  relation["historic"="castle"](area.searchArea); 

); 

out body; 

or: 

{{geocodeArea:Nógrád}}->.searchArea; 

 ( 

  nwr["building"="castle"](area.searchArea); 

  nwr["historic"="castle"](area.searchArea); 

);>; 

out body; 

or: 

area 

  ["boundary"="administrative"] 

  ["admin_level"="6"] 

  ["name"="Nógrád vármegye"]->.a; 

out body; 

 ( 



19 

 

  nwr["historic"="castle"](area.a); 

  nwr["building"="castle"](area.a); 

);>; 

out body; 

Unit 4.  Administrative boundaries 

Task 4.1 
 

Query the data of Hungary, set the map view to the Carpathian Basin. The data is retrieved in 

the place tag as nodes (it does not contain the boundary). The tag ’place’ contains the name of 

the country in several languages. 

( 

  node["place"="country"]["name"="Magyarország"]({{bbox}}); 

  way["place"="country"]["name"="Magyarország"]({{bbox}}); 

  relation["place"="country"]["name"="Magyarország"]({{bbox}}); 

); 

out body; 

 

Task 4.2 
 

Query all boundaries from the admin_level 2 to 9 in Hungary. Set the map view to Hungary, 

then zoom in on a county. If you query the administrative regions, it is necessary to known the 

admin_level parameter value. To get familiar with the admin_levels in Hungary, see the table 

below. 

In the Wizard: boundary=administrative and admin_level=? 

For Hungary: 

Admin_level Administrative region Admin_level Administrative region 

2 country border 6 Counties / catpital city 

borders – NUTS 3 

3  -  7 Districts 

4  NUTS 1 borders 8 Settlements 

5 Regions - NUTS 2 9 Districts of Budapest 

 

For the rest of the world, check the specific country in the following table, where you can see 

the admin_level numbers and types (from 2 to 11): 

https://wiki.openstreetmap.org/wiki/Tag:boundary%3Dadministrative#admin_level=*_Countr

y_specific_values 

 

Let’s start with counties (admin_level: 6): 

nwr["boundary"="administrative"]["admin_level"="6"]({{bbox}}); 

>; 

out body; 

Now, carry on with the admin_level 7, these are the districts. 

https://wiki.openstreetmap.org/wiki/Tag:boundary%3Dadministrative#admin_level=*_Country_specific_values
https://wiki.openstreetmap.org/wiki/Tag:boundary%3Dadministrative#admin_level=*_Country_specific_values


20 

 

( 

node["boundary"="administrative"]["admin_level"="7"]({{bbox}}); 

way["boundary"="administrative"]["admin_level"="7"]({{bbox}}); 

relation["boundary"="administrative"]["admin_level"="7"]({{bbox}}); 

); 

>; 

out body; 

Settlement can be found at admin_level 8. 

node["boundary"="administrative"]["admin_level"="8"]({{bbox}}); 

way["boundary"="administrative"]["admin_level"="8"]({{bbox}}); 

relation["boundary"="administrative"]["admin_level"="8"]({{bbox}}); 

); 

>; 

out body; 

There are two types of regions in Hungary, corresponding to different NUTS levels. There are 

3 regions in the admin_level 4 (West Hungary, East Hungary, Central Region of Hungary) 

and 7 regions at admin_level 5. 

 ( 

node["boundary"="administrative"]["admin_level"="5"]({{bbox}}); 

way["boundary"="administrative"]["admin_level"="5"]({{bbox}}); 

relation["boundary"="administrative"]["admin_level"="5"]({{bbox}}); 

); 

>; 

out body; 

National borders are represented at admin_level 2. 

( 

node["boundary"="administrative"]["admin_level"="2"]({{bbox}}); 

way["boundary"="administrative"]["admin_level"="2"]({{bbox}}); 

relation["boundary"="administrative"]["admin_level"="2"]({{bbox}}); 

); 

>; 

out body; 

Plot the border of the county Nógrád! 

{{geocodeArea:Nógrád}}->.searchArea; 

 ( 

 

node["boundary"="administrative"]["admin_level"="6"](area.searchAre

a);   

way["boundary"="administrative"]["admin_level"="6"](area.searchArea

); 

relation["boundary"="administrative"]["admin_level"="6"](area.searc

hArea); 

); 

>; 

out body; 

or zoom in to Nógrád and plot its boundary! 

 ( 

node["boundary"="administrative"]["admin_level"="6"]["name"="Nógrád 

vármegye"]({{bbox}});   



21 

 

   

way["boundary"="administrative"]["admin_level"="6"]["name"="Nógrád 

vármegye"]({{bbox}}); 

relation["boundary"="administrative"]["admin_level"="6"]["name"="Nó

grád vármegye"]({{bbox}}); 

); 

>; 

out body; 

Let’s find the borders of the village Apc. Village borders are at the admin_level 8.  

Zoom in to East Hungary:  

(   

node["boundary"="administrative"]["admin_level"="8"]["name"="Apc"](

{{bbox}});   

way["boundary"="administrative"]["admin_level"="8"]["name"="Apc"]({

{bbox}}); 

relation["boundary"="administrative"]["admin_level"="8"]["name"="Ap

c"]({{bbox}}); 

); 

>; 

out body; 

or with geocoding: 

[out:json][timeout:25]; 

{{geocodeArea:Apc}}->.searchArea; 

 ( 

  

node["boundary"="administrative"]["admin_level"="8"](area.searchAre

a);   

way["boundary"="administrative"]["admin_level"="8"](area.searchArea

); 

relation["boundary"="administrative"]["admin_level"="8"](area.searc

hArea); 

); 

>; 

out body; 

 

Unit 5. 

Task 5.1 
 

Let’s find the bars with the 1117 postal code! 

area["boundary"="postal_code"]["postal_code"="1117"]->.a; 

out; 

nwr["amenity"="bar"](area.a); 

out body; 

 

Task 5.2 
 

Let’s find the peaks of the Dolomites! 

area 

  [place=region] 



22 

 

  ["region:type"="mountain_area"] 

  ["name:en"="Dolomites"]; 

out body; 

 

node 

  [natural=peak] 

  (area); 

out body; 

 
Task 5.3 

Let’s find the peaks of Nógrád vármegye! 

area 

  ["boundary"="administrative"] 

  ["admin_level"="6"] 

  ["name"="Nógrád vármegye"]; 

out body; 

node 

  [natural=peak] 

  (area); 

out body qt; 

 
Task 5.4 

 

Query all settlements from Nógrád vármegye! 

 [out:json][timeout:25]; 

{{geocodeArea:Nógrád}}->.searchArea; 

  

  

nwr["boundary"="administrative"]["admin_level"="8"](area.searchArea

); 

>; 

out body; 

  



23 

 

Chapter 3. GTFS specification 
 

The General Transit Feed Specification (GTFS) is an Open Standard used to distribute relevant 

information about transit systems to riders. It allows public transit agencies to publish their 

transit data in a format that can be consumed by a wide variety of software applications. 

GTFS consists of two main parts: GTFS Schedule and GTFS Realtime. 

GTFS Realtime 

GTFS Realtime (General Transit Feed Specification Realtime) is an extension of the GTFS 

(General Transit Feed Specification) format that provides real-time public transit data. It 

allows transit agencies to share live updates about their services. 

Key Components of GTFS Realtime: 

 

• Trip Updates – Provides real-time updates on vehicle delays, cancellations, or 

changes to scheduled trips. 

• Vehicle Positions – Gives the current location, speed, and heading of transit 

vehicles. 

• Service Alerts – Communicates disruptions, detours, or other service changes 

affecting the transit system. 

Use Cases 

• Public transit apps (like Google Maps, Transit, Moovit) use GTFS Realtime to show 

live bus/train locations. 

• Smart city and transportation analytics platforms use it to monitor transit performance. 

• Developers and researchers analyze it for insights into transit efficiency and rider 

experience. What information can you get from the GTFS? 

 

GTFS Schedule  

GTFS Schedule is a feed specification that defines a common format for static public 

transportation information. It is composed of a collection of simple files, mostly text files (.txt) 

that are contained in a single ZIP file.  

Each file describes a particular aspect of transit information such as stops, routes, trips, etc. At 

its most basic form, a GTFS Schedule dataset is composed of 7 files: agency.txt, routes.txt, 

trips.txt, stops.txt, stop_times.txt, calendar.txt and calendar_dates.txt. 

The documentation of GTFS: 

https://gtfs.org/documentation/overview/ 

http://developers.google.com/transit/gtfs/ 

 

AGENCY.TXT 

A járatüzementető adatai.  

https://gtfs.org/documentation/overview/
http://developers.google.com/transit/gtfs/


24 

 

agency_id Identifies a transit brand which is often synonymous with a transit 

agency. 

agency_name Full name of the agency 

agency_lang Two letters language code. 

agency_phone Phone number 

agency_email Email. 

agency_fare_url Website 

 

STOPS.TXT 

stop_id Identifies a location: stop/platform, station, entrance/exit, generic 

node or boarding area 

stop_name Name of the stop.  

stop_lat & stop_lon Latitude and longitude of the stop 

stop_code Short text or a number that identifies the location for riders. 

location_type 0 or blank: stop; 1: station; 2: entrance/exit; 3:generic; node; 4: 

boarding area 

wheelchair_boarding 
    wheelchair accessibility 

 

ROUTES.TXT 

agency_id Agency ID 

route_short_name Short name of a route. Often a short, abstract identifier (e.g., 

"32", "100X", "Green") that riders use to identify a route 

route_long_name 
Full name of a route. This name is generally more descriptive 

than the route_short_name and often includes the route's 

destination or stop. 

route_id 
Route ID 

route_color & 
route_text_color 

Printing colors of the routes in a map 

  

 

TRIPS.TXT 

route_id Foreign key for route ID 

trip_id Tripm ID 



25 

 

service_id 
Identifies a set of dates when service is available for one or more 

routes. 

trip_headsign 

Text that appears on signage identifying the trip's destination to 

riders. This field is recommended for all services with headsign 

text displayed on the vehicle which may be used to distinguish 

amongst trips in a route. 

direction_id 

Indicates the direction of travel for a trip. This field should not be 

used in routing; it provides a way to separate trips by direction 

when publishing time tables. Valid options are:  

 

0 - Travel in one direction (e.g. outbound travel). 

1 - Travel in the opposite direction (e.g. inbound travel). 

block_id 

Identifies the block to which the trip belongs. A block consists of 

a single trip or many sequential trips made using the same vehicle, 

defined by shared service days and block_id. A block_id may 

have trips with different service days, making distinct blocks. 

shape_id 
Identifies a geospatial shape describing the vehicle travel path for 

a trip. 

wheelchair_accessible Wheelchair accessibility 

STOP_TIMES.TXT 

trip_id Foreign key for trip ID 

stop_id Foreign key for Stop ID 

arrival_time & 

departure time 
Arrival and departure time in the stop 

stop_headsign 
Text that appears on signage identifying the trip's destination to 

riders. 

stop_sequence Order of stops 

shape_dist_traveled 

Actual distance traveled along the associated shape, from the 

first stop to the stop specified in this record. This field specifies 

how much of the shape to draw between any two stops during a 

trip. (in meter) 

 

SHAPES.TXT 

 

shape_id Id of the shape 



26 

 

shape_pt_sequence 

Sequence in which the shape points connect to form the shape. 

Values must increase along the trip but do not need to be 

consecutive. 

shape_pt_lat & 

shape_pt_lon 
Latitude and longitude of a shape 

shape_dist_traveled 

Actual distance traveled along the shape from the first shape 

point to the point specified in this record. Used by trip planners 

to show the correct portion of the shape on a map (in meter). 

 

FEED_INFO.TXT 

The file contains information about the dataset itself, rather than the services that the dataset 

describes. In some cases, the publisher of the dataset is a different entity than any of the 

agencies. 

 

 

GTFS text files are essentially tables (similar to those in database management systems). 

They contain many primary and foreign keys, which connect the files. If you want to work 

with these text files, it is easiest to import them into QGIS or another database management 

system (e.g., PostgreSQL). Below, you will see some examples of these solutions. 

First, get familiar with the tables: 

• The stops can be found in the stops.txt file with coordinates. 

• The path or route of the bus/tram/underground railways, etc., can be found in the 

shapes table. According to the shape_id field, you can generate the polyline for the 

path. 

• The routes.txt file contains the name/number of the route in the route_short_name 

column. 

• The "Joker" table is the trips table. It  connects routes, shapes, and stop_times tables 

with foreign keys. The trip_headsign field contains the text or label on the front of the 

bus/tram, etc. You can also use the route_short_name from routes. 

• Stop_times can be connected to trips, allowing you to query the arrival and departure 

times of a route. 

 

Working with GTFS data in QGIS using GTFS GO 
 

GTFS Go is a QGIS plugin to display paths and stops. First, install this plugin: 

1. In QGIS Plugins → Manage and Install Plugins → GTFS-GO→Install Plugin 

2. Then, open the plugin and load data from a preset repository. For example, use 

[USA][New York][Brooklyn]. 

3. Select the GTFS data source, then set an output directory on your computer. 



27 

 

 

Now, you have the Brooklyn layers, with a stops layer and a routes layer. The stops layer 

contains the stop_id and the name, and routes contains the data from shapes path layer, and 

the route_short name field. 

 

What is the projection of the data? It uses geographic coordinates; therefore, the custom 

CRS of this data is WGS84, EPSG: 4326. 

Now, let’s load the budapest_gtfs.zip from CANVAS or from this link: 

https://bkk.hu/gtfs/budapest_gtfs.zip 

Select the Local ZIP file option, and find the GTFS. You will get this: 

https://bkk.hu/gtfs/budapest_gtfs.zip


28 

 

 

 
 

 

 

Opening of BKK data in QGIS 
Let’s remove all data from QGIS or open a new project. First, import the stops.txt and shapes.txt 

files in Data Source Manager as Delimited Text files. The delimiter character is ',' (comma), 

and the geometry definition is Point coordinates. Set the X field to shape_pt_lon and the Y field 

to shape_pt_lat. The projection (CRS) is 4326. Once you are ready, open the Processing menu 

and find the Points to Path algorithm. This algorithm creates polylines from the points of a 

path. Add the input layer, which is the shapes layer. The Order field specifies the order of points, 

indicated by the shape_pt_sequence field, and the Group field shows the identification number 

of lines (this value is the shape_id). After running the algorithm, you will get this: 

 



29 

 

How can I find out, which bus it is and where it goes? 

Let’s make joins between layers. First, please import the routes.txt, trips.txt, and 

stop_times.txt files as Delimited Text layers. All settings are the same, except the Geometry 

Definition is "No geometry." Connect the shapes and the trips tables. The shapes table has the 

primary key: shape_id, and join it to the trips.shape_id foreign key. 

Shapes layer→Project → Properties → Joins→ Join the table trips with shape_id to target 

field shape_id. Apply the Joins. 

Now, you can join the routes table with routes.route_id to the target column route_id (from the 

trips table). You can now use the Identify Feature button. If you click on a route, you can read 

the information in the small window (route_short_name, trip_headsign). 

 

 

QGIS Database (DB) Manager  
 

[I you can not see it in the menus, activate it in the Plugins→ Manage and install plugins] 

Open the DB Manager: Database → DB Manager. 



30 

 

Here on the left, you can see the project layers in the virtual layers tree. Open a new SQL 

Query.  

 

Let’s answer the following questions with queries! 

 

1) Print the stops in ’Örs vezér tere’.  

2) How many different name does ’Örs vezér tere’ stop have? 

3) Display all stops from ’Örs vezér tere’ in the QGIS main window! 

4) What is the number of the route called ’Csepel-Királyerdő’ ? (trips and routes, 

trip_headsign) 

If you want to show the geometry in the QGIS window, first, put the geometry field after the 

SELECT statement, then go to Load as New Layer, and set the geometry column (geometry). 

Finally, click on Load!

 

 

Key: 

1.) select * from stops where stop_name like "Örs vezér tere%" 

2.) select stop_name, count(*) from stops where stop_name like "Örs 

vezér tere%" group by 1 

3.) select stop_name, count(*), geometry from stops where stop_name 

like "Örs vezér tere%" group by 1 

4.) select * from trips  join routes on 

trips.route_id=routes.route_id where trip_headsign='Csepel-

Királyerdő' 

A database index is a data structure that improves the speed of data retrieval operations on a 

database table at the cost of additional writes and storage space to maintain the index data 

structure. Indexes are used to quickly locate data without having to search every row in a 



31 

 

database table every time the table is accessed. Indexes can be created using one or more 

columns of a database table, providing the basis for both rapid random lookups and efficient 

access to ordered records. If you do not use indexes in a database, queries run slowly. QGIS 

does not use indexes on tables; therefore, the next queries will be run in PostgreSQL+PostGIS 

with DBeaver. 

The easiest option to import Shapefiles into PostgreSQL is to use the PostGIS Bundle 

program. In a Windows environment, it can be easily started from the Start menu. First, please 

save your data as Shapefiles. If the file does not have geometry, the DBF file can be written. 

Right-click on the layer name → Export → Save Features As →Esri Shapefile. You will get 

an error message about missing geometry. Ignore it. Check whether you have the DBF file! 

In DBeaver 
Create a new empty database. Right- click on databases→ Create an empty database. 

Add the POSTGIS extension to the table. 

Open PostGIS Bundle. Set the connection details. 

 

Add the files. Below the white box, you can choose DBF as the file type. Now, you are able to 

import the data. 

 



32 

 

Set the SRID to 4326 on bkk_shapes and bkk_stops tables (They have geometry!). Finally, 

import them.  

 

Now, you answer the following questions with queries: 

5.) Which routes go to ’Göncz Árpád városközpont’? Order in ascending order! 

6.) When do buses arrive at ’Egyenes utcai lakótelep’? 

7.) Which buses stop at ’Egyenes utcai lakótelep’? 

8.) Make a list of the departure times of bus routes ’276E’ at’Egyenes utcai lakótelep’! 

9.) Query the route of bus line ’276E’! 

Key: 

5.) select route_short_name from trips  join routes on 

trips.route_id=routes.route_id where trip_headsign like 'Göncz 

Árpád városközpont%' group by 1 order by 1 

6.) select arrival_time from stops join stop_times on 

stops.stop_id=stop_times.stop_id where stop_name=’Egyenes utcai 

lakótelep’ order by 1 

7.) select distinct routes.route_short_name from stop_times join 

stops on stops.stop_id=stop_times.stop_id join trips on 

trips.trip_id=stop_times.trip_id join routes on 

routes.route_id=trips.route_id where stop_name like 'Egyenes utcai 

lakótelep%' 



33 

 

8.) select distinct arrival_time from stop_times join stops on 

stops.stop_id=stop_times.stop_id join trips on 

trips.trip_id=stop_times.trip_id join routes on 

routes.route_id=trips.route_id where stop_name like 'Egyenes utcai 

lakótelep%' and route_short_name='276E' 

9.) select geometry from shapes_path join trips on 

trips.shape_id=shapes_path.shape_id join routes on 

routes.route_id=trips.route_id where route_short_name='276E' 

  



34 

 

Chapter 3. Geocoding services 
 

What is geocoding? 
Geocoding is the process of assigning coordinates to a given address or geographic name. 

 

What is reverse geocoding? 
Reverse geocoding is the process of finding an address or geographic name close to given 

coordinates. 

The result of geocoding and reverse geocoding depends on the accuracy (level of detail) 

of the source geodatabase. It is worth mentioning that even if the source database is very 

accurate and detailed, if the given address is not exact or incomplete (e.g., missing district 

name), the result may not be as good as expected. Let’s try to find the following address in 

OpenStreetMap or Google Maps: Budapest Jókai utca 6. 

Budapest Jókai utca 6.  

Results: 

As you can see, there are several Jókai streets in Budapest. JÓKAI Mór was a popular writer 

in the 19th century, and therefore his name appears in several street names in Hungary: 

OpenStreetMap Search:  

https://nominatim.openstreetmap.org/ui/search.html?q=Budapest+J%C3%B3kai+utca+6.&ex

clude_place_ids=71360719%2C173383115%2C24319190%2C259704147%2C226370159 

 Add the district to the address: Jókai utca 6., Budapest, XVI. kerület OpenStreetMap Search 

with District:  

Jókai utca 6., Budapest, XVI. kerület 

https://nominatim.openstreetmap.org/ui/search.html?q=+J%C3%B3kai+utca+6.%2C+Budape

st%2C+XVI.+ker%C3%BClet 

Now, I found what I wanted.  

The address should contain the country, (county or district), city, postal code, street, and 

house number. 

 

The website of OSM Nominatim 
 

Nominatim works with the OpenStreetMap address database. You can easily try it out on this 

website. You can send queries here both in simple and structured forms. Simple means the 

concatenated address. Structured form means that you separate each part of the address into 

different boxes, such as address, postal code, city, etc.   

https://nominatim.openstreetmap.org/ui/search.html 

 

  

https://nominatim.openstreetmap.org/ui/search.html?q=Budapest+J%C3%B3kai+utca+6.&exclude_place_ids=71360719%2C173383115%2C24319190%2C259704147%2C226370159
https://nominatim.openstreetmap.org/ui/search.html?q=Budapest+J%C3%B3kai+utca+6.&exclude_place_ids=71360719%2C173383115%2C24319190%2C259704147%2C226370159
https://nominatim.openstreetmap.org/ui/search.html?q=+J%C3%B3kai+utca+6.%2C+Budapest%2C+XVI.+ker%C3%BClet
https://nominatim.openstreetmap.org/ui/search.html?q=+J%C3%B3kai+utca+6.%2C+Budapest%2C+XVI.+ker%C3%BClet
https://nominatim.openstreetmap.org/ui/search.html


35 

 

How can you geocode in QGIS? 

Install ’Geocoding’ plugin from the Plugin Repository. (Plugins →Manage and Install 

Plugins). 

Open the Geocoding plugin. 

Enter the address, run the geocoding request, and select the desired result from the list. For 

example: 1117 Budapest Pázmány Péter sétány 1/a.  

There are several addresses; please select one from the set of addresses! 

This plugin uses the OpenStreetMap Nominatim geodatabase. 

 

 

 

MMQGIS 

Install ’MMQGIS’ plugin from Plugin Repository. (Plugins →Manage and Install Plugins) 

I have a dataset with all kindergartens, primary and secondary schools in Hungary. I 

downloaded this file from the website of the Oktatási Hivatal (Office of Education). 

https://dari.oktatas.hu/ 

This quite a big file, so I reduced the size to 100 rows!  

MMQGIS is a plugin where you can run geocoding requests. In this plugin, you can read 

excel tables, and after the geocoding, you will get a new QGIS layer with the points of 

schools. 

But, before you start the geocoding, first redesign the basic Excel table! 

https://dari.oktatas.hu/


36 

 

1. Reduce the file size, keep only 100 rows. 

2. Add a new country field, and fill it with the text ’Magyarország’ (Hungary). This 

helps to increase the success of geocoding. 

3. Save the file in CSV format. The delimiter character is comma.  

(Set in Excel or Notepad++ → Search→Find → Replace) 

4. Set the character encoding to UTF-8 in Excel or use Notepad++.  

Open MMQGIS in the Menu bar  → Geocode → Geocode CSV with web service 

Give the following options: 

• Address: utca és házszám (street and housenumber) 

• City: város (city) 

• State: megye (county) 

• Country: ország (new country field) 

Set the geocoding service to OSM Nominatim. This is a free option. There are other 

possibilities, like Google Map sor ESRI, but you need activation key (API key) to these 

geocoder first before you can use them. 

The Output file name and not found output list → it is a list with the addresses, where the 

geocoding was not succesful 

The result is a new layer with the point coordinates of the schools. 

 

Python geoPy 
 

The next part of this task involves using the Python module geoPy. Please install it before 

you begin the work. geoPy may have dependencies, so please install them as well. 

geoPy is a module for geocoding and reverse geocoding in Python. The main advantage of 

this module is that it allows to use more than 30 geocoding services, including the most 

important ones like Nominatim, Google Maps, Esri, TomTom, etc. The geocoding request 

itself is a very short and simple in every case.  

Now, you will work with the schools Excel table. 

You do not need any preprocessing (please work only with 100 records). 

Please install pandas, openpyxl, and GDAL/OGR module, if you have not done so 

earlier. 

Python pandas works with tables, and openpyxl is necessary to open XLS or XLSX files 

with pandas. 

GeoPy Documentation 

https://geopy.readthedocs.io/en/stable/ 

If you have questions about installation, please read the „Installing modules on Python” 

Chapter. 

https://geopy.readthedocs.io/en/stable/


37 

 

Abstract of the task: Read schools.XLSX file. Geocode the full addresses with OSM 

Nominatim. Create a Shapefile with the following attributes: name of the school, full address. 

Open this Shapefile in QGIS. 

 

The detailed description of the task: 

1. Open the Excel table. Read the file. 

2. Concatenate the address cells of the Excel table. Send itt to geocoder 

3. Write the answer in a Shapefile. Locations have to be displayed as points. 

Import the modules in the code header. GDAL/OGR package is called osgeo. GDAL works with 

raster data, OGR works with vector data. Use Nominatim for geocoding. 

from geopy.geocoders import Nominatim 

from osgeo import ogr 

from osgeo import osr  

import pandas as pd   

geolocator = Nominatim(user_agent="Myapp") 

Read schools.xlsx table. Import the data into the DataFrame. DataFrame is a special two- 

dimensional matrix to store table format data. DataFrame allows us easy access to data. 

df=pd.read_excel('schools.xlsx') 

Rename all columns according to their header (the first line). This means the index of the 

columns inherited from the header name. 

df.rename(columns=df.iloc[0]).drop(df.index[0]) 

Before you begin the geocoding, first create the Shapefile. Define the driver. 

driver = ogr.GetDriverByName("ESRI Shapefile") 

Create the Shapefile datasource. 

ds = driver.CreateDataSource("schools.shp") 

Give the spatial reference system (WGS84, EPSG: 4326) 

srs =  osr.SpatialReference() 

srs.ImportFromEPSG(4326) 

Create a layer, define the data type. 

layer = ds.CreateLayer("points", srs, ogr.wkbPoint) 

Add the attribute table definition. Create an ID field with integer data type. Create a column 

with the full address. 

idField = ogr.FieldDefn("id", ogr.OFTInteger) 

layer.CreateField(idField) 

featureDefn = layer.GetLayerDefn()  

Create a do_geocode function that performs geocoding. If the geocoder is unavailable, it 

makes several attempts, before giving up. 

def do_geocode(address, attempt=1, max_attempts=5): 

    try: 



38 

 

        return geolocator.geocode(address) 

    except GeocoderTimedOut: 

        if attempt <= max_attempts: 

            return do_geocode(address, attempt=attempt+1) 

        raise 

Let’s write the for loop, geocode the addresses. First concatenate the full address. 

for i in range(1,99): 

addr=' Magyarország, '+df.loc[i][COUNTY']+' vármegye 

'+df.loc[i][ 'CITY']+', '+str(df.loc[i]['POSTAL_CODE'])+' 

'+df.loc[i]['ADDRESS']+' ' 

Call the geocoder. 

    location = do_geocode(addr) 

Check the returned address. If you have a result (if the location variable is not empty), write 

the Shapefile. The location variable contains the latitude, longitude and the full address. 

if location!=None: 

        feature = ogr.Feature(featureDefn) #create the feture 

        point = ogr.Geometry(ogr.wkbPoint) #give the geometry type 

        pont.AddPoint(location.longitude, location.latitude) #add 

the coordinates 

        feature.SetGeometry(pont) #add geometry to feature 

        feature.SetField("id", i) #set field data 

        layer.CreateFeature(feature) #add feauter to layer 

ds = None #close the Shapefile 

  



39 

 

Chapter 4: Working with statistical data with pandas 
and matplotlib modules 
 

This chapter demonstrates how to work with statistical data and how to create diagrams using 

matplotlib. The source dataset was downloaded from this website: 

https://www.ketszintu.hu/publicstat.php 

This website contains the results of final exams in Hungarian secondary schools for various 

subjects including mathematics, biology, Hungarian literature and grammar, chemistry, etc. 

The exams areconducted at two levels: standard and advanced. Today, we will work with the 

results of a mathematics exam from 2018. The data are available in CSV format. 

https://www.ketszintu.hu/publicstat.php?stat=_2018_1&reszletes=1&eta_id=3&etj_szint=K 

Steps: 

- First, familiarize yourself with the dataset. 

- Second, calculate the average score for the entire country!  

o Sum the points from the ‘I. rész’ and ‘II. rész’ sections to get the total score. 

o Use only the data where the student was present at the exam (vizsgázó 

megjelent = megjelent) and where the written score is valid (írásbeli 

pontszám != '-'). 

- Print the average scoress for each county! 

- Plot a bar chart based on the average scores! 

- Save these scoress to a textfile, and create a coropleth map in QGIS using the 

hungary.gpkg dataset. 

Let’s see the detailed code! 

Import the pandas and matplotlib (as plt) modules in the header of your code. Read the 

CSV file into the DataFrame. Specify the source, the delimiter, the character-encoding and the 

header line. 

import pandas as pd 

import matplotlib.pyplot as plt 

 

df = pd.read_csv('matek_2017_2.csv', 

delimiter=";",encoding="cp1250", header=0)  #load the data in the 

Dataframe 

Drop the original column index (which is initially an integer index), and set the header as the 

new index. The Hungarian Math final exam consists of two parts: ’I.rész’ and ’II. rész’. 

These columns contain students' scores, but the values are stored as strings. Aggregation 

functions such as min, max, avg can not process string values. Therefore, you need to convert 

the strings to integers. First, create a new empty column, as a pandas Series.  

df.rename(columns=df.iloc[0]).drop(df.index[0]) 

df['1.rész']=pd.Series(dtype='int') 

df['2.rész']=pd.Series(dtype='int') 

df['ossz']=pd.Series(dtype='int') 

Then, fill the Series with numbers. Create a for loop that iterates through all records (length of 

the DataFrame minus 1). Inside the loop, use an If condition whether the student attended the 

exam and received a valid score. If so, update the Series with the corresponding values. 

https://www.ketszintu.hu/publicstat.php
https://www.ketszintu.hu/publicstat.php?stat=_2018_1&reszletes=1&eta_id=3&etj_szint=K


40 

 

After that, you can call the aggregation funtions. Let’s try min, max, and avg on the total 

score (sum of ‘I. rész’ and ‘II. rész’), now applied to the entire dataset. 

v=0; 

for i in range(1,len(df)-1): 

    if df['vizsgázó részvétele'][i]=='megjelent' and df['írásbeli 

pontszám'][i]!='-' : 

        v=v+1 

        df['1.rész'][i]=int(df['I. rész'][i]) 

        df['2.rész'][i]=int(df['II. rész'][i]) 

        df['ossz'][i]=df['1.rész'][i]+df['2.rész'][i] 

print(df['ossz'].sum()/v) 

print(df['ossz'].aggregate('mean')) 

print(df['ossz'].aggregate('max')) 

print(df['ossz'].aggregate('min')) 

print(df['ossz'].max()) 

print(df['ossz'].min()) 

If you want to group the data in a table, use the groupby function. Group the data by county 

('intézmény megyéje'). 

print (df.groupby('intézmény megyéje')['ossz'].aggregate('mean')) 

print (df['1.rész'].sum()/v) 

print (df['2.rész'].sum()/v) 

Now, create a diagram using matplotlib. Store the groupby result in a variable called 

df_diagram.  The plot function requires three parameters:  

• x-axis → county ('intézmény megyéje') 

• y-axis → total score 

• diagram type → bar chart.  

Use Plt.show() to display the diagram. 

df_diagram=df.groupby('intézmény 

megyéje')['ossz'].aggregate('mean') 

df_diagram.plot(x='intézmény megyéje', y='ossz', kind='bar') 

plt.show() 

Finally, write the total scores by county to a file using the function to_csv(filename). 

df_diagram.to_csv('ujmatek.csv') 

If you want to save the diagram as a file, use savefig(filename) function. The file format can 

be JPG, PNG, PDF, etc. 

fig = df_diagram.plot(x='intézmény megyéje', y='ossz', 

kind='bar').get_figure() 

fig.savefig('figure.pdf') 



41 

 

 

If you have prepared the CSV file, create a choropleth map in QGIS. You need hungary.gpkg 

as a basemap. Open the county layer (megye).  

Open the data Source manager and navigate to the Delimited textfile submenu. Import the 

delimited textfile as an attribute table.  

 

Join this table to the county layer, using the county name as the target field.  



42 

 

 

Go to the layer symbology, and apply graduated styling. Test different classification methods, 

create 5 groups. Explain, which classification method works best for this dataset and why? 

 



43 

 

  

Homework: If there are values in the column (’szóbeli pontszám’), add them to the total 

score! What is the new total score? Create a diagram showingthe new average total score by 

county.  

 

  



44 

 

Chapter 5: Working with statistical data with pandas 
and matplotlib modules: Water level changes 
 

The OVF Hungarian Hydrological Forecasting Service continously monitors the water 

level of lakes and rivers in Hungary. Their website, Hydroinfo (https://www.hydroinfo.hu/ ), 

allows everyone to track these water level changes. They also store archived water level data 

here: https://www.hydroinfo.hu/vituki/archivum/index.html (Központi Hidrológiai Adattár – 

Cenral Hydrological Archive) 

We are currently using the Lake Balaton water level data from 2000 to 2004. During this 

period, the Carpathian Basin experienced a dry era, which caused the water level of Lake 

Balaton to drop to extremely low levels. These changes are well illustrated in a diagram. 

Therefore, we will create a diagram showing the monthly average water levels for the 

mentioned years.  

First, let’s check the data format on the website. Please select the ’Balaton átlag’ (=Balaton 

average) and enter 2000 in the textbox, followed by (2001, 2002, 2003 and 2004). 

 

 

This table has a header and footer, which we will disregard. The table contains the days and 

the months (Jan, Feb, Már…). I saved this table and uploaded it to Canvas. Please download 

the file Evizallas_balaton.zip and unzip it! 

https://www.hydroinfo.hu/
https://www.hydroinfo.hu/vituki/archivum/index.html


45 

 

These files contain the water levels, but some preprocessing is required before generating the 

diagrams. Open the file in Notepad++. The header row should contain the months. 

- Remove the empty lines. 

- Replace the tabs with commas 

- Replace the spaces/double spaces with commas. (Be careful in lines 29,30 and 31!) 

- Add a comma before the day. This will cause a mismatch in the number of columns between 

the header and the data rows. To fix this, insert a new column at the beginning of the file 

header (use "Nothing" as the header name). 

The cleaned file should look like this: 

 

Ensure that the number of columns in the header matches the number of columns in the data 

rows. 



46 

 

To create a bar chart that displays the monthly average water levels for the years 2000–

2004, follow these steps:

 

Import vizallas_balaton_2000.txt  

• Import the required libraries: pandas and matplotlib. 

• Use read_csv function with the following parameters:  

o utf8 character encoding,  

o header: the first line,  

o delimiter: comma (,). 

• Remove the empty columns using del command. 

import pandas 

import pandas as pd 

 

#2000-2004 

df0=pd.read_csv('vizallas_balaton_2000.txt', 

delimiter=",",encoding="utf8", header=0) 

 

df1=pd.read_csv('vizallas_balaton_2001.txt', 

delimiter=",",encoding="utf8", header=0) 

df2=pd.read_csv('vizallas_balaton_2002.txt', 

delimiter=",",encoding="utf8", header=0) 

df3=pd.read_csv('vizallas_balaton_2003.txt', 

delimiter=",",encoding="utf8", header=0) 

df4=pd.read_csv('vizallas_balaton_2004.txt', 

delimiter=",",encoding="utf8", header=0) 

del df0['Semmi'] 

del df0['Nap'] 

del df1['Semmi'] 

del df1['Nap'] 

del df2['Semmi'] 

del df2['Nap'] 

del df3['Semmi'] 

del df3['Nap'] 

del df4['Semmi'] 

del df4['Nap'] 



47 

 

Aggregate the data by calculating the mean for each month. 

df_diagram0=df0.aggregate('mean') 

df_diagram1=df1.aggregate('mean') 

df_diagram2=df2.aggregate('mean') 

df_diagram3=df3.aggregate('mean') 

df_diagram4=df4.aggregate('mean') 

 

Print the aggregated data. 

 

print (df_diagram0) 

>> 

Jan    107.967742 

Feb    100.724138 

Már    106.129032 

Ápr    108.400000 

Máj    101.419355 

Jún     92.400000 

Júl     81.322581 

Aug     71.741935 

Sze     62.033333 

Okt     59.548387 

Nov     61.600000 

Dec     63.677419 

dtype: float64 

Combine data from all files: 

•  For the years 2000 to 2004, concatenate the DataFrames using the pd.concat() function. 

•  First, add the aggregated data from each file to a list. 

Plot the bar diagram using the combined data. 

sumdf1=[df_diagram0,df_diagram1,df_diagram2,df_diagram3,df_diagram4

] 

result=pd.concat(sumdf1) 

result.plot(xlabel='Évek', ylabel='vízmagasság',kind='bar') 

plt.show()   



48 

 

Chapter 6.  Working with photos metadata (Flickr 
photos metadata) 
 

Please check this article, focus on images. (page 1, and 17–19.) 

Gede Mátyás: Where do tourists go – Visualizing and analysing the Spatial Distribution of 

Geotagged Photography. 

https://www.researchgate.net/publication/262972685_Where_Do_Tourists_Go_Visualizing_a

nd_Analysing_the_Spatial_Distribution_of_Geotagged_PhotographyWhat will we do? 

What will we do? 

Flickr is a very popular image sharing website, where users can uploads photographs, and can 

mark, where the photo was taken. These metadata can be downloaded from Flickr website. We 

create a grid on an sample area, and count, how many photographs(=points are in the cell). 

According to the number of points, the cell height will be set in a Google KML format. 

 

Downloading the photo metadata 

In QGIS go to Plugins →  Manage and Install Plugins → Install Flickr Metadata 

Downloader (FMD).  

Open FMD. 

FMD works with SQLite layers. Therefore, first, create an empty SQLite file by navigating to 

Layer →  Create Layer → New SpatiaLite Layer. Provide a file name and a default layer 

name. (Note: We will not use this layer, as FMD will create a new layer. However, this 

SQLite file is necessary since FMD cannot create the SQLite file itself.) 

Start FMD. 

Provide your Flickr API key (if you have one) or use the default key. Select the SQLite 

database file and provide the layer name. Set the coordinates for the bounding box. Finally, 

start the downloading process. 

 

https://www.researchgate.net/publication/262972685_Where_Do_Tourists_Go_Visualizing_and_Analysing_the_Spatial_Distribution_of_Geotagged_Photography
https://www.researchgate.net/publication/262972685_Where_Do_Tourists_Go_Visualizing_and_Analysing_the_Spatial_Distribution_of_Geotagged_Photography


49 

 

 

After downloading, open the photo_test layer. You will see several points indicating where 

each photo was taken. Make sure to check the attribute table as well! 

Generate a grid, count the points in the grid cells 

Use the Create Grid tool in the Processing Toolbox to define a grid. The current projection is 

WGS84 EPSG:4326, therefore the optimal grid size in this area is 0.01° 

That means 1x1 km cell size: 

1°~> 111.1 km 0.01°~> 1.1 km 

0.1°~> 11.1 km 0.001°~> 111 m   

Choose the Rectangle type for the grid. Set the grid’s extent to inherit from the photo_test 

layer. 

 

The result: 



50 

 

 

First, count the points in a polygon using the "Count Points in Polygon" (Processing) tool. 

This tool writes the number of points into the attribute table. Create a Shapefile layer as the 

output. 

 

In Python, we will write a program that reads this NUMPOINTS field and the geometry 

to generate a KML file. The KML will contain spatial bar diagrams.  

  



51 

 

To do that, we use the OSGEO GDAL/OGR Python modules. Please install them before usage. 

First, import the ogr module, which handles vector data. The Osr module is used for 

projections.  

from osgeo import ogr 

from osgeo import osr 

The KML file will be written as a text file. First, I define the header and styles. 

The bar diagram columns will have the following colors: yellow, red, and brown. In 

hexadecimal notation: colors=['ff00ffff', 'ff0000ff', 'ff336699'].  

colors=['ff00ffff', 'ff0000ff', 'ff336699'] 

f = open("pelda.kml", "w") 

f.write('<?xml version="1.0" encoding="utf-8" ?><kml 

xmlns="http://earth.google.com/kml/2.2"><Document> <name>Pontok a 

polyban</name>') 

for i in range(0, len(colors)): 

    f.write('<Style id="PolyColor'+str(i)+'"> \n ') 

    f.write(' <LineStyle> \n ') 

    f.write('<width>1.5</width> \n ') 

    f.write('</LineStyle> \n ') 

    f.write('<PolyStyle>') 

    f.write('<color>'+colors[i]+'</color> \n ') 

    f.write(' </PolyStyle> \n ') 

    f.write(' </Style> \n ') 

Next, define a driver and open the Shapefile for reading. Retrieve the layer and count the 

number of features in it. 

driver = ogr.GetDriverByName("ESRI Shapefile") 

dataSource = driver.Open('pointsingrid.shp', 0) 

layer = dataSource.GetLayer() 

featureCount = layer.GetFeatureCount() 

Iterate over the features. If NUMPOINTS is null, no column is created. If NUMPOINTS is 

greater than 0:  

 -Start writing the placemark. 

 - Determine the column height. (we use NUMPOINTS *20 , to emphasize the column 

size through vertical exaggeration). Finally, set the appropiate style. 

for feature in layer: 

    geom = feature.GetGeometryRef() 

    numPoints=feature.GetField("NUMPOINTS") 

    if numPoints!=0:                 

         

        f.write('<Placemark>') 

        if numPoints*20<=20: 

            f.write('<styleUrl>#PolyColor0</styleUrl> ') 

        elif numPoints*20>20 and numPoints*20<=100: 

            f.write('<styleUrl>#PolyColor1</styleUrl> ') 

        elif numPoints*20>100: 

            f.write('<styleUrl>#PolyColor2</styleUrl> ') 

        else: 

            pass 



52 

 

The polygon is a rectangle (defined by five coordinates, where the first and last are the same) 

and is extruded to the corresponding height, determined by the NUMPOINTS value. 

The GetPoint() function provides the coordinates (latitude and longitude) of the point. The 

third coordinate represents the height. 

Finally, close the placemark…  

   f.write('<Polygon><extrude>1</extrude><tessellate>1       

</tessellate><altitudeMode>relativeToGround 

</altitudeMode><outerBoundaryIs><LinearRing><coordinates>')         

        geom=feature.GetGeometryRef() 

        ring=geom.GetGeometryRef(0) 

        points=ring.GetPointCount() 

             

        for p in range(0,points): 

            lon= ring.GetPoint(p)[0] 

            lat= ring.GetPoint(p)[1] 

            f.write(str(lon)+','+str(lat)+','+str(numPoints*20)+' 

\n')    

        

f.write('</coordinates></LinearRing></outerBoundaryIs></Polygon></P

lacemark>') 

… and the files. 

f.write('</Document></kml>')    

f.close() 

dataSource.Destroy() 

  



53 

 

Chapter 7. Working with Python OGR module 
 

This chapter introduces the Python GDAL/OGR module. GDAL is a specialized for raster data, 

while OGR is used for vector data. Why is it important to familiarize youself with this OGR 
module? Geoinformatics software do not provide processing algorithms for every possible 

task, and sometimes you encounter unique problems. In such cases, you may need to write 

scripts to solve them. 

The OGR module provides the fundamental tools of geoinformatics software in Python 

environment, which you can extend with your own functions. 

Suggested literature 

GDAL/OGR Cookbook 

https://pcjericks.github.io/py-gdalogr-cookbook/index.html 

GDAL Documentation 

https://gdal.org/ 

Python OGR 

https://gdal.org/api/python/osgeo.ogr.html 

 

The first step to use OGR is learning how to handle the basic geometry types. In the next 

section, we will explore how to read different geometry types including single and multi-

geometries. We will use Shapefiles in our examples. 

The initial step for reading a file are always the same. Define a driver, which facilitates  

reading the file. Then, open the file for reading. Retrieve the layer (every Shapefile contains 

only one layer, but before proceeding, you must store it in a variable). Count number of the 

features in the layer. 

from osgeo import ogr 

driver = ogr.GetDriverByName("ESRI Shapefile") 

dataSource = driver.Open('grid.shp', 0) 

layer = dataSource.GetLayer() 

featureCount = layer.GetFeatureCount() 

 

Reading point features 

Iterate over the features. Get geometry using the GetGeometryRef() function, and store it in 

the variable geom. Use the GetField(’fieldname’) function to get the attribute data from a 

field. GetX() and GetY() functions retrieve the coordinates.  

for feature in layer: 

    geom = feature.GetGeometryRef() 

    field1=feature.GetField("p_id") 

    lon= geom.GetX() 

    lat= geom.GetY() 

 

https://pcjericks.github.io/py-gdalogr-cookbook/index.html
https://gdal.org/
https://gdal.org/api/python/osgeo.ogr.html


54 

 

Reading line (LineString) features 

Iterate over the features. Get geometry using the GetGeometryRef() function, and store it in 

the variable geom. Use the GetField(’fieldname’) function to get the attribute data from a 

field. Count how many vertices the line has. Write another for loop to iterate over the nodes of 

the line. Use GetPoint(node), which returns a list. The first element of the list contains the 

longitude, while the second one contains the latitude. 

for feature in layer: 

    geom = feature.GetGeometryRef() 

    field1=feature.GetField("id") 

    points=geom.GetPointCount() 

    for p in range(0,points): 

        lon= geom.GetPoint(p)[0] 

        lat= geom.GetPoint(p)[1] 

 

Reading polygon features 

Iterate over the features. Get geometry using the GetGeometryRef() function, and store it in 

the variable geom. Use the GetField(’fieldname’) function to get the attribute data from a 

field. Count the rings of the polygon using GetGeometryCount(). (The first ring is always the 

outer ring, and if the polygon has holes, these are the inner rings). Read the nodes of each ring 

using GetPoint(node) which returna a list. The first element of the list contains the longitude, 

while the second one contains the latitude. 

for feature in layer: 

    geom = feature.GetGeometryRef() 

    field1=feature.GetField("id") 

    for i in range(0,geom.GetGeometryCount()): 

        ring=geom.GetGeometryRef(i) 

        points=ring.GetPointCount() 

        for p in range(0,points): 

            lon= ring.GetPoint(p)[0] 

            lat= ring.GetPoint(p)[1] 

 

Reading MultiPoints features 

Iterate over the features. Get geometry using the GetGeometryRef() function, and store it in 

the variable geom. Use the GetField(’fieldname’) function to get the attribute data from a 

field. Count the parts of the geometry, and iterate over them. Using the GetX() and GetY(), 

print the coordinates. 

for feature in layer: 

    geom = feature.GetGeometryRef() 

    field1=feature.GetField("id") 

    numgeom=geom.GetGeometryCount() 

    print (numgeom) 

    for i in range(0,numgeom): 

        lon=geom.GetGeometryRef(i).GetX() 

        lat=geom.GetGeometryRef(i).GetY() 

 

 



55 

 

Readin MultiLineString features  

Iterate over the features. Get geometry using the GetGeometryRef() function, and store it in 

the variable geom. Use the GetField(’fieldname’) function to get the attribute data from a 

field. Count the parts of the geometry and iterate over them. Count the number of nodes in the 

line part. Read the part’s geometry and print the latitude and longitude. 

for feature in layer: 

    geom = feature.GetGeometryRef() 

    field1=feature.GetField("id") 

    numgeom=geom.GetGeometryCount() 

    for i in range(0,numgeom): 

        line=geom.GetGeometryRef(i) 

        points=line.GetPointCount() 

        for p in range(0,points): 

            lon= line.GetPoint(p)[0] 

            lat= line.GetPoint(p)[1] 

 

Reading the MultiPolygon features 

Iterate over the features. Get geometry using the GetGeometryRef() function, and store it in 

the variable geom. Use the GetField(’fieldname’) function to get the attribute data from a 

field. Count the parts of the geometry using GetGeometryCount(), and iterate over them. 

Count the number of rings, and iterate over them. Create one more for loop to iterate over the 

ring’s geometry. Print the coordinates of each nodes. 

In cases where the file contains Polygons and MultiPolygons, we need to add a condition to 

check the number of geometries. If it consists of one part, it is a Polygon, requiring fewer 

loops. If it consists of more than one part, it is a MultiPolygon and we use the method 

mentioned above. 

for feature in layer: 

    geom = feature.GetGeometryRef() 

    field1=feature.GetField("id") 

    numgeom=geom.GetGeometryCount() 

    if numgeom>1: 

        for ng in range(0,numgeom): 

            poly=geom.GetGeometryRef(ng) 

            for i in range(0,poly.GetGeometryCount()): 

                ring=poly.GetGeometryRef(i) 

                points=ring.GetPointCount() 

                for p in range(0,points): 

                    lon= ring.GetPoint(p)[0] 

                    lat= ring.GetPoint(p)[1] 

    else: 

        for i in range(0,geom.GetGeometryCount()): 

            ring=geom.GetGeometryRef(i) 

            points=ring.GetPointCount() 

     

            for p in range(0,points): 

                lon= ring.GetPoint(p)[0] 

                lat= ring.GetPoint(p)[1] 

  



56 

 

Writing Shapefiles 

This chapter demonstrates ho to write point, line and area objects into a file. 

Writing points 

Read the sample points.shp file and filter the features based on the date field (p_date). Write 

the result in a new Shapefile. 

This code is partially similar to the codes in chapter Reading points, therefore I won’t explain 

it detail again. The srs variable defines the coordinate reference system. At the beginning of 

the program, define the output file. The file driver is a Shapefile driver. Specify the type of 

the file such as ogr.wkbPoint, ogr.wkbLineString or ogr.wkbPolygon. Create a new field in 

the file and define the data type in the attribute table (e. g. OFTInteger, OFTString, 

OFTDateTime). More information about the data types can be found here: 

https://gdal.org/java/org/gdal/ogr/ogrConstants.html. 

from osgeo import ogr 

from osgeo import osr 

driver = ogr.GetDriverByName("ESRI Shapefile") 

dataSource = driver.Open('points.shp', 0) 

layer = dataSource.GetLayer() 

featureCount = layer.GetFeatureCount() 

 

srs =  osr.SpatialReference() 

srs.ImportFromEPSG(4326) 

ds = driver.CreateDataSource("selected_points.shp") 

layeruj = ds.CreateLayer("pontok", srs, ogr.wkbPoint) 

dateField = ogr.FieldDefn("datum", ogr.OFTDateTime) 

layeruj.CreateField(dateField) 

featureDefn = layeruj.GetLayerDefn() 

 

 

Filter the data using the following expression (p_date>’2010-01-01’). Create a new feature 

and define its type. Assign coordinates from the original feature. Set the geometry and 

attributes of the feature, then append it to the layer. Finally, close the file and complete the 

writing process. 

for feature in layer: 

    geom = feature.GetGeometryRef() 

    field1=feature.GetField("p_date") 

    if field1>'2010-01-01': 

        lon= geom.GetX() 

        lat= geom.GetY() 

        feature = ogr.Feature(featureDefn) 

        pont = ogr.Geometry(ogr.wkbPoint) 

        pont.AddPoint(lon, lat) 

        feature.SetGeometry(pont) 

        feature.SetField("datum", field1) 

        layeruj.CreateFeature(feature) 

 

ds.Destroy() 

 

  

https://gdal.org/java/org/gdal/ogr/ogrConstants.html


57 

 

Line Simplification 

Read the lines.shp file and call the Simplify(0.01) funtion on the original features. Simpifying 

a line means performing automatic shape generalization using the  Douglas–Peucker 

algorithm. The parameter is similar to the unit of the layer’s CRS; here, we use degrees. The 

file reading process is similar to that in the Reading lines Chapter.  

from osgeo import ogr 

from osgeo import osr 

driver = ogr.GetDriverByName("ESRI Shapefile") 

dataSource = driver.Open('lines.shp', 0) 

layer = dataSource.GetLayer() 

featureCount = layer.GetFeatureCount() 

 

 

srs =  osr.SpatialReference() 

srs.ImportFromEPSG(4326) 

ds = driver.CreateDataSource("simplified_line.shp") 

layeruj = ds.CreateLayer("line", srs, ogr.wkbLineString) 

idField = ogr.FieldDefn("id", ogr.OFTInteger) 

layeruj.CreateField(idField) 

featureDefn = layeruj.GetLayerDefn() 

 

In this case, use the simplified geometry when writing to the new file (it is unnecessary to 

read the line node by node). Set the geometry and the attribute data, append the new feature to 

the layer and finalize the writing process with Destroy(). 

for feature in layer: 

    geom = feature.GetGeometryRef() 

    newgeom=geom.Simplify(0.01) 

    field1=feature.GetField("id") 

    feature = ogr.Feature(featureDefn) 

    feature.SetGeometry(newgeom) 

    feature.SetField("id", field1) 

    layeruj.CreateFeature(feature) 

 

ds.Destroy() 

Writing polygons 

Generate the bounding boxes of each line in lines.shp and write these polygons into a new 

Shapefile. 

from osgeo import ogr 

from osgeo import osr 

driver = ogr.GetDriverByName("ESRI Shapefile") 

dataSource = driver.Open('lines.shp', 0) 

layer = dataSource.GetLayer() 

featureCount = layer.GetFeatureCount() 

 

 

srs =  osr.SpatialReference() 

srs.ImportFromEPSG(4326) 

ds = driver.CreateDataSource("bounding_boxes.shp") 

layeruj = ds.CreateLayer("line", srs, ogr.wkbPolygon) 

idField = ogr.FieldDefn("id", ogr.OFTInteger) 

layeruj.CreateField(idField) 

featureDefn = layeruj.GetLayerDefn() 

 

https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm


58 

 

Iterate over the features and call the GetEnvelope() function, which returns the four bounding 

coordinates: [West, East, South, North]. First, create a LinearRing and add these coordinates 

to the ring considering the correct order. The first and the last coordinates of the ring should 

be the same. Next, create a polygon and add this ring to the polygon. Create a new feature 

from the polygon. and write into the new file. 

 

for feature in layer: 

    geom = feature.GetGeometryRef() 

    env=geom.GetEnvelope() 

    ring = ogr.Geometry(ogr.wkbLinearRing) 

    ring.AddPoint(env[0],env[3]) 

    ring.AddPoint(env[0],env[2]) 

    ring.AddPoint(env[1],env[2]) 

    ring.AddPoint(env[1],env[3]) 

    ring.AddPoint(env[0],env[3]) 

    poly = ogr.Geometry(ogr.wkbPolygon) 

    poly.AddGeometry(ring) 

     

    field1=feature.GetField("id") 

    feature = ogr.Feature(featureDefn) 

    feature.SetGeometry(poly) 

    feature.SetField("id", field1) 

    layeruj.CreateFeature(feature) 

 

ds.Destroy() 

Useful links in this topic: 

https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides1.pdf 

https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides2.pdf 

https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides3.pdf 

https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides4.pdf 

https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides5.pdf 

https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides6.pdf 

https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides7.pdf 

  

https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides1.pdf
https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides2.pdf
https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides3.pdf
https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides4.pdf
https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides5.pdf
https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides6.pdf
https://www.gis.usu.edu/~chrisg/python/2009/lectures/ospy_slides7.pdf


59 

 

Chapter 8. The structure of KML files 
 

For more examples and explanations, please visit the official documentation: 

https://developers.google.com/kml/documentation 

A KML (Keyhole Markup Language) file is an XML-based format used to store geographic 

data and display it in applications like Google Earth, Google Maps, and GIS software. The 

KML file structured as follows: 

<property> value </property> 

All elements have an opening and a closing tag, with the value placed between them. 

The header of the file depends on whether we want to use animation or not. However, it is 

generally recommended to use the longer header, which allows for animation and gx 

elements. 

<?xml version="1.0" encoding="UTF-8"?> 

<kml xmlns="http://www.opengis.net/kml/2.2" 

xmlns:gx="http://www.google.com/kml/ext/2.2"> 

The KML file always contains a header. After the headers, there is a Style definition followed 

by the geometry. Each geometry is a Placemark element. 

In the style definition, always add an id for reference: 

<Style id="poligongroup1"> 

<PolyStyle> 

        <color>64B40014</color> 

        <fill>1</fill> 

        <outline>0</outline> 

</PolyStyle> 

</Style> 

To apply this style to a Placemark, use styleUrl withn the element:  

<styleUrl>#poligongroup1</styleUrl> 

KML can contain the following geometries (types of a Placemark): Point, LineString, 

Polygon, MultiPoint, MultiLineString, MultiPolygon, GeometryCollection. 

Let’s check an example, which contains a polygon element with style definition, name and 

description. A poupup window will open if the Placemark (feature) has a description. 

<Placemark> 

 <name>Give me a name!</name> 

 <description>This is a polygon with a style. </description> 

<styleUrl>#PolyColor0</styleUrl> <Polygon> 

<extrude>1</extrude> 

<tessellate>1</tessellate> 

<altitudeMode>relativeToGround</altitudeMode> 

<outerBoundaryIs> 

<LinearRing> 

<coordinates>17.00414,47.559819,20.0 

17.01414,47.559819,20.0  

17.014140,47.549819,20.0  

17.004140,47.549819,20.0  

https://developers.google.com/kml/documentation


60 

 

17.004140,47.559819,20.0  

</coordinates> 

</LinearRing>< 

/outerBoundaryIs> 

</Polygon> 

</Placemark> 

Let’s get familiar with the 3D elements. If the Z coordinate is not 0, the feature can be a 3D 

element. If we apply the altitudeMode=relativeToGround, the elevation is interpreted above 

the ground. Extrude=1 means that the feature is connected to the ground. Extrude=0 means 

the element is floating above the ground. If the altitudeMode is clampToGround the features 

can not be visualized as 3D elements, only as 2D elements. Other possible values of 

altitudeMode are: absolute which means the absolute height above the ellipsoid surface, and 

clampToSeaFloor or relativeToSeaFloor which are very similar to clampToGround and 

relativeToGround. 

When tessellate is set to 1 (true), the geometry follows the terrain and adapts to the Earth's 

curvature. When tessellate is set to 0 (false), the geometry is drawn as a straight line in 3D 

space, which may appear to float above the ground. 

There are two types of animations: TimeStamp and TimeSpan. 

TimeSpan animation works with beginning and closing dates. These defines that the features 

appear in the scene. 

<TimeSpan> 

 <begin>1986</begin> 

<end>2023</end> 

</TimeSpan> 

The gx:track animation is used to visualize moving object along a path. It requires a 

timestamps and coordinate pairs. A good example is a hiker moving along a trail.  

The timestamp looks like this: year-month-dayThour:minute:secondZ 

The gx:coord format differs from the regular coordinates: it has no comma between longitude, 

latitude, and elevation.  

<Placemark> 

<gx:Track> 

 <when>2017-01-02T17:00:22Z</when> 

 <when>2017-01-02T17:03:22Z</when> 

… 

<gx:coord>19.03814980042824 47.46165145965755 0</gx:coord> 

 <gx:coord>19.03837381154784 47.46229927027417 0</gx:coord>

 … 

</gx:Track> 

<name>Take a virtual walk together!</name> 

<description> Lets explore the Buda Castle quarter!  

</description> 

 <Style> 

  <IconStyle> 

     <Icon><href>traveller.png</href></Icon> 

  </IconStyle> 

 </Style> 

</Placemark> 

  



61 

 

Chapter 9. Installing Python modules from WHEEL files 
 

Installing Python modules depends on the software environment. The easiest way is through 

PyCharm, where you can install modules directly within the program. 

However, sometimes certain modules cannot be installled this way. In such cases, here’s how 

you can manually install them. 

Installing Python modules manually 

If you have Windows operation system, please open Windows Command Line Prompt 

(cmd.exe). 

Download the WHEEL file from Python Package Index website (https://pypi.org/ 

) or from this unoffical collection (https://www.lfd.uci.edu/~gohlke/pythonlibs/). 

What is a WHEEL file? 

A Wheel file (.whl) is a binary package format for Python distributions. It is a faster and more 

efficient way to install Python packages compared to the traditional source distribution 

(.tar.gz or .zip). 

How to install geoPy from WHEEL file? 

1. Download the .whl file and save it in the C:/Users/YOURUSERNAME folder. 

2. Navigate tot he folder in the Command Prompt usidng cd command.  

C:\Users\ungvarizs> 

3. Install the package using PIP. 

py -m pip install C:\Users\ungvarizs\Downloads\geopy-2.2.0-py3-

none-any.whl 

If the new Python module has dependencies, PIP will automatically install them. 

Modules covered in this course 

GDAL: https://pypi.org/project/GDAL/#files 

pandas: https://pypi.org/project/pandas/#files 

openpyxl: https://pypi.org/project/openpyxl/ 

geoPy: https://pypi.org/project/geopy/ 

 

https://pypi.org/
https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://pypi.org/project/GDAL/#files
https://pypi.org/project/pandas/#files
https://pypi.org/project/openpyxl/
https://pypi.org/project/geopy/

