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11. Lagrange interpolation and its error 

 

Interpolation is a simple way of approximating functions by demanding that the interpolant 

function assumes the values of the approximated function at specified places. Collect the 

support points of the interpolation into the set 0 1{ , , , }
n n

x x xΩ = … , where 
i

x -s are not 

necessarily ordered. We shall consider interpolation in the interval [ , ]a b . The relation 

[ , ] [min , max ]
i i

i i
a b x x=  holds in many cases, but all support points may also be inner points of 

[ , ]a b . 

11.1. Interpolating function with linear parameters 

Let n  be a natural number, n ∈ℕ  and assume the values of the function ( )f x  are known at 

the points ,
k

x ∈ℝ  0,1,...,k n= . In the case of a linear interpolation problem, we choose the 

interpolant as 

 
0

( ) ( )
n

i i

i

x a xϕ
=

Φ =∑ , (11.1) 

where ( )
i

xϕ -s are base functions, and the unknown coefficients 
i

a  are determined from the 

conditions 

 ( ) ( ),   0,..., .
i i

f x x i n= Φ =  (11.2) 

The functions ( )
i

xϕ  in (11.1) may be powers of x : ( ) i

i
x xϕ = , which will lead to a 

polynomial, but it is also possible to choose other functions: ( ) sin( ),
i

x i xϕ ω=  

( ) cos( ),   ( ) exp( ).
i i

x i x x i xϕ ω ϕ ω= =  In the case of 2n =  the interpolation problem (11.2) 

leads to the linear system of equations 

 

0 0 1 0 2 0 0 0

0 1 1 1 2 1 1 1

0 2 1 2 2 2 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

( ) ( ) ( ) ( )

x x x a f x

x x x a f x

x x x a f x

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

    
    

=    
    
    

 (11.3) 

The obtained system can be solved uniquely if the coefficient matrix has an inverse. 

11.2. Polynomial interpolation 

This time the choice ( ) i

i
x xϕ =  leads to the transpose of a Vandermonde matrix in (11.2) 

 

0 0

2

1 1

1

1
( )

1

n

T

n

n

n n

x x

x x
V

x x

 
 
 Ω =
 
  
 

…

…

⋮ ⋮ ⋱ ⋮

…

, (11.4) 

which is nonsingular if the support points
i

x  are different. It follows that the polynomial 

interpolation problem is solvable uniquely if no two support abscissas are equal. 
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11.3. Interpolation with Lagrange base polynomials 

Associate the following polynomial with the support abscissas in 
n

Ω : 

 
0

( ) ( ).
n

n j

j

x x xω
=

= −∏  (11.5) 

Observe it is of degree 1n +  and it vanishes at the support points. Further, introduce the i th 

Lagrange base polynomial of order n , which vanishes at all support points with the exception 

of 
i

x , where it takes 1: 

 
0,

0,

( ) ( )
( )

( ) ( )
( ) ( )

n
jn n

i n
j j ii n i i j

i i j

j j i

x xx x
l x

x x x x x
x x x x

ω ω

ω = ≠

= ≠

−
= = =

′− −
− −

∏
∏

. (11.6) 

Here division by ( )
i

x x−  was done for the sake of cancelling it from the numerator and the 

product in the denominator ensures ( ) 1
i i

l x = . Now choosing ( ) ( )
i i

x l xϕ =  in (11.1) leads to 

the identity as the coefficient matrix in  the linear system because of ( )
i j ij

l x δ= , where 
ij

δ  

denotes the Kronecker delta. Now we have the simple result 

 ( ),
i i

a f x=  (11.7) 

and the  Lagrange interpolating polynomial is: 

 
0

( ) ( ) ( ).
n

n i i

i

L x f x l x
=

=∑  (11.8) 

By using the properties of the base polynomials, one can easily check the relation 

( ) ( ).
n i i

L x f x=  

11.3.1 Theorem on the interpolation error 

Let function ( )f x  be at least ( 1n + )-times differentiable in [ , ]a b : 1( ) [ , ]nf x C a b+∈ , where 

the support abscissas are in [ , ]a b . Then for [ , ]x a b∀ ∈  there exists  [ , ]
x

a bξ ∈ , such that 

 
( 1) ( )

( ) ( ) ( )
( 1)!

n

x
n n

f
f x L x x

n

ξ
ω

+

− =
+

 (11.9) 

holds, moreover 

 1( ) ( ) ( ) ,
( 1)!

n
n n

M
f x L x x

n
ω+− ≤

+
 (11.10) 

where ( ) ( )

[ , ]
max ( ) .k k

k
x a b

M f f x
∞ ∈

= =  

Proof. If 
n

x ∈Ω , then both sides of (11.9) are zero and equality holds. Assume in the 

following that 
n

x ∉Ω  and introduce function 

 
( )

( ) ( ) ( ) ( ( ) ( )),   [ , ].
( )

n
x n n

n

z
g z f z L z f x L x z a b

x

ω

ω
= − − − ∈  (11.11) 
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We have 1( ) [ , ]n

x
g z C a b

+∈ ,  ( ) 0,  
x n

g z z= ∈Ω , and there is an extra zero at z x= such that 

there are altogether 2n +  zero points. Using Rolle’s theorem between zero points, we find that 

( ) /
x

dg z dz  has 1n +  zeros, 2 2( ) /
x

d g z dz  has n  zeros and after differentiating consecutively 

( 1)n + -times, we shall have only one zero of  ( 1) ( )n

x
g z

+  at some place [ , ]
x

a bξ ∈ :  

 ( 1) ( 1) ( 1)!
( ) 0 ( ) 0 ( ( ) ( ))

( )

n n

x x x n

n

n
g f f x L x

x
ξ ξ

ω
+ + +

= = − − −  

that can be rearranged into (11.9).  For the second statement, take the absolute value of both 

sides and find an upper bound for the ( 1)n + th derivative in the interval [ , ]a b .   ■ 

Remark. Rolle’s theorem states that if ( ) ( ) 0f a f b= =  holds and f  is differentiable in [ , ]a b   

where there exist a point in [ , ]a b , where f ′  is zero. This theorem is a simple consequence of 

the Lagrange mean-value theorem, and it is also true if ( ) ( )f a f b=  holds. 

By finding the minimum of the absolute value of the ( 1)n + th derivative, a lower bound can 

also be found as in (1.10). 

11.4. Example 

Assume the values 
i

y  for the points 0 1{ , , , }
n n

x x xΩ = …  come from an n th degree 

polynomial ( )
n

p x .  Show that ( )
n

L x to these support points is the same polynomial: 

( ) ( )
n n

L x p x= . 

Solution. Consider the error of interpolation: 

 
( 1) ( )

( ) ( ) ( ) 0
( 1)!

n

n x
n n n

p
p x L x x

n

ξ
ω

+

− = =
+

, 

where the ( 1)n + -st derivative of an n th order polynomial is identically zero. 

11.5. The barycentric Lagrange interpolation 

Despite the simplicity and elegance of  Lagrange interpolation, it is a common belief that 

certain shortcomings make it a bad choice  for practical computations. Among the 

shortcomings sometimes claimed are these, Berrut, Trefethen (2004):  

1. Each evaluation of ( )
n

L x  requires 2( )O n  additions and multiplications. 

2. Adding a new data pair 1 1( , )
n n

x f+ +  requires a new computation from scratch. 

3. The computation is numerically unstable. 

From here it is commonly concluded that the Lagrange interpolation form of ( )
n

L x  is mainly 

a theoretical tool for proving theorems and for computations one should instead use Newton’s 

formula that will be given later in this text. In fact, it needs ( )O n  flops for each evaluation of 

( )
n

L x  once some numbers, which are independent of the evaluation point x , have been 

computed. 
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11.5.1 The first improved Lagrange formula 

We shall see that the Lagrange formula (11.8) can be rewritten in such a way that it too can be 

evaluated and updated in ( )O n  operations, just like its Newton counterpart. Introduce 

notation 

 
0

( ) ( ) ( ).
n

n j

j

x x x xω
=

= = −∏ℓ   

If we define the barycentric weights by 

 
( )
1 1

,      0,1, ,
( )

j

jj kk j

w j n
xx x

≠

= = =
′−∏

…
ℓ

  (11.12) 

then we can write (11.8) in the form: 

 
0

( ) ( )
( )

n
j

n j

j j

w
L x x f

x x=

=
−

∑ℓ . (11.13) 

Now Lagrange interpolation is a fomula requiring 2( )O n  operations for calculating some 

quantities independent of x , the numbers 
j

w , followed by ( )O n  flops for evaluating ( )
n

L x  

once these numbers are known. Rutishauser (1976) called (11.13) the “first form of  the 

barycentric interpolation formula”. A remarkable feature of this form is that for compution of 

the weights 
j

w , no function data are required. 

Now incorporating a new node 1n
x +  entails two calculations: 

• Divide each ,   0, , ,
j

w j n= …  by 1j n
x x +−  for a cost of 2 2n +  flops. 

• Compute 1n
w +   with formula (11.12), for another 1n +  flops. 

11.5.2 The barycentric formula 

Equation (11.13) can be modified to an even more elegant formula, the one that is often used 

in practice. Suppose we interpolate, besides the data 
j

f , the constant function 1, whose 

interpolant is of course itself, see also Problem 11.6. Inserting into (11.13), we get 

 
0 0

1 ( ) ( ) .
( )

n n
j

j

j j j

w
x x

x x= =

= =
−

∑ ∑ℓ ℓ   (11.14) 

Dividing  (11.13) by this expression and cancelling the common factor ( )xℓ , we obtain the 

barycentric formula for ( )
n

L x : 

 
0

0

( )
( ) ,

( )

n
j

j

j j

n n
j

j j

w
f

x x
L x

w

x x

=

=

−
=

−

∑

∑
  (11.15) 

where 
j

w  is still defined by (11.12). Rutishauser (1976) called (11.15) the “second (true) 

form of the barycentric formula.”. 
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For the numerical stability of  barycentric formulas, see Berrut, Trefethen (2004) and Higham 

(2004). 

11.6. Problems 

11.1. Three support points  (-1,-1), (1,1), (2,3) belong to a function. Obtain the Lagrange base 

polynomials and the interpolating  polynomial 2 ( )L x  that goes through these points. 

11.2. The function 2( ) ( 1)f x x −= +  is interpolated in [0,1] on the support  {0, 0.2,Ω =  

0.5, 0.8, 1}. Estimate the error 4( ) ( )f x L x−  at 0.4x = ! 

11.3. The function 2
( ) cosf x x=  is interpolated in the interval [0,2]. The support  are  

(0,0.4,0.7,1.3, 2)Ω = . Using the error formula, estimate the error of 4( ) ( )f x L x−  at 0.5x = ! 

114. Show that 
0

( )
n

k k

j j

j

x l x x
=

=∑ , if k n≤ . 

11.5. Give an explanation for 1 1

0

( ) ( )
n

n n

j j n

j

x x l x xω+ +

=

− =∑ . 

11.6. Introduce the notation ,0
( )

n k

i k ik
l x c x

=
=∑ . Show that matrix ,k i

C c =    is  the inverse of 

the Vandermonde matrix ( )T

n
V Ω  belonging to the same support abscissas. 

11.7. The partial fraction expansion 
0

1/ ( ) / ( )
n

n j jj
x b x xω

=
= −∑  holds if 

j
x -s are different. 

Show that the expansion coefficients 
j

b -s are in the last row of C  of the previous problem: 

,j n j
b c= . 

11.8. Let ( ) / ( )p x q x  be a proper rational function and let ( )q x  have the simple roots 

0 1, , ,
n

x x x… . Explain that  

 
0

( )( )

( ) ( ) ( )

n j

j
j j

p xp x

q x x x q x=
=

′−
∑ .   

 In other words, partial fraction expansion can be done by Lagrange interpolation. 

11.9. Explain that having done the partial fraction expansion for 1/ ( ) 1/ ( )
n

x xω = ℓ , we have 

enough data to apply the barycentric interpolation formula. 
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12. Some properties of polynomial interpolation 

 

One can pose the natural question: By increasing the degree of the polynomial, will the 

quality, i.e.  the error of the approximation be better? Will the polynomial converge to the 

function this time? The answer is not always positive, but there are cases when the answer is 

‘yes’. 

12.1. Theorem on uniform convergence 

Assume [ , ]f C a b∞∈  and let ( ) ,  0,1, , ;  0,1, 2,n

k
x k n n= =… …be a series of support point sets 

in [ , ]a b  . Denote by ( )
n

L x  the Lagrange interpolating polynomial belonging to the n th set  

( ) ( ) ( )

0 1, , ,n n n

n
x x x… , 0,1,2,n = …  If 0M∃ >  such that ( ) ( )

[ , ]
max ( )  n n n

n
x a b

M f f x M n
∞ ∈

= = ≤ ∀ , 

then the sequence of ( )
n

L x  polynomials converges uniformly to ( )f x . 

Proof. Apply the maximum norm for the interval [ , ]a b  and find an upper bound for nω
∞

: 

 
1 1 1

1 ( ) [ ( )]
( ) ( ) .

( 1)! ( 1)! ( 1)!

n n n

n
n n n

M M b a M b a
f x L x f L

n n n
ω

+ + +
+

∞ ∞

− −
− ≤ − ≤ ≤ =

+ + +
 

The right hand side here tends to zero with n → ∞  because the factorial in the denominator 

tends to infinity faster than the power in the numerator, hence uniform convergence follows, 

 0,nf L
∞

− →  

that is the maximal absolute difference of the two functions tends to zero.      ■ 

12.2. Lemma on upper bound for ( )n xω  

Let the support points be ordered: 1k k
x x− <  and introduce the notation  1

1,2,...,
max

k k
k n

h x x −
=

= − . 

Then we have the estimate for ( )n xω : 

 1!
( ) ,   [ , ].

4

n

n

n
x h x a bω +≤ ∈  (12.1) 

Proof. We investigate each interval. First let 0 1[ , ]x x x∈ . Substituting the value of x  at the 

maximum point, we get the estimate: 2

0 1( )( ) / 4x x x x h− − ≤ . The other multipliers can be 

bounded by 2 ,3 ,h h… such that 

 
1

2

0 1

!
( ) ( / 4)(2 )(3 ) ( ) ,   [ , ].

4

n

n

h n
x h h h nh x x xω

+

≤ = ∈…  

Next assume 1 2[ , ]x x x∈ . We get similarly: 

 
1

2 !
( ) (2 )( / 4)(2 ) (( 1) ) .

4

n

n

h n
x h h h n hω

+

≤ − <…  
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We get smaller bounds for the other inner intervals as compared to that of the first one. 

Finally, the last interval yields the same bound as the first one such that (12.1) holds for all  

[ , ]x a b∈ .       ■ 

Remark. The estimate here suggests that if x is in the middle of the interval [ , ]a b , the error is 

less than it is at closer locations to the ends of [ , ]a b . This proves to be true if the support 

abscissas are located uniformly. One may guess that the approximation will be better if the 

support points are more densely located at the ends of the interval.  

With the help of 12.2 Lemma, it is possible to give an overall error bound. 

12.3. Another theorem on error bound 

Let the support points be ordered: 1k k
x x− < , where 1

1,2,...,
max

k k
k n

h x x −
=

= − . Then one has the 

bound 

 11( ) ( ) ,   [ , ].
4( 1)

nn
n

M
f x L x h x a b

n

++− ≤ ∈
+

 (12.2) 

Proof. Substituting (12.1) into (11.10) of the error theorem gives the result.   

     ■ 

12.4. Skilful choice of support abscissas, Chebyshev polynomials 

The Chebyshev polynomial of n th  order is given by 

 ( ) cos( arc cos ),   [ 1,1],   0,1,
n

T x n x x n= ∈ − = …  (12.3) 

We show it is a polynomial. Introduce notation arccos xϑ = , then 

 
1( ) cos(( 1) ) cos( )

cos( )cos sin( )sin( ) ( ) sin( )sin .

n

n

T x n n

n n xT x n

ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ
± = ± = ± =

= =∓ ∓
 

Applying this relation to 1 1( ) ( )
n n

T x T x+ −+  yields the formula: 

 1 1( ) ( ) 2 ( ),
n n n

T x T x xT x+ −+ =  (12.4) 

which leads to the recursion of Chebyshev polynomials: 

 0 1 1 1( ) 1,    ( ) ,   ( ) 2 ( ) ( ),   [ 1,1].
n n n

T x T x x T x xT x T x x+ −= = = − ∈ −  (12.5) 

Checking some of the first polynomials, we find that 1( ) 2 ,   0n n

n
T x x n

−= + >…  so that we 

can introduce monic Chebyshev polynomials by the relation  

 1( ) 2 ( ),   0 .n

n n
t x T x n

−= <  

Now we have the following 

12.5. Theorem on the best zero approximating monic polynomial in ∞ -norm 

Denote by 1[ 1,1]
n

−P  the set of monic polynomials of n th order in [ 1,1]− , then  

 1,   [ 1,1]n nt p p
∞ ∞

≤ ∈ −P . 
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In words: it is the monic Chebyshev polynomial that has the smallest maximal absolute value 

in [ 1,1]− , that is, it gives the best approximating polyniomial in ∞ -norm to the zero function 

in [ 1,1]− . 

Proof. The polynomials ( )
n

T x  are oscillating between 1−  and 1 due to the nature of cosine 

functions. The extrema are at 
k

z -s: 

 cos( arccos ) ( 1) ,   from where   cos ,   0,1,k

k k

k
n z z k n

n

π
= − = = … . (12.6) 

There are altogether 1n +  different 
k

z -s. The monic polynomial 
n

t  has extrema at the same 

places. Now assume indirectly that 1[ 1,1]
n

p∃ ∈ −P , for which np t
∞ ∞

< . The difference 

polynomial 
n

r t p= −  is of order at most 1n − . Observe that ( )
k

r z  is positive if ( )
n k

t z  is 

positive, otherwise ( )p x  is not better than 
n

t . Similarly, ( )
k

r z  is negative if ( )
n k

t z  is 

negative such that ( )
k

r z  should change sign at least n -times between the 1n +  extremal 

points. However, this is contradiction, because ( )r x  should be then at least of order n .       ■ 

The roots of  Chebyshev polynomials.  cos( arccos ) 0 arccos
2

k k
n x n x k

π
π= → = + →  

 
(2 1)

cos ,   0,1, , 1
2

k

k
x k n

n

π+
= = −…  different locations.  (12.7) 

Corollary. Choose the roots of 1n
t +  for support points of the interpolation in [ 1,1]− . Then 

1 ( )
n n

t xω+ =  holds and we get the smallest uniform error bound: 

 1 1 1
1

1
( ) ( ) .

( 1)! ( 1)! ( 1)! 2

n n n
n n n n

M M M
f x L x t

n n n
ω+ + +

+∞ ∞
− ≤ = =

+ + +
 (12.8) 

If [ , ]x a b∈ , then let [ 1,1]t ∈ −  and introduce the linear transform 

 
2 2

a b b a
x t

+ −
= +  (12.9) 

that maps [ 1,1]−  onto [ , ]a b . This relates the Chebyshev abscissas 
i

t  and 
i

x  and one can write 

i
x x−  in terms of 

i
t t−  as ( )( ) / 2

i i
x x t t b a− = − −  such that 1

1( ) ( ),  ( ) / 2n

n n
x c t t c b aω +

+= = − . 

Now it is straightforward to give an upper bound as in (12.8)  for Chebyshev abscissas in 

[ , ]a b : 

 
1 1

1 1 1
1( ) ( ) .

( 1)! ( 1)! ( 1)! 2

n n

n n n
n n n n

M M c M c
f x L x t

n n n
ω

+ +
+ + +

+∞ ∞
− ≤ = =

+ + +
 (12.10) 

 

12.6. Problems 

12.1. Decide if the interpolating polynomials tend uniformly to the functions below, when the 

number of support points in [ , ]a b  tends to infinity, n → ∞ : 
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 1

1

)  ( ) sin ,   [0, ]            )  ( ) cos ,   [0, ]

)  ( ) ,   [0,1]                 )  ( ) ( 2) ,   [0,1]

)  ( ) ( 2) ,   [ 1,1]

x

a f x x x b f x x x

c f x e x d f x x x

e f x x x

π π
−

−

= ∈ = ∈

= ∈ = + ∈

= + ∈ −

 

12.2. What happens in case e) of the previous example if we choose Chebyshev abscissas, i.e. 

the roots of 1n
t + ? 

12.3. The sin x  function is tabulated in the interval [0, / 2]π . How dense uniform tabulation 

is needed in order to reach an error bound 410−  for the function when using linear 

interpolation? Try to estimate the subinterval length h . 

12.4. What is the result in the previous problem, if the interpolating polynomial is of second 

order? Determine the maximal absolute value of 2 ( )xω ! 

12.5. Show that the estimate in (12.1) can be modified to 1 1( ) !( ( )) / (4 )n n

n nx n K b a nω + +≤ − , 

where h  is defined in Lemma 12.2 and 1 / ( )
n

K hn b a≤ = − . When will be 1
n

K = ? 

12.6. According to the Stirling formula 
2

1 1
! 2 1 .

12 288

n
n

n n
e n n

π
   

≈ + + −   
   

…  Show with 

the help of the previous problem that using equidistant support abscissas leads to 

lim ( ) 0
n

n
xω

→∞
→  if b a e− ≤ . 

12.7. Define the scalar product of two polynomials by 
1

1
( , ) ( ) ( ) ( )

i j i j
T T x T x T x dxα

−
= ∫ , where 

2 1/2( ) (1 )x xα −= −  is the weight function. Show that different Chebyshev polynomials are 

orthogonal to each other with respect to this scalar product. 
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13. Iterated interpolations (Neville, Aitken, Newton) 

 

13.1. Neville and Aitken interpolations 

An inconvenience may be with Lagrange interpolation is that introducing a newer abscissa 

results in a need to recalculate the base polynomials. There are also cases when it is not the 

interpolation polynomial but its value at some places is requested. For such cases iterated 

interpolation may be more favourable. 

Let the support points be 0{( , ( )}n

i i i i
x f f x == , and denote by 0,1, , ( )

k
p x…  the polynomial of k th 

order, which interpolates for abscissas with the same index 

 0,1, , ( ) ( ),   0,1, ,
k j j

p x f x j k= =… … . (13.1) 

It will be shown that such polynomials can be build up recursively. Consider the following 

determinant: 

 
0 0,1, ,

0,1, , , 1

1 1, , 11 0

( )1
( )

( )

k

k k

k kk

x x p x
p x

x x p xx x
+

+ ++

−
=

−−

…

…

…

. (13.2) 

It is straightforward to check that the new polynomial interpolates well at points 0x x=  and 

1k
x x += . Otherwise, for the intermediate points 0 1j k< < + , one has 

0 0,1, , 0 1

0,1, , , 1

1 1, , 11 0 1 0

( ) ( )1
( ) ( ) ( ).

( )

j k j j j k

k k j j j

j k k jk k

x x p x x x x x
p x f x f x

x x p xx x x x

+

+
+ ++ +

− − − −
= = =

−− −

…

…
…

 

Due to this recursion the Neville interpolation calculates the following table of numbers: 

 

 0k =  1 2  3  

0x x−  0 0 ( )f p x=     

1x x−  1 1( )f p x=  01( )p x    

2x x−  2 2 ( )f p x=  12 ( )p x  012 ( )p x   

3x x−  3 3( )f p x=  23( )p x  123( )p x  0123( )p x  

 

Observe now that when introducing a new point 4 4( , )x f , it suffices only to calculate a next 

row in the table. If we compute symbolically by keeping x  as a parameter, then we get 

polynomials. It is easier to compute with numbers. In this case we compute the value of the 

polynomials at x . To calculate the number in the denominator of the recursion, substract the 

lower number from the upper one in the leftmost column, e.g. 0 ( )jx x x x− − − . We also have 

these numbers in the left column of the 2 2×  determinants. As an example, for the support 

points 
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ix  0 1 3 

if  1 3 2 

the values of the table for 2x =  can be given as 

 0k =  1 2  

2 0 2− =  1   

2 1 1− =  3  
2 11

5
1 32 1

=
−

  

2 3 1− = −  2  
1 31

5/ 2
1 21 ( 1)

=
−− −

 
2 51

10 / 3
1 5/ 22 ( 1)

=
−− −

 

 

Aitken’s interpolation is similar, only the intermediate polynomials differ. The arrangement 

can be demonstrated by the following table: 

 

 0k =  1 2  3  

0x x−  0 0 ( )f p x=     

1x x−  1 1( )f p x=  01( )p x    

2x x−  2 2 ( )f p x=  02 ( )p x  012 ( )p x   

3x x−  3 3( )f p x=  03( )p x  013( )p x  0123( )p x  

 

13.2. Divided differences 

 

Here we introduce divided differences for Newton interpolation. Let the support points be 

0{( , ( )}n

i i i i
x f f x == ,  then the divided differences of first order are: 

 1 0 1
0 1 1

1 0 1

( ) ( ) ( ) ( )
[ , ] ,    [ , ] ,i i

i i

i i

f x f x f x f x
f x x f x x

x x x x

+
+

+

− −
= =

− −
 (13.3) 

divided differences of second order: 

 1 2 1
1 2

2

[ , ] [ , ]
[ , , ] i i i i

i i i

i i

f x x f x x
f x x x

x x

+ + +
+ +

+

−
=

−
. (13.4) 

In general, the divided differences of k th order are based on 1k +  points: 

 1 2 1 1
1

[ , , ] [ , , , ]
[ , , , ] i i i k i i i k

i i i k

i k i

f x x x f x x x
f x x x

x x

+ + + + + −
+ +

+

−
=

−

… …
… . (13.5) 

We can arrange the following table of divided differences: 
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 0k =  1 2 3 

0x  0( )f x     

1x  1( )f x  0 1[ , ]f x x    

2x  2( )f x  1 2[ , ]f x x  0 1 2[ , , ]f x x x   

3x  3( )f x  2 3[ , ]f x x  1 2 3[ , , ]f x x x  0 1 2 3[ , , , ]f x x x x  

Example. Compute the table of divided differences, if the support points are: 

ix  1/2 1 2 3 

if  2 1 1/2 1/3 

The number on top of a column shows the order of divided differences in that column. 

  1 2 3 

1/2 2 
 

 
  

1 1 
1 2

2
1 1/ 2

−
= −

−
   

2 1/2 
1/ 2 1 1

2 1 2

−
= −

−
 

1/ 2 ( 2)
1

2 1/ 2

− − −
=

−
  

3 1/3 
1/ 3 1/ 2 1

3 2 6

−
= −

−
 

1/ 6 ( 1/ 2) 1

3 1 6

− − −
=

−
 

1/ 6 1 1

3 1/ 2 3

− −
=

−
 

 

13.2.1 Lemma on expansion of divided differences 

Divided differences can be expanded as: 

 0 1

0

( )
[ , , , ] ,

( )

k
j

k

j k j

f x
f x x x

xω=

=
′∑…  (13.6) 

here ( )
k

xω  is the product function of (11.5). 

Proof. It can be done by induction. It is true for 1k = . From k  to 1k + , we write into 

 1 1 0
0 1 1

1 0

[ , , ] [ , , ]
[ , , , ] k k

k

k

f x x f x x
f x x x

x x

+
+

+

−
=

−

… …
…  

the expanded form of the k th order divided differences with the ( 1)k + th denominator: 

 
1

0 1

1 1 0

1 01 1

( )( ) ( )( )
[ , , ] ,      [ , , ] .

( ) ( )

k k
j j j j k

k k

j jk j k j

f x x x f x x x
f x x f x x

x xω ω

+
+

+
= =+ +

− −
= =

′ ′∑ ∑… …  

By simplifying and ordering the sums, the statement follows.       ■ 

It is seen that the divided differences are symmetric functions of the base points, that is, its 

value remains unchanged if the order of base points are varied. 
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13.3. Recursive Newton interpolation 

Denote ( )
n

N x  the (Newton) polynomial that interpolates on the support abscissas 

0 1, , ,
n

x x x… . These polynomials can also be computed from the recursion 

 1 1 1

0

( ) ( ) ( ) ( ),   ( ) 1
n

n n n n j j

j

N x N x b x b x xω ω ω− − −
=

= + = =∑ , (13.7) 

where coefficient 
n

b  may be determined from the condition that ( )
n

N x  interpolates also at 

n
x : 

 1

1

( )
.

( )

n n n
n

n n

f N x
b

xω
−

−

−
=  

However,  there exists another method for the computation of 
n

b  by divided differences. 

13.3.1 Theorem on expansion coefficients in Newton’s interpolation 

 0 1[ , , , ].
n n

b f x x x= …  (13.8) 

Proof. By definition,  1( ) ( )
n n

N x N x−−  vanishes at the points 0 1, ,
n

x x −… , hence we may write 

1( )
n

xω −  in (13.7), and its multiplier comes from the condition that ( ) ( )
n n n

N x f x=  holds. Now 

use the corresponding Lagrange polynomial in place of 1( )
n

N x− : 

 

1
11

01 1 1 1 1

1

0 1

0 01 1

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( )( )
[ , , , ],

( ) ( ) ( ) ( )

n
j n nn n n n

n

jn n n n n n n n n j n j

n n
j jn

n

j jn n j n n j n j

f x xf x N x f x
b

x x x x x x x

f x f xf x
f x x x

x x x x x

ω

ω ω ω ω ω

ω ω ω

−
−−

=− − − − −

−

= =− −

= − = − =
′−

= + = =
′ ′−

∑

∑ ∑ …

 

where we have used (13.6) in the last line. Consequently, the coefficients 
n

b  can be found in 

the table of divided differences as the last elements of each row.    ■ 

We simply speak about Newton’s interpolation, if the nb  coefficients are taken from divided 

differences. The use of the recursive Newton interpolation may be advantageous in unusual 

situations; for instance, if we want to get a multidimensional interpolation formula or we 

interpolate higher derivatives such that certain derivatives of lower order are missing. 

13.4. Problems 

13.1. Check the proof of Lemma 13.2.1 in detail! 

13.2. We want to approximate a function at x  with Neville’s interpolation. In each row of the 

table the last number gives the value of an interpolating polynomial. What should be the 

sequence of support points for a better precision of the last elements? 

13.3. Show that the result of the Neville interpolation scheme is unchanged if  we write ix x−  

in the first column instead of ix x− ! 

13.4. Determine the second degree polynomial with Neville’s interpolation that passes the 

points (-1,0),(1,1), (2,6) ! (Now x  stays in the formulas as a parameter.) 

13.5. Compute the same polynomial by Newton’s interpolation! 
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13.6. Find the Newton interpolating polynomial for the points (0,1), (1,3), (-3,2) and give it in 

Newton interpolation style! What are the three Lagrange base polynomials in this case? 

13.7. Having the divided differences at hand, suggest an algorithm that computes substitution 

values for the Newton form of interpolation! 

13.8. Write a Matlab program for computing the Neville interpolation values in a vector 

coming from polynomials of increasing degree! 

13.9. Write a  Matlab program for the table of divided differences! 

13.10. Identify the base functions of Newton’s interpolation and set up the linear system of 

interpolation conditions! 

13.11. Solve the system of linear equations of the former problem such that the steps of 

divided differences are applied! Compare the result with the table of divided differences! 

13.12. Give the matrix that brings vector 0 1[ , , , ]T

n
f f f…  of function values into the vector of 

first divided differences 0 0 1 1[ , [ , ], , [ , ]]T

n nf f x x f x x−… ! 

13.13. Show that the error of Lagrange interpolation can be given by the relation: 

( )

0 1
0 1

[ , ]
For   , [ , ] :   ( ) ( ) ( )

( 1)!

n

n n

f
x a b f x L x x

n

ξ ξ
ξ ξ ω∀ ∃ ∈ − =

+
 

if ( ) [ , ]nf x C a b∈ , i.e. this time it is not differentiable ( )1n + -times. 
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14. Newton and Hermite interpolations 

 

14.1. Theorem, interpolation error with divided differences 

Let [ , ],   ,   0,1, , ,
i

x a b x x i n∈ ≠ = …  then 

 0 1( ) ( ) [ , , , , ] ( ),
n n n

f x L x f x x x x xω− = …  (13.9) 

holds, where the support abscissas are in [ , ]a b . 

Proof.  Let 1n
N +  be such that it assumes the value of ( )f x  at point x . Applying the fact that  

( ) ( )
n n

N x L x= , we may write according to the Newton interpolation: 

 1 0 1( ) ( ) ( ) ( ) [ , , , , ] ( )
n n n n n

f x L x N x N x f x x x x xω+− = − = …  

and this shows the statement.           ■ 

14.1.1 Corollary, connection between divided difference and derivative 

Let  1( ) [ , ],   [ , ],   n

i
f x C a b x a b x x

+∈ ∈ ≠ , then there exists [ , ]
x

a bξ ∈ , such that 

 
( 1)

0 1

( )
[ , , , , ]

( 1)!

n

x
n

f
f x x x x

n

ξ+

=
+

…  (13.10) 

holds. 

To prove this, it is enough to compare formula (11.9) of Theorem 11.3.1 with  (13.9). 

Specifically  for  0n =  one has 0[ , ] '( )
x

f x x f ξ= , and this is nothing else than the Lagrange 

mean value theorem. Hence  (13.10) is the generalization of the mean value theorem for 

higher divided differences. Observe that x  is a formal variable in  (13.10), there 2n +  base 

points  belong to the divided difference of order  1n + , and  derivative is also of order 1n + . 

14.1.2  Another corollary 

Formula (13.10) helps us to extend the table of divided differences for the case when a 

support point  occurs more than once. The support points 
i

x  and 
x

ξ  are in the interval [ , ]a b . 

Now if [ , ]a b  is shrinked to the point 0x , then we get formally in the limiting case  

 
( )

0
0 0 0

1 base points

( )
[ , , , ] .

!

n

n

f x
f x x x

n
+

=…
�	
	�

 (13.11) 

14.2. Hermite’s interpolation 

The derivatives of the function are also interpolated in case of the Hermite interpolation. Then 

we also have function derivatives among support point data: 

 ( )( , ( ),  0,1, , 1),  .i

k k k k
x f x i m m += − ∈… ℕ  

For instance, if 2
k

m = , then the zeroth and first derivatives in 
k

x  are returned by the 

polynomial. The total number of interpolation conditions in general is:  
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0

1,
n

k

k

m m
=

= +∑  (13.12) 

 

such that the interpolating polynomial may have degree m :  ( )
m m

H x ∈P . The interpolation 

conditions are: 

 ( ) ( )( ) ( ),   0,1, , 1;   0,1, ,i i

m k k k
H x f x i m k n= = − =… … , (13.13) 

where different support abscissas are assumed. 

14.2.1 Theorem on the existence of Hermite’s interpolation 

The interpolation polynomial ( )
m

H x  satisfying conditions (13.13) uniquely exists. 

Proof. Assume 
0

( )
m

j

m j

j

H x a x
=

=∑ , then the linear system for the expansion coefficients has the 

form: 

 

2

0 0 0 0 0

1

0 0 1 0

1 ( )

0 1 2 '( )

m

m

x x x a f x

x mx a f x
−

     
     =     
         

…

…

⋮ … … … ⋮ ⋮ ⋮

 

which is an ( 1) ( 1)m m+ × + system. It has a unique solution if the determinant is nonzero, 

det( ) 0A ≠ . Assume indirectly det( ) 0A = . Then it follows that the homogenous system (zero 

right hand vector) has nonzero solution, which refers to a polynomial of degree at most m . 

Observe that zero right hand vector means that
k

x  is a root of multiplicity 
k

m . However, the 

resulting polynomial should have 1m +  roots and this contradicts to a polynomial of degree 

m . Therefore the matrix of the linear system is invertible and the solution is unique.    ■ 

Remark.  If some intermediate derivatives are missing, then we speak about the lacunary 

Hermite interpolation. It is not always solvable.  

14.2.2  Error theorem on the Hermite interpolatiion 

Let 1( ) [ , ],mf x C a b+∈  [ , ]x a b∈ . Then there exists [ , ]
x

a bξ ∈ , such that 

 
( 1) ( )

( ) ( ) ( )
( 1)!

m

x
m m

f
f x H x x

m

ξ
ω

+

− =
+

 (13.14) 

holds and 0 1

0 1( ) ( ) ( ) ( ) .nm mm

m n
x x x x x x xω = − − −…  

Proof. It is similar to that of Theorem 11.3.1. For ,  0,1, ,
k

x x k n= = …  the statement is true. 

Therefore assume 
k

x x≠  for all k . Introduce function 

 
( )

( ) ( ) ( ) ( ( ) ( )),   [ , ]
( )

m
x m m

m

z
g z f z H z f x H x z a b

x

ω

ω
= − − − ∈  (13.15) 

that has 2m +  roots together with z x= . Applying Rolle’s theorem 1m +  times, as in the 

case of the Lagrangian interpolation, yields the result.         ■ 
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In the special case of having the function value and first derivative at all points, we talk about 

the Hermite-Fejér interpolation. 

It is worth saying some words about how the divided difference scheme of Newton’s 

interpolation can be carried over to the Hermite interpolation. The interpretation of divided 

differences for multiple base points were given in (13.11). Accordingly, we have to give point 

0x  twice if 0( )f x  and 0'( )f x  are given. All previously considered base points 
j

x  gives a 

multiplier 
j

x x−  into the product function ( )xω , and the most recently included point gives a 

multiplier only in the next step. The order of points is arbitrary, but multiple points should be 

in one group because of the derivatives. Do not forget, intermediate derivatives may not be 

missing. For instance, if the second derivative is given, the first one may not be missing. 

14.2.3 Example 

Find the Hermite-Fejér interpolating polynomial for two points with the scheme of the 

Newton interpolation. Let the support abscissas be 0 1,  x x . 

Solution. The table of divided differences: 

 0k =  1 2  3  

0x  0f     

0x  0f  0f ′    

1x  1f  0 1[ , ]f x x  0 1 0 1 0( [ , ] ) /( )f x x f x x′− −   

1x  1f  '

1f  1 0 1 1 0( [ , ]) /( )f f x x x x′− −  2

1 0 1 0 1 0( 2 [ , ] ) /( )f f x x f x x′ ′− + −  

The interpolating polynomial is  

2 20 1 0 1 0 1 0
3 0 0 0 0 0 12

1 0 1 0

[ , ] 2 [ , ]
( ) ( ) ( ) ( ) ( )

( )

f x x f f f x x f
H x f f x x x x x x x x

x x x x

′ ′ ′− − +
′= + − + − + − −

− −
. 

14.3. Base polynomials for Hermite’s interpolation  

If intermediate derivatives are not missing, then Hermite base polynomials can always be 

given just like in the case of the Lagrange base polynomials. The derivatives ( )i

k
f , 

0,1, , 1
k

i m= −…  are given at the point 
k

x . Associate with 
k

x  the function 

 
0,

( ) ,     ( ) 1

jm
n

j

k k k

j j k k j

x x
h x h x

x x= ≠

 −
= =  − 

∏ . 

The 0,1, , 1
j

m −…  derivatives vanish at points ( )
j k

x x≠  even if they are multiplied with 

another polynomial. Hence ( )
k

h x  fulfills the expected conditions at the other points ( )
j k

x x≠ . 

We look for the base polynomials belonging to 
k

x  in the form: 

 , , , 1( ) ( ) ( ),     ( )
kk i k i k k i m

h x p x h x p x −= ∈
�
P , 

where , ( )
k i

p x  is a polynomial of degree 1
k

m − , 0,1, , 1
k

i m= −… . The coefficients of the i th 

polynomial can be determined from the conditions ,( / ) ( ) ,   0,1, , 1j

k i k ij kd dx h x j mδ= = −… . 
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For the sake of easier understanding, consider the case when the derivatives at 
k

x  are given 

up to the second derivative, that is 0,1, 2i = . An easy form of the polynomials is in powers of 

k
x x− . If 0i = , then 2

,0 1 2( ) 1 ( ) ( )k k kp x x x x xα α= + − + −  should be chosen because ( ) 1
k k

h x =  

and ,0 ( ) 1
k k

h x =  is  fulfilled with ,0 ( ) 1
k k

p x = . Coefficient 1α  comes from the condition that 

the first derivative vanishes at 
k

x : 

 1 2 ,0[ 2 ( )] ( ) ( ) ( ) 0,
k

k k k k x x
x x h x p x h xα α

=
′+ − + =  

hence 1 ( )
k k

h xα ′= − . The zero second derivative yields 2α : 

 2 12 ( ) 2 ( ) ( ) 0
k k k k k k

h x h x h xα α ′ ′′+ + =  

and substituting 1α results in ( )
2

2 ( ) ( ) / 2
k k k k

h x h xα ′ ′′= − .  

The constant term of ,2 ( )
k

p x  is zero because of ,2 ( ) ( ) 0
k k k k

p x h x = . Similarly, the first power 

is also missing as the first derivative is zero: ,2 ,2( ) ( ) ( ) ( ) 0
k k k k k k k k

p x h x p x h x′ ′+ = . Finally, 

from ,2 ( ) 1
k k

h x′′ =  it follows that 2

,2 ( ) ( ) / 2k kp x x x= − . To show the form of 

2

,1 2( ) ( ) ( )k k kp x x x x xβ= − + −  is left to the reader. 

Now we have the standard form of Hermite’s interpolation: 

 
1

( )

,

0 0

( ) ( )
kmn

i

m k k i

k i

H x f h x
−

= =

=∑∑ . (13.16) 

Observe that this form may also serve as the proof for the uniqueness of non-lacunary 

Hermite interpolation. If we introduce the polynomial 

 
1

( )

,

0

( ) ( )
km

i

k k k i

i

p x f p x
−

=

= ∑ ,  (13.17) 

then we can write (13.16) as 

 
0

( ) ( ) ( )
n

m k k

k

H x p x h x
=

=∑ ,  (13.18) 

( )
k

p x  being a polynomial of degree 1
k

m − .  

14.4. The Heaviside „cover up” method for partial fraction expansion and 
interpolation 

We have already seen in Chapter 11 that Lagrange interpolation may serve as a tool for partial 

fraction expansion in the case of simple roots of the divisor polynomial. Now we guess, the 

same can be done with Hermite interpolation for multiple roots. 

The Heaviside method was initially introduced for partial fraction expansion, see e.g. 

Antoulas et al (2003), but as it will be seen here, it is also capable of giving an interpolating 

polynomial.  From (13.18) we have 

 
( ) ( )0

( ) ( )( )

( )( )k k

n
j jm

m m
j kk k k

p x h xH x

h xx x h x x x=

=
− −

∑  , (13.19) 
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such  that we have the terms for j k= : 

 
( ) ( ) ( ) ( )

, 1,0 ,1

1

( )
k

k k k

k mk kk

m m m

kk k k

p x

x xx x x x x x

γγ γ −

−
= + + +

−− − −
… . 

Hence multiplying by ( ) km

k
x x−  and differentiating will give the coefficients 

 .

( )1
,   0, , 1

! ( )
k

i

m
k i k

k
x x

H xd
i m

i dx h x
γ

=

 
= = − 

 
…  . (13.20) 

Observe that all the other terms in (13.19) will have a multiplier of ( ) ,  0
j

k
x x j− >  and when 

substituting 
k

x x= , they will cancel. When differentiating, we have to substitute function 

values and derivatives of ( )
m

H x  at 
k

x . If we put in function data as given, the resulting 

polynomial (13.18) will be the desired interpolating polynomial. 

But we can also get the polynomial coefficients directly from (13.18) by differentiation and 

equating. In particular, if only the function value ( )
k k

f f x=  is given, then ( ) 1
k k

h x = , ( )
k

p x  

is a constant polynomial and  

 ( ) ( )
k m k k k

f H x p x= =   

as we may confine ourselves only to the term ( )
k

p x  in (13.18). 

If the function value and the first derivative are given, then we have from (13.18) the 

additional condition: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

k

n

m k k k k k j j

j k

x x

k k k k k k

H x p x h x p x h x p x h x

p x f h x f

≠

=

′ 
′ ′ ′= + +  

 

′ ′ ′= + =

∑
 , 

from where ( ) ( ( ))( )
k k k k k k k

p x f f f h x x x′ ′= + − −  follows. Observe that the j k≠  terms will 

vanish for 
k

x x= . 

If we still have the second derivative given, then a next term of ( )
k

p x  can be identified: 

 
( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) Sum

( ) 2 ( ) ( ) ( )

k

m k k k k k k k
x x

k k k k k k k k k k

H x p x h x p x h x p x h x

p x p x h x f h x f

=

′′′ ′′ ′ ′ ′′= + + +

′′ ′ ′ ′′ ′′= + + =

  

that is, 

 ,22 2( ( )) ( ) ( )
k k k k k k k k k k k

f f h x h x f h x fγ ′ ′ ′ ′′ ′′+ − + =   

and the resulting polynomial is 

 
( ) ( )

2

( ) ( ( ))( )

( ) / 2 ( ( )) ( )

k k k k k k k

k k k k k k k k k k k

p x f f f h x x x

f f h x f f h x h x x x

′ ′= + − − +

′′ ′′ ′ ′ ′− − − −  
 . (13.21) 

This procedure can be continued up to a desired derivative.  
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A third method, if we have expanded ( )
k

h x  by the powers of ( )kx x− , is that we can get 

( )
k

p x  by dividing power series (Fourier division) as indicated in (13.20), where the Taylor 

polynomial of  ( )
m

H x  around 
k

x  is given by the incoming data. 

Finally we remark that barycentric Hermite interpolation can also be done, see Sadiq et al 

(2013). 

 

14.5. Inverse interpolation 

We may interchange the variables x  and y  in the interpolation, hence getting a polynomial 

of type ( )x x y= . This technique is called inverse interpolation. It is applied e.g. if we are 

interested in a location where a given function value is assumed. This happens to be the case 

if one looks for a zero of the function. Substituting 0y =  into the polynomial returns an 

approximate location for the zero. One has to be careful in inverse interpolation: the function 

has to be a one-to-one mapping from [ , ]a b  to [ ( ), ( )]f a f b , otherwise surprising situations 

may happen. 

 

14.6. Problems 

14.1. Find the interpolating polynomial for 0 0( , )x f , ' "

1 1 1 1( , , , )x f f f . 

14.2. Elaborate Hermite interpolation, if 0 0 0 0( ; , , ) ( 1;1,2, 2)x f f f′ ′′ = − −  and 1 1 1( ; , ) (2;1, 1)x f f ′ = − ! 

14.3. Having a table for the values of the sine function, the derivatives are also known by the 

familiar connection to the cosine function. Thus we may use the Hermite-Fejér interpolation, 

where function values and derivatives are given at all points. Then how densely should the 

function be tabulated in [0, / 2]π  if we want to to get the values of the function with an error 

of 410− ? 

14.4. Derive the error bound for the Hermite-Fejér interpolation, if we have Chebyshev 

abscissas. 

14.5. Show that ( )
2

( ) ( )
k k

h x l x= ,  ,0 ( ) 1 2 ( )( )
k k k k

p x l x x x′= − −  and ,1( )
k k

p x x x= −  in the case 

of the Hermite-Fejér interpolation. 

14.6.  Derive the coefficients of the multiplier polynomial 2

,1 2( ) ( ) ( )k k kp x x x x xβ= − + −  for 

the Hermite base polynomial ,1( )
k

h x , (see Sect. 14.3), where data are given up to the second 

derivatives at point 
k

x . 

14.7. What are the Hermite base polynomials, if the support points are: 0 0 0( ; , )x f f ′ , and 

1 1 1 ( ; , )x f f ′ ? 

14.8. Write a Matlab program for Hermite divided differences! 

14.9. A function goes through the points: (1, 1),  (2,1),  (3,2),  (5,3)− . By choosing inverse 

interpolation, give an approximate location of zero with Neville’s interpolation! 
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14.10. Let 
0

( )
n

j

j

j

f x a x
=

=∑  be a  polynomial of degree n . What is the value of 

0 1[ , , , ]
n

f x x x… ? 

14.11. Find the three base polynomials for the interpolation problem 0 0 0 1 1( , , ),  ( , )x f f x f′ ! 
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15. Splines 

If we increase the degree of interpolating polynomials, it is a common experience that 

polynomials of higher degree may show violent oscillations  near the support points. So badly 

that one may not believe at glance that it approximates the function adequately. Although 

Weierstrass’ theorem assures for  ( ) [ , ]f x C a b∈  that there exists a sequence of support 

abscissas for which the interpolating polynomials converge uniformly to ( )f x , Faber’s 

theorem states that for such functions one can also find another sequence of support abscissas 

for which there is no convergence. From these facts came the idea of changing polynomials to 

piecewise polynomials which fulfil some continuity conditions. Such functions are called 

splines. 

15.1. Spline functions 

15.1.1 Definition of splines 

Function ( )
l

s x  is called a spline of degree l  if  

i) in every subinterval  it is a polynomial of degree l  and 

ii) it is continuously differentiable 1l − -times in [ , ]a b : 1( ) [ , ]l

l
s x C a b

−∈ .  

The linear combination of such functions will also be a spline of degree l  and it is 

straightforward to check that l -th degree splines form a vector space.  

Let  0{ , ( )}n

n i i i i
x f f x =Θ = =  be the set of support points, where the abscissas or nodes are 

ordered: 1 ,   0
i i

x x i− < < , and denote by ( )
l n

S Θ  the set of splines of order l . For the 

dimension of this space observe that there are ( 1)n l +  polynomial coefficients in the n  

subintervals and joining the derivatives at midpoints requires ( 1)n l−  conditions, hence, there 

remain n l+  free parameters. If it is an interpolatory spline, then 1n +  function values are still 

given such that there are only 1l −  free parameters left. 

Spline interpolation is simple in terms of hat functions ( )
i

u x : 

0

0.5

1

Hat function u
i
(x) 

u
(x

)

x
i-1

 x
i
 x

i+1
 

-1

-0.5

0

0.5

1

The derivative of hat function u
i
(x)

x
i-1

              x
i
                      x

i+1

u
i'(

x
)

 

Fig 1. The hat function and its derivative 
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1
1

1

1
1

1

,     if  

( ) ,     if  

0,         otherwise

i
i i

i i

i
i i i

i i

x x
x x x

x x

x x
u x x x x

x x

−
−

−

+
+

+

−
≤ ≤ −


 −

= ≤ ≤
−





                               

1

1

1

1

1 1

1
,     if  

1
( ) ,     if  

0,         if  ,   

i i

i i

i i i

i i

i i

x x x
x x

u x x x x
x x

x x x x

−

−

+

+

− +


< < −


−

′ = < <
−

 < <



 

The first derivative does not exist at the nodes however; one may look for the lower or upper 

limits there, and that will be enough for the future. The higher derivatives of hat functions all 

disappear. 

15.2. Splines of first degree: 1( ) ( )
n

s x S∈ Θ  

 [ ]1
1 1

1 1

( ) , ,i i
i i i i

i i i i

x x x x
s x f f x x x

x x x x

−
− −

− −

− −
= + ∈

− −
. (14.1)  

The result is a broken line. Our computer usually uses this approximation to draw a function 

given by the set 
n

Θ . If support abscissas are dense enough, broken lines are not seen. 

Function ( )s x  can be given in Lagrange interpolation style with the aid of hat functions: 

 
0

( ) ( )
n

i i

i

s x f u x
=

=∑ . (14.2) 

15.3.  Splines of second degree: 2( ) ( )
n

s x S∈ Θ  

For the sake of simplicity, assume that  

( ) and '( )f a f a  are given at the starting point. Then using data 

0x a=  0x  1x  

0( )f x  0'( )f x  1( )f x  

one can apply Hermite’s interpolation to produce a polynomial of second order that belongs to 

the first interval. For continuation take the first derivative of this polynomial in 1x , and by 

adding 1( )f x  and 2( )f x  we may continue the procedure for interval [ ]1 2,x x . Generally the 

table of divided differences for [ ]1,i ix x +  is: 

i
x       ( )

i
f x  

i
x       ( )

i
f x       '( )

i
s x  

1i
x +     1( )

i
f x +     1[ , ]

i i
f x x +    1

1

[ , ] '( )
i i i

i i

f x x s x

x x

+

+

−

−
, 

and 

 2

1 1( ) ( ) '( )( ) [ , , ]( ) ,    [ , ]
i i i i i i i i i

s x f x s x x x f x x x x x x x x+ += + − + − ∈ , 

where the approximation ( ) ( )
i i

f x s x′ ′≈  is applied when computing the second divided 

difference. 
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If the derivative is not known at the beginning, then one may make a second degree 

polynomial for the first three points and then apply the continuation method given here for 

subsequent points.  

15.4. Splines of third degree: 3( ) ( )
n

s x S∈ Θ  

For such splines the first and second derivatives also need to join at data points. The 3( 1)n −  

conditions set up a linear system of the same order. However, one can derive a simpler 

approach by performing 2n  interpolations analytically with a skilful choice of an 

interpolation subproblem. Therefore we look for a third degree polynomial that interpolates 

for data { } { }0 0 0 1 1 1; , ,  ; ,x f f x f f′′ ′′ . 

Now denote by ( )
ki

l x  the Hermite interpolation base polynomials. The first index refers to the 

node points and the second index indicates the order of the derivative. 

First we construct polynomial 00 ( )l x .  The defining equations are: 00 0( ) 1,l x =  

00 1( ) 0,l x = 00 0( ) 0l x′′ =  and 00 1( ) 0l x′′ = . The second derivative is of degree 1 at most and 

according to the equations it disappears at both points, hence it is identically 0. As a 

consequence, 00 ( )l x  has degree 1 and it is fully determined by the first two equations:   

 [ ]00 1 1 0 0 0 1( ) ( ) / ( ) ( ),    , .l x x x x x u x x x x= − − = ∈  (14.3) 

Polynomial 02 ( )l x   satisfies the conditions: 02 0( ) 0,l x =  02 1( ) 0,l x =  02 0( ) 1l x′′ =  and 

02 1( ) 0l x′′ = . The second derivative has degree 1 and like 00 ( )l x , it is given by 

[ ]02 0 0 1( ) ( ), ,l x u x x x x′′ = ∈ . Integrating twice yields 

 

( )

2

0
02

0

3

0 0
02 0 12

0 0

( )
( ) ,

2 ( )

( ) ( )
( ) , ,

6 ( ) ( )

u x
l x

u x

u x u x
l x x x x

u x u x

β

β γ

′ = +
′

= + + ∈
′ ′

 

where we have exploited the fact that 0 ( )u x′  is constant in the interval. Because of 0 1( ) 0u x = , 

0γ =  follows from 02 1( ) 0l x = . On the other hand, condition 02 0( ) 0l x =  gives 

( )01/ 6 ( )u xβ ′= − , such that  

 
3

0 0
02 2

0

( ) ( )
( ) .

6 ( )

u x u x
l x

u x

−
=

′
 (14.4) 

The other two polynomials 10 ( )l x  and 12 ( )l x  are determined similarly, and the results are: 

 ( )
3

1 1
10 1 12 0 12

1

( ) ( )
( ) ( ),    ( ) ,    , .

6 ( )

u x u x
l x u x l x x x x

u x

−
= = ∈

′
 (14.5) 

With these the interpolating polynomial in ( )0 1,x x  is 
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0,3 0 00 0 02 1 10 1 12

3 3

0 0 1 1
0 0 0 1 1 12 2

0 1

( ) ( ) ( ) ( )  ( )

( ) ( ) ( ) ( )
( ) ( ) .

6 ( ) 6 ( )

p x f l x f l x f l x f l x

u x u x u x u x
f u x f f u x f

u x u x

′′ ′′= + + + =

− −
′′ ′′= + + +

′ ′

 

Although the  first derivative does not exist at the border points, the multipliers of the second 

derivatives will tend to zero there, hence we may take that the interpolation is valid in the 

closed interval [ ]0 1,x x . Now assume, the function values and the second derivatives are given 

at points 0 1, , ,
n

x x x… . Then we can write the interpolating polynomial for each subinterval as: 

 
3 3

1 1
,3 1 1 1 12 2

1

( ) ( ) ( ) ( )
( ) ( ) ( ) ,     [ , ]

6 ( ) 6 ( )

i i i i
i i i i i i i i i

i i

u x u x u x u x
p x f u x f f u x f x x x

u x u x

+ +
+ + + +

+

− −
′′ ′′= + + + ∈

′ ′
 

but observing the definition of hat functions, the interpolating bundle of polynomials can be 

given by the sum: 

 
3

[ , ],3 2
0

( ) ( )
( ) ( ) ,     [ , ].

6 ( )

n
i i

a b i i i

i i

u x u x
p x f u x f x a b

u x=

−
′′= + ∈

′∑  (14.6) 

In this way we have a function which is a third degree polynomial in each subinterval, and it 

has continuous 0-th and second derivatives in [ , ]a b .  

Accordingly we choose the spline of third degree with respect to the support points 
n

Θ as: 

 
3

3 32
0

( ) ( )
( ) ( ) ,     [ , ],    ( ).

6 ( )

n
i i

i i i i i

i i

u x u x
s x f u x w x a b w s x

u x=

−
′′= + ∈ =

′∑  (14.7) 

The second derivatives 
i

w  will be determined from the condition that the first derivatives be 

continuous at the nodes 
i

x . The first derivative 

 
2

3

0

3 ( ) 1
( ) ( ) ,     [ , ]

6 ( )

n
i

i i i

i i

u x
s x f u x w x a b

u x=

−
′ ′= + ∈

′∑  (14.8) 

is continuous, if lower and upper limits are equal at the inner nodes. Denote by 3( 0)
i

s x′ −  and 

3( 0)
i

s x′ +  the lower and upper limits at 
i

x . Then only two hat functions will give 

contributions to the limits: 

 

2 2

1
3 1 1 1

1

1 1
1 1 1

1

3 ( ) 1 3 ( ) 1
( 0) ( ) ( )

6 ( ) 6 ( )

2
,    where  

6

i i i i
i i i i i i i i i

i i i i

i i i i
i i i i

i

u x u x
s x f u x f u x w w

u x u x

f f w w
h h x x

h

−
− − −

−

− −
− − −

−

− −
′ ′ ′− = − + − + + =

′ ′− −

− + +
= + = −

 

and 

 

21
1 1

3

3 ( ) 1 2
( 0) ( ) .

6 ( ) 6

i
j i i i i i

i j j i j i

j i j i i

u x f f w w
s x f u x w h

u x h

+
+ +

=

− − +
′ ′+ = + + = −

′ +
∑  

Equating the two at 
i

x : 

 1 1
1 1 1 1

2 2
[ , ] [ , ] ,    

6 6

i i i i
i i i i i i i i i

w w w w
f x x h f x x h h x x− +

− − + +

+ +
+ = − = −  
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And collecting unknown terms to the left gives 

 1 1 1 1
1 1

( )
[ , ] [ , ]

6 3 6

i i i i i i i
i i i i

w h w h h w h
f x x f x x− − − +

+ −

+
+ + = − . 

Further introduce 1 1 1/ ( )
i i i i

h h hσ − − −= + , which leads to a simple form of the equations  

 1 1 1 1 1 12 (1 ) 6 [ , , ],    1,2, , 1.
i i i i i i i i

w w w f x x x i nσ σ− − + − − ++ + − = = −…  (14.9) 

The resulting linear system has a diagonally dominant tridiagonal matrix, which is 

advantageous when solving. However, there is no enough number of equations to find the 

values of 0w  and 
n

w , hence we have to specify further conditions for the endpoints. One can 

choose one from the following four cases: 

1. Hermite end conditions: the first derivatives ( )f a′  and ( )f b′  are given. 

2. The second derivatives are given at the endpoints. If they are not known, 0 0
n

w w= =  can 

be a possible choice. This resulting spline is called natural spline. 

3. Periodic end condition. If the function is periodic and interpolation is done in the whole 

period, then 0 n
w w=  and only one additional equation is needed. For 0i =  one can 

identify the following terms for the first equation: 

1 1 1 1 1 1 1 0,  ,  / ( )
n n

w w h h h h hσ− − − − − − −= = = +  and 1 1n
f f− −= . 

4. We choose continuous third derivatives for the first two and the last two intervals such 

that the third derivative is constant in these intervals. This spline interpolant has the 

property that it returns the third degree polynomial for which the function values were 

given from that polynomial. These third derivatives can be expressed as divided 

differences: 

 
1 0 0 2 1 1

1 2 2 1 1

( ) / ( ) / ,

( ) / ( ) / .n n n n n n

w w h w w h

w w h w w h− − − − −

− = −

− = −
  (14.10) 

15.5. Example 

Find the first and last equations that should be added to system (14.9) when Hermite end 

conditions are applied! 

Solution.  Take 0i =  in (14.9) and formally introduce 1x− . Now let 1x−  tend to 0x , hence 

1 0σ − →  and thus 

 ( )0 1 0 0, 1 0 1 0 02 6 [ , ] 6 [ , ] / .w w f x x x f x x f h′+ = = −  (14.11) 

Fort the last equation substitue i n=  in (14.9) and let 1n
x +  tend to 

n
x : 

 1 12 6 [ , , ]
n n n n n

w w f x x x− −+ = . (14.12) 

With these two equations  (14.9) is already solvable as there are as many equations as the 

number of unknowns. 

15.6. Problems 

15.1. How simple will become (14.9) for equidistant nodes? 
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15.2. We have at least four support points which came from a third degree polynomial. Show 

that by using the fourth end conditions, the resulting spline will return that polynomial. In 

other words, this spline interpolant is exact for cubic polynomials. 

15.3. Write a Matlab program to calculate the values of a cubic spline! 

15.4. For representig cubic splines, we may use other cubic polynomials which serve 

automatically continuous 0 -th and first derivative at the inner nodes. In order to achieve this, 

we derive polynomials for the Hermite interpolation problem: { } { }0 0 0 1 1 1; , ,  ; ,x f f x f f′ ′ . Now 

find Hermite base polynomials (see e. g. Problem 14.5) for the interval 0 1( , )x x  and show that 

like in (14.6), one gets the following formula:  

 ( )
3 2

3 2

[ , ],3

0

( ) ( )
( ) 2 ( ) 3 ( ) ,     [ , ].

( )

n
i i

a b i i i i

i i

u x u x
p x f u x u x f x a b

u x=

−
′= − + + ∈

′∑ɶ  

15.5. Observing the previous problem, we can represent interpolating cubic splines with 

function values 
i

f  and spline first derivatives 
i

t  at the inner nodes 
i

x :  

 ( )
3 2

3 2

3

0

( ) ( )
( ) 2 ( ) 3 ( ) ,   [ , ],

( )

n
i i

i i i i

i i

u x u x
s x f u x u x t x a b

u x=

−
= − + + ∈

′∑  

where ( )
i i i

f s x= , ( )
i i i

t s x′=  and ( )
i

u x  are hat functions. State a system of linear equations of 

the unknowns 
i

t  from the condition that the second derivative is continuous at the inner 

nodes! 

15.6. We should like to approximate the solution of the following differential equation: 

( ) ( ),    [0,1],    (0) (1) 0,v x g x x v v′′− = ∈ = =  where ( )g x  is a given function. Divide [0,1]  into  

n  equal parts and using (14.9) state a system of equations for the unknown approximate 

function values ( ),  1, , 1
i

v x i n= −… ! 

15.7. Write a Matlab program to solve the previous boundary value problem! 

15.8. Using the error theorem of interpolation, derive upper bound for the error of first degree 

spline interpolation! 

15.9. Show that the function 

( )3 2

0

( ) 2 ( ) 3 ( ) ,   [ , ],
n

i i i

i

s x f u x u x x a b
=

= − + ∈∑  

has continuous first derivative at  
i

x , where ( )
i

u x  is the  i -th hat function and 
i

x -s are the 

support abscissas. 
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16. Solution of nonlinear equations I. 

 

Hitherto we dealt with the solution of linear systems. But many times one or more zeros of a 

function are needed by solving the equation 

 ( ) 0f x = , (16.1) 

where ( ) [ , ]f x C a b∈  is a function in one variable. The value of x
∗  for which ( ) 0f x∗ =  holds 

is called a  root (in the case of polynomials) or zero of ( )f x . The zero has multiplicity m , if 

the function has the form ( ) ( ) ( ),   ( ) 0mf x x x g x g x∗ ∗= − ≠ . For 1m =  we call the zero simple. 

We shall deal with cases where the solution can be found by numerical methods. 

16.1. The interval of the root 

If there is a sign change: ( ) ( ) 0f a f b < , then there exists at least one root in the interval [ , ]a b  

because of continuity. If the first derivative of ( )f x  also exists and keeps sign in the interval 

[ , ]a b , then there must be only one root there. 

If the function is not monotonic, then it may be helpful to divide [ , ]a b  into subintervals such 

that there is a sign change there. Thus the odd roots of ( )f x  can be separated. For 

differentiable functions the even roots can be sought by the roots of ( )f x′ , because the even 

roots have turned into odd ones, it may also be possible to look for the roots of ( ) / ( )f x f x′ , 

the roots of which are all single. 

16.2. Fixed-point iteration 

One possible approach is to reformulate ( ) 0f x =  into a fixed-pont iteration: 

 ( )x F x=  (16.2) 

and the solution is given by x
∗  such that ( )x F x∗ ∗= . Example: we look for the root of 

2 sin( ) 0x x− = . Then we may try the iterative formula 1 sin( )k kx x+ = . It is always possible 

to give a fixed-point iteration, e.g. ( )x x cf x= + , which is a function, where c  is a nonzero 

constant, but we may also choose a function ( )c x  such that the convergence properties of the 

iteration are improved. The next theorem is about the existence of a fixed-pont. 

16.2.1 The fixed-point theorem of Brouwer1 

If ( )F x  is continuous in [ , ]a b  and :  [ , ] [ , ]F a b a b→ , then there is a fixed-point of F in 

[ , ]a b . 

Proof. Introduce ( ) ( )g x x F x= − , then ( ) 0g a ≤  and ( ) 0g b ≥ , from which ( ) ( ) 0g a g b ≤  

follows. If the equality sign holds here, then there is already a zero. Otherwise, in the case of 

sign change there must be a a root in [ , ]a b  because of continuity.   ■ 

                                                      

1
 The statement of the theorem in many dimensions: if the continuous function ( )F x   maps the sphere onto 

itself, then it has a fixed-point. 
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16.2.2 Theorem on contraction 

If :F S → ℝ  is continuously differentiable in the closed interval S  and ( ) 1,  F x x S′ < ∀ ∈ , 

then F  is a contraction. 

Proof. From Lagrange’s mean value theorem we have ,x y S∈ -re 

:  ( ) ( ) ( )( )F x F y F x yζ ζ′∃ − = − . Taking absolute values and exploiting the fact that ( )F x′  

has maximum in S  gives the inequality  

 ( ) ( ) max ( ) ,   ,
x S

F x F y F x x y x y S
∈

′− ≤ − ∈ . 

Therefore F  is a contraction with max ( ) 1x Sq F x∈
′= <  Lipschitz constant.  ■ 

16.2.3 Corollary 

If ( )F x  is a contraction such that S  is mapped onto itself,  then by the Banach’s fixed-point 

theorem there exists one zero in S  and after one step of iteration it is possible to estimate the 

distance from the zero with the help of the Lipschitz constant. 

Now returning to the previous example: the derived iteration may be convergent in the 

domain, where ( ) cos( )
sin( ) 1

2 sin( )

x
x

x

′
= < . As seen, this expression does not have sense for 

0x =  or x π= , because we should divide by 0. But for / 4x π=  it returns the value 5/42− , 

which seems better. Drawing the parabola of 2
x  and the sin( )x  function, we see that there are 

two nonnegative roots. One is zero, the other one is close to / 4x π= , so that we may expect 

that staring with / 4π , the iteration will be convergent. It is also seen that starting with a 

small positive value, the iteration will not converge to zero, because it will always tend to the 

larger root.  

But if we choose the iteration 2arcsin( )x x= , then it can be checked easily that for small 

positive starting values the iteration will tend to zero. But if we choose 1x =  for the starting 

value, then we get / 2π first, followed by complex numbers, because the argument is greater 

than 1.  

Conclusion: we have to pay attention to the mapping of the function, because we may get to 

places where the necessary convergence properties are missing, or we may get convergence to 

another root that does not interest us. 

If the variable x  appears at more places in the equation that is to be solved for zero, then it is 

possible to find more expressions like ( )x F x= . For instance, assume it can be found at two 

places. Then one can show that the two fixed-point iterations may not be convergent at one 

place. Let 1 2( , ) 0f x x =  be the equation to be solved, where the two occurrences are identified 

by 1x  and 2x . Denote by ( )
i

F x  the iteration function gained by expressing
i

x . Consequently 

we have the two equations 

 1 2( ( ), ) 0    and   ( , ( )) 0.f F x x f x F x= =  (16.3) 

Let α  be a simple root: ( , ) 0f α α = . Differentiating the expressions in (16.3) by x  and 

substituting x α= , one gets the equations 
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1 1 2

1 2 2

( , ) ( ) ( , ) 0,

( , ) ( , ) ( ) 0,

f F f a

f f F

α α α α

α α α α α

′ ′ ′+ =

′ ′ ′+ =
 

where the index of f  shows the place where the differentiation was done. When obtaining a 

nonzero solution for a simple root, ( , )
i

f α α′  must be nonzero and the determinant of the 2 2×  

system should be 0: 

 
1

1 2

2

( ) 1
( ) ( ) 1 0,

1 ( )

F
F F

F

α
α α

α

′
′ ′= − =

′
 

from where 

 1 2( ) 1/ ( ) .F Fα α′ ′=  (16.4) 

Unless both derivatives have absolute value 1, one iteration function is convergent; the other 

one is divergent in the neighbourhood of a root. When there are more than two occurrences of 

x , one can proceed similarly. However, then the situation is worse, because it may happen 

that no iteration function will be convergent. Therefore we should organize the occurrences of 

x  into two groups and express x  from one group entirely.  For instance, having the equation 
23 2 exp(2.2 ) 1 0x x x− − + = , we may look for  the roots by taking exp(2.2 ) 1x +  for the 

constant term of the second degree polynomial: 

 ( )2 4 12(exp(2.2 ) 1) / 6 ( )x x F x= + + − = . 

16.3. Speed of convergence 

Let the series { }nx  be convergent, *lim
n n

x x→∞ = . Denote the n -th error by *

n n
x xε = − . 

Then, if there exists constant c  and a number 1p ≥  such that 

 1 ,    0,1, ,
p

n n
c nε ε+ ≤ = …  (16.5) 

then the series { }nx  has convergence of p -th order. If 

• 1p = , then the convergence is linear or first order, 

• 1 2p< < , then the convergence is superlinear, 

• 2p = , it is quadratic or second  order, 

• 3p = , cubic or third  order. 

Number p  characterizes the speed of convergence of an iterational method. For instance, if 

2p = , then roughly saying this would mean  that the number of accurate digits is doubled at 

every iteration step.  

The fixed-point iteration doest not have that speed. It can be shown that 1p =  holds, that is 

the convergence is of first order if *( ) 0F x′ ≠ . For, 

 * * *

1 1 ( ) ( ) .
n n n n n

x x F x F x q x x qε ε+ += − = − ≤ − =  (16.6) 
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If *( ) 0F x′ = , then the convergence has higher order. This statement is specified in the next 

16.3.1 Theorem 

Let F  be a real function: ( )F S S⊂ ⊂ ℝ , S  is closed. Assume ( )mF C S∈  and ( ) *( ) 0kF x = , 

1,2, , 1k m= −⋯ . Then the fixed-point iteration given by F  has a speed of convergence 

p m= . 

Proof.  The Taylor-polynomial around *
x  with m -th order remainder term is 

 
( )( 1) *

* * * * 1 *( )( )
( ) ( ) ( )( ) ( ) ( )

( 1)! !

mm
m mx

FF x
F x F x F x x x x x x x

m m

ξ−
−′= + − + + − + −

−
…  

where according to the assumption, the first, second, … , 1m − -th derivatives vanish. 

Substitute 
n

x x=  and take into account the relations * *( )x F x=  and 1 ( )
n n

x F x+ = , with these 

 
( )

* *

1

( )
( )

!

m
mx

n n

F
x x x x

m

ξ
+ − = − , 

from where 

 

( )

*

1

( )
,    0,1,

! !

m
m mx m

n n n

F M
x x n

m m

ξ
ε ε+ = − ≤ = …  

and ( )max ( )k

k
x S

M F x
∈

= . This shows the m -th order convergence.  ■ 

16.4. Newton iteration (Newton-Raphson method) and the secant method 

If the function is differentiable in a neighbourhood of the root, then we may search for it by 

taking the intersection of the tangent line from 
n

x  to the x  axis. Algebraically it can be done 

by solving the first degree Taylor polynomial around 
n

x  for zero. The result is the next 

approximate for the root 1n
x + : 

 10 ( ) ( )( )
n n n n

f x f x x x+
′= + − . 

From here the iteration function of the Newton-Raphson method is: 

 1

( )
( )

( )

n
n n n

n

f x
x x F x

f x
+ = − =

′
. (16.7) 

The secant method can be gained by replacing the derivative here with the divided difference 

for the last two points: 

 1 1 1
1 1

1 1

( )( ) ( ) ( )
( , )

( ) ( ) ( ) ( )

n n n n n n n
n n n n

n n n n

f x x x f x x f x x
x x F x x

f x f x f x f x

− − −
+ −

− −

− −
= − = =

− −
, (16.8) 

such that this iteration function uses two previous points. An advantage here over the Newton 

method is that no derivative is needed, the computation of which can be cumbersome 

sometimes. On the other hand, a disadvantage is the lower speed of convergence. 

16.4.1 Theorem, error of the secant method 

Let 
2

1( ) [ , , ]
n n

f x C x x x
∗

−∈ , then we have for the 1n +  -th error of the secant method 
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 1 1 1 1

( )
,   [ , , ],   [ , ]

2 ( )
n n n n n n n

f
x x x x x

f

ξ
ε ε ε ξ η

η
∗

+ − − −

′′
= ∈ ∈

′
, (16.9) 

where x
∗
 is the zero of the function and 1[ , , ]

n n
x x x

∗
−  denotes the interval containing the 

points given in the brackets. 

Proof. The statement will be shown using (16.8) and divided differences. We take into 

account the relation ( ) 0f x∗ = : 

 

1 1

1 1

1 1 1
1*

1 1 1

( ) ( ) [ , ]1
( ) 1

[ , ] [ , ]

[ , ] [ , ] [ , , ]

[ , ] [ , ]

n n
n n n n n

n n n n n

n n n n n n
n n n

n n n n n

f x f x f x x
x x x x x x

x x f x x f x x

f x x f x x f x x x

f x x x x f x x

ε ε

ε
ε ε ε

∗ ∗
∗ ∗ ∗

+ + ∗
− −

∗ ∗
− − −

−

− − −

 −
= − = − − − = − = 

−  

 −
= = 

− 

 (16.10) 

and applying Corollary 14.1.1  for the relation between divided differences and derivatives 

gives the statement.   ■ 

16.4.2 Corollary 

Taking the limit 1n n
x x− → , we get the corresponding result for the Newton method: 

 2

1

( )
,   [ , ]

2 ( )
n n n

n

f
x x

f x

ξ
ε ε ξ ∗

+

′′
= ∈

′
, (16.11) 

It is seen, if there is convergence, then it has order 2, assuming that ( ) 0f x∗′ ≠  holds. If, in 

addition, ( ) 0f x∗′′ =  holds, then higher order convergence may take place. 

16.4.3 Theorem on monotone convergence 

Let 2[ , ],   ( ) 0,   [ , ]f C a b f x x a b∗ ∗∈ = ∈ , and the derivatives ( ),  ( )f x f x′ ′′  do not change sign 

in [ , ]a b , moreover, for the starting point 0 [ , ]x a b∈  0 0( ) ( ) 0f x f x′′ >  is fulfilled. Then the 

Newton method converges and the generated series { }nx  tends monotonically to the solution 

x
∗
. 

Proof. According to (16.11), the Newton method returns iterates which are located either to 

the right or to the left of the root, because the sign of /f f′′ ′  is constant. Subtracting x
∗  from  

(16.7) yields 

 1 ( ) / ( )
n n n n

f x f xε ε+
′= − . (16.12) 

Because of 0 0( ) ( ) 0f x f x′′ > , the sign of 0( )f x′′  and 0( )f x  is the same, and this is also true 

for 0 0( ) / ( )f x f x′′ ′  and 0 0( ) / ( )f x f x′ .  Choose 0n =  in  (16.11). Now if 1 0ε > , then 

0 0( ) / ( )f x f x′′ ′  is positive and 0ε  in (16.12) was diminished by the positive 0 0( ) / ( )f x f x′ ; 

this is the case in all subsequent steps for 0
n

ε > . Similarly, in the case of 1 0ε <  all further 

0
n

ε <  is increased.  We got the result that either from below or from above the 
n

ε -s  are 

tending to zero.  ■ 

Corollary. The formula in (16.9) shows that starting the secant method such that for 

0 1, [ , ]x x a b∈ , the signs of 0ε , 1ε  and 0 0( ) / ( )f x f x′′ ′  are identical, then the secant method 
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will also produce a monotone converging sequence on the conditions of the theorem. It is so, 

because the divided difference in it can always be replaced by a derivative that does not 

change sign in [ , ]a b .  

16.4.4 Theorem on local convergence 

Let 2[ , ],   ( ) 0,   ( ) 0,   , [ , ]f C a b f x f x x x a b∗ ∗′∈ = ≠ ∈ , and assume the condition 

 
[ , ]*

0

[ , ]

2min ( ) 1

max ( )

a b

a b

f x
x x

f x M

′
− < =

′′
 (16.13) 

is fulfilled for the starting point 0 [ , ]x a b∈ . Then starting from 0x , the Newton-Raphson 

method converges to 
*

x . Moreover, the secant method converges, if 0x  and 1x  satisfy 

condition  (16.13). 

Proof. Considering  (16.9) or (16.11), there is contraction in the iteration from the first step if  

 
[ , ]

0 0

[ , ]

max ( )( )
1

2 ( ) 2 min ( )

a b

a b

f xf
x x

f f x

ξ
ε

η
∗

′′′′
≤ − <

′ ′
 

holds. Then the contraction will be inherited for subsequent steps and the statement comes by  

rearranging.  For the case of the secant method, the same condition still should be demanded 

for 1ε  in the second step to insure convergence.  ■ 

Having the constant M  at hand, then it is possible to estimate the 1n +  -th error.  Introduce 

k kd M ε= , then we can proceed as 

 ( )
22 2 2

1 1 1 0 1 0         
nn

n n n n nd M M d d Mε ε ε ε+ + + += ≤ → ≤ → ≤ . (16.14) 

16.4.5 Theorem, the speed of convergence for the secant method 

On the conditions of Theorem 16.4.4 and starting from points 0x , 1x , the secant method will 

converge with an asymptotic speed of (1 5) / 2 1,62p = + ≈  to x
∗
. 

Proof. Applying (16.9), 

 1 1n n nMε ε ε+ −≤  

holds, where M  is the same as in (16.13). Again with the notation k kd M ε=  

 1 1,   1,2,
n n n

d d d n+ −≤ = …  

At start *

0 1/x x M− <  and *

1 1/x x M− < , with these 0 1, 1d d < . Therefore we may state: 

0 11:  ,d d d d∃ < ≤ , with the help of that 2 3 5

2 3 4,  ,  d d d d d d≤ ≤ ≤ follows, in general 

 0 1 1 1,    1,    ,    1,2,nf

n n n n
d d f f f f f n+ −≤ = = = + = …  

Here 
n

f -s are the elements of the familiar Fibonacci sequence, its elements can be given by a 

closed formula: 
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 1 1

1 2 1 2

1 1 5 1 5
,   ,   .

2 25

n n

n
f b b b b+ + + −

 = − = =   (16.15) 

Observe that  2 1b < , consequently the increasing powers will tend to zero. Therefore there 

exists a positive number K  such that for all n  1 1

1 2,   / 5ns n

n
d K s b+ +

+≤ = − . Therefore we may 

write 

 ( ) ( )
1 1

1 1/ 5 / 5
,   

n nb b
b b

nd K d K d d d≤ = =ɶ ɶ . 

We have got as a result that the errors of the secant method can be bounded by a sequence, 

which has order of convergence 1

1 5
1,62

2
b

+
= ≈ , in other words, it is superlinear.   ■ 

16.5. Examples 

1. Let 3[ , ]f C a b∈ . Apply a parabola interpolation for three points to derive an iterative 

method to find a local minimum of ( )f x  in [ , ]a b ! 

Solution. Let   three points in [ , ]a b  be 2 2 1 1( , ), ( , ), ( , )
i i i i i i

x f x f x f− − − − . Newton’s interpolation 

gives 2 2 2 1 2 2 1 2 1( ) [ , ]( ) [ , , ]( )( )
i i i i i i i i i

p x f f x x x x f x x x x x x x− − − − − − − −= + − + − − . The zero of the 

derivative has the form: 

 2 1 2 1
1

2 1

[ , ]

2 2 [ , , ]

i i i i
i

i i i

x x f x x
x

f x x x

− − − −
+

− −

+
= − . (16.16) 

2. How should we detect a local minimum of a function when tabulating with uniform 

stepsize? 

Solution. Denote the stepsize by h  and the j -th abscissa by ,   0,1,
j

x a jh j= + = … . The 

triple 1 1, ,
j j j

x x x− +  suffices if 1[ , ] 0
j j

f x x− <  and 1[ , ] 0
j j

f x x + >  hold. Then the local minimum 

can be estimated by the follwing  simple formula, if 
j

x  is the midpoint in (16.16): 

 
1 1 1 1 1 1

min

1 1 1 1

[ , ]

2 2 [ , , ] 2 2

j j j j j j

j

j j j j j j

x x f x x f fh
x x

f x x x f f f

− + − + + −

− + + −

+ −
≈ − = −

− +
. (16.17) 

3. Give a convergence theorem for the iteration (16.16) as with the local convergence 

theorem of the Newton iteration! 

Solution. For the sake of simplicity, consider the case 2i =  in (16.16). We try to find 

connection for the subsequent errors by using the properties of divided differences. Subtract 

the minimal point x
∗  from both sides and let 

i i
x xε ∗= − . This gives 

 0 1 0 1
3

0 1 2

[ , ]

2 2 [ , , ]

f x x

f x x x

ε ε
ε

+
= − . 

The divided difference in the numerator will be reshaped by using the fact that [ , ] 0f x x∗ ∗ =  

holds and the order of base points is arbitrary.: 

0 1 0 1 1 1[ , ] [ , ] [ , ] [ , ] [ , ]f x x f x x f x x f x x f x x
∗ ∗ ∗ ∗= − + − =  0 0 1 1 1[ , , ] [ , , ]f x x x f x x xε ε∗ ∗ ∗= + . After 

substituting and bringing to common denominator, we get: 
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( ) ( )0 0 1 2 0 1 1 0 1 2 1

3

0 1 2

[ , , ] [ , , ] [ , , ] [ , , ]

2 [ , , ]

f x x x f x x x f x x x f x x x

f x x x

ε ε
ε

∗ ∗ ∗− + −
= . 

The first to terms may be brought into 0 2 0 1 2[ , , , ]f x x x xε ε ∗ . The last two terms need a little 

more work: 

( )1 0 1 2 0 1 0 1 1 1 2 0 1 2 0 1 0 1[ , , ] [ , , ] [ , , ] [ , , ] [ , , , ] [ , , , ]f x x x f x x x f x x x f x x x f x x x x f x x x xε ε ε ε ε∗ ∗ ∗ ∗ ∗ ∗ ∗− + − = +

. With these 

 
( )0 1 2 0 1 2 0 1 0 1

3

0 1 2 0 1 2

[ , , , ] [ , , , ]

2 [ , , ] 2 [ , , ]

f x x x x f x x x x

f x x x f x x x

ε ε ε ε ε
ε

∗ ∗ ∗+
= + . 

Introduce { }2 0 1 2max , ,δ ε ε ε=  and 

 

(3)

[ , ]

[ , ]

max ( )

2min ( )

x a b

x a b

f x
M

f x

∈

∈

=
′′

. (16.18) 

Then we get by using the relation between the divided differences and the corresponding 

derivatives: 

 2 2

3 2 2

3 2!
2

2 3!
M Mε δ δ≤ = . (16.19) 

This way 3ε  is surely less than the absolute maximum of the three previous ε , if 2 1Mδ <  or 

alternatively 2 1/ Mδ < . Consequently, the resulting method surely converges, if the three 

starting points are in a neighbourhood of the minimum having  radius 1/ M . 

16.6. Problems 

16.1. We have 1[ , ]f C a b∈ , ( ) ( ) 0f a f b <  and ( )f x′  does not have zero in [ , ]a b . Show that 

( )f x  has only one zero there. 

16.2. Explain that the equation cos 4 2 0,   x x x− + = ∈ℝ  has only one zero by expressing x  

from the term 4x and the obtained iteration is convergent for all starting points. Apply 

Banach!s fix point theorem! 

16.3. From what neighbourhood of the root will the Newton iteration converge in the previous 

problem? 

16.4. Let 0 0x =  and find 1x  by the fix point iteration in Problem 16.2. Estimate the distance 

of zero from 1x ! 

16.5. Solve the equation ( ) 1/ 0f x x a= − =  with Newton’s iteration! For what starting points 

will convergence take place? An interesting feature of the obtained iteration function is that it 

has no division. This was important for old computers not having division operation in their 

arithmetic. 

16.6. Solve 2( ) 0,   0f x x a a= − = >  with Newton’s iteration and discuss convergence!  

16.7. By using the solution of the previous problem, develop a method for computing 1/k
a , 

where a  is a positive number and 1 k< . 
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16.8. Show that Theorem 16.4.3 may be modified such that 0 0( ) ( ) 0f x f x′′ >  is replaced by 

the following condition: after the first step 1 [ , ]x a b∈ . 

16.9. Show the iteration with 
( )

2
( )

( )
( ) ( ( ))

n

n n

n n n

f x
F x x

f x f x f x
= −

− −
 has second order 

convergence! 

16.10. Check that the Newton method converges linearly for a multiple root! 

16.11. Prove that the corrected formula 1 ( ) / ( )
n n n n

x x rf x f x+
′= −  of the Newton method for a 

zero of multiplicity r  has quadratic convergence. 

16.12. Elaborate a stopping criterion for the Newton method to reach a given precision of ε . 

16.13. What will happen to the secant method, if the conditions of Theorem 16.4.3 are 

modified such that 0 0ε >  and 1 0ε < ?  

16.14. How to stop the secant method for a prescribed accuracy? 
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17. Solution of nonlinear equations II. 

We continue with some special cases. 

17.1. The method of bisection 

Assume the interval [ , ]a b  has one zero: ( ) ( ) 0f a f b <  and the function is continuous in 

[ , ]a b . According to the method of bisection, the interval is halved and the subinterval still 

containing the zero is kept, i.e. where the sign-change still takes place. Then we have the 

following algorithm: 

1. [ , ],   ( ) ( ) 0f C a b f a f b∃ ∈ <  and ∈  is the prescribed accuracy. 

2. Start: 0 0 1[ , ] [ , ],   ( ) / 2a b a b x a b= = + . 

3. 
1 1

1

[ , ],   if  ( ) ( ) 0,
[ , ]

[ , ],   otherwise                 

n n n n

n n

n n

a x f a f x
a b

x b

− −

−

<
= 


 

4. 1 ( ) / 2.
n n n

x a b+ = +  

5. Stop: if ( ) 0
n

f x =  or n nb a− <∈. 

The method is not very fast, but it converges safely. Sign-change does not always imply the 

presence of a zero. As an example, think on the function 1/ x , where the initial interval is 

[ ]1, 2 − . 

17.1.1 Theorem 

The series ,   1, 2,
n

x n = …  given by the bisection method has a linear order of convergence 

and we have for the error 

 ,   0,1,
2

n n

b a
nε

−
≤ = …  (17.1) 

Proof. Convergence follows from the fact that always the halved interval containing zero is 

kept. In all steps we have for the error: 

 1

1

2
n n

ε ε+ ≤  

and this means linear convergence.  ■ 

17.2. The method of false position  (regula falsi) 

The difference now from the bisection method is that the division of the interval is not in the 

middle but it is chosen to be the zero of the line between points ( ), ( )n na f a  and ( ), ( )n nb f b : 

 1 ( )
( ) ( )

n n
n n n

n n

b a
x a f a

f b f a
+

−
= −

−
. (17.2) 

It can be shown under similar conditions that the convergence is linear such that it is not 

faster than the bisection method. Yet, it may happen that it is slower. For instance, this 
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happens in the case when the values of the function are close to the x -axis and the zero is 

fairly near to one of the endpoints ( a  or b ). 

17.3. Newton iteration for functions of many variables 

Let :  n nf →ℝ ℝ  be a mapping in n -variables, and we are looking for a vector x  such that 

( ) 0f x = . Assuming differentiability, a two-term power series approximation around n

k
x ∈ℝ  

gives a next estimate 1k
x +  of the solution: 

 1( ) ( )( ) 0
k k k k

f x f x x x+
′+ − = , (17.3) 

where ( ) ( ) / n n

i j
f x f x x ×′  = ∂ ∂ ∈  ℝ  is a matrix – the so-called Jacobi matrix - , which is 

supposed to be invertible. Solving  (17.3) for 1k
x +  gives the iteration: 

 [ ]
1

1 ( ) ( )
k k k k

x x f x f x
−

+
′= − . (17.4) 

If there exists a solution, then we may hope convergence if the vectors are sufficiently close 

to the solution.  

This method needs in all steps the computation of  derivatives in the Jacobi matrix and the 

solution of a linear system. To reduce computational work, many times the following 

simplification is applied: the ( )
k

f x LU′ =  decomposition is formed, and then the simpler 

 ( )
1

1 ( )
k k k

x x LU f x
−

+ = −  (17.5) 

iteration is done in the course of some steps. This corresponds to the case in one-dimension 

where the derivatives are not re-computed for a while. Such methods are called quasi-Newton 

methods. 

17.3.1 Broyden’s update formula for the Jacobi matrix 

To calculate and invert the Jacobi matrix in all steps of iteration is a tedious task. In order to 

simplify work, Broyden suggested a rank-one update for the Jacobi matrix. To give the idea, 

consider the two term power series again to approximate the change in the value of the  

function  : 

 1 1 1( ) ( ) ( )( )
k k k k k

f x f x f x x x− − −
′≈ + − . (17.6) 

Introducing the notations 1 1( ) ( ),  
k k k k k k

f f x f x x x x− −∆ = − ∆ = −  and 1 1( )
k k

J f x− −
′= , this reads 

 1k k k
f J x−∆ ≈ ∆ . (17.7) 

Now assume that equality holds for the next Jacobian 
k

J  in this equation: 

 
k k k

f J x∆ = ∆  (17.8) 

and there is a rank-one difference between 
k

J  and 1k
J − . This equation can be rearranged as 

 ( )1 1k k k k k kJ J x f J x− −− ∆ = ∆ − ∆   (17.9) 

and applying the pseudoinverse of  the ‘special matrix’ 
k

x∆  from the right, gives:  

 ( )
2

1 1 2
/T

k k k k k k k
J J f J x x x− −= + ∆ − ∆ ∆ ∆ .  (17.10) 
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This rank-one update has minimal 2-norm due to the pseudoinverse, and the two-norm of a 

rank-one matrix is  equal to its Frobenius norm, therefore the modification of the Jacobian is 

also minimal in Frobenius norm. Gay (1979) proved the statement: when Broyden’s method is 

applied to a linear system of size n n× , it terminates in 2n  steps. 

17.4. Roots of polynomials 

To determine roots of polynomials may be needed most frequently for finding the eigenvalues 

of matrices from the characteristic polynomial. However, it is not suggested that the 

characteristic polynomials computed, because matrix algorithms offer more reliable methods. 

In reality, representing polynomials as the sum of powers for a greater value of n  

 
0

( )
n

i

i

i

p x a x
=

=∑  (17.11) 

is not feasible, because the coefficients may not have enough numerical information to 

compute roots to a desired accuracy.  For instance, Wilkinson took the polynomial with roots 

1,2,...,19,20 and computed it in the form of (17.11), and then re-computed the roots. The 

result was so different that he even got complex pairs of roots. The phenomenon can be 

explained by the connection between roots and coefficients: as an example, the coefficient of 

the zeroth degree power is the product of the roots, actually it is equal to 20! which cannot be 

given accurately with 15 decimal digits. So that many important information may be lost 

because of the machine number representation.  

There is a connection between the form in (17.11) and the so-called Frobenius companion 

matrix, which was already seen in Sec. 7.3: 

 

0

1

2

1

0 0 0 /

1 0 0 /

1

0 /

1 /

n

n

n n

n n

a a

a a

F

a a

a a

−

−

− 
 − 
 

=  
 
 −
 

−  

… …

… …

⋱ ⋮ ⋮

⋱ ⋱ ⋮ ⋮

⋱

. (17.12) 

If expanded along the last column, it is easy to show: ( )
0

1
det

n
i

i

in

I F a
a

λ λ
=

− = ∑ . To know 

about this matrix is useful from at least two points of view. It shows on one hand that the 

roots of polynomials may be found by linear algebraic algorithms, which are considered 

among the most reliable methods. On the other hand, it is possible to give a circle in the 

complex plane that contains all roots of the polynomial: 

 ( )0
0
max 1 /i i n k

i n
F a a R xδ

∞ ≤ <
= − + = ≥ , 

where 
ij

δ  is the Kronecker delta. Number R  -  being a norm of F - is greater than or equal to 

the spectral radius of F , which is now the maximal absolute value of the polynomial roots.  

It is also possible to give another smaller circle such that all roots are outside of this circle. 

Introduce the change of variable by 1/x y=  and determine the polynomial in terms of y . 

The result is the reciprocal polynomial, where the order of the coefficients are reversed and 

the roots are the reciprocals of the roots of the first polynomial. Taking the row norm of the 

Frobenius companion matrix of the reciprocal polynomial gives: 
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( )0
0

1/ max 1 / 1/k in i
i n

x a a rδ
< ≤

≤ − + = , where it was assumed that 0 0a ≠ . Combining the two 

results, 

 ,    1, 2, ,kr x R k n≤ ≤ = … , (17.13) 

we see that the roots can be found in a ring given by the radii r  and R . 

For polynomials of (17.11), the Newton method can be easily applied, because the function 

value and derivatives are easy to compute. For example, if we want to compute them at ξ , it 

will be enough to divide the polynomial by 2( )x ξ−  with remainder: 

 2( ) ( )( )p x q x x xξ α β= − + + . (17.14) 

Then  ( )p ξ αξ β= +  and  '( )p ξ α= . 

To identify multiple roots, Euclid’s algorithms may be applied. This time the two starting 

polynomials are 0 1( ) ( ),    ( ) ( )p x p x p x p x′= = −  and the 1i +  -th polynomial is determined by 

dividing 1( )
i

p x−  by ( )
i

p x  and the remainder is formed: 

 1 1( ) ( ) ( ) ( ),    1, 2,
i i i i i

p x q x p x c p x i− += − = …  (17.15) 

The degree of the polynomials in the series are decreasing and 0
i

c > . The algorithm is ended 

after  m n≤  steps: 

 1( ) ( ) ( ),    ( ) 0.
m m m m

p x q x p x p x− = ≠  

The last polynomial is the greatest common divisor of the to beginning polynomials. The 

derivative has all roots with multiplicity higher than 1, therefore these roots should appear in 

( )
m

p x . 

If all roots are single and real, then the Eulidean algorithm returns a series of polynomials, 

that is, a Sturm-sequence. Let ( )V a  be the number of sign changes at a , and ( )V b  at b , then 

one can show that the interval [ , ]a b  contains ( ) ( )V a V b−  number of roots. 

17.5. Problems 

17.1. Elaborate the algorithm  of the division in (17.14)! 

17.2. Give the ring that contains the roots of  5 4 3 24 3 6 5 8 2x x x x x− + − − + !  
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18. Numerical quadrature I. 

 

The primitive function is not always known when computing integrals. Even if it is known, 

sometimes it is so complicated that it is almost useless for computations. For such cases 

numerical quadrature offers an easier alternative for getting a result of desired accuracy. Next 

we deal with quadrature formulas that can be gained from interpolation.  

We have seen at interpolation that a function in the interval [ , ]a b  can be written as: 

 
n n

f L r= + , (18.1) 

where 
n

L  is the Lagrange interpolant polynomial and 
n

r  is the error term. (We assume the 

abscissas are ordered: 1i i
x x− <   and  0x a= , 

n
x b= .) The principle of deriving quadrature 

formulas can be given by: 

 
0

( )

b b b n

n n i i n

ia a a

f L r a f x R
=

= + = +∑∫ ∫ ∫ , (18.2) 

where the weights of the quadrature 

 ( )

b

i i

a

a l x dx= ∫  (18.3) 

come from integrating the Lagrange base polynomials. 

Corollary. Such formulas are exact for polynomials of order at most n . 

For equidistant abscissas we get the Newton-Cotes formulas. 

18.1. Closed and open Newton-Cotes quadrature formulas 

18.1.1 Definitions 

Denote the set of base points by 0{ , , }
n n

x xΩ = … . For a closed quadrature formula, 

interpolation is done such that ,
n

a b ∈Ω , ( ) /h b a n= − , ,   0,1, ,
k

x a k h k n= + ⋅ = … . In the 

case of an open formula, we have , ,   ( ) / ( 2)
n

a b h b a n∉Ω = − + , 

( 1) ,   0,1, ,
k

x a k h k n= + + ⋅ = … , 1 1,   
n

x a x b− += = . 

Next we turn to the derivation of Newton-Cotes formulas. Lagrange base polynomials yield 

 
( )

( ) .
( ) ( )

b b

n
k k

k n ka a

x
a l x dx dx

x x x

ω

ω
= =

′−∫ ∫  

Observe that: ( )
k j

x x k j h− = −  and introduce a new variable: ( ) /t x a h= − .  From here 

x a th= + , ( )
j

x x t j h− = −  and 
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( )  is missing

0

closed

,

0

( 1) ( )

( 1) 1( 1)( 2) ( )

( 1) ( 1) ( )
( ) ( ) ,

!( )!

t k

n n

k n

nn k

k n

t t t n h
a hdt

k k n k h

t t t n
b a dt b a B

nk n k t k

−

−

− −
= =

− − − − +

− − −
= − = −

− −

∫

∫

���
………

… …

…

. (18.4) 

The advantage of this form is that the coefficients closed

,k nB  need to be computed only once. 

One can get the open Newton-Cotes weights similarly: 

 

2

open

,

0

( 1) ( 1)( 2) ( 1)
( ) ( ) ,

( 2) !( )! 1

nn k

k k n

t t t n
a b a dt b a B

n k n k t k

+−− − − − −
= − = −

+ − − −∫
…

 (18.5) 

Some of the first Newton-Cotes coefficients can be seen in the following table: 

 

  Closed     Open   

1 1  Trapezoidal rule  1  Tangent rule 

1 4 1  Simpson  1 1   

1 3 3 1   2 -1 2  

7 32 12 32 7  11 1 1 11 

In each row the coefficients should be divided by their sum to get the true numbers. In this 

way the sum of coefficients is equal to 1 so that a constant function is integrated correctly. For 

instance, the weights 1 4 1  refer to the actual weights  1/6  4/6  1/6 in the case of the Simpson 

formula. 

18.1.2 Theorem 

 , , ,

0

1. 1,                  2.  .
n

k n k n n k n

k

B B B −
=

= =∑  (18.6) 

Proof.  The first statement comes from the quadrature of the constant function ( ) 1f x ≡ , 

exploiting the fact that it is exact for polynomials of order 0. One can get the second statement 

by introducing the new variable y n t= − .       

      ■ 

18.2. Some simple quadrature formulas 

1. The tangent formula (open Newton-Cotes): 0n = , 

2

open

0,0

0

1
1

2 1 1
B dt= ⋅

⋅ ⋅ ∫
 and 

 0 ( ) ( )
2

a b
I f b a f

+ 
= −  

 
. (18.7) 

This formula can be interpreted as follows: the function in [ , ]a b  is approximated by the 

tangent line at the midpoint and integration is done to that line. This shows that the formula is 

exact for at most first order polynomials. 
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18.2.1 Theorem, error of the tangent formula 

Let 2( ) / 2,   [ , ]c a b f C a b= + ∈ , then one has the relation: 

 
3( )

( ) ( ) ( ) ( ),    [ , ].
24

b

a

b a
f x dx b a f c f a bη η

−
′′= − + ∈∫  (18.8) 

Proof. The Taylor expansion around c  with remainder term is 

 
2( )

( ) ( ) ( ) ( ) ( ).
2

x

x c
f x f c x c f c f ξ

−
′ ′′= + − +  

After integration the first term gives the tangent formula, the second term is zero, such that it 

is enough to consider the error term: 

 2

1

1
( ) ( ) ( ) .

2

b

x

a

R f x c f dxξ′′= −∫  

Applying the mean value theorem for integrals gives 

 
3 3

2

1

( ) ( ) ( ) ( )
( ) ( ) ( ).

2 2 3 24

bb

a a

f f x c b a
R f x c dx f

η η
η

′′ ′′  − −
′′= − = = 

 
∫  ■ 

Usually the integration formula (18.8) is not applied for the whole interval [ , ]a b ; instead, it is 

divided into m  equal subintervals, where the tangent formula is applied for integration. For 

instance, if 3m = :  ( ) / 3h b a= −  and we apply  (18.7) for each subinterval. 

In general we sum up the results of the subintervals and arrive at the composite tangent rule: 

 
3

2
1

( )
( / 2 ) ( ),

24

b m

ia

b a b a
f f a h ih f

m m
η

=

− −
′′= − + +∑∫  (18.9) 

where 1 2

1
( ) ( ( ) ( ) ( ))

m
f f f f

m
η η η η′′ ′′ ′′ ′′= + + +… , because f ′′  assumes this average value 

somewhere in [ , ]a b   (called the Darboux property). 

2. The trapezoidal formula. It is a closed Newton-Cotes formula for: 1,n =  0 1 1/ 2c c
B B= = : 

 1( ) ( ( ) ( )).
2

b a
I f f a f b

−
= +  (18.10) 

18.2.2 Theorem, error of the trapezoidal formula 

Let 2[ , ]f C a b∈ , then 

 
3( )

( ( ) ( )) ( ),    [ , ].
2 12

b

a

b a b a
f f a f b f a bη η

− −
′′= + − ∈∫  (18.11) 

Proof. The error term comes by integrating the error of the first order interpolating 

polynomial: 

 3

1

0

( ) ( ) ( )
( ) ( )( ) ( )( ) ( ) .

2 2 12

b b

x x

a a

f f f
R f x a x b dx x a b x dx b a

ξ ξ η

≥

′′ ′′ ′′
= − − = − − − = − −∫ ∫ �		
		�

      ■ 
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Dividing the whole interval into m  parts and summing up the contributions of the 

subintervals lead to the composite trapezoidal rule: 

 
3

0 1 1 2

( )
[ ( ) 2 ( ) 2 ( ) ( )] ( ).

2 12

b

m m

a

b a b a
f f x f x f x f x f

m m
η−

− −
′′= + + + + −∫ …  (18.12) 

18.2.3  Definition 

A quadrature formula is said of order k , if a polynomial of degree k  is the polynomial of 

smallest degree for which the formula is not exact. 

Then the tangent and trapezoidal formula is of second order. 

3. Simpson formula: it is a closed formula coming from second degree polynomial 

interpolation: 2n = , 0 1/ 6c
B = , 1 4 / 6c

B = , 2 1/ 6c
B =  and 

 2 ( ) ( ( ) 4 ( ) ( )).
6 2

b a a b
I f f a f f b

− +
= + +  

We have the function 2 ( ) ( )( )( )
2

a b
x x a x x bω

+
= − − −  in the error expression. The integral of 

this function in [ , ]a b  is zero. One can show it simply by transforming the origin of the 

coordinate system into ( ) / 2a b+ . Then 2 ( )xω  is an odd function that has integral zero for the 

symmetric integration endpoints. Therefore the error will be derived from Hermite’s 

interpolation, 

 
(4)

2

3

( )
( ) ( ) ( )( ) ( )

4! 2

x
f a b

f x H x x a x x b
ξ +

= + − − − , (18.13) 

where it is assumed that the first derivative is still given at the midpoint ( ) / 2a b+ . Having 

the divided difference scheme in our mind, we know that the interpolating polynomial now 

has the form: 3 2( ) ( ) ( )( )( )
2

a b
H x L x C x a x x b

+
= + − − − . The coefficient of the second term is 

irrelevant, because the multiplying function has integral zero such that 3 2

b b

a a

H L=∫ ∫  holds. 

18.2.4 Theorem, error of the Simpson formula 

 Let 4[ , ]f C a b∈ . Then there exists [ , ]a bη ∈ , such that 

 

5(4)

(4)
5

2

( )
( ) 4 ( ) ( )

6 2 90 2

( )
( ) ,

90

b

a

b a a b f b a
f f a f f b

f
I f h

η

η

− + −   
= + + − =   

   

= −

∫
 (18.14) 

where ( ) / 2.h b a= −  

Proofs. We start from (18.13) of Hermite’s interpolation. Integration by terms gives: 

 
(4)

2

2

( )
( ) ( ) ( )( ) ( ) .

4! 2

b

x

a

f a b
I f I f x a x x b dx

ξ +
− = − − −∫  



 Hegedüs: Numerical Methods II. 48 

We may apply the mean value theorem of integration if the term beside (4)f  is non-negative. 

This can be assured if we take ( )b x−  instead of ( )x b− : 

 

5(4) (4)
2

2

( ) ( )
( ) ( ) ( )( ) ( ) .

4! 2 90 2

b

a

f a b f b a
I f I f x a x b x dx

η η+ − 
− = − − − − = −  

 
∫  ■ 

Composite Simpson rule. Now the interval [ , ]a b  is divided into an even number of m  

subintervals and the Simpson formula is applied to the neighbouring interval pairs, the result 

is the composite Simpson rule. Then the composite formula can be given with point triplets 

as: 

 

(4)
5

1 1

1,3,

5
(4)

0

 páros  ptlan  ptlan
belső pont

( )2
( ( ) 4 ( ) ( ))

6 90

( ) 2 ( ) 4 ( ) ( ) ( ).
3 90

b

k
k k k

ka

k k m k

k k k

fh
f f x f x f x h

h h
f x f x f x f x f

η

η

− +
=

 
= + + − = 

 

 
 = + + + −
  
 

∑∫

∑ ∑ ∑

…

 (18.15) 

The error term can still be simplified:  

 

(4)5 5 5
(4) (4)

4 4
 ptlan

( )( ) ( )
( ) ( ),

90 180 / 2 180

k

k

k

fh b a b a
f f

m m m

η
η η

 − −
− = − = −  

 

∑∑  (18.16) 

because due to the Darboux property there exists an η  such that the average is equal to 
(4) ( )f η . 

18.3. Examples 

1) We approximate the integral 

1

1
2

dx

x
−

+∫  with the composite tangent rule. How many 

subintervals should be chosen such that the error be not greater than 210− ? 

Solution. We have to ensure 
3

2

22

( )
10

24

b a
M

m

−−
≤ , where 2b a− =  and 

3

2
[ 1,1]

2 max (2 ) 2
x

M x
−

∈ −
= + = . Substituting numbers gives 2200 / 3 m≤ , such that 9m =  is 

satisfactory. 

2) Give parameters 0 1 2,  ,  A A A  such that the rule  
2

2 0 1 2

0

( ) ( ) (0) (1) (2)x f x dx I f A f A f A f≈ = + +∫  be exact for at most second degree 

polynomials! 

Solution. There are two sraigthforward approaches. One is to compute weights with the 

Lagrange base polynomials: 

2

0

( )
i i

A l x xdx= ∫ , where x  can be considered a weight 

function. The second approach is to set up a system of linear equations according to accuracy 

demands. The first line below states that the quadrature is exact for the constant polynomial 1, 

the second line expresses exactnes for polynomial x  and the third line is for function 2
x : 
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2
1/2

0
0

2
1/2

1
0

2
2 2 1/2

0

4 2 / 3
1 1 1

0 1 2 8 2 / 5

0 1 4
16 2 / 7

x dx
A

A x x dx

A
x x dx

 =
    
     = ⋅ =    
         =
 

∫

∫

∫

. 

It has the solution: 0 1 2

8 2 32 2 12 2
,   ,  

105 35 35
A A A= = = . 

18.4. Problems 

18.1. How many subintervals are needed for computing the integral 
3

0
/ (1 2 )dx x+∫  with the 

trapezoidal rule such that the error should not be greater than 0.18? 

18.2. The integral 
2

2

0
/ (1 )dx x+∫  is approximated by Simpson’s rule. How many subintervals 

of [0, 2]  is needed for getting an error less than 310− ? 

18.3. We compute the integral  

2

0
3 2

dx

x +∫    with the tangent rule. How many subintervals are 

needed for an error not greater than 23. 10−× ?  
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19. Gaussian quadratures 

We have seen that a quadrature formula coming from a polynomial of order n  is exact for 

polynomials having degree not greater than n . The Gaussian quadrature formulas are based 

on the observation that choosing the base points specifically may increase the order of the 

quadrature formulas. We shall need orthogonal polynomials here. The scalar product of 

functions f  and g  is given by  

 ( ), ( ) ( ) ( )

b

a

f g w x f x g x dx= ∫ , 

where ( )w x  is the weight function and integrability is assumed. More on orthogonal 

polynomials can be found in Sec. 9. 

19.1. Theorem on the roots of orthogonal polynomials 

Let { ( )}
k

p x  be a set of orthogonal polynomials. Then for any n  the roots of 1( )
n

p x+  are real, 

they have multiplicity 1 and they are in the interval [ , ]a b , where [ , ]a b  is the domain of 

integration for the scalar product. 

Proof. Assume indirectly that the multiplicity may be even greater than 1 and let 0 1, , ,
k

x x x…  

be the roots of 1( )
n

p x+  in [ , ]a b  having odd multiplicity, that is, 1( )
n

p x+  changes sign there. If 

k  – the greatest index of such roots – is equal to n , then the theorem is true. If not, then 

assume k n<  and this leads to contradiction. Consider the ( )1k + -st degree polynomial 

0 1( ) ( )( ) ( )
k

q x x x x x x x= − − −… . As the inequality 1 1k n+ < +  holds, the scalar product 

1( , )
n

p q+  should be zero because of orthogonality, (see the Corollary of Theorem 9.1.2). But 

the polynomial 1( ) ( )
n

p x q x+  does not change sign in [ , ]a b , because all sign changes of 1n
p +  

are extinguished by ( )q x  such that ( )1 1, 0
n n

p q wp q+ += >∫  should follow, and that is 

contradiction.    ■ 

The Gaussian quadrature formula on 1n +  base points is derived from interpolation on the 

roots of 1( )
n

p x+  and integrate: 

 
0

( ) ,   ( ) ( ) .

b b b bn

n n i i n i i

ia a a a

wf wL wr a f x R a l x w x dx
=

= + = + =∑∫ ∫ ∫ ∫  (19.1) 

19.2. Theorem on the order of the Gaussian quadrature 

Let the roots of 1( )
n

p x+  be 0 1, , ,
n

x x x… , 
i i

a l w= ∫ , where 
i

l  is the i -th Lagrange base 

polynomial belonging to the given base points. Then the  Gaussian quadrature formula 

 
0

( ) ( )
n

n i i

i

G f a f x
=

=∑  

is exact for all polynomials of degree not greater than 2 1n + : 2 1 ( )
n n

f f G fα+∈ → =∫P . 
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Proof. ( )
n

G f  is also an interpolatory quadrature, therefore it is surely accurate for all 

polynomials of degree n  at most. Now assume that 2 1 1,   ,   ,
n n n

f f p q r q r+ +∈ = ⋅ + ∈P P  and 

thus 

 

1

0 0
0 for all 

0

1 1

( ) ( ) [ ( ) ( ) ( )]

( ) ( )        (because it is accurate up to order )

( )         (because  and thus orthogonal to )

=

n n

n i i i n i i i

i i
i

n

i i n

i

n n n

G f a f x a p x q x r x

a r x G r rw n

p q r w q p

+
= =

=

=

+ +

= = ⋅ + =

= = = =

= ⋅ + = ∈

∑ ∑

∑ ∫

∫

�	
	�

P

.                                                                                                                 fw∫ �

 

19.2.1 Corollary 

The weights 
i

a  of the Gaussian quadrature are positive. 

Proof.  For Lagrange base polynomials we have  2( ) ( )i j i j ijl x l x δ= = , where 
ij

δ  is the 

Kronecker-delta; moreover, we have 2 ( ) 0
i

l x ≥  and 2

2( )
i n

l x ∈P , consequently the Gaussian 

quadrature is accurate: 

2 2 2

0

0 ( ) ( ) .
n

i n i j i j i

j

l w G l a l x a
=

< = = =∑∫     ■ 

Integrating the  function ( ) 1f x =  gives the sum of the weights: 

 0

0

,   where  ,
n

i

i i

i

a w x wµ µ
=

= = =∑ ∫ ∫  

0µ  being the zeroth moment. Observe that it is equal to b a− , if the weight function 

is ( ) 1w x = . 

19.2.2 Theorem, error of Gaussian quadrature 

Let 2 2[ , ]nf C a b+∈  and 
0

( ) ( )
n

n k k

k

G f a f x
=

=∑ , and the base points are the roots of 1( )
n

p x+ . 

Then 

 ( )
(2 2)

1 1

( )
( ) ( ) , ,

(2 2)!

n

n n n

f
I f G f p p

n

η+

+ +− =
+

 (19.2) 

where 1( )
n

p x+ is a monic orthogonal polynomial.  

Proof.  Applying the Hermite-Fejér interpolation (function values and first derivatives are 

used in the interpolation),  we have the following error formula: 

 

2
1

(2 2)
2 2 2

2 1 0 1

( )

( )
( ) ( ) ( ) ( ) ( ) .

(2 2)!
n

n

x
n n

p x

f
f x H x x x x x x x

n

ξ

+

+

+

=

= + − − −
+

…
�					
					�

 

By applying the mean value theorem of integrals, we get the statement from 
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(2 2)

2

1

0

( )
( ) ( ) ( ) ( )

(2 2)!

b n

x
n n

a

f
I f G f p x w x dx

n

ξ+

+

≥

− =
+∫ �
�

, 

if taking into account the fact that the Gaussian quadrature is accurate for 2 1( )
n

H x+ .   ■  

The following table contains data of some frequently used monic orthogonal polynomials: 

 

Name [ , ]a b  ( )w x  0µ  1nα +  nβ  0p  1p  2p  

Legendre [ 1,1]−  1 2 0 2 2/(4 1)n n −  1 x  2 1/3x −  

Chebyshev [ 1,1]−  
2

1

1 x−
 π  0 

1/4, but  

1 1/ 2β =  
1 x  2 1/ 2x −  

Laguerre [0, ]∞  x
e

−  1 2 1n +  2
n  1 1x −  2 4 2x x− +  

Hermite 
[ , ]−∞ ∞

 

2
x

e
−  

π  0 / 2n  1 x  2 1/ 2x −  

19.3. Examples 

1. The integral ( )
1

1/2
2

1

1 x
x e dx

− −

−

−∫  is approximated by the three-point Gauss-Chebyshev 

quadrature. Estimate the error! 

Solution. For the three-point quadrature 2n = , which will be applied for (19.2): 6M e=  and 

we should have a monic orthogonal polynomial, thus 3 3( ) ( ) / 4p x T x= . The result is that the 

error is not greater than 3 3( , ) / (16 6!) / (32 720)e T T eπ⋅ ⋅ = ⋅ , because 3 3( , ) / 2T T π=  (see 

Problem 7.4). 

2. Give the weights of the two-point Gauss-Hermite quadrature! Check that the resulting 

quadrature formula is accurate up to third degree polynomials! 

Solution. For the two-point quadrature, the roots of the  second degree Hermite polynomial 

are 1/2

0 1 2x x
−− = = . Hence the integral of the first Lagrange base polynomial is given by 

2 1 01
0 0

0 1 1

( )
exp( ) / 2

( ) 2

xx x
a x dx

x x x

µ
µ

∞

−∞

−
= − = =

−∫ , because the integral of the first order term  is 

zero as being an odd function. One gets similarly 1 0a a= . The resulting quadrature is accurate 

for the function 1, because the result is 0µ . It is also accurate for functions x  and 3
x , because 

they are odd and the result 0 follows for both integrals and quadrature rules. Still it remained 

to show that the formula is accurate for the second degree polynomial 2
x . Its integral can be 

expressed by (9.8) as ( ) ( )1 1 1 0 0, ,p p p pβ= , and this is equal to 0 / 2µ  when using the given 

table. The Gauss-Hermite quadrature yields 0 1 1
( )

2 2 2

µ
+ , such that equality holds. 

3. Find the value of the following integral: 

 

1 2

2
1

(2 )

1

x x dx

x−

+

−
∫ . 
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Solution 1. We expand the polynomial in the numerator as the linear combination of the first 

three Chebyshev polynomials: 2

0 0 1 1 2 22x x c T c T c T+ = + + . Then the integral can be written as: 

( ) ( )0 0 0 1 1 2 2 0 0 0 0, ,T c T c T c T c T T c π+ + = = . Using the coefficients of the Chebyshev polynomials, 

the following linear system of equations can be set up due to (9.5): 

 

0

1

2

1 0 1 0

1 0 1 ,

2 2

c

c

c

−     
     =     
          

 

from where 0 1c = , therefore the value of the integral isπ . 

Solution 2. Observe that the integral is expressible as ( ) ( ) ( )1 1 0 1 1, 2 2 , 2 / 2T T T T T π π+ = = = . 

19.4. Problems 

19.1. Compute with Hermite-polynomials: 

 

2 2

0 1 1 1 0, 0

(2 ) ?

1,   ,   ( / 2) ,   ( ) .

x

n n n

e x x dx

H H x H xH n H H H π

∞
−

−∞

+ −

− =

= = = − =

∫
 

19.2. Give the error formula for the two-point Gauss-Hermite integral! 

19.3. 

1 3 2

1 1 0, ,
2

1

4 4 3 1
?   { 2 ,   ( , ) ( ) / 2}

1
n n n n m m n m

x x x
dx T xT T T T

x
δ δ π+ −

−

+ − −
= = − = +

−
∫ . 

19.4. The tangent formula can be thought of as a Gauss-Legendre quadrature with a 

polynomial of first degree. Show that the error of the tangent rule can be derived from the 

error of the Gauss-Legendre quadrature! (Choose [ , ] [ 1,1]a b = − ). 
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