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Preface

This work is a member of the author’s series of lecture schemes published in the
Digital Library of the Faculty of Informatics. These lecture schemes are addressed
to the Computer Science BSc students of Linear Algebra and of Analysis. All these
works are based on the lectures and practices of the above subjects given by the
author for decades in the English Course Education.

The recent work contains the topics of the subject Linear Algebra. It starts
with matrices and determinants, then it contains the following topics: vector
spaces, system of linear equations, inner product spaces, self-adjoint matrices,
quadratic forms.

It builds intensively on the preliminary subjects, as Mathematics in secondary
school and Precalculus Practices.

This work uses the usual mathematical notations. The set of natural numbers
(N) will begin with 1. The symbol K will denote one of the sets of real numbers
(R) or of the complex numbers (C).

The topics are explained on a weekly basis. Every chapter contains the mate-
rial of an educational week. The control questions and the homework related to
the topic can be found at the end of the chapter.

Thanks to my teachers and colleagues, from whom I learned a lot. I thank
the lectors of this textbook – assoc. prof. Dr. Lajos László and assoc. prof. Dr.
Ágnes Bércesné Novák – for their thorough work and valuable advice.

Budapest, October 2016

István CSÖRGŐ



1. Lesson 1

1.1. Complex Numbers

In our Linear Algebra studies we will use the real and the complex numbers as
scalars. The real numbers are supposed to be familiar from the secondary school.
Now we will collect shortly the most important knowledge about the complex
numbers.

Axiomatic Definition:
Let i denote the ”number” whose square equals −1. More precisely, we use

i2 = −1 about the symbol i.

1.1. Definition The set of complex numbers consists of the expressions a + bi
where a and b are real numbers:

C := {a + bi | a, b ∈ R}

The operations + (addition) and · (multiplication) are defined as follows: let’s
compute with complex numbers as with binomial expressions and write in every
case −1 instead of i2. The number i is called: imaginary unit.

Let’s collect the complex basic operations in algebraic form:

1. (a + bi) + (c + di) = (a + c) + (b + d)i,

2. (a + bi)− (c + di) = (a− c) + (b− d)i,

3. (a + bi) · (c + di) = ac + bci + adi + bdi2 = (ac− bd) + (bc + ad)i,

4. At the division multiply the numerator and the denominator by the complex
conjugate (see below) of the denominator:

a + bi

c + di
=

(a + bi) · (c− di)
(c + di) · (c− di)

=
ac + bci− adi− bdi2

c2 − d2i2
=

=
ac + bd

c2 + d2
+

bc− ad

c2 + d2
· i

1.2. Definition Let z = a + bi ∈ C. Then

1. Re z := a (real part),

2. Im z := b (imaginary part),
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3. z := a− bi (complex conjugate),

4. |z| := √
a2 + b2 (absolute value or modulus).

Some important properties of the introduced operations:

1.3. Theorem

1. C is a field with respect to the operations + and ·
2. z + w = z + w

3. z − w = z − w

4. z · w = z · w

5.
( z

w

)
=

z

w

6. z = z

7. |z| = |z|
8. |z + w| ≤ |z|+ |w|
9. |z · w| = |z| · |w|

10.
∣∣∣ z

w

∣∣∣ =
|z|
|w|

Proof. On the lecture. ¤

From now on K denotes the set R or C.

1.2. Matrices

If we want to define the precise concept of matrix, then we have to define it as a
special function:

1.4. Definition Let m,n ∈ N. The m× n matrix (over the number field K) is a
mapping defined on the set {1, . . . m} × {1, . . . n} and maps into K:

A : {1, . . . m} × {1, . . . n} → K.

Denote by Km×n the set of m×n matrices. The number A(i, j) is called the j-th
element of the i-th row and is denoted by aij or (A)ij . The elements of the matrix
are called entries. The matrix is called square matrix (of order n) if m = n.
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Usually the matrices are given as a rectangular array (hence the concept row
and column):

A =




A(1, 1) A(1, 2) . . . A(1, n)
A(2, 1) A(2, 2) . . . A(2, n)

...
A(m, 1) A(m, 2) . . . A(m,n)


 =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

am1 am2 . . . amn


 .

The entries a11, a22, . . . are called diagonal elements or simply diagonal.
(main diagonal). Naturally, it coincides with the common concept of ”diagonal”
only for square matrices.

Some special matrices: zero matrix, row matrix, column matrix, triangular
matrix (lower, upper), diagonal matrix, identity matrix.

1.5. Definition Operations with matrices:

1. Addition: Let A,B ∈ Km×n. Then

A + B ∈ Km×n, (A + B)ij := (A)ij + Bij .

2. Scalar multiple: Let A ∈ Km×n and λ ∈ K. Then

λA ∈ Km×n, (λA)ij := λ · (A)ij .

3. Product: Let A ∈ Km×n, B ∈ Kn×p. Then the product of A and B is as
follows:

AB ∈ Km×p, (AB)ij := ai1b1j + ai2b2j + . . . + ainbnj =
n∑

k=1

aikbkj .

4. Transpose: Let A ∈ Km×n. Then

AT ∈ Kn×m, (AT )ij := (A)ji .

5. Adjoint or Hermitian adjoint: Let A ∈ Cm×n. Then

A∗ ∈ Cn×m, (A∗)ij := (A)ji .

1.3. Properties of Matrix Operations

1.6. Theorem [Sum and Scalar Multiple] Let A, B, C ∈ Km×n, λ, µ ∈ K. Then

1. A + B = B + A.

2. (A + B) + C = A + (B + C).
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3. ∃ 0 ∈ Km×n ∀M ∈ Km×n : M + 0 = M .

It can be proved that 0 is unique and it is the zero matrix.

4. ∀M ∈ Km×n ∃ (−M) ∈ Km×n : M + (−M) = 0.

It can be proved that −M is unique and its elements are the opposite ones
of M .

5. (λµ)A = λ(µA) = µ(λA).

6. (λ + µ)A = λA + µA.

7. λ(A + B) = λA + λB.

8. 1A = A.

Proof. Every statement can be easily verified by the help of ”entry-vise” ope-
rations. ¤

This theorem shows us that Km×n is a vector space over K. The definition
and study of the vector space will follow later.

1.7. Theorem [Product]

1. Associative law:

(AB)C = A(BC) (A ∈ Km×n, B ∈ Kn×p, C ∈ Kp×q);

2. Distributive laws:

A(B+C) = AB+AC and (A+B)C = AC+BC (A ∈ Km×n, B, C ∈ Kn×p);

3. Multiplication with the identity matrix. Denote by I the identity matrix of
suitable size. Then:

AI = A (A ∈ Km×n), IA = A (A ∈ Km×n) .

Proof. On the lecture. ¤
You can easily consider that the multiplication of matrices is inner operation

if and only if m = n that is in the set of square matrices. In this case we can
establish that Kn×n is a ring with identity element. This ring is not commutative
and it has zero divisors as the following examples show:

[
1 1
1 1

]
·
[

1 1
−1 −1

]
=

[
0 0
0 0

]
,

[
1 1
−1 −1

]
·
[
1 1
1 1

]
=

[
2 2
−2 −2

]
.

The connection between the product and the scalar multiple can be described by
the following theorem:
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1.8. Theorem

(λA)B = λ(AB) = A(λB) (A ∈ Km×n, B ∈ Kn×p, λ ∈ K) .

Proof.
¤

This identity – and the ring and vector space structure of Kn×n – shows us that
Kn×n is an algebra with identity element over K.

1.9. Theorem [Transpose, Adjoint] Let A, B ∈ Km×n, λ ∈ K. Then

1.

(A + B)T = AT + BT , (A + B)∗ = A∗ + B∗ (A, B ∈ Km×n)

2.
(λA)T = λ ·AT , (λA)∗ = λ ·A∗ (A ∈ Km×n, λ ∈ K)

3.
(AB)T = BT AT , (AB)∗ = B∗A∗ (A ∈ Km×n, B ∈ Kn×p)

4.
(AT )T = A, (A∗)∗ = A (A ∈ Km×n)

Proof. On the lecture. ¤

1.4. Control Questions

1. Starting out from R (the set of real numbers) define the set of complex
numbers

2. Define the addition and multiplication in C

3. How can we compute the difference and the quotient of the complex num-
bers a + bi and c + di?

4. Define the followings: real part, imaginary part, conjugate and the absolute
value of a complex number

5. List 4 properties of the operations in C

6. Define the concept of matrix
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7. Define the addition of matrices and list the most important properties of
this operation

8. Define the scalar multiplication of a matrix and list the most important
properties of this operation

9. Define the product of matrices and list the most important properties of
this operation

10. Define the Transpose and the Hermitian adjoint of a matrix and list the
most important properties of these operations

1.5. Homework

1. Let z = 3 + 2i, w = 5− 3i, u = −2 + i. Compute:

z + w, z − w, zw,
z

w
,

2z2 + 3w

1 + u
.

2. Let

A =




1 1 5
−3 0 1
0 1 2
2 −4 1


 , B =




4 0 1
1 −4 2
2 −1 0
0 2 1


 , C =




2 4 0
−1 1 1
3 2 −1
1 0 1


 .

Compute:
A + 2B − C, AT B, (ABT )C

3. Let

A =




1− i 2 + i 3 + i
0 1 + i 1

2 + i 1 1


 , B =




1 + i 2 + i 1 + 3i
4− i 0 −i

0 1 i


 .

Compute:
2A−B, AB, AB∗



2. Lesson 2

2.1. Decomposition of a matrix into Blocks

Sometimes we subdivide the matrix into smaller matrices by inserting imaginary
horizontal or vertical straight lines between its selected rows and/or columns.
These smaller matrices are called ”submatrices” or ”blocks”. The so decomposed
matrices can be regarded as ”matrices” whose elements are also matrices.

The algebraic operations can be made similarly to the learned methods but
you must be careful to keep the following requirements:

1. If you regard the blocks as matrix elements the operations must be defined
between the resulting ”matrices”.

2. The operations must be defined between the blocks itself.

In this case the result of the operation will be a partitioned matrix that coin-
cides with the block decomposition of the result of operation with the original
(numerical) matrices.

2.2. Determinants

If we delete some rows and/or columns of a matrix then we obtain a submatrix of
the original matrix. Now for us will be enough to delete one row and one column
from a square matrix. The resulting submatrix will be called minor matrix.

2.1. Definition (Minor Matrix) Let A ∈ Kn×n and (i, j) ∈ {1, . . . n}×{1, . . . n}
a fixed index pair. The minor matrix of the position (i, j) is denoted by Aij and
is defined as follows:

(Aij)kl :=





akl if 1 ≤ k ≤ i− 1, 1 ≤ l ≤ j − 1

ak,l+1 if 1 ≤ k ≤ i− 1, j ≤ l ≤ n− 1

ak+1,l if i ≤ k ≤ n− 1, 1 ≤ l ≤ j − 1

ak+1,l+1 if i ≤ k ≤ n− 1, j ≤ l ≤ n− 1 .

Obviously Aij ∈ K(n−1)×(n−1). In words: the minor matrix is the remainder sub-
matrix after deletion the i-th row and the j-th column of A.
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2.2. Examples

If A =




3 5 −2 8 −1
0 3 −1 1 2
2 1 2 3 4
7 1 −3 5 8


 then A34 =




3 5 −2 −1
0 3 −1 2
7 1 −3 8




After this short preliminary let us define recursively the function
det : Kn×n → K as follows:

2.3. Definition 1. If A = [a11] ∈ K1×1 then det(A) := a11.

2. If A ∈ Kn×n then:

det(A) :=
n∑

j=1

a1j · (−1)1+j · det(A1j) =
n∑

j=1

a1j · a′1j ,

where the number a′ij := (−1)i+j · det(Aij) is called signed subdeterminant
or cofactor (assigned to the position (i, j).

The number det(A) is called the determinant of the matrix A and is denoted
by

det(A), detA, |A|,

∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
.

We say that we have defined the determinant by expansion along the first row.
According to the last notation we can speak about the elements, rows, columns,
e.t.c. of a determinant.

2.4. Examples
Let us study some important special cases:

1. The 1× 1 determinant: for example det([5]) = 5.

2. The 2× 2 determinant:
∣∣∣∣
a b
c d

∣∣∣∣ = a · (−1)1+1 · det([d]) + b · (−1)1+2 · det([c]) = ad− bc ,

so a 2×2 determinant can be computed by subtracting from the product of
the entries in the diagonal (a11, a22) the product of the entries of the other
diagonal (a12, a21).
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3. Applying n− 1 times the recursive step of the definition we obtain that the
determinant of a lower triangular matrix equals the product of its diagonal
elements: ∣∣∣∣∣∣∣∣∣∣∣

a11 0 0 . . . 0
a21 a22 0 . . . 0
a31 a32 a33 . . . 0

...
an1 an2 an3 . . . ann

∣∣∣∣∣∣∣∣∣∣∣

= a11 · a22 · . . . · ann .

4. Immediately follows from the previous example that the determinant of the
unit matrix equals 1.

2.3. The properties of the Determinants

2.5. Theorem 1. The determinant can be expanded by its any row and by its
any column that is for every r, s ∈ {1, . . . , n} holds:

det(A) =
n∑

j=1

arj · a′rj =
n∑

i=1

ais · a′is .

2. det(A) = det(AT ) (A ∈ Kn×n). An important corollary of this that the
determinant of an upper triangular matrix equals the product of its diagonal
elements.

3. If a determinant has only 0 entries in a row (or in a column) then its value
equals 0

4. If we swap two rows (or two columns) of a determinant then its value will
be the opposite of the original one.

5. If a determinant has two equal rows (or two equal columns) then its value
equals 0.

6. If we multiply every entry of a row (or of a column) of the determinant by
a number λ then its value will be the λ-multiple of the original one.

7. ∀A ∈ Kn×n and ∀λ ∈ K holds det(λ ·A) = λn · det(A).

8. If two rows (or two columns) of a determinant are proportional then its
value equals 0.

9. The determinant is additive in its any row (and by its any column). This
means – in the case of additivity of its r-th row – that:

If (A)ij :=





αj if i = r

aij if i 6= r,
and (B)ij :=





βj if i = r

aij if i 6= r,
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and (C)ij :=





αj + βj if i = r

aij if i 6= r ,

then det(C) = det(A) + det(B).

10. If we add to a row of a determinant a scalar multiple of another row (or
to a column a scalar multiple of another column) then the value of the
determinant remains unchanged.

11. The determinant of the product of two matrices equals the product of their
determinants:

det(A ·B) = det(A) · det(B) (A, B ∈ Kn×n) .

Proof.

1. It has a complicated proof, we don’t prove it.

2. Immediately follows from the previous statement.

3. Expand the determinant by its 0-row.

4. Use mathematical induction by n. For n = 2 the statement can be checked
immediately. To deduce from n−1 to n denote by r and s the indices of the
two (different) rows that are interchanged in the n×n matrix A and denote
by B the resulted matrix after interchanging. Expand det(A) and det(B)
along their kth row where k 6= r, k 6= s. Then the elements are the same
(akj) in both expansion but the cofactors – by the inductional assumption
– are opposite. So the two expansions are opposite.

5. Interchange the two equal rows. This implies det(A) = −det(A). After
rearrangement we obtain det(A) = 0.

6. Denote by r the index of the row in which every entry is multiplied by λ.
Expand the new determinant by its r-th row and take out the common
factor λ from the expansion sum.

7. Immediately follows from the previous property if you apply it for every
row.

8. Immediately follows from the previous property and the ”two rows are
equal” property.

9. Expand the new determinant det(C) by its r-th row, apply the distributive
law in every term of expansion sum and group this sum into two sub-sums.
The sum of the first terms gives det(A), the sum of the second terms gives
det(B).
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10. Immediately follows from the previous two properties.

11. It has a complicated proof, we don’t prove it.

¤

2.4. The Inverse of a Matrix

In this section we will extend the concept of ”reciprocal” and ”division” from
numbers to matrices. Instead of ”reciprocal” will be used the name ”inverse” and
instead of ”division” will be used the name ”multiplication by inverse”.

2.6. Definition Let A ∈ Kn×n and denote by I the identity matrix in Kn×n.
Then A is called

1. invertible from the right if ∃C ∈ Kn×n such that AC = I. In this case C is
called a right-hand inverse of A.

2. invertible from the left if ∃D ∈ Kn×n such that DA = I. In this case D is
called a left-hand inverse of A.

3. invertible if ∃C ∈ Kn×n such that AC = I and CA = I. In this case C is
unique and is called the inverse of A and is denoted by A−1.

2.7. Definition A matrix in Kn×n is called regular if it is invertible. A matrix
in Kn×n is called singular if it is not invertible.

In the following part of the section we characterize the regular and the singular
matrices with the help of their determinants.

2.8. Theorem A matrix A ∈ Kn×n is invertible from the right if and only if
det(A) 6= 0. In this case a right-hand inverse can be given as

C :=
1

det(A)
· Ã , where (Ã)ij := a′ji .

Remember that here a′ji denotes the cofactor assigned to the position (j, i).

Proof. Assume first that A is invertible from the right and denote by C a
right-hand inverse. Then:

1 = det(I) = det(A · C) = det(A) · det(C) .

From this equality it follows immediately that det(A) 6= 0. Remark that we

obtained another result too: det(C) =
1

det(A)
.
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Conversely suppose that det(A) 6= 0 and let C be the following matrix:

C :=
1

det(A)
· Ã , where (Ã)ij := a′ji .

We will show that AC = I. Really:

(AC)ij =
(

A · 1
det(A)

· Ã
)

ij

=
1

det(A)
· (A · Ã)ij =

=
1

det(A)
·

n∑

k=1

(A)ik · (Ã)kj =
1

det(A)
·

n∑

k=1

aik · a′jk.

First suppose that i = j. Then the last sum equals 1 because – using the
expansion of the determinant along its i-th row– :

(AC)ii =
1

det(A)
·

n∑

k=1

aik · a′ik =
1

det(A)
· det(A) = 1 = (I)ii .

Now suppose that i 6= j. In this case the above mentioned sum is the expan-
sion of a determinant along its j-th row which can be obtained from det(A) by
exchanging its j-th row to its i-th row. But this determinant has two equal rows
(the i-th and the j-th), so its value equals 0. This means that

∀ i 6= j : (AC)ij = 0 .

We have proved AC = I. ¤
The existence of the left-hand inverse can reduce – with the help of the trans-

pose – to the case of right-hand inverse:

2.9. Theorem A matrix A ∈ Kn×n is invertible from the left if and only if
det(A) 6= 0. In this case a left-hand inverse of A can be given as the transpose of
a right-hand inverse of AT .

Proof.

det(A) 6= 0 ⇐⇒ det(AT ) 6= 0 ⇐⇒ ∃D ∈ Kn×n : AT D = I ⇐⇒
⇐⇒ ∃D ∈ Kn×n : (AT D)T = DT A = IT = I.

¤
Up to this point we have used intentionally the phrases ”a right-hand inverse”

and ”a left-hand inverse” instead of ”the right-hand inverse” and ”the left-hand
inverse” because their uniqueness was not proved. In the following theorem we
state the uniqueness:

2.10. Theorem Let A ∈ Kn×n and C ∈ Kn×n be a right-hand inverse of A,
D ∈ Kn×n be a left-hand inverse of A. Then C = D.
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Proof.

D = DI = D(AC) = (DA)C = IC = C, consequently C = D .

¤

2.11. Corollary. Let A ∈ Kn×n. Then

1. Suppose that detA = 0. Then A has neither left-hand inverse nor right-
hand inverse (it is invertible neither from the left nor from the right).

2. Suppose that detA 6= 0. Then A is invertible from the left as well as it
is invertible from the right. Any left-hand inverse equals any right-hand
inverse, thus both inverses are unique and equal to each other. That means
that A has a unique inverse and its inverse is

A−1 =
1

det(A)
· Ã , where (Ã)ij := a′ji .

3. It follows immediately from the previous considerations that if we want to
prove that a matrix C is the inverse of A then it is enough to check only one
of the relations AC = I or CA = I, the other one holds ”automatically”.

4. It follows also from the previous considerations that if A ∈ Kn×n then

• A is regular if and only if detA 6= 0 ,

• A is singular if and only if detA = 0.

Applying our results for 2× 2 matrices we obtain easily the following theorem:

2.12. Theorem Let A =
[
a b
c d

]
∈ K2×2. Then A is invertible if and only if

ad− bc 6= 0. In this case:

A−1 =
1

ad− bc
·
[

d −b
−c a

]
.
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2.5. Control Questions

1. Define the concept of the minor matrix assigned to the index pair (i, j) of
an m× n matrix, and give a numerical example for this

2. Define the concept of determinant

3. Define the concept of cofactor assigned to (i, j)

4. How can we compute the 2× 2 determinants?

5. How can we compute the determinant of a triangular matrix?

6. State the following properties of the determinant:

- expansion along any row/column

- transpose-property

- 0 row/column

- row/column interchange property

- two rows/two columns are equal

- row/column homogeneous

- the determinant of λA

- proportional rows/columns

- row/column additive

- the determinant of AB

7. Define the right-hand inverse, the left-hand inverse and the inverse of a
square matrix

8. Define the concept of singular matrix and regular matrix

9. State and prove the theorem about the existence and formula of the right-
hand inverse

10. State and prove the theorem about the necessary and sufficient condition
of the existence of the left-hand inverse (reducing the problem back to the
right-hand inverse)

11. State and prove the theorem about the connection between the right-hand
and the left-hand inverses

12. State and prove the statement about the existence and formula of the in-
verse
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13. State and prove the formula of the inverse of a 2× 2 matrix

2.6. Homework

1. Compute the determinants:

a)

∣∣∣∣∣∣

3 1 −4
2 5 6
1 4 8

∣∣∣∣∣∣
b)

∣∣∣∣∣∣∣∣

1 0 0 −1
3 1 2 2
1 0 −2 1
2 0 0 1

∣∣∣∣∣∣∣∣

2. Determine the inverse matrices of

a)
[

4 −5
−2 3

]
b)




3 2 −1
1 6 3
2 −4 0




and check that the products of the matrices with their inverses are really
the identity matrices.

3. Let A ∈ Kn×n be a diagonal matrix (that is aij = 0 if i 6= j). Prove that it
is invertible if and only if no one of the diagonal elements equals 0. Prove
that in this case A−1 is a diagonal matrix with diagonal elements

1
a11

,
1

a22
, . . .

1
ann

.
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3.1. Cramer’s Rule

In this section we will study the solution of special system of linear equations. A
system of linear equations having n equations and n unknowns can be written in
the following form:

a11x1 + . . . + a1nxn = b1

a21x1 + . . . + a2nxn = b2
...

...
...

an1x1 + . . . + annxn = bn

,

where the coefficients aij ∈ K and the constants on the right side bi are given.
We are looking for the possible values of the unknowns x1, . . . , xn such that after
substitution them in the equations each equation will be true.

We can abbreviate the system if we collect the coefficients, the constants on
the right side and the unknowns into matrices:

A :=




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann


 ∈ K

n×n, B :=




b1

b2
...

bn


 ∈ K

n×1, X :=




x1

x2
...

xn


 ∈ K

n×1 .

Then the system of linear equations can be written as a matrix equation

AX = B .

3.1. Theorem [Cramer’s Rule]
Suppose that det A 6= 0. Then there exists uniquely a matrix X ∈ Kn×1 such

that AX = B. The k-th element of the single column of this matrix is:

xk =
det(Ak)
det(A)

, where (Ak)ij :=





aij if j 6= k

bi if j = k .

In words: the matrix Ak can be obtained by replacing the k-th column of A to the
column matrix B. Here k = 1, . . . n.

Proof. Since det(A) 6= 0 so A is invertible. Moreover:

AX = B ⇐⇒ A−1(AX) = A−1B ⇐⇒ (A−1A)X = A−1B ⇐⇒
⇐⇒ Ix = A−1B ⇐⇒ X = A−1B ,
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that shows that the matrix equation (consequently the system of linear equations)
has only one solution: X = A−1B. Using the formula for the inverse matrix – the
k-th component of X is:

xk = (A−1B)k1 =
1

det(A)
· (ÃB)k1 =

1
det(A)

·
n∑

i=1

(Ã)kibi =

=
1

det(A)
·

n∑

i=1

a′ikbi =
1

det(A)
· det(Ak).

In the last step we have used the expansion of det(Ak) along its k-th column.
Here k = 1, . . . n. ¤

Remark that the Cramer’s rule is effective only for systems of low sizes. For the
systems of greater sizes there exist more effective methods. One of these method
is given later (Elementary Basis Transformation). Other effective methods will
be given in the subject ”Numerical Methods”.

3.2. Control Questions

1. State and prove the Cramer’s Rule

3.3. Homework

1. Solve the linear equation systems using the Cramer’s Rule

a)
7x − 2y = 3
3x + y = 5 b)

x − 4y + z = 6
4x − y + 2z = −1
2x + 2y − 3z = −20
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4.1. Vector Spaces

In this section we introduce the central concept of linear algebra: the concept of
vector space. This is an extension of the concept of geometrical vectors.

4.1. Definition Let V 6= ∅ and let V × V 3 (x, y) 7→ x + y (addition), K× V 3
(λ, x) 7→ λ · x = λx (multiplication by scalar) be two mappings (operations).
Suppose that

I. 1. ∀ (x, y) ∈ V × V : x + y ∈ V (closure under addition)

2. ∀x, y ∈ V : x + y = y + x (commutative law).

3. ∀x, y, z ∈ V : (x + y) + z = x + (y + z) (associative law)

4. ∃ 0 ∈ V ∀x ∈ V : x + 0 = x (existence of the zero vector)
It can be proved that 0 is unique. Its name is: zero vector.

5. ∀x ∈ V ∃ (−x) ∈ V : x + (−x) = 0. (existence of the opposite
vector)
It can be proved that (−x) is unique. Its name is: the opposite of x.

II. 1. ∀ (λ, x) ∈ K× V : λx ∈ V (closure under multiplication by scalar)

2. ∀x ∈ V ∀λ, µ ∈ K : λ(µx) = (λµ)x = µ(λx)

3. ∀x ∈ V ∀λ, µ ∈ K : (λ + µ)x = λx + µx

4. ∀x, y ∈ V ∀λ ∈ K : λ(x + y) = λx + λy

5. ∀x ∈ V : 1x = x

In this case we say that V is a vector space over K with the two given operations
(addition and multiplication by scalar). The elements of V are called vectors, the
elements of K are called scalars. K is called the scalar region of V . The above
written ten requirements are the axioms of the vector space.

Remark that applying several times the associative law of addition we can
define the sums of several terms:

x1 + x2 + · · ·+ xk =
k∑

i=1

xi (xi ∈ V ) .

Let us see some examples for vector space:

4.2. Examples
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1. The vectors in the plane with the usual vector operations form a vector
space over R. This is the vector space of plane vectors. Since the plane
vectors can be identified with the points of the plane, instead of the vector
space of the plane vectors we can speak about the vector space of the points
in the plane.

2. The vectors in the space with the usual vector operations form a vector
space over R. This is the vector space of space vectors. Since the space
vectors can be identified with the points of the space, instead of the vector
space of the space vectors we can speak about the vector space of the points
in the space.

3. From the algebraic properties of the number field K immediately follows
that R is vector space over R, C is vector space over C and C is vector
space over R.

4. The one-element-set is vector space over K. Since the single element of this
set must be the zero vector of the space, we will denote this vector space
by {0}. The operations in this space are:

0 + 0 := 0, λ · 0 := 0 (λ ∈ K) .

The name of this vector space is: zero vector space.

5. Let
Kn := K×K . . . K︸ ︷︷ ︸ = {x = (x1, x2, . . . xn) | xi ∈ K}

be the set of n-term sequences (ordered n-tuples). Let us define the opera-
tions ”componentwise”:

(x + y)i := xi + yi (i = 1, . . . n); (λ · x)i := λ · xi (i = 1, . . . n) .

One can check that the axioms are satisfied, so Kn is a vector space over
K.

Remark that

- R1 can be identified with R or with the vector space of the points
(vectors) in the straight line.

- R2 can be identified with the vector space of the points (vectors) in
the plane.

- R3 can be identified with the vector space of the points (vectors) in
the space.

6. It follows immediately from the properties of the matrix operations that
(for any fixed m, n ∈ N) the set of m by n matrices Km×n is a vector space
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over K. The operations are the usual matrix addition and multiplication by
scalar.

Remark that

- K1×1 can be identified with K.

- Km×1 (column matrices) can be identified with Km.

- K1×n (row matrices) can be identified with Kn.

7. Now follows a generalization of Kn and Km×n.

Let H 6= ∅ and V be the set of all functions that are defined on H and map
into K. A common notation for the set of these functions is KH . So

V = KH = {f : H → K} .

Define the operations ”pointwise”:

(f+g)(h) := f(h)+g(h); (λf)(h) := λf(h) (h ∈ H) (f, g ∈ V ; λ ∈ K) .

Then – one can check the axioms – V is a vector space over K.

Remark that

- Kn can be identified with KH if H = {1, 2, . . . n}.
- Km×n can be identified with KH if H = {1, 2, . . . m} × {1, 2, . . . n}.

We can define other operations in the vector space V :

Subtraction: x− y := x + (−y) (x, y ∈ V ).

Division by scalar:
x

λ
:=

1
λ
· x (x ∈ V, λ ∈ K, λ 6= 0).

In the following theorem we collect some simple but important properties of
vector spaces.

4.3. Theorem Let x ∈ V, λ ∈ K. Then

1. 0 · x = 0 (remark that the 0 on the left side denotes the number zero in K,
but on the right side denotes the zero vector in V ).

2. λ · 0 = 0 (here both 0-s are the zero vector in V ).

3. (−1) · x = −x.

4. λ · x = 0 ⇒ λ = 0 or x = 0.
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4.2. Control Questions

1. Define the concept of vector space

2. Give 3 examples for vector space

3. State some elementary properties of a vector space and prove one of them

4.3. Homework

1. Let V = R2 with the following operations:

x + y := (x1 + y1, x2 + y2) and λx := (0, λx2)

where x = (x1, x2), y = (y1, y2) ∈ V , λ ∈ K.

Is V vector space or not? Find the vector space axioms that hold and find
the ones that fail.

2. (An unusual vector space.) Let V be the set of positive real numbers:

V := R+ = {x ∈ R | x > 0} .

Let us introduce the vector operations in V as follows:

x + y := xy (x, y ∈ V ) λx := xλ (λ ∈ R, x ∈ V ) .

(On the right sides of the equalities xy and xλ are the usual real number
operations.) Prove that V is a vector space over R with the above defined
vector operations. What is the zero vector in this space? What is the op-
posite of x ∈ V ? What do the statements in the last theorem of the section
mean in this interesting vector space?
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5.1. Subspaces

The subspaces are vector spaces lying in another vector space. In this section V
denotes a vector space over K.

5.1. Definition Let W ⊆ V . W is called a subspace of V if W is itself a vector
space over K under the vector operations (addition and multiplication by scalar)
defined on V .

By this definition if we want to decide about a subset of V that it is a subspace
or not, we have to discuss the ten vector space axioms. In the following theorem
we will prove that it is enough to check only two axioms.

5.2. Theorem Let ∅ 6= W ⊆ V . Then W is a subspace of V if and only if:

1. ∀x, y ∈ W : x + y ∈ W ,

2. ∀x ∈ W ∀λ ∈ K : λx ∈ W .

In words: the subset W is closed under the addition and multiplication by scalar
in V .
Proof. The two given conditions are obviously necessary.

To prove that they are sufficient let us realize that the vector space axioms I.1.
and II.1. are exactly the given conditions so they are true. Moreover the axioms
I.2., I.3., II.2., II.3., II.4., II.5. are identities so they are inherited from V to W .

It remains us to prove only two axioms: I.4., I.5.
Proof of I.4.: Let x ∈ W and 0 be the zero vector in V . Then – because of the

second condition – 0 = 0x ∈ W , so W really contains zero vector and the zero
vectors in V and W are the same.

Proof of I.5.: Let x ∈ W and −x be the the opposite vector of x in V . Then
– also because of the second condition – −x = (−1)x ∈ W , so W really contains
opposite of x and the opposite vectors in V and W are the same.

¤

5.3. Corollary. It follows immediately from the above proof that a subspace
must contain the zero vector of V . In other words: if a subset does not contain
the zero vector of V then it is no subspace. Similar considerations are valid for
the opposite vector too.

Using the above theorem the following examples for subspaces can be easily
verified.
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5.4. Examples

1. The zero vector space {0} and V itself both are subspaces in V . They are
called trivial subspaces.

2. All the subspaces of the vector space of plane vectors (R2) are:

- the zero vector space {0},
- the straight lines trough the origin,

- R2 itself.

3. All the subspaces of the vector space of space vectors (R3) are:

- the zero vector space {0},
- the straight lines trough the origin,

- the planes trough the origin,

- R3 itself.

4. In the vector space KK (the collection of functions f : K→ K) the following
subsets form subspaces:

- P := P(K) := {f : K → K | f is polynomial}. This subspace P is
called the vector space of polynomials.

- Fix a nonnegative integer n ∈ N ∪ {0} and let

Pn := Pn(K) := {f ∈ P(K) | f = 0, or deg f ≤ n} .

Then Pn is a subspace that is called the vector space of polynomials
of at most degree n. Remark that although the zero polynomial has
no degree it is contained in Pn.

In connection with the polynomial spaces it is important to see that

{0} ⊂ P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ P,
∞⋃

n=0

Pn = P .

5.2. Linear Combinations and Generated Subspaces

5.5. Definition Let k ∈ N, x1, . . . , xk ∈ V , λ1, . . . , λk ∈ K. The vector (and
the expression itself)

λ1x1 + · · ·+ λkxk =
k∑

i=1

λixi

is called the linear combination of the vectors x1, . . . , xk with coefficients λ1, . . . , λk.
The linear combination is called trivial if every coefficient is zero. The linear com-
bination is called nontrivial if at least one of its coefficients is nonzero.
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Obviously the result of a trivial linear combination is the zero vector.
One can prove simply by mathematical induction that a nonempty subset

W ⊆ V is subspace if and only if for every k ∈ N, x1, . . . , xk ∈ W , λ1, . . . λk ∈ K:

k∑

i=1

λixi ∈ W .

In other words: the subspaces are exactly the subsets of V closed under linear
combinations.

Let x1, x2, . . . , xk ∈ V be a system of vectors. Let us define the following
subset of V :

W ∗ :=

{
k∑

i=1

λixi | λi ∈ K
}

. (5.1)

So the elements of W ∗ are the possible linear combinations of x1, x2, . . . , xk.

5.6. Theorem 1. W ∗ is subspace in V .

2. W ∗ covers the system x1, x2, . . . , xk that is ∀ i : xi ∈ W ∗.

3. W ∗ is the minimal subspace among the subspaces that cover x1, x2, . . . , xk.
More precisely:

∀W ⊆ V,W is subspace, xi ∈ W : W ∗ ⊆ W .

Proof.

1. Let a =
k∑

i=1
λixi ∈ W ∗ and b =

k∑
i=1

µiyi ∈ W ∗. Then

a + b =
k∑

i=1

λixi +
k∑

i=1

µiyi =
k∑

i=1

(λi + µi)xi ∈ W ∗ .

On the other hand for every λ ∈ K:

λa = λ

k∑

i=1

λixi =
k∑

i=1

(λλi)xi ∈ W ∗ .

So W ∗ is really a subspace in V .

2. For any fixed i ∈ {1, . . . , k}:

xi = 0x1 + . . . + 0xi−1 + 1xi + 0xi−1 + . . . + 0xk ∈ W ∗ .
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3. Let W be a subspace described in the theorem and let a =
k∑

i=1
λixi ∈ W ∗.

Since W covers the system so

xi ∈ W (i = 1, . . . , k) .

But the subspace W is closed under linear combination, which implies a ∈
W . So really W ∗ ⊆ W .

¤

5.7. Definition The above defined subspace W ∗ is called the subspace spanned
(or generated) by the vector system x1, x2, . . . , xk and is denoted by Span (x1, x2, . . . , xk).
Sometimes we say shortly that W ∗ is the span of x1, x2, . . . , xk. The system
x1, x2, . . . , xk is called the generator system (or: spanning set) of the subspace
W ∗. Sometimes we say that x1, x2, . . . , xk spans W ∗.

Remark that a vector is contained in Span (x1, x2, . . . , xk) if and only if it
can be written as linear combination of x1, x2, . . . , xk.

5.8. Examples

1. Let v be a vector in the vector space of plane vectors (R2). Then

Span (v) =
{{0} if v = 0,

the straight line trough the origin with direction vector v if v 6= 0 .

Using geometrical methods one can prove that in the vector space of plane
vectors any two nonparallel vectors form a generator system.

2. Let v1 and v2 be two vectors in the vector space of space vectors (R3). Then

Span (v1, v2) =




{0} if v1 = v2 = 0,
the straight line of v1 and v2 if v1 ‖ v2,
the plane of v1 and v2 if v1 ∦ v2 .

Using geometrical methods one can prove that in the vector space of space
vectors any three vectors that are not in the same plane form a generator
system.

3. Let us define the standard unit vectors in Kn as

e1 := (1, 0, 0, . . . , 0), e2 := (0, 1, 0, . . . , 0), . . . , en := (0, 0, 0, . . . , 1) .
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Then the system e1, . . . , en is a generator system in Kn. Really, if x =
(x1, . . . , xn) ∈ Kn, then

x =




x1

x2
...

xn


 =




x1 · 1 + x2 · 0 + · · ·+ xn · 0
x1 · 0 + x2 · 1 + · · ·+ xn · 0

...
x1 · 0 + x2 · 0 + · · ·+ xn · 1


 =

= x1 ·




1
0
...
0


 + x2 ·




0
1
...
0


 + · · ·+ xn ·




0
0
...
1


 =

n∑

i=1

xiei,

so x can be written as a linear combination of e1, . . . , en.

4. A generator system in the vector space Pn is the so called power function
system defined as follows:

h0(x) := 1, hk(x) := xk(x ∈ K, k = 1, . . . n) .

Really, if f ∈ Pn, f(x) = a0+a1x+· · ·+anxn (x ∈ K) then f =
n∑

k=0

akhk.

It is clear that if we enlarge a generator system in V then it remains generator
system. But if we leave vectors from a generator system then the resulted system
will be not necessarily generator system. The generator systems are – in this sense
– the ”great” systems. Later we will study the question of ”minimal” generator
systems.

The concept of generator system can be extended into infinite systems. In
this connection we call the above defined generator system more precisely finite
generator system. An important class of vector spaces are the spaces having finite
generator system.

5.9. Definition The vector space V is called finite-dimensional if it has finite
generator system. We denote this fact by dimV < ∞.

If a vector space V does not have finite generator system then we call it
infinite-dimensional. This fact is denoted by dim(V ) = ∞.

5.10. Examples

1. Some finite-dimensional vector spaces: {0}, the vector space of plane vec-
tors, the vector space of space vectors, Kn, Km×n, Pn.

2. Now we prove that dimP = ∞. (About the definition of P see Examples
5.4.)
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Let f1, . . . , fm be a finite polynomial system in P. Let

k := max{deg fi | i = 1, . . . , m} .

Then the polynomial g(x) := xk+1 (x ∈ K) cannot be expressed as linear
combination of f1, . . . , fm because the linear combination does not increase
the degree of the maximally k-degree polynomials over k.

So P cannot be spanned by any finite polynomial system that is it does not
have finite generator system.

5.3. Control Questions

1. Define the subspace of a vector space

2. State and prove the theorem about the necessary and sufficient condition
for a set to be a subspace

3. Give 3 examples for subspaces

4. Define the linear combination

5. State and prove the theorem about generated subspace by a finite vector
system (This is the theorem about W ∗)

6. Give 3 examples for generated subspace in R2

7. Give 3 examples for generated subspace in R3

8. Define the standard unit vectors in Kn. What is the subspace generated by
them (with proof)?

9. Define the finite dimensional vector space. Prove that the vector space Kn

is finite dimensional

10. Define the infinite dimensional vector space. Prove that the vector space of
all polynomials (P) is infinite dimensional
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5.4. Homework

1. Let A ∈ Km×n. Prove that the following subset of Kn is a subspace:

(A) := {x ∈ Kn | Ax = 0} .

Here x is regarded as an n × 1 matrix. The subspace (A) is called the
nullspace (or kernel) of A.

2. Let a = (1, 2,−1), b = (−3, 1, 1) ∈ R3.

a) Compute 2a− 4b.

b) Determine whether the vector x = (2, 4, 0) is in the subspace Span (a, b)
or not.

3. Let

A =




1 1 3 1
2 3 1 1
1 0 8 2


 .

Find a generator system in the subspace

Ker(A) := {x ∈ R4 | Ax = 0} .
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6.1. Linear Independence

6.1. Definition Let k ∈ N and x1, . . . , xk ∈ V be a vector system. This system
is called linearly independent (shortly: independent) if its every nontrivial linear
combination results nonzero vector, that is:

k∑

i=1

λixi = 0 =⇒ λ1 = λ2 = . . . = λk = 0 .

The system is called linearly dependent (shortly: dependent) if it is no indepen-
dent. That is

∃λ1, λ2, . . . λk ∈ K not all λi = 0 :
k∑

i=1

λixi = 0 .

6.2. Remarks.

1. The equation
k∑

i=1
λixi = 0 is called: dependence equation.

2. It can be simply shown that if a vector system contains identical vectors
or it contains the zero vector then it is linearly dependent. In other words:
a linearly independent system contains different vectors and it does not
contain the zero vector.

3. From the simple properties of vector spaces follows that a one-element vec-
tor system is linearly independent if and only if its single element is a
nonzero vector.

Let us see some examples for independent and dependent systems:

6.3. Examples

1. Using geometrical methods it can be shown that in the vector space of the
space vectors:

- Two parallel vectors are dependent;

- Two nonparallel vectors are independent;

- Three vectors lying in the same plane are dependent;

- Three vectors that are not lying in the same plane are independent.
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2. In the vector space Kn the system of the standard unit vectors e1, . . . , en is
linearly independent, since




0
0
...
0


 = 0 =

n∑

i=1

λiei =




λ1 · 1 + λ2 · 0 + · · ·+ λn · 0
λ1 · 0 + λ2 · 1 + · · ·+ λn · 0

...
λ1 · 0 + λ2 · 0 + · · ·+ λn · 1


 =




λ1

λ2
...

λn


 ,

which implies λ1 = λ2 = . . . = λn = 0.

3. It can be proved that in the vector space Pn the power function system

h0(x) := 1, hk(x) := xk (x ∈ K, k = 1, . . . n)

is linearly independent.

One can easily see that if we tighten a linearly independent system in V then
it remains linearly independent. But if we enlarge a linearly independent system
then the resulted system will be not necessarily linearly independent. The linearly
independent systems are – in this sense – the ”small” systems. Later we will study
the question of ”maximal” linearly independent systems.

Now let us study some simple theorems about the connection between the
independent, the dependent and the generator systems.

6.4. Theorem [Diminution of a dependent system]
Let x1, . . . , xk ∈ V be a linearly dependent system. Then

∃ i ∈ {1, 2, . . . k} : Span (x1, . . . , xi−1, xi+1, . . . , xk) = Span (x1, . . . , xk) .

In words: at least one of the vectors in the system is redundant from the point of
view of the spanned subspace.

Proof. The ”⊆” relation is trivial, because

{x1, . . . , xi−1, xi+1, . . . , xk} ⊆ {x1, . . . , xk} .

To prove the relation ”⊇” observe first that

{x1, . . . , xi−1, xi+1, . . . , xk} ⊆ Span (x1, . . . , xi−1, xi+1, . . . , xk) .

It remains the proof of

xi ∈ Span (x1, . . . , xi−1, xi+1, . . . , xk) .

Indeed, by the dependence of the system there exist the numbers λ1, . . . , λk ∈ K
such that they are not all zero and

λ1x1 + . . . + λkxk = 0 .
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Let i be an index with λi 6= 0. After rearrange the previous vector equation we
obtain that:

xi =
k∑

j=1
j 6=i

(
−λj

λi

)
· xj .

That means that xi can be expressed as linear combination of x1, . . . , xi−1, xi+1, . . . , xk,
so it is really in the subspace Span (x1, . . . , xi−1, xi+1, . . . , xk).

Thus the subspace Span (x1, . . . , xi−1, xi+1, . . . , xk) covers the system x1, . . . , xk

which implies the relation ”⊇”.
¤

6.5. Remark. From the proof it turned out that the redundant vector is that
vector whose coefficient in a dependence equation is nonzero.

6.6. Theorem Let x1, . . . , xk ∈ V be a vector system. If x ∈ Span (x1, . . . , xk),
then the vector system x1, . . . , xk, x is linearly dependent.

Proof. Since x ∈ Span (x1, . . . , xk), then x can be written as a linear combination
of the generator system, that is

∃λ1, . . . , λk ∈ K : x = λ1x1 + λ2x2 + . . . + λkxk .

After rearranging the equation we have

λ1x1 + λ2x2 + . . . + λkxk + (−1) · x = 0 .

Since −1 6= 0, the system is really linearly dependent. ¤

6.7. Theorem [Extension of an independent system] Let x1, . . . , xk ∈ V be a
linearly independent vector system. Furthermore let x ∈ V . Then

a) If x ∈ Span (x1, . . . , xk), then the vector system x1, . . . , xk, x is linearly
dependent.

b) If x /∈ Span (x1, . . . , xk), then the vector system x1, . . . , xk, x is linearly
independent.

Proof. Part a) is a special case of the previous theorem.
To prove part b) let us take the dependence equation

λ1x1 + λ2x2 + . . . + λkxk + λ · x = 0 ,

and show that each coefficients are 0. We show first that λ = 0. Suppose indirectly
that λ 6= 0. Then x can be expressed from the dependence equation:

x = −λ1

λ
x1 − . . .− λk

λ
xk .
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This expression implies x ∈ Span (x1, . . . , xk) in contradiction of the assumption
of part b). Thus really λ = 0.

Substituting this result into the dependence equation we have

λ1x1 + λ2x2 + . . . + λkxk = 0 .

Using the independence of the original system we have

λ1 = λ2 = . . . = λk = 0 .

The proof is complete. ¤
An immediate consequence of part b) of the previous theorem is the following

6.8. Corollary. Let x1, . . . , xk, x ∈ V . If x1, . . . , xk is linearly independent and
x1, . . . , xk, x is linearly dependent, then

x ∈ Span (x1, . . . , xk) .

Another consequence of Theorem 6.7 is that in an infinite dimensional space
can be given independent systems of any sizes.

6.9. Theorem Let V be a vector space over K, and suppose that dimV = ∞.
Then

∀n ∈ N ∃x1, . . . , xn ∈ V : x1, . . . , xn is a linearly independent system .

Proof. Let us fix an arbitrary n ∈ N.
Since V 6= {0}, we can choose a vector x1 ∈ V \ {0}. Then the system x1 is

linearly independent.
Since dimV = ∞, then Span (x1) 6= V (there is not a finite generator system

in V ). Consequently
∃x2 ∈ V \ Span (x1) .

Using Theorem 6.7 we deduce that the system x1, x2 is linearly independent.
Since dimV = ∞, then Span (x1, x2) 6= V (there is not a finite generator

system in V ). Consequently

∃x3 ∈ V \ Span (x1, x2) .

Using again Theorem 6.7 we deduce that the system x1, x2, x3 is linearly inde-
pendent.

Repeating this process, we can construct a vector system x1, . . . , xn which is
linearly independent. ¤
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6.2. Basis

6.10. Definition The vector system x1, . . . , xk ∈ V is called basis (in V ) if it
is generator system and it is linearly independent.

6.11. Remarks. Since in the zero vector space {0} there is no
linearly independent system, so this space has no basis. Later we will show that
every other finite-dimensional vector space has basis.

The following examples can be easily to consider because we have studied
them as examples for generator system and for linearly independent system.

6.12. Examples

1. - In the vector space of the plane vectors the system of every two non-
parallel vectors is a basis.

- In the vector space of the space vectors the system of every three
vectors that are not lying in the same plane is a basis.

2. In Kn the system of the standard unit vectors is a basis. This basis is called
the standard basis or the canonical basis of Kn.

3. In the polynomial space Pn the power function system h0, h1, . . . hn is a
basis.

In the following part of the section we want to prove that every finite-dimensional
nonzero vector space has basis.

6.13. Theorem Every finite-dimensional nonzero vector space has a basis.

Proof. Let x1, . . . , xk be a finite generator system of V . If this system is linearly
independent then it is basis. If it is dependent then by Theorem 6.4 a vector can
be left from it such that the remainder system spans V . If this new system is
linearly independent then it is a basis. If it is dependent then we leave once more
a vector from it, and so on.

Let us continue this process while it is possible.
So either in some step we obtain a basis or after k − 1 steps we arrive to an

one-element system that is generator system in V . Since V 6= {0}, so this single
vector is nonzero that is linearly independent, consequently basis. ¤

6.14. Remarks.

1. We have proved more than the statement of the theorem: we have proved
that one can choose bases from any finite generator system, moreover, we
have given an algorithm to make this.

2. It can be proved that every linearly independent system can be completed
into a basis.
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6.3. Dimension

The aim of this section is to show that in a vector space every basis has the
same number of vectors. This common number will be called the dimension of
the space.

6.15. Theorem [Exchange Theorem] Let x1, . . . , xk ∈ V be a linearly indepen-
dent system and y1, . . . , ym ∈ V be a generator system in V . Then

∀ i ∈ {1, . . . , k} ∃ j ∈ {1, . . . , m} : x1, . . . , xi−1, yj , xi+1, . . . , xk is independent .

Proof. It is enough to discuss the case i = 1, the proof for the other i-s is
similar.

Suppose indirectly that the system yj , x2, . . . , xk is linearly dependent for
every j ∈ {1, . . . , m}. Since the system x2, . . . , xk is linearly independent, then
by Corollary 6.8 we have

yj ∈ Span (x2, . . . , xk) (j = 1, . . . , m) ,

that is
{y1, . . . , ym} ⊆ Span (x2, . . . , xk) ⊆ V .

From here follows that

V = Span (y1, . . . , ym) ⊆ Span (x2, . . . , xk) ⊆ V .

Since the first and the last member of the above chain coincide, at every point in
it stand equalities. This implies that

Span (x2, . . . , xk) = V .

But x1 ∈ V , so x1 ∈ Span (x2, . . . , xk). This means that x1 is linear combination
of x2, . . . , xk in contradiction with the linear independence of x1, . . . , xk. ¤

6.16. Theorem The number of vectors in a linearly independent system is not
greater than the number of vectors in a generator system.

Proof. Let x1, . . . , xk be an independent system and y1, . . . , ym be a generator
system in V . Using the Exchange Theorem replace x1 into a suitable yj1 to obtain
the linearly independent system yj1 , x2, . . . , xk. Apply the Exchange Theorem
for this new system: replace x2 into a suitable yj2 , thus we obtain the linearly
independent system yj1 , yj2 , x3, . . . , xk. Continuing this process we arrive after
k steps to the linearly independent system yj1 , . . . , yjk

. This system contains
different vectors (because of the independence). We have the conclusion that
among the vectors y1, . . . , ym k pieces are different. Consequently k ≤ m. ¤

A simple consequence of the above theorem that the subspaces of a finite
dimensional vector space are also finite dimensional, moreover, in a finite dimen-
sional vector space it does not exist a linearly independent system of any size.
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6.17. Theorem Let V be a finite dimensional vector space. Then

1. Any subspace W ⊆ V is also finite dimensional.

2. There exists N ∈ N such that any system of at least N terms is linearly
dependent.

Proof.

1. Since dimV < ∞, there exists a finite generator system in V . Denote by m
the number of terms in this generator system.

Let W be a subspace, and suppose indirectly that dimW = ∞. Then by
Theorem 6.9 it must contain m + 1 linearly independent vectors. Conse-
quently – by the previous theorem – it follows m + 1 ≤ m. This is a cont-
radiction.

2. Let N = m + 1, and n ≥ N = m + 1. Suppose indirectly that dimV =
∞. Then by Theorem 6.9 it must contain n linearly independent vectors.
Consequently – by the previous theorem – it follows n ≤ m. On the other
hand we have

n ≥ m + 1 > m .

This is a contradiction.

¤

6.18. Corollary. The second statement of the theorem above and Theorem 6.9
say us the following equivalence:

A vector space is finite dimensional if and only if it has an n-term linearly
independent system for every n ∈ N.

Let us go back to the topic of bases.

6.19. Theorem Let V be a finite dimensional nonzero vector space. Then in V
all bases have the same number of elements.

Proof. Let x1, . . . , xk and y1, . . . , ym be two bases in V . By Theorem 6.16 we
can deduce that

x1, . . . , xk is independent
y1, . . . , ym is generator system

}
⇒ k ≤ m

On the other hand

y1, . . . , ym is independent
x1, . . . , xk is generator system

}
⇒ m ≤ k

Consequently k = m. ¤
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6.20. Definition Let V be a finite-dimensional nonzero vector space. The com-
mon number of the bases in V is called the dimension of the space and is de-
noted by dimV . By definition dim({0}) := 0. If dimV = n then V is called
n-dimensional.

The statements of the following examples follow immediately from the examp-
les for bases.

6.21. Examples

1. The space of the vectors on the straight line is one dimensional.

2. The space of the plane vectors is two dimensional.

3. The space of the space vectors is three dimensional.

4. dim(Kn) = n (n ∈ N).

5. dimPn = n + 1 (n ∈ N ∪ {0}).

In the following we will state and prove four useful statements about vector
systems in an n-dimensional vector space.

6.22. Theorem [” 4 small statements”]
Let 1 ≤ dim(V ) = n < ∞. Then

1. If x1, . . . , xk ∈ V is a linearly independent vector system, then k ≤ n.

Otherwise: Any linearly independent vector system contains up to as many
terms as the dimension of the space.

Even otherwise: Any vector system containing at least dimV + 1 terms is
linearly dependent.

2. If x1, . . . , xk ∈ V is a generator system, then k ≥ n.

Otherwise: Any generator system contains at least as many terms as the
dimension of the space.

Even otherwise: Any vector system containing at most dimV − 1 terms is
not a generator system.

3. If x1, . . . , xn ∈ V is a linearly independent system then it is a generator
system (consequently: it is basis).

Otherwise: If a linearly independent system contains as many terms as the
dimension, then it is a generator system (consequently: it is basis).

4. If x1, . . . , xn ∈ V is a generator system then

Otherwise: If a generator system contains as many terms as the dimension,
then it is linearly independent (consequently: it is basis).



42 6. Lesson 6

Proof.

1. Let e1, . . . , en be a basis in V . Then it is a generator system, thus by The-
orem 6.16 we have:

k ≤ n .

2. Let e1, . . . , en be a basis in V . Then it is a linearly independent system,
thus by Theorem 6.16 we have:

k ≥ n .

3. Suppose indirectly that x1, . . . , xn is nor a generator system. Then

V \ Span (x1, . . . , xn) 6= ∅ .

Let x ∈ V \Span (x1, . . . , xn). Then by Theorem 6.7 the system x1, . . . , xn, x
is linearly independent. This is a contradiction, because this system has n+1
terms, more than the dimension of the space.

4. Suppose indirectly that x1, . . . , xn is linearly dependent. Then by Theorem
6.4 we have

∃ i ∈ {1, 2, . . . n} : Span (x1, . . . , xi−1, xi+1, . . . , xn) = Span (x1, . . . , xn) = V .

This is a contradiction, because the system x1, . . . , xi−1, xi+1, . . . , xn has
n− 1 terms, less than the dimension of the space.

¤

6.23. Theorem [Dimensions of subspaces]
Let dim(V ) = n < ∞. Then it holds for any subspace W ⊆ V that

dimW ≤ n .

Furthermore, dimW = n if and only if W = V .

Proof. By Theorem 6.17 W is finite dimensional. Let k := dimW . Then there
exist a basis e1, . . . , ek in W . The system e1, . . . , ek is linearly independent in
V . Consequently by Theorem 6.16 k ≤ n holds.

In the second part of the theorem the direction W = V ⇒ dimW = n is
obviously true. To prove the opposite direction, suppose that dimW = n. Then
there exist a basis e1, . . . , en in W . The system e1, . . . , en is a linearly indepen-
dent system in V , having n terms. Consequently by Theorem 6.22 e1, . . . , en is
a basis in V . Thus

W = Span (e1, . . . , en) = V

¤
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6.4. Control Questions

1. Define the linearly independence and the dependence for finite vector sys-
tems

2. Give 2 examples for linearly independent and 2 examples for linearly de-
pendent systems

3. State and prove the independence of the standard unit vectors

4. Prove that

- if a vector system contains the zero vector then it is dependent

- if a vector system contains identical vectors then it is dependent

5. State and prove the theorem about the diminution of a dependent system

6. State and prove the theorem about the dependence of the system x1, . . . , xk, x,
where x ∈ Span (x1, . . . , xk).

7. State and prove the theorem about the extension of an independent system

8. State and prove the theorem about the arbitrarily large linearly independent
systems in an infinite dimensional vector space

9. Define the concept of basis in a vector space and give 3 examples for basis

10. Prove that every finite dimensional nonzero vector space has a basis

11. State and prove the exchange theorem

12. State and prove the most important corollary of the exchange theorem
(about the number of terms in a linearly independent and in a generator
system)

13. State and prove the theorem about the subspaces of a finite dimensional
vector space.

14. State and prove that a linearly independent system cannot be arbitrarily
large in a finite dimensional vector space.

15. Prove that any two bases in a finite dimensional vector space have the same
number of vectors

16. Define the concept of the dimension and give 3 examples for this concept
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17. State and prove the ”4 small statements” about the vector systems in an
n-dimensional vector space

18. State and prove the theorem about the dimensions of subspaces

6.5. Homework

1. Let x1 = (1,−2, 3), x2 = (5, 6,−1), x3 = (3, 2, 1) ∈ R3. Determine that
this system is linearly independent or dependent.

2. Which of the following vector systems are bases in R3?

a) x1 = (1, 0, 0), x2 = (2, 2, 0), x3 = (3, 3, 3).

b) y1 = (3, 1,−4), y2 = (2, 5, 6), y3 = (1, 4, 8).
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7.1. Coordinates

In this section V is a vector space with 1 ≤ dimV = n ≤ ∞.

7.1. Theorem Let e : e1, . . . en be a basis in V . Then

∀x ∈ V ∃ | ξ1, . . . , ξn ∈ K : x =
n∑

i=1

ξiei .

Proof. The existence of the numbers ξi is obvious because e1, . . . en is generator
system. To confirm the uniqueness take two expansions of x:

x =
n∑

i=1

ξiei =
n∑

i=1

ηiei .

After rearrangement we obtain:

n∑

i=1

(ξi − ηi)ei = 0 .

From here – using the linear independence of e1, . . . en – follows that ξi − ηi = 0
that is ξi = ηi (i = 1, . . . , n). ¤

7.2. Definition The numbers ξ1, . . . , ξn in the above theorem are called the
coordinates of the vector x relative to the basis e1, . . . en (or shortly: relative to
the ordered basis e). The vector

[x]e := (ξ1, . . . , ξn) ∈ Kn

is called the coordinate vector of x relative to the ordered basis e.

7.3. Remark. If V = Kn and e1, . . . en is the standard basis in it then

∀x ∈ Kn : [x]e = x .

By this reason we call the components of x ∈ Kn the coordinates of x.

In the following theorem we will prove the simple geometrical fact, that if a
coordinate of a vector with respect to a basis vector equals zero, then the vector
lies in the subspace generated by the remainder basis vectors.
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7.4. Theorem Let e1, . . . , en be a basis in V , and

x =
n∑

j=1

ξjej ∈ V .

Let i ∈ {1, . . . , n} be a fixed index, and let

W := Span (e1, . . . , ei−1, ei+1, . . . , en) .

Then
x ∈ W ⇐⇒ ξi = 0 .

Proof. First suppose that x ∈ W . Then

∃ ηj ∈ K : x =
n∑

j=1
j 6=i

ηjej =
n∑

j=1
j 6=i

ηjej + 0ei .

Using the uniqueness of the basis expansion of x with respect to the basis
e1, . . . , en we have:

ξj = ηj (j 6= i) and ξi = 0 .

The second part is the claim, which was to be demonstrated.
Conversely, suppose that ξi = 0. Substituting this fact into the basis expansion

of x we have

x =
n∑

j=1
j 6=i

ξjej + 0ei =
n∑

j=1
j 6=i

ξjej .

This means that x ∈ W . ¤

7.5. Remark. The theorem can be extended to the case when more then one
coordinates are 0.

Let e1, . . . , en be a basis in V , and

x =
n∑

j=1

ξjej ∈ V .

Let I ⊆ {1, . . . , n} and I∗ := {1, . . . , n} \ I. Suppose that I 6= ∅, I∗ 6= ∅, and let

W := Span (ei, i ∈ I∗) .

Then
x ∈ W ⇐⇒ ∀ j ∈ I : ξj = 0 .

This extension can be proved similarly to the proof of the theorem.
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The following theorem shows us how to compute the results of the vector
space operations using coordinates.

7.6. Theorem Let e : e1, . . . en be an ordered basis in V . Then for any x, y ∈ V
hold

[x + y]e = [x]e + [y]e ,

[λx]e = λ [x]e .

Proof. To prove the first statement let

[x]e = (ξ1, . . . , ξn), [y]e = (η1, . . . , ηn) ∈ Kn .

Then

x + y =
n∑

i=1

ξiei +
n∑

i=1

ηiei =
n∑

i=1

(ξi + ηi)ei ,

which implies that

[x + y]e = (ξ1 + η1, . . . , ξn + ηn) = (ξ1, . . . , ξn) + (η1, . . . , ηn) = [x]e + [y]e .

So the first part is proved. The proof of the second part is similar. ¤

7.7. Theorem [Change of Basis]
Let e : e1, . . . , en and e′ : e′1, . . . , e

′
n two ordered basis in V . Define the e → e′

transition matrix as follows:

C :=
[[

e′1
]
e
, . . . ,

[
e′n

]
e

] ∈ Kn×n,

that is: the j-th column vector of C is the coordinate vector of e′j relative to the
basis e.

Then
∀x ∈ V : C · [x]e′ = [x]e .

Proof. Let [x]e′ = (ξ′1, . . . , ξ
′
n). Then

C·[x]e′ =
[[

e′1
]
e
, . . . ,

[
e′n

]
e

]·




ξ′1
ξ′2
...

ξ′n


 =

n∑

j=1

ξ′j ·
[
e′j

]
e

=
n∑

j=1

[
ξ′j · e′j

]
e

=




n∑

j=1

ξ′j · e′j




e

= [x]e .

¤

7.8. Remark. The above theorem makes us possible to determine the coordi-
nates of a vector if we know its coordinates in another basis. In this connection
the basis e is called ”old basis” and the basis e′ is called ”new basis”.
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7.2. Elementary Basis Transformation (EBT)

In this section we will discuss the change of basis in the special case when the
new basis differs from the old one in a single vector . We will compute the new
coordinates in elementary way.

7.9. Theorem [The basic theorem of the EBT]
Let 1 ≤ dimV = n < ∞ and e1, . . . , en be a basis in V . Furthermore let b be

a vector in V with the basis expansion

b = β1e1 + · · ·+ βnen ∈ V .

Let i ∈ {1, . . . , n}, and denote by e′ the vector system

e1, . . . , ei−1, b, ei+1, . . . , en .

Then e′ is a basis if and only if βi 6= 0.
The number βi is called: generator element.

Proof. Let e′ be a basis, and suppose indirectly that βi = 0.
Then the term βiei is not contained in the basis expansion of b :

b =
n∑

j=1
j 6=i

βj · ej .

After rearranging we have

n∑

j=1
j 6=i

βj · ej + (−1) · b = 0 .

The above equality shows that a nontrivial linear combination of e′ equals 0,
consequently e′ is linearly dependent, it cannot be a basis. This is a contradiction.

To prove the converse statement, suppose that βi 6= 0.
Since the number of the terms in e′ is n, it is enough to prove (see Theorem

6.22) that e′ is a generator system.
To show this let us express bi from the basis expansion of b:

b =
n∑

j=1
j 6=i

βj · ej + βiei

ei =
1
βi


b−

n∑

j=1
j 6=i

βj · ej


 .
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Let x = ξ1e1 + · · ·+ ξnen ∈ V be an arbitrary vector, and let us substitute in its
basis expansion the above formula for ei:

x =
n∑

j=1
j 6=i

ξjej + ξiei =
n∑

j=1
j 6=i

ξjej +
ξi

βi


b−

n∑

j=1
j 6=i

βjej


 =

=
n∑

j=1
j 6=i

ξjej +
ξi

βi
b−

n∑

j=1
j 6=i

(
ξi

βi
βj

)
ej =

ξi

βi
b +

n∑

j=1
j 6=i

(
ξj − ξi

βi
βj

)
ej .

Thus we have created x as a linear combination of the system e′, which shows
that e′ is really a generator system. ¤

7.10. Remarks.

1. It turned out from the proof that if we denote by ξ′1, . . . , ξ
′
n the coordinates

of x relative to the basis e′ (these are the new coordinates), then

ξ′i =
ξi

βi
, ξ′j = ξj − ξi

βi
βj (j = 1, . . . , i− 1, i + 1, . . . , n) .

These are the Transformation Formulas.

2. In manual calculations it is more useful to write the Transformation For-
mulas in the following way:

ξ′i =
ξi

βi
, ξ′j = ξj − βj

βi
ξi (j = 1, . . . , i− 1, i + 1, . . . , n) .

3. Frequently it is necessary to compute the new coordinates of more than
one vectors. In this case is suggested to compute the first coordinates of all
vectors, then the second ones, etc. Thus we compute by coordinates, but
not by vectors. The data are written in the Basis Table as follows:

x y z b

e1 ξ1 η1 ζ1 β1
...

...
...

...
...

ei ξi ηi ζi βi
...

...
...

...
...

en ξn ηn ζn βn

Since the same coordinates stand in the same rows, the computation by
coordinates is called computation by rows. The new Basis Table after the
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transformation is

x y z b

e1 ξ1 − β1

βi
ξi η1 − β1

βi
ηi ζ1 − β1

βi
ζi β1 − β1

βi
βi = 0

...
...

...
...

...

b
ξi

βi

ηi

βi

ζi

βi

βi

βi
= 1

...
...

...
...

...

en ξn − βn

βi
ξi ηn − βn

βi
ηi ζn − βn

βi
ζi βn − βn

βi
βi = 0

We can state the rule of filling the new Basis Table in words as follows:

• We obtain the row of b that we divide the row of ei (named generator
row) by the generator element βi.

• For all j ∈ {1, . . . , n}, j 6= i we obtain the new row of ej that we

subtract from the old row of ej the
βj

βi
-multiple of the generator row.

Since this last step results 0-s under b, then the step can be stated as
follows:
For all j ∈ {1, . . . , n}, j 6= i we obtain the new row of ej that we
subtract from the old row of ej as multiple of the generator row, which
results 0-s under b.

4. It is natural that the coordinates of b relative to the basis e′ are 0, . . . , 0, 1, 0, . . . , 0,
since

b = 0 · e1 + · · ·+ 0 · ei−1 + 1 · ei + 0 · ei+1 + · · ·+ 0 · en .

5. We say that we built in the basis the vector b into the place of ei using
EBT. If we apply a sequence of EBT-s, then we can exchange a basis to a
new basis.

6. Theorem 7.9 is a simple consequence of Theorem 7.4. Really, if

W := Span (e1, . . . , ei−1, ei+1, . . . , en) ,

then

• If βi = 0, then by Theorem 7.4 b ∈ W . Consequently – using Theorem
6.6 – the system e′ is linearly dependent.

• If βi 6= 0, then by Theorem 7.4 b /∈ W . Consequently – using Theorem
6.7 – the system e′ is linearly independent. Since e′ has n terms, then
e′ is a basis.
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The disadvantage of this proof is, that it does not give the new co-
ordinates of the vectors, that is, it does not give the transformation
formulas.

7.3. Control Questions

1. State and prove the theorem about the existence and uniqueness of coordi-
nates

2. Define the coordinates and the coordinate vector

3. State and prove the theorem about the operations with coordinates

4. Define the transition matrix

5. State and prove the theorem about the Change of Basis

6. State and prove the basic theorem about the Elementary Basis Transfor-
mation (EBT)

7. What is a Basis Table?

7.4. Homework

1. The following basis is given in R3:

v1 = (3, 2, 1), v2 = (−2, 1, 0), v3 = (5, 0, 0) .

Determine the coordinate vector of x = (3, 4, 3) relative to the given basis.

2. It is given the following basis in P2:

P1(x) = 1 + x, P2(x) = 1 + x2, P3(x) = x + x2 .

Determine the coordinate vector of P (x) = 2− x + x2 relative to the given
basis.
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8.1. The Rank of a Vector System

In this section we try to characterize by a number the ”measure of dependence”.
For example in the vector space of the space vectors we feel that a linearly de-
pendent system is ”better dependent” if it lies on a straight line than it lies in a
plane. This observation motivates the following definition.

8.1. Definition Let V be a vector space, x1, . . . , xk ∈ V . The dimension of the
subspace generated by the system x1, . . . , xk is called the rank of this vector
system. It is denoted by rank (x1, . . . , xk). So

rank (x1, . . . , xk) := dim Span (x1, . . . , xk) .

8.2. Remarks.

1. 0 ≤ rank (x1, . . . , xk) ≤ k.

2. The rank expresses the ”measure of dependence”. The smaller is the rank
the more dependent are the vectors. Especially:

rank (x1, . . . , xk) = 0 ⇔ x1 = . . . = xk = 0 and

rank (x1, . . . , xk) = k ⇔ x1, . . . , xk is linearly independent .

3. rank (x1, . . . , xk) is the maximal number of linearly independent vectors in
the system x1, . . . , xk.

8.2. The Rank of a Matrix

8.3. Definition Let A ∈ Km×n. Then we can decompose it with horizontal
straight lines into row submatrices. The entries of the ith row submatrix form
the vector:

si := (ai1, ai2, . . . , ain) ∈ Kn (i = 1, . . . , m)

which is called the ith row vector of A. The subspace generated by the row vectors
of A is called the row space of A and is denoted by Row(A).

8.4. Remark. Obviously dimRow(A) ≤ m.
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8.5. Definition Let A ∈ Km×n. Then we can decompose it with vertical straight
lines into column submatrices. The entries of the jth column submatrix form the
vector:

cj :=




a1j

a2j
...

amj


 ∈ Km (j = 1, . . . , n)

which is called the jth column vector of A. The subspace generated by the column
vectors of A is called the column space of A and is denoted by Col(A).

8.6. Remarks.

1. Obviously dimCol(A) ≤ n.

2. Obviously

Row(AT ) = Col(A) ⊆ Km and Col(AT ) = Row(A) ⊆ Kn .

8.7. Theorem Let A ∈ Km×n, B ∈ Kn×p. Then

Col(AB) ⊆ Col(A) and Row(AB) ⊆ Row(B) .

Proof. Using the matrix multiplication with blocks we can establish that each
column vector of AB is a linear combination of the column vectors of A (the
coefficients are the entries in the current column of B), thus each column of AB
lies in Col(A). This implies Col(AB) ⊆ Col(A).

Similarly, each row vector of AB is a linear combination of the row vectors of
B (the coefficients are the entries in the current row of A), thus each row of AB
lies in Row(B). This implies Row(AB) ⊆ Row(B). ¤

8.8. Corollary.

dim Col(AB) ≤ dimCol(A) and dimRow(AB) ≤ dimRow(B) .

8.9. Theorem For any A ∈ Km×n holds

dim Row(A) = dimCol(A) .

Proof. For A = 0 the statement is trivially true.
Suppose that A 6= 0. Then r := dim Row(A) ≥ 1. Let b1, . . . , br ∈ Km

be a basis in Col(A), and denote by B ∈ Km×r the matrix whose columns are
b1, . . . , br. The columns of A can be written as linear combinations of b1, . . . , br:

∃ dij ∈ K : aj =
r∑

i=1

dijaj (j = 1, . . . , n) .
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Let D = (dij) ∈ Kr×n. We have the following factorization of A (it is called: basis
factorization):

A = BD .

Applying Corollary 8.8 we have

dim Row(A) = dimRow(BD) ≤ dimRow(D) ≤ r = dimCol(A) .

Thus dim Row(A) ≤ dimCol(A). To obtain the opposite inequality let us apply
this result for AT instead of A:

dimCol(A) = dimRow(AT ) ≤ dim Col(AT ) = dim Row(A) .

The proof is complete. ¤

8.10. Definition The common value of dimRow(A) and of dim Col(A) is called
the rank of the matrix A. Its notation is: rank (A). So

rank (A) := dimRow(A) = dim Col(A) .

8.11. Remarks. Let A ∈ Km×n. Then

1. The rank of the matrix equals the rank of its row vector system and equals
the rank of its column vector system.

2. rank (A) = rank (AT )

3. 0 ≤ rank (A) ≤ min{m,n}. rank (A) = 0 ⇔ A = 0.

4. rank (A) = m if and only if the row vectors of A are linearly independent.
Furthermore – using Theorem 6.23:

rank (A) = m if and only if Col(A) = Km .

In this case necessarily m ≤ n.

5. rank (A) = n if and only if the column vectors A are linearly independent.
Furthermore – using Theorem 6.23:

rank (A) = n if and only if Row(A) = Kn .

In this case necessarily m ≥ n.
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8.3. System of Linear Equations

8.12. Definition Let m ∈ N and n ∈ N be positive integers. The general form
of the m × n system of linear equations (or: linear equation system, or simply:
linear system) is:

a11x1 + . . . + a1nxn = b1

a21x1 + . . . + a2nxn = b2
...

...
...

am1x1 + . . . + amnxn = bm

,

where the coefficients aij ∈ K and the right-side constants bi are given. The
system is called homogeneous if b1 = · · · = bm = 0.

We are looking for all the possible values of the unknowns (or: variables)
x1, . . . , xn ∈ K such that all the equations will be true. These systems of values
of the variables are called the solutions of the linear system.

8.13. Definition The linear system is named consistent if it has a solution. It
is named inconsistent if it has no solution.

Let us denote by a1, . . . , an the column vectors formed from the coefficients
on the left side and by b the vector formed from the right-side constants as follows:

a1 :=




a11

a21
...

am1


 , . . . , an :=




a1n

a2n
...

amn


 , b :=




b1

b2
...

bm


 .

Using these notations our linear system can be written more succinctly as a vector
equation in Km as

x1a1 + x2a2 + · · ·+ xnan = b .

Let us introduce the following matrix (the so called coefficient matrix)

A := [a1 . . . an] :=




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


 ∈ K

m×n

and the unknown vector x := (x1, . . . , xn) ∈ Kn. Then the most succinct form of
our system is:

Ax = b.

In this connection the problem is to look for all the possible vectors in Kn

substituted instead of x the statement Ax = b will be true. Such a vector (if it
exists) is called a solution vector of the system.
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8.14. Remark. It is easy to observe that

the system is consistent ⇔ b ∈ Span (a1, . . . , an) = Col(A) .

Thus the consistence of a linear system is equivalent with the question that b lies
in the column space of A or not. Consequently as smaller is the column space as
greater is the chance of inconsistence. If rank (A) is equal to the number of rows
m then Col(A) is the possible greatest subspace that is Col(A) = Km. In this
case the system is surely consistent.

Denote by S the set of solution vectors of Ax = b that is:

S := {x ∈ Kn | Ax = b} ⊂ Kn .

Naturally, the system is inconsistent if and only if S = ∅.
8.15. Definition Let A ∈ Km×n. Then the linear system Ax = 0 is called the
homogeneous system of linear equations associated with the matrix A. It is called
sometimes the homogeneous system associated with Ax = b.

Remark that the homogeneous system is always consistent because the zero
vector is its solution.

8.16. Theorem Denote by Sh the solution set of the homogeneous system, that
is:

Sh := {x ∈ Kn | Ax = 0} ⊂ Kn .

Then Sh is a subspace in Kn.

Proof. Since the zero vector is contained in Sh, then Sh 6= ∅.
Sh is closed under addition, because if x, y ∈ Sh, then Ax = Ay = 0, conse-

quently
A(x + y) = Ax + Ay = 0 + 0 = 0 ,

which implies x + y ∈ Sh.
On the other hand Sh is closed under scalar multiplication, because if x ∈ Sh

and λ ∈ K, then Ax = 0, consequently

A(λx) = λAx = λ0 = 0 ,

which implies λx ∈ Sh. ¤

8.17. Definition Let A ∈ Km×n. The subspace Sh is called the null space or the
kernel of the matrix A and is denoted by Ker(A). That is

Ker(A) := Sh = {x ∈ Kn | Ax = 0} ⊂ Kn .

How to solve a linear equation system? We have learnt in the secondary school
the Substitution Method. It is applicable for systems having small sizes. For larger
systems we need some algorithmic method. One of these algorithmic methods is
discussed in the following section.
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8.4. The Elementary Basis Transformation Method

In this section we will study an algorithmic method, called Elementary Basis
Transformation Method (EBT-method) for solving system of linear equations.
The method makes us possible to know the structure of the solution sets S and
Sh.

Suppose that A 6= 0. (The case A = 0 is trivial.) The essentiality of the
EBT-method is that we construct a basis in Col(A).

Let us start with the standard basis in Km

e1 := (1, 0, . . . , 0), . . . , em := (0, 0, . . . , 1) ,

and write the coordinates of the column vectors of A and the coordinates of b
relative to this basis. Thus we obtain the Starting Basis Table. Since the basis
contains the standard unit vectors, the coordinates are the components itself,
consequently we need simply to copy A and b into the table.

a1 a2 . . . an b

e1 a11 a12 . . . a1n b1

e2 a21 a22 . . . a2n b2
...

...
...

...
...

em am1 am2 . . . amn bm

=

a1 a2 . . . an b

e1
... A b

em

Using a sequence of EBT-s put the vectors aj into the basis up to it is possible.
Denote by r the number of the column vectors aj that can be built into the
basis. Suppose for simplicity that the first r vectors e1, e2, . . . , er of the basis
are replaced the first r columns a1, a2, . . . , ar of A (simplification assumption).
Then the last Basis Table is as follows:

a1 a2 . . . ar ar+1 . . . an b

a1 1 0 . . . 0 d1,r+1 . . . d1n c1

a2 0 1 . . . 0 d2,r+1 . . . d2n c2
...

...
...

...
...

...
...

ar 0 0 . . . 1 dr,r+1 . . . drn cr

er+1 0 0 . . . 0 0 . . . 0 qr+1
...

...
...

...
...

...
...

em 0 0 . . . 0 0 . . . 0 qm

(8.1)

8.18. Remarks.

1. We can easily explain the 0 entries in the e-rows. If one of these entries were
be nonzero, then we could make a further EBT, thus this table would not
be the last one.

2. It is obvious that the system a1, . . . , ar is basis in Col(A), because
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• It is a subsystem of a basis, consequently it is linearly independent.

• The last Basis Table (8.5.) shows us that all the column vectors of A
can be written as linear combinations of a1, . . . , ar, consequently it is a
generator system in Col(A). The coefficients of the linear combinations
can be red out from the rows of the vectors a1, . . . , ar.

By this reason we can establish that

rank (A) = dim Col(A) = r .

3. In the case r = m there are no e-rows but only a-rows. In this case all the
vectors in the starting basis are replaced.

4. In the case r = n all the column vectors of A are built into the basis.

5. We have assumed – for the simpler notations – that the first r columns of
A are built in the basis to the place of the first r standard basis vectors.
This resulted that the order of vectors in the first column of the last Basis
Table is

a1, . . . , ar, er+1, . . . , em .

In general case the a-rows and the e-rows are in arbitrary way intermixed.

Let us see the system of linear equations represented by the last basis table:

1x1 + 0x2 + . . . + 0xr + d1,r+1xr+1 + . . . + d1nxn = c1

0x1 + 1x2 + . . . + + d2,r+1xr+1 + . . . + d2nxn = c2
...

0x1 + 0x2 + . . . + 1xr + dr,r+1xr+1 + . . . + drnxn = cr

0x1 + 0x2 + . . . + 0xr + 0xr+1 + . . . + 0xn = qr+1
...

0x1 + 0x2 + . . . + 0xr + 0xr+1 + . . . + 0xn = qm

(8.2)

This system is equivalent with the original system, because we have applied
finitely times the following operations:

• Divide an equation by a constant

• Subtraction from an equation a constant multiple of another equation.

Thus the solution set of the system (8.5.) is S. But this system is essentially
simpler.

8.19. Theorem If

1 ≤ r < m and ∃ i ∈ {r + 1, . . . , n} : qi 6= 0

then the original system Ax = b has no solution (it is inconsistent), that is S = ∅.
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Proof. The system (8.5.) contains the antinomic equation

0x1 + 0x2 + . . . + 0xr + 0xr+1 + . . . + 0xn = qi

¤

8.20. Theorem If

• or r = m

• or r < m but qr+1 = . . . = qn = 0

then the original system Ax = b is consistent, that is S 6= ∅. All the solutions can
be given by the formula

xi = ci −
n∑

j=r+1

dijxj (i = 1, . . . , r) , (8.3)

where xr+1, . . . , xn ∈ K are arbitrary numbers (they are called free variables).
The variables x1, . . . , xr are called bound variables. The number m− r (that

is the number of the free variables) is called the degree of freedom of the system
Ax = b.

Proof. The last m− r equations

0x1 + 0x2 + . . . + 0xr + 0xr+1 + . . . + 0xn = qr+1
...

0x1 + 0x2 + . . . + 0xr + 0xr+1 + . . . + 0xn = qm

can be left from the system (8.5.), because their solution sets are the whole Kn.
The remainder system

1x1 + 0x2 + . . . + 0xr + d1,r+1xr+1 + . . . + d1nxn = c1

0x1 + 1x2 + . . . + + d2,r+1xr+1 + . . . + d2nxn = c2
...

0x1 + 0x2 + . . . + 1xr + dr,r+1xr+1 + . . . + drnxn = cr

(8.4)

– that is called reduced system – is also equivalent with the original Ax = b. The
bound variables can be expressed easily from the equations:

x1 = c1 − d1,r+1xr+1 − . . . − d1nxn

x2 = c2 − d2,r+1xr+1 − . . . − d2nxn
...

xr = cr − dr,r+1xr+1 − . . . − drnxn

(8.5)

¤
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8.21. Remarks.

1. Let us complete the equations (8.5) with the trivial equations xi = xi

(i = r + 1, . . . , n):

x1 = c1 − d1,r+1xr+1 − . . . − d1nxn

x2 = c2 − d2,r+1xr+1 − . . . − d2nxn
...

xr = cr − dr,r+1xr+1 − . . . − drnxn

xr+1 = 0 + 1xr+1 + . . . + 0xn
...

xn = 0 + 0xr+1 + . . . + 1xn

These equations are considered to componentwise equalities of the following
vector equation:




x1

x2
...

xr

xr+1
...

xn




=




c1

c2
...
cr

0
...
0




+ xr+1 ·




−d1,r+1

−d2,r+1
...

−dr,r+1

1
...
0




+ . . . + xn ·




−d1n

−d2,n
...

−drn

0
...
1




Shortly:

x = xB + xr+1 · vr+1 + . . . + xn · vn = xB +
n∑

j=r+1

xjvj . (8.6)

where

x =




x1

x2
...

xr

xr+1
...

xn




, xB =




c1

c2
...
cr

0
...
0




,
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and

vr+1 =




−d1,r+1

−d2,r+1
...

−dr,r+1

1
...
0




, . . . , vn =




−d1n

−d2,n
...

−drn

0
...
1




. (8.7)

Thus we have:

S =



xB +

n∑

j=r+1

xjvj | xj ∈ K


 ⊆ Kn . (8.8)

2. Suppose – under the assumptions of the previous theorem – that r = n. In
this case the numbers dij does not exist, the sums in (8.3) and in (8.6) are
empty, and all the variables are bound (there is no free variable, the degree
of freedom is 0). The solution of the system Ax = b is unique:

x1 = c1, . . . , xn = cn and x = xB and S = {xB} .

8.22. Theorem Let A ∈ Km×n and b ∈ Km. Then

1. The solution set Sh of the homogeneous system of linear equations Ax = 0
is an n−r dimensional subspace in Kn. A basis in this subspace is the vector
system vr+1, . . . , vn defined in (8.7).

2. If the system of linear equations Ax = b is consistent, then its solution set
S is a translation of the subspace Sh (a linear manifold), more precisely

S = xB + Sh .

Proof.

1. Let us see the homogeneous system Ax = 0. Since the zero vector has all
zero coordinates relative to any basis, it follows that c1 = . . . = cr = 0,
which means xB = 0. Put this result into (8.8):

Sh =





n∑

j=r+1

xjvj | xj ∈ K


 ,

which means that vr+1, . . . , vn is a generator system in Sh.

On the other hand – because of the 0-1 components – the system vr+1, . . . , vn

is linearly independent.

Thus the system vr+1, . . . , vn is a basis in Sh, consequently dimSh = n−r.
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2. It follows immediately using (8.8).

¤

8.23. Remarks.

1. In the case r = n we have Sh = {0} and dimSh = 0.

2. Since Ker(A) = Sh and dimSh = n− r and dim Col(A) = r, then we have
the important identity

dimKer(A) + dimCol(A) = n .

8.5. Linear Equation Systems with Square Matrices

Let us study the linear equation system with square matrix:

Ax = b (A ∈ Kn×n, b ∈ Kn) .

Denote by r the rank of A. We distinguish between the two basic cases as follows.

Case 1.: r = n.
In this case rank (A) equals the number of rows of A, consequently (see Re-

mark 8.11) Col(A) = Kn, thus the system is consistent (see Remark 8.14).
On the other hand – because of rank (A) equals the number of columns – the

solution is unique (see: Remark 8.21).
Thus in the case rankA = n the square system has a unique solution inde-

pendently of b.
If we solve the square system using the EBT-algorithm, then the last Basis

Table in this case is as follows:

a1 a2 . . . an b

a1 1 0 . . . 0 c1

a2 0 1 . . . 0 c2
...

...
...

...
...

an 0 0 . . . 1 cn

which represents the following linear system:

1x1 + 0x2 + . . . + 0xn = c1

0x1 + 1x2 + . . . + = c2
...

0x1 + 0x2 + . . . + 1xn = cn

We can read out the unique solution easily:

x1 = c1, x2 = c2, . . . , xn = cn .
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Case 2.: r < n.
In this case rank (A) is less than the number of rows of A, consequently (see

Remark8.11) Col(A) ⊆ Kn but Col(A) 6= Kn. Thus the system may be consistent
(if b ∈ Col(A)) or it may be inconsistent (if b /∈ Col(A)).

If the system is consistent then – since r is less than the number of columns
– the system has infinitely many solutions, the degree of freedom is n− r ≥ 1.

8.6. Inverses with EBT

8.24. Theorem Let A ∈ Kn×n be a square matrix. Then

1. rankA = n ⇐⇒ A is invertible (regular);

2. rankA < n ⇐⇒ A is not invertible (singular).

Proof. Denote by I the identity matrix of size n×n. Its columns are the standard
unit vectors:

I =
[
e1 e2 . . . en

]
.

We are looking for the inverse of A, that is we are looking for the matrix

X =
[
x1 x2 . . . xn

] ∈ Kn×n

such that AX = I (see Section 2.4.). The matrix equation AX = I can be written
in the form

A · [ x1 x2 . . . xn

]
=

[
e1 e2 . . . en

]
,

which is equivalent with the following collection of linear systems:

Ax1 = e1, Ax2 = e2, . . . , Axn = en . (8.9)

Case 1.: r = n. In this case – using the results of the previous section – all
these systems can be solved uniquely. This implies that A−1 exists, and the co-
lumns of A−1 are the solution vectors x1, . . . , xn of the above linear systems.

Case 2.: r < n. Since dim Col(A) = r < n, then all the standard unit vectors
e1, . . . , en cannot be in Col(A). Consequently at least one of the above collection
of linear systems is inconsistent. This implies that A−1 does not exist. ¤

8.25. Remarks.

1. We determine the invertibility and the inverse of A as follows.
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The linear systems in (8.9) have a common coefficient matrix, thus they
can be solved simultaneously with EBT-algorithm using a common Basis
Table. The starting table is:

a1 . . . an e1 . . . en

e1
... A I

en

.

If not all the columns of A can be put into the basis, then rank (A) < n,
consequently A has no inverse, it is singular.

If all the columns of A can be put into the basis, then rank (A) = n,
consequently A has an inverse, it is regular. In this case suppose that the
columns of A are put in the basis in their original order a1, . . . , an. In this
case A−1 can be read out simply from the last Basis Table:

a1 . . . an e1 . . . en

a1 1 . . . 0 c11 . . . c1n
...

...
...

...
...

an 0 . . . 1 cn1 . . . cnn

=

a1 . . . an e1 . . . en

e1
... I A−1

en

.

2. Using the connection between the inverse and the determinant (see Section
2.4.), we can collect our results as follows:

rank (A) = n ⇔ ∃A−1 ⇔ det(A) 6= 0 ⇔ A is regular ⇔ A is invertible .

rank (A) < n ⇔6 ∃A−1 ⇔ det(A) = 0 ⇔ A is singular ⇔ A is not invertible .

8.7. Control Questions

1. Define the rank of a vector system

2. State and prove the theorem about the connection between the column
spaces of AB and A

3. State and prove the theorem about the connection between the row spaces
of AB and B
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4. State and prove the theorem about the connection between the dimensions
of the row space and the column space of A

5. Define the rank of a matrix

6. What is the scalar form, the vector form and the matrix form of a system
of linear equations?

7. Define the sets S, Sh and Ker(A). State and prove that Sh is a subspace

8. Give the starting Basis Table for Ax = b

9. Give the last Basis Table for Ax = b (under the simplification assumption)

10. State (without proof) the theorem about the structure of solution sets of a
homogeneous and a nonhomogeneous system of linear equations

11. State (without proof) the theorem about the system of linear equations
with square matrices (case 1 and case 2)

12. State and prove the theorem about the connection between the rank and
the invertibility of a matrix

8.8. Homework

1. Find the ranks of the matrices

a)




2 0 −1
4 0 −2
0 0 0


 b)




1 3 1 4
2 4 0
−1 −3 0 5




2. Solve the systems of linear equations (with the Substitution Method):

a)
x1 + 2x2 − 3x3 = 6
2x1 − x2 + 4x3 = 1
x1 − x2 + x3 = 3

b)
x1 + x2 + 2x3 = 5
x1 + x3 = −2
2x1 + x2 + 3x3 = 3
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9.1. Eigenvalues and eigenvectors of Matrices

9.1. Definition Let A ∈ Kn×n. The number λ ∈ K is called the eigenvalue of A
if there exists a nonzero vector in Kn such that

Ax = λx

The vector x ∈ Kn \ {0} is called an eigenvector corresponding to the eigenvalue
λ.

The set of the eigenvalues of A is called the spectrum of A and is denoted by
Sp (A).

One can show by an easy rearrangement that the above equation is equivalent
with the homogeneous square linear system

(A− λI)x = 0

where I denotes the identity matrix in Kn×n.
So a number λ ∈ K is eigenvalue if and only if the above system has infinite

many solutions that is if its determinant equals 0:

det(A− λI) = 0.

The left side of the equation is a polynomial whose roots are the eigenvalues.

9.2. Definition The polynomial

P (λ) = PA(λ) = det(A− λI) =

∣∣∣∣∣∣∣∣∣

a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n
...

...
...

an1 an2 . . . ann − λ

∣∣∣∣∣∣∣∣∣
(λ ∈ K)

is called the characteristic polynomial of A. The multiplicity of the root λ is called
the algebraic multiplicity of the eigenvalue λ and is denoted by a(λ).

9.3. Remark. One can see by expansion along the first row that the coefficient
of λn is (−1)n. Furthermore from P (0) = det(A− 0I) = det(A) follows that the
constant term is det(A). So the form of the characteristic polynomial:

P (λ) = (−1)n · λn + · · ·+ det(A) (λ ∈ K) .

Since the eigenvalues are the roots in K of the characteristic polynomial we
can state as follows:
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• If K = C then Sp (A) is a nonempty set with at most n elements. Co-
unting every eigenvalue with its algebraic multiplicity the number of the
eigenvalues is exactly n.

• If K = R then Sp (A) is a (possibly empty) set at most with n elements.

9.4. Remark. Let A ∈ Kn×n be a (lower or upper) triangular matrix. Then –
for example in lower triangular case – its characteristic polynomial is

P (λ) =

∣∣∣∣∣∣∣∣∣

a11 − λ 0 . . . 0
a21 a22 − λ . . . 0
...

...
...

an1 an2 . . . ann − λ

∣∣∣∣∣∣∣∣∣
=

= (a11 − λ) · (a22 − λ) · · · · · (ann − λ) (λ ∈ K) .

From here follows that the eigenvalues of a lower triangular matrix are the dia-
gonal elements and the algebraic multiplicity of an eigenvalue is as many times
as it occurs in the diagonal.

Let us discuss some properties of the eigenvectors. It is obvious that if x is
eigenvector then αx is also eigenvector where α ∈ K \ {0} is arbitrary. So the
number of the eigenvectors corresponding to an eigenvalue is infinite. The proper
question is the maximal number of the linearly independent eigenvectors.

9.5. Definition Let A ∈ Kn×n and λ ∈ Sp (A). The subspace

Wλ := Wλ(A) := {x ∈ Kn | Ax = λx}

is called the eigenspace of the matrix A corresponding to the eigenvalue λ. The
dimension of Wλ is called the geometric multiplicity of the eigenvalue λ and is
denoted by g(λ).

9.6. Remarks.

1. The eigenspace consists of the eigenvectors and the zero vector as elements.

2. Since the eigenvectors are the nontrivial solutions of the homogeneous linear
system (A− λI)x = 0 it follows that

g(λ) = dimWλ = dimSh = n− rank (A− λI) .

3. It can be proved that for every λ ∈ Sp (A) holds

1 ≤ g(λ) ≤ a(λ) ≤ n .
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9.2. Eigenvector Basis

9.7. Theorem Let A ∈ Kn×n and λ1, . . . , λk be some different eigenvalues of
the matrix A. Let si ∈ N, 1 ≤ si ≤ g(λi) and x

(1)
i , x

(2)
i , . . . , x

(si)
i be a linearly

independent system in the eigenspace Wλi (i = 1, . . . , k). Then the united system

x
(j)
i ∈ Kn (i = 1, . . . , k; j = 1, . . . , si)

is linearly independent.

Let us take from the eigenspace Wλ the maximal number of linearly indepen-
dent eigenvectors (this maximal number equals g(λ)). The united system – by
the previous theorem – is linearly independent and its cardinality is

∑
λ∈Sp (A)

g(λ).

So we can establish that ∑

λ∈Sp (A)

g(λ) ≤ n .

If here stands ”=” then we have n independent eigenvectors in Kn so we have
a basis consisting of eigenvectors. This basis will be called Eigenvector Basis (E.
B.).

It follows simply from the previous results that

∃ E.B. ⇔
∑

λ∈Sp (A)

g(λ) = n .

9.8. Theorem Let A ∈ Kn×n and denote by a(λ) its algebraic and by g(λ) its
geometric multiplicity. Then there exists Eigenvector Basis in Kn if and only if

∑

λ∈Sp (A)

a(λ) = n and ∀λ ∈ Sp (A) : g(λ) = a(λ) .

Proof. On the lecture. ¤

9.9. Remark. The meaning of the condition
∑

λ∈Sp (A)

a(λ) = n is that the number

of roots in K of the characteristic polynomial – counted with their multiplicities
– equals n. Therefore

- If K = C then this condition is ”automatically” true.

- If K = R then this condition holds if and only if every root of the charac-
teristic polynomial is real.
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9.3. Diagonalization

9.10. Definition (Similarity) Let A,B ∈ Kn×n. We say that the matrix B is
similar to the matrix A (notation: A ∼ B) if

∃C ∈ Kn×n : C is invertible and B = C−1AC .

9.11. Remark. The similarity relation is an equivalence relation (it is reflexive,
symmetric and transitive). So we can use the phrase: A and B are similar (to
each other).

9.12. Theorem If A ∼ B then PA = PB that is their characteristic polynomi-
als coincide. Consequently the eigenvalues, their algebraic multiplicities and the
determinants are equal.

Proof. Let A,B, C ∈ Kn×n and suppose that B = C−1AC. Then for every
λ ∈ K:

PB(λ) = det(B − λI) = det(C−1AC − λC−1IC) = det(C−1(A− λI)C) =
= det(C−1) · det(A− λI) · det(C) = det(C−1) · det(C) · det(A− λI) =
= det(C−1C) · det(A− λI) = det(I) · PA(λ) = 1 · PA(λ) = PA(λ) .

¤
The following definition gives us an important class of square matrices.

9.13. Definition Let A ∈ Kn×n. We say that the matrix A is diagonalizable
(over the field K) if

∃C ∈ Kn×n : C is invertible and C−1AC is diagonal matrix .

The matrix C is said to diagonalize A. The matrix D = C−1AC is called the
diagonal form of A.

9.14. Remarks.

1. Obviously A is diagonalizable if and only if it is similar to a diagonal matrix.

2. A matrix A can have more than one diagonal form.

3. If A is diagonalizable then the diagonal entries of its diagonal form are the
eigenvalues of A. More precisely, each eigenvalue stands in the diagonal as
much times as its algebraic multiplicity.

The diagonalizability of a matrix is in close connection with the Eigenvector
Basis as the following theorem shows:
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9.15. Theorem Let A ∈ Kn×n. The matrix A is diagonalizable (over the field
K) if and only if there exists Eigenvector Basis (E. B.) in Kn.

Proof. First suppose that A is diagonalizable. Let c1, . . . , cn ∈ Kn be the column
vectors of C to diagonalize A. So

C = [c1 . . . cn] .

We will show that c1, . . . , cn is Eigenvector Basis.
Since C is invertible so c1, . . . , cn is a linearly independent system having n

members. Consequently it is a basis in Kn.
To show that the vectors cj are eigenvectors, set out from the relation

C−1AC =




λ1

. . .
λn




where λ1, . . . , λn are the eigenvalues of A. Multiply by C from the left:

A · [c1 . . . cn] = C ·




λ1

. . .
λn


 = [c1 . . . cn] ·




λ1

. . .
λn




[Ac1 . . . Acn] = [λ1c1 . . . λncn]

Using the equalities of the columns:

Acj = λjcj (j = 1, . . . , n)

so the basis c1, . . . , cn really consists of eigenvectors.
Conversely suppose that c1, . . . , cn is an Eigenvector Basis. Let C be the

matrix whose columns are c1, . . . , cn. Then C is obviously invertible, moreover,
setting out from the equations

Acj = λjcj (j = 1, . . . , n)

and making the previous operations backward we obtain

C−1AC =




λ1

. . .
λn


 .

So A is really diagonalizable. ¤

9.16. Remarks.
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1. You can see that the order of the vectors of E. B. in the matrix C is identical
with the order of the corresponding eigenvalues in the diagonal of C−1AC.

2. If the matrix A ∈ Kn×n has n different eigenvalues in K then the corres-
ponding eigenvectors (n vectors) are linearly independent. So they form an
Eigenvector Basis and by this reason A is diagonalizable.

9.4. Control Questions

1. Define the eigenvalue and the eigenvector of a matrix

2. Define the characteristic polynomial

3. Prove that the eigenvalues are the roots of the characteristic polynomial

4. Define the algebraic multiplicity of an eigenvalue

5. State and prove the statement about the eigenvalues of a triangle matrix

6. Prove that the eigenvectors to an eigenvalue and the zero vector together
form a subspace. What is the name of this subspace?

7. Define the geometric multiplicity of an eigenvalue

8. What is the connection between the algebraic and the geometric multiplicity
of an eigenvalue?

9. State (without proof) the theorem about the independence of eigenvectors

10. Define the concept of Eigenvector Basis (E. B.)

11. What is the necessary and sufficient condition of the existence of Eigenvec-
tor Basis?

12. Define the similarity of matrices

13. State and prove the theorem about the characteristic polynomials of similar
matrices

14. Define the concept of diagonalizable matrix
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15. What are the diagonal elements in the diagonal form of a diagonalizable
matrix?

16. State and prove the necessary and sufficient condition of diagonalizability

9.5. Homework

1. Find the eigenvalues and the eigenvectors of the following matrices:

a)
[

2 −1
10 −9

]
b)

[−2 −7
1 2

]
c)




5 1 3
0 −1 0
0 1 2




2. Determine whether the following matrices are diagonalizable or not. In the
diagonalizable case determine the matrix C that diagonalizes A and the
diagonal form C−1AC.

a) A =
[
2 −3
1 −1

]
b)




1 2 −2
−3 4 0
−3 1 3
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10.1. Inner Product Spaces

10.1. Definition Let V be a vector space over the number field K.
Let V × V 3 (x, y) 7→ 〈x, y〉 be an operation, which will be named inner product
or scalar product or dot product.

Suppose that

1. ∀ (x, y) ∈ V ×V : 〈x, y〉 ∈ K (the value of the inner product is a scalar)

2. ∀x, y ∈ V : 〈x, y〉 = 〈y, x〉 (if K = R: commutative law; if K = C:
antisymmetry)

3. ∀x ∈ V ∀λ ∈ K : 〈λx, y〉 = λ〈x, y〉 (homogeneous)

4. ∀x, y, z ∈ V : 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉 (distributive law)

5. 〈x, x〉 ≥ 0 (x ∈ V ), furthermore 〈x, x〉 = 0 ⇔ x = 0 (positive definite)

Then we call V inner product space or Euclidean space. More precisely in the
case K = R we call it real inner product space, in the case K = C we call it
complex inner product space.

10.2. Examples

1. The vector space of the plane vectors and the vector space of the space
vectors are real inner product spaces if the inner product is the common
dot product

〈a, b〉 = |a| · |b| · cos γ

where γ denotes the angle of vectors a and b.

2. The vector space Kn is inner product space if the inner product is

〈x, y〉 :=
n∑

k=1

xkyk = y∗x (x, y ∈ Kn) ,

where x and y denote the column matrix corresponding to the vectors x
and y:

x :=




x1

x2
...

xn


 and y :=




y1

y2
...

yn


 .
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This is the standard inner product in Kn. Naturally in the case K = R there
is no conjugation:

〈x, y〉 :=
n∑

k=1

xkyk = yT x (x, y ∈ Rn) .

3. Let −∞ < a < b < +∞. The vector space C[a, b] of all continuous functions
defined on [a, b] a mapping into K form an inner product space if the inner
product is

- in the case K = C: 〈f, g〉 :=
b∫
a

f(x)g(x) dx.

- in the case K = R: 〈f, g〉 :=
b∫
a

f(x)g(x) dx.

This is the standard inner product in C[a, b].

4. Since the polynomial vector spaces P[a, b], Pn[a, b] are subspaces of C[a, b],
so they are also inner product spaces with the inner product defined in the
previous example.

Some basic properties of the inner product spaces follow.

10.3. Theorem Let V be an inner product space over K.
Then for every x, xi, y, yj , z ∈ V and for every λ, λi, µj ∈ K hold

1. 〈x, λy〉 = λ · 〈x, y〉
2. 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉

3. 〈
n∑

i=1
λixi,

m∑
j=1

µjyj〉 =
n∑

i=1

m∑
j=1

λiµj〈xi, yj〉 Naturally in the real case K = R

there is no conjugation: 〈
n∑

i=1
λixi,

m∑
j=1

µjyj〉 =
n∑

i=1

m∑
j=1

λiµj〈xi, yj〉

4. 〈x, 0〉 = 〈0, x〉 = 0

Proof.

1. 〈x, λy〉 = 〈λy, x〉 = λ · 〈y, x〉 = λ · 〈y, x〉 = λ · 〈x, y〉.
2. 〈x + y, z〉 = 〈z, x + y〉 = 〈z, x〉+ 〈z, y〉 = 〈z, x〉+ 〈z, y〉 = 〈x, z〉+ 〈y, z〉.
3. Apply several times the axioms and the previous properties:

〈
n∑

i=1

λixi,

m∑

j=1

µjyj〉 =
n∑

i=1

m∑

j=1

〈λixi, µjyj〉 =
n∑

i=1

m∑

j=1

λiµj · 〈xi, yj〉.
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4. 〈x, 0〉 = 〈x, 0 + 0〉 = 〈x, 0〉 + 〈x, 0〉. After subtraction 〈x, 0〉 from both
sides we obtain the first statement. The other one can reduce to the first.

¤

10.2. The Cauchy’s inequality

10.4. Theorem [Cauchy’s inequality] Let V be an inner product space and let
x, y ∈ V . Then

|〈x, y〉| ≤
√
〈x, x〉 ·

√
〈y, y〉 .

Here stands equality if and only if the vector system x, y is linearly dependent (x
and y are parallel).

Proof. We will prove the statement of the theorem only in the case K = R. Let
us observe that for any λ ∈ R:

0 ≤ 〈x + λy, x + λy〉 = 〈x, x〉+ λ〈y, x〉+ λ〈x, y〉+ λλ〈y, y〉 =

= (〈y, y〉)λ2 + (2〈x, y〉)λ + 〈x, x〉 = P (λ) .

So the above defined second degree polynomial P takes nonnegative values eve-
rywhere.

Suppose first that x and y are linearly independent. Then for any λ ∈ R holds
x + λy 6= 0 so P (λ) > 0 for any λ ∈ R. That means that the discriminant of P is
negative:

discriminant = (2〈x, y〉)2 − 4(〈y, y〉)(〈x, x〉) < 0 .

After division by 4 and rearranging the inequality we obtain that

|〈x, y〉| <
√
〈x, x〉 ·

√
〈y, y〉 .

Now suppose that x and y are linearly dependent. Then x + λy = 0 holds for
some λ ∈ R. That means P (λ) = 0 so the nonnegative second degree polynomial
P has a real root. Consequently its discriminant equals 0:

discriminant = (2〈x, y〉)2 − 4(〈y, y〉)(〈x, x〉) = 0 .

After rearranging the equation we obtain that

|〈x, y〉| =
√
〈x, x〉 ·

√
〈y, y〉 .

From the proved parts immediately follow the statements of the theorem. ¤

10.5. Remark. Apply the Cauchy’s inequality in Rn:

(x1y1 + · · ·+ xnyn)2 ≤ (x2
1 + · · ·+ x2

n)(y2
1 + · · ·+ y2

n) (ii, yi ∈ R)

and equality holds if and only if the vectors (x1, . . . , xn) and (y1, . . . , yn) are line-
arly dependent (parallel). This is the well-known Cauchy-Bunyakovsky-Schwarz
inequality.



76 10. Lesson 10

10.3. Norm

In this section the concept of the length of vectors will be extended (in other
words: the distances of points from the origin).

10.6. Definition Let V be an inner product space and let x ∈ V . Then its norm
(or length or absolute value) is defined as

‖x‖ :=
√
〈x, x〉 .

The mapping ‖.‖ : V → R, x 7→ ‖x‖ is called norm too.

10.7. Examples

1. In the inner product space of plane vectors or of the space vectors the norm
of a vector a coincides with the classical length of a:

‖a‖ =
√
〈a, a〉 =

√
|a| · |a| · cos(a, a) = |a| .

2. In Cn: ‖x‖ =

√
n∑

i=1
|xi|2.

In Rn: ‖x‖ =

√
n∑

i=1
x2

i .

3. In C[a, b]: ‖f‖ =

√
b∫
a
|f(x)|2 dx.

10.8. Remark. Using the notation of norm the Cauchy’s inequality can be writ-
ten as

|〈x, y〉| ≤ ‖x‖ · ‖y‖ (x, y ∈ V ) .

10.9. Theorem [the properties of the norm]

1. ‖x‖ ≥ 0 (x ∈ V ). Furthermore ‖x‖ = 0 ⇔ x = 0

2. ‖λx‖ = |λ| · ‖x‖ (x ∈ V ; λ ∈ K)

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ (x, y ∈ V ) (triangle inequality)

Proof. The first statement is obvious by the axioms of the inner product. The
proof of the second statement is as follows:

‖λx‖ =
√
〈λx, λx〉 =

√
λλ〈x, x〉 =

√
|λ|2 · ‖x‖2 = |λ| · ‖x‖ .
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To see the triangle inequality let us see the following computations:

‖x + y‖2 = 〈x + y, x + y〉 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉 =

= ‖x‖2 + 〈x, y〉+ 〈x, y〉+ ‖y‖2 = ‖x‖2 + 2Re (〈x, y〉) + ‖y‖2 ≤
≤ ‖x‖2 + 2 · |〈x, y〉|+ ‖y‖2 ≤ ‖x‖2 + 2 · ‖x‖ · ‖y‖+ ‖y‖2 =

= (‖x‖+ ‖y‖)2 .

(In the last estimation we have used the Cauchy’s inequality.)
After taking square roots we obtain the triangle inequality. ¤

10.10. Remark. If we define on a vector space a mapping ‖.‖ : V → R which
satisfies the above properties then V is called (linear) normed space and the above
properties are named the axioms of the normed space. So we have proved that
every inner product space is a normed space with the norm indicated by the inner
product ‖x‖ =

√
〈x, x〉.

Other examples for norms and normed spaces will be studied in the subject
Numerical Methods.

10.11. Definition (distance in the inner product space) Let V be an in-
ner product space, x, y ∈ V . The number

d(x, y) := ‖x− y‖ =
√
〈x− y, x− y〉

is called the distance between the vectors x and y.

10.12. Remark. The above defined distance in Rn is

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + . . . + (xn − yn)2 (x, y ∈ Rn) .

10.4. Orthogonality

Let V be an inner product space over the number field K all over in this section.

10.13. Definition The vectors x, y ∈ V are called orthogonal (or: perpendicu-
lar) if their inner product equals 0 that is if

〈x, y〉 = 0 .

The notation of orthogonality is x ⊥ y.

10.14. Definition Let ∅ 6= H ⊂ V and x ∈ V . We say that the vector x is
orthogonal (or: perpendicular) to the set H (notation: x ⊥ H) if

∀ y ∈ H : 〈x, y〉 = 0.
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10.15. Theorem Let e1, . . . , en be vector system in V , W := Span (e1, . . . , en)
and x ∈ V . Then

x ⊥ W ⇔ x ⊥ ei (i = 1, . . . , n) .

Proof. ”⇒”: It is obvious if you choose y := ei.

”⇐”: Let y =
n∑

i=1
λiei ∈ W arbitrary. Then

〈x, y〉 = 〈x,

n∑

i=1

λiei〉 =
n∑

i=1

λi〈x, ei〉 =
n∑

i=1

λi · 0 = 0 .

¤

10.16. Definition Let xi ∈ V (i ∈ I) a (finite or infinite) vector system.

1. This system (xi, i ∈ I) is said to be orthogonal system (O.S.) if any two
members of them are orthogonal that is

∀ i, j ∈ I, i 6= j : 〈xi, xj〉 = 0 .

2. The system (xi, i ∈ I) is said to be orthonormal system (O.N.S.) if it is
orthogonal system and each vector in it has the norm 1:

∀ i, j ∈ I : 〈xi, xj〉 =
{

0 ha i 6= j
1 ha i = j .

10.17. Remarks.

1. One can simply see that

- the zero vector can be contained in an orthogonal system
- the zero vector cannot be contained in an orthonormal system
- the zero vector may occur several times in an orthogonal system but

any other vector may occur only one times in it.
- the vectors in an orthonormal system are all different

2. (Normalization) One can construct orthonormal system from an orthogonal
system such that the two systems generate the same subspace. Really, first
leave the possible zero vectors from the orthogonal system, after it divide
every vector in the remainder system by its norm.

10.18. Examples

1. In the inner product space of the plane vectors the system of the common
basic vectors i, j is O.N.S.

2. In the inner product space of the space vectors the system of the common
basic vectors i, j, k is O.N.S.

3. In the space Kn he system of the standard unit vectors e1, . . . , en is O.N.S.
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10.5. Two important theorems for finite orthogonal
systems

10.19. Theorem If x1, . . . , xn ∈ V \ {0} is an orthogonal system then it is
linearly independent.

Proof. Multiply the dependence equation

0 =
n∑

i=1

λixi

by the vector xj where j = 1, . . . , n:

0 = 〈0, xj〉 = 〈
n∑

i=1

λixi, xj〉 =
n∑

i=1

λi〈xi, xj〉 = λj〈xj , xj〉 .

Since 〈xj , xj〉 6= 0 so λj = 0. ¤

10.20. Theorem [Pythagorean Theorem] If x1, . . . , xn ∈ V is an orthogonal
system then

‖
n∑

i=1

xi‖2 =
n∑

i=1

‖xi‖2 .

Proof.

‖
n∑

i=1

xi‖2 = 〈
n∑

i=1

xi,

n∑

j=1

xj〉 =
n∑

i=1

n∑

j=1

〈xi, xj〉 =
n∑

i,j=1
i6=j

〈xi, xj〉+
n∑

i,j=1
i=j

〈xi, xj〉 =

=
n∑

i,j=1
i6=j

0 +
n∑

i=1

〈xi, xi〉 =
n∑

i=1

‖xi‖2.

(We have used that 〈xi, xj〉 = 0 if i 6= j.) ¤

10.6. Control Questions

1. Define the concept of Inner Product Space (Euclidean Space)

2. Give 3 examples for Euclidean space

3. State and prove the 4 basic properties of an Euclidean Space
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4. State and prove the theorem about the Cauchy’s Inequality

5. Define the norm of a vector

6. State and prove the theorem about the 3 properties of the norm

7. Define the following concepts: orthogonality of two vectors, orthogonal sys-
tem (O.S.), orthonormal system (O.N.S.)

8. Give 3 examples for orthogonal systems

9. State and prove the theorem about a vector that is perpendicular to a finite
dimensional subspace

10. State and prove the theorem about the independence of an orthogonal sys-
tem

11. State and prove the Pythagorean theorem

10.7. Homework

1. Let x = (3,−2, 1, 1), y = (4, 5, 3, 1) z = (−1, 6, 2, 0) ∈ R4 and let λ = −4.
Verify the following identities:

a) 〈x, y〉 = 〈y, x〉
b) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉
c) 〈λx, y〉 = λ〈x, y〉

Remark that in R4 we use the usual operations.

2. Verify the Cauchy’s inequality in R4 with the vectors

x = (0,−2, 2, 1) and y = (−1,−1, 1, 1) .

3. Let x1 = (0, 0, 0, 0), x2 = (1,−1, 3, 0), x3 = (4, 0, 9, 2) ∈ R4. Determine
whether the vector x = (−1, 1, 0, 2) is orthogonal to the subspace Span (x1, x2, x3)
or not.
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11.1. The Projection Theorem

11.1. Theorem [Projection Theorem] Let u1, . . . , un ∈ V \ {0} be an orthogonal
system, W := Span (u1, . . . , un). (It is important to remark that in this case
u1, . . . , un is basis in W .) Then every x ∈ V can be written uniquely as x = x1+x2

where x1 ∈ W and x2 ⊥ W .

Proof. Look for x1 as

x1 :=
n∑

j=1

λj · uj and let x2 := x− x1 .

Then obviously x1 ∈ W and x = x1 + x2 independently of the coefficients λi. It
remains to satisfy the requirement x2 ⊥ W . It is enough to discuss the orthogo-
nality to the generator system u1, . . . , un:

〈x2, ui〉 = 〈x−
n∑

j=1

λjuj , ui〉 = 〈x, ui〉 −
n∑

j=1

λj〈uj , ui〉 =

= 〈x, ui〉 − λi〈ui, ui〉 (i = 1, . . . , n).

This expression equals 0 if and only if

λi =
〈x, ui〉
〈ui, ui〉 (i = 1, . . . , n) .

Since the numbers λi are obtained by a unique process and u1, . . . , un are linearly
independent then x1 and x2 are unique. ¤

11.2. Remarks.

1. The vector x1 is called the orthogonal projection of x onto W and is denoted
by projW x or simply P (x). From the theorem follows that

P (x) = projW x =
n∑

i=1

〈x, ui〉
〈ui, ui〉 · ui .

Another name for P (x) is: the parallel component of x with respect to the
subspace W .
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2. The vector x2 is called the orthogonal component of x with respect to the
subspace W and is denoted by Q(x). From the theorem follows that

Q(x) = x− P (x) = x−
n∑

i=1

〈x, ui〉
〈ui, ui〉 · ui .

If we introduce the subspace

W⊥ := {x ∈ V | x ⊥ W}
then Q(x) can be regarded as the orthogonal projection onto W⊥:

Q(x) = projW⊥x .

11.2. The Gram-Schmidt Process

Let b1, b2, . . . , bn ∈ V be a finite linear independent system. The following pro-
cess converts this system into an orthogonal system u1, u2, . . . , un ∈ V \ {0}.
The two system is equivalent in the sense that

∀ k =∈ {1, 2, , . . . , n} : Span (b1, . . . , bk) = Span (u1, . . . , uk) .

Especially (for k = n) the generated subspaces by the two systems are the same.

The algorithm of the Gram-Schmidt process is as follows:

Step 1.: u1 := b1

Step 2.: u2 := b2 − 〈b2, u1〉
〈u1, u1〉 · u1

Step 3.: u3 := b3 − 〈b3, u1〉
〈u1, u1〉 · u1 − 〈b3, u2〉

〈u2, u2〉 · u2

...

Step n.: un := bn − 〈bn, u1〉
〈u1, u1〉 · u1 − 〈bn, u2〉

〈u2, u2〉 · u2 − . . .− 〈bn, un−1〉
〈un−1, un−1〉 · un−1.

It can be proved that this process results the system u1, u2, . . . , un that
satisfies all the requirements described in the introduction of the section. If we
want to construct an equivalent orthonormal system then apply the normalization
process for u1, u2, . . . , un.

11.3. Remark. One can see that

- u2 is the orthogonal component of b2 with respect to the subspace Span (u1)

- u3 is the orthogonal component of b3 with respect to the subspace Span (u1, u2)
...

- un is the orthogonal component of bn with respect to the subspace Span (u1, u2, . . . , un−1).
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11.3. Orthogonal and Orthonormal Bases

11.4. Definition A finite vector system in the inner product space V is called

- Orthogonal Basis (O.B.) if it is orthogonal system and basis.

- Orthonormal Basis (O.N.B.) if it is orthonormal system and basis.

11.5. Remarks.

1. An O.B. cannot contain the zero vector.

2. An orthogonal system that does not contain the zero vector is O.B. if and
only if it is a generator system in V .

3. If we have an O.B. then we can construct from it – via normalization – an
O.N.B..

On can easily verify that in Kn the standard basis is orthonormal basis.

It can be proved that every finite dimensional nonzero inner product space
contains orthogonal and orthonormal basis. Moreover, every orthogonal system
that does not contain the zero vector can be completed into orthogonal basis and
every orthonormal system can be completed into orthonormal basis. The essential
idea of the proof is:

Construct a basis and apply the Gram-Schmidt process for it.

11.6. Remark. The existence of the orthogonal basis implies that the projection
theorem can be stated for every finite dimensional nonzero subspace of V .

In the remainder part of the section let us fix an orthonormal basis e :
e1, . . . , en in the n-dimensional inner product space V . We will prove first that
the inner product can be computed with the help of coordinates.

11.7. Theorem

∀x, y ∈ V : 〈x, y〉 = 〈[x]e, [y]e〉 =
n∑

i=1

ξiηi .

Here [x]e = (ξ1, . . . , ξn) and [y]e = (η1, . . . , ηn) are the coordinate vectors of x
and y.
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Proof. Since

x =
n∑

i=1

ξiei and y =
n∑

j=1

ηjej

so

〈x, y〉 = 〈
n∑

i=1

ξiei,
n∑

j=1

ηjej〉 =
n∑

i,j=1

ξiηj〈ei, ej〉 =
n∑

i=1

ξiηi =

= 〈(ξ1, . . . , ξn), (η1, . . . , ηn)〉 = 〈[x]e, [y]e〉.

¤

11.8. Corollary. Apply the theorem for y = x. Then we obtain:

‖x‖2 = 〈x, x〉 = 〈[x]e, [x]e〉 =
n∑

i=1

ξiξi =
n∑

i=1

| ξi|2 ,

especially in the case K = R:

‖x‖2 =
n∑

i=1

ξ2
i .

The following theorem gives us the coordinates relative to an orthonormal
basis.

11.9. Theorem The i-th coordinate of a vector x ∈ V relative to the orthonor-
mal basis e : e1, . . . , en is

ξi = 〈x, ei〉 (i = 1, . . . , n)

That is

x =
n∑

i=1

〈x, ei〉 · ei .

This formula is the finite Fourier-expansion of x. The coefficients 〈x, ei〉 are
called the Fourier-coefficients of x relative to the orthonormal system (ei).

Proof. Apply the previous theorem with y = ei (i = 1, . . . , n). Then we obtain

〈x, ei〉 = 〈[x]e, [ei]e〉 = 〈(ξ1, . . . , ξn), (0, . . . , 1, . . . , 0)〉 = ξi (i = 1, . . . , n) .

¤
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11.10. Remark. One can simply consider – using the normalization process –
that the ith coordinate of a vector x ∈ V relative to an orthogonal basis u1, . . . , un

is

ξi =
〈x, ui〉
〈ui, ui〉 (i = 1, . . . , n) .

Consequently

x =
n∑

i=1

〈x, ui〉
〈ui, ui〉 · ui .

This formula is the finite Fourier-expansion of x. The coefficients
〈x, ui〉
〈ui, ui〉 are

called the Fourier-coefficients of x relative to the orthogonal system (ui).

11.4. Control Questions

1. State and prove the Projection Theorem

2. Give (without proof) the formulas of the parallel and of the orthogonal com-
ponents of a vector relative to a subspace generated by a finite orthogonal
system

3. Describe the Gram-Schmidt-process

4. Define the concept of orthogonal basis (O.B.) and of orthonormal basis
(O.N.B.).

5. What a statement is known about the existence of the orthogonal basis
(O.B.) in a finite dimensional Euclidean Space?

6. State and prove the theorem about the computation of scalar product with
coordinates relative to an orthonormal basis

7. What is the (finite) Fourier-expansion of a vector in a finite dimensional
Euclidean Space?
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11.5. Homework

1. Find the orthogonal projections of the vector x = (1, 2, 0,−2) ∈ R4 onto
the subspaces of R4 generated by the given orthogonal systems.

a) u1 = (0, 1,−4,−1), u2 = (3, 5, 1, 1).

b) u1 = (1,−1,−1, 1), u2 = (1, 1, 1, 1), u3 = (1, 1,−1,−1).

2. Use the Gram-Schmidt process to transform the given basis b1, b2, b3, b4 of
R4 into an orthonormal basis.

b1 = (0, 2, 1, 0), b2 = (1,−1, 0, 0), b3 = (1, 2, 0,−1), b4 = (1, 0, 0, 1)

3. Show that the vectors

u1 = (1,−2, 3,−4), u2 = (2, 1,−4,−3), u3 = (−3, 4, 1,−2), u4 = (4, 3, 2, 1)

form an orthogonal basis in R4. Find the coordinates and the coordinate
vector of x = (−1, 2, 3, 7) relative to the given basis.

Answer the same questions if the basis is the orthonormal basis obtained
from u1, u2, u3, u4 via normalization.
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12.1. Some statements in Cn

Let us look at the Euclidean Space Cn with the standard inner product

〈x, y〉 =
n∑

i=1

xiyi = y∗x (x, y ∈ Cn) .

Here x and y denote the column matrix corresponding to the vectors x and y
(see Examples 10.2):

x :=




x1

x2
...

xn


 and y :=




y1

y2
...

yn


 .

Using the short notation of the inner product we can easily prove the following
theorem.

12.1. Theorem Let A ∈ Km×n be an m× n matrix. Then

〈Ax, y〉 = 〈x, A∗y〉 (x ∈ Kn, y ∈ Km) ,

Here A∗ denotes the (Hermitian) adjoint of A (see Section 1.2.).

Proof. For any x ∈ Kn, y ∈ Km holds

〈Ax, y〉 = y∗(Ax) = (y∗A)x = (y∗(A∗)∗)x = (A∗y)∗x = 〈x, A∗y〉 .

¤

12.2. Corollary. Let A ∈ Kn×m be an n×m matrix. Then

〈x, Ay〉 = 〈A∗x, y〉 (x ∈ Kn, y ∈ Km).

Really, apply the previous theorem for A∗ ∈ Km×n. We have

〈A∗x, y〉 = 〈x, (A∗)∗y〉 = 〈x, Ay〉 .

In the following theorem we express an eigenvalue of a matrix with the help
of an eigenvector associated with this eigenvalue:
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12.3. Theorem Let A ∈ Kn×n and λ ∈ Sp (A) and x ∈ Kn an eigenvector
associated with λ. Then

λ =
〈Ax, x〉
‖x‖2

.

This fraction is called Rayleigh-Ritz-quotient.

Proof.
〈Ax, x〉 = 〈λx, x〉 = λ〈x, x〉 = λ‖x‖2 ,

whereby the statement can be deduced by division with ||x||2. ¤

12.2. Self-adjoint matrices

12.4. Definition A square matrix A ∈ Cn×n is said to be self-adjoint (or it is
said to be Hermitian) if

A∗ = A .

In other words:
aij = aji (i, j = 1, . . . , n) .

If the entries of A are all real numbers, then the self-adjoint matrices are often
named real symmetric matrices. In this case A can be regarded as an element of
Rn×n, and we say simply that A is symmetric. Naturally, in this case the above
definition has the form

AT = A, that is aij = aji (i, j = 1, . . . , n) .

12.5. Theorem Let A ∈ Cn×n be a self-adjoint matrix. Then

1. 〈Ax, y〉 = 〈x, Ay〉 (x, y ∈ Cn) .

2. 〈Ax, x〉 ∈ R (x ∈ Cn) .

3. Sp (A) ⊂ R .

This statement implies that if A ∈ Rn×n is a symmetric matrix, then all the
roots of its characteristic polynomial are real. More precisely, the number of
real roots of the characteristic polynomial – counted with their multiplicities
– equals n.

4. If λ, µ ∈ Sp (A), λ 6= µ, x ∈ Wλ, y ∈ Wµ, then 〈x, y〉 = 0.

This means that the eigenspaces of a self-adjoint matrix are pairwise ort-
hogonal.

The statement is naturally true if A ∈ Rn×n is a symmetric matrix. In other
words, the eigenspaces of a real symmetric matrix are pairwise orthogonal.
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Proof.

1. Apply Theorem 12.1 and that A = A∗ :

〈Ax, y〉 = 〈x, A∗y〉 = 〈x, Ay〉 (x, y ∈ Cn) .

2. Apply the previous part with x = y and use the antisymmetry of the scalar
product:

〈Ax, x〉 = 〈x, Ax〉 = 〈Ax, x〉 ,
which implies immediately that 〈Ax, x〉 ∈ R .

3. By the previous part of the theorem 〈Ax, x〉 ∈ R . Then by Theorem 12.3
λ is a quotient of two real numbers, consequently it is real:

λ =
〈Ax, x〉
‖x‖2

∈ R .

4. Use the proved parts of the theorem, then

λ〈x, y〉 = 〈λx, y〉 = 〈Ax, y〉 = 〈x, Ay〉 = 〈x, µy〉 = µ〈x, y〉 = µ〈x, y〉 .

After rearrangement we have

(λ− µ) · 〈x, y〉 = 0 .

Since λ− µ 6= 0, then really 〈x, y〉 = 0 .

¤

12.3. Unitary matrices

12.6. Definition A square matrix A ∈ Cn×n is said to be unitary if

A∗A = I ,

where I denotes the identity matrix of size n× n.
If the entries of A are all real numbers, then the unitary matrices are often

named real orthogonal matrices. In this case A can be regarded as an element of
Rn×n, and we say simply that A is orthogonal. Naturally, in this case the above
definition has the form

AT A = I .

The following theorem expresses the alternative possibilities of the definition
of the unitary matrix.

12.7. Theorem Let A ∈ Cn×n. Then the following statements are equivalent.
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(a) A is unitary.

(b) A is regular. In this case A−1 = A∗ .

(c) AA∗ = I , or equivalently: A∗ is unitary.

(d) The column vectors of A form an orthonormal basis (O.N.B.) in Cn.

(e) The row vectors of A form an orthonormal basis (O.N.B.) in Cn.

Proof. Corollary 2.11 shows us that (a) ⇒ (b) ⇒ (c) ⇒ (a) .
To prove the equivalence between (a) and (d) let A = [a1 . . . an]. We have

(A∗A)ij =
(



a∗1
...

a∗n


 ·

[
a1 . . . an

] )
ij

= ai
∗aj = 〈aj , ai〉 (i = 1, . . . , n) ,

which implies that

A is unitary ⇔ A∗A = I ⇔ (A∗A)ij = δij ⇔ 〈aj , ai〉 = δij ⇔
⇔ a1, . . . , an an orthonormal system with n terms ⇔
⇔ a1, . . . , an is an O.N.B. .

Here we have used the Kronecker-symbol

δij :=





0 if i 6= j

1 if i = j

Finally, the equivalence between (a) and (e) can be proved similarly.. ¤

12.8. Theorem Let A ∈ Cn×n be an unitary matrix. Then

1. 〈Ax, Ay〉 = 〈x, y〉 (x, y ∈ Cn) .

2. ‖Ax‖ = ‖x‖ (x ∈ Cn) .

3. ∀λ ∈ Sp (A) : |λ| = 1 .

Remark that if A ∈ Rn×n is an orthogonal matrix, then we do not have a
particular result. Even in this case the eigenvalues are not necessarily real.

4. If λ ∈ Sp (A), x ∈ Wλ, then A∗x = λx .

5. If λ, µ ∈ Sp (A), λ 6= µ, x ∈ Wλ, y ∈ Wµ, then 〈x, y〉 = 0.

This means that the eigenspaces of a unitary matrix are pairwise orthogonal.

The statement is naturally true if A ∈ Rn×n is an orthogonal matrix. In
other words, the eigenspaces of a real orthogonal matrix are pairwise ortho-
gonal.
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Proof.

1. Apply Theorem 12.1 and that A∗A = I :

〈Ax, Ay〉 = 〈x, A∗Ay〉 = 〈x, Iy〉 = 〈x, y〉 (x, y ∈ Cn) .

2. Apply the previous part with x = y and use the definition of the norm:

‖Ax‖2 = 〈Ax, Ax〉 = 〈x, x〉 = ‖x‖2 ,

which implies immediately ‖Ax‖ = ‖x‖ .

3. Using the previous part of the theorem we have

‖x‖ = ‖Ax‖ = ‖λx‖ = |λ| · ‖x‖ .

After simplification with ‖x‖ we obtain |λ| = 1 .

4. Ax = λx implies A∗Ax = λA∗x. Since A∗A = I, we have

λA∗x = x .

Multiply this equation by λ:

λλA∗x = λx that is |λ|2A∗x = λx .

In the previous part we have shown |λ| = 1, thus A∗x = λx .

5. Use the proved parts of the theorem, then

λ〈x, y〉 = 〈λx, y〉 = 〈Ax, y〉 = 〈x, A∗y〉 = 〈x, µy〉 = µ〈x, y〉 .

After rearrangement we have

(λ− µ) · 〈x, y〉 = 0 .

Since λ− µ 6= 0, then really 〈x, y〉 = 0 .

¤

12.4. Unitary and orthogonal diagonalization

12.9. Definition 1. Let A ∈ Cn×n.

We say that A is unitarily diagonalizable if

∃U ∈ Cn×n unitary matrix : U∗AU is a diagonal matrix .

U is called a unitarily diagonalizing matrix to A



92 12. Lesson 12

2. Let A ∈ Rn×n.

We say that A is orthogonally diagonalizable if

∃Q ∈ Rn×n orthogonal matrix : QT AQ is a diagonal matrix .

Q is called an orthogonally diagonalizing matrix to A

Since U∗ = U−1 and QT = Q−1, then the unitary and the orthogonal diago-
nalizability are special cases of the general diagonalizability, which was discussed
in Section 9.3.. Consequently, all the theorems remain valid, that were proved
in that section. Taking into account also Theorem 12.7 we have the following
theorem

12.10. Theorem 1. Let A ∈ Cn×n. The matrix A is unitarily diagonalizable
if and only if its eigenvectors form an orthonormal basis basis (shortly:
there exists an E.O.N.B. in Cn). In this case the columns of the unitarily
diagonalizing matrix U are the terms of the E.O.N.B.

2. Let A ∈ Rn×n. The matrix A is orthogonally diagonalizable if and only if
there exists an orthonormal basis in Rn consisting of the eigenvectors of A
(shortly: there exists a E.O.N.B. in Rn). In this case the columns of the
orthogonally diagonalizing matrix Q are the terms of the E.O.N.B.

12.5. Spectral Theorems

The spectral theorems are theorems about the unitary or orthogonal diagonali-
zability of some special matrices. Here in the basic linear algebra we will state
spectral theorems only about the self-adjoint and about the real symmetric mat-
rices.

12.11. Theorem [Spectral Theorem of the self-adjoint matrices] Let A ∈ Cn×n

be a self-adjoint matrix. Then there exists E.O.N.B. in Cn. Or equivalently: A is
unitarily diagonalizable.

Proof. We will prove the theorem only in the case when A has n distinct
eigenvalues in C. In this case A has n independent eigenvectors, that is it has an
Eigenvector Basis (E.B.) in Cn (see Remark 9.16). Using the orthogonality of the
eigenspaces (see Theorem 12.5, that the terms of this E.B. form an orthogonal
system. After normalization we have an E.O.N.B.

The proof of the general case is not contained in our basic linear algebra
studies.

¤

12.12. Remark. The steps of the unitary diagonalization of a self-adjoint matrix
are as follows:
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1. Determine the eigenvalues of A.

Note that the eigenvalues are real.

2. Determine the eigenvectors to each eigenvalue.

We have to obtain n linearly independent eigenvectors, which form an E.B.
in Cn.

3. Apply the Gram-Schmidt Process for the eigenvectors in each eigenspace
which has at least 2 dimension.

Thus the terms of the E.B. become orthogonal.

4. Apply the normalization (divide each vector by its norm).

Thus we obtain an E.O.N.B.

5. Put the vectors of the E.O.N.B. into the matrix U as columns.

This matrix U will unitarily diagonalize the matrix A.

The case of real symmetric matrices can be easily reduced back to the case of
self-adjoint matrices.

12.13. Theorem [Spectral Theorem of real symmetric matrices] Let A ∈ Rn×n

be a symmetric matrix. Then there exists E.O.N.B. in Rn. Or equivalently: A is
orthogonally diagonalizable.

Proof. The matrix A can be regarded as a self-adjoint matrix A ∈ Cn×n with
real entries. Applying the Spectral Theorem of the self-adjoint matrices we obtain
that A has an E.O.N.B. in Cn.

But following the process of the determination the E.O.N.B. (see Remark
12.12), we can establish that each step takes place in real arithmetic. Conse-
quently, the constructed E.O.N.B. is in Rn. ¤

12.6. Quadratic Forms

12.14. Definition Let A ∈ Rn×n be a symmetric matrix. The function

Q : Rn → R, Q(x) := 〈Ax, x〉 = xT Ax =
n∑

i,j=1

aij · xi · xj

is called quadratic form associated with A. A is called the matrix of Q.

12.15. Remarks.
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1. It can be proved that the connection between the n×n symmetric matrices
and the quadratic forms is one-to-one.

2. The quadratic forms are exactly the homogeneous n-variable polynomials.
This means that they are polynomials whose each term is of second degree.

12.16. Theorem [Principal Axis Theorem] Let Q : Rn → R be a quadratic form
associated with the symmetric matrix A ∈ Rn×n. Let u1, . . . , un be an E.O.N.B.
of A in Rn. Let λ1, . . . , λn ∈ R be the corresponding eigenvalues. Then

Q(x) =
n∑

i=1

λiξ
2
i (x ∈ Rn) , (12.1)

where the numbers ξ1, . . . ξn are the coordinates of x relative to the basis u1, . . . , un.

Proof. Since x =
n∑

i=1
ξiui, then we have

Q(x) = 〈Ax, x〉 = 〈A ·
n∑

i=1

ξiui,
n∑

j=1

ξjuj〉 = 〈
n∑

i=1

ξiAui,
n∑

j=1

ξjuj〉 =

= 〈
n∑

i=1

ξiλiui,
n∑

j=1

ξjuj〉 =
n∑

i,j=1

λiξiξj · 〈ui, uj〉 =

=
n∑

i=1

λiξiξi · 1 =
n∑

i=1

λiξ
2
i (x ∈ Rn).

¤

12.17. Remark. Since the coordinates can be computed by scalar product

ξi = 〈x, ui〉 (i = 1, . . . , n) ,

then the Principal Axis Theorem can be written as

Q(x) =
n∑

i=1

λi(〈x, ui〉)2 (x ∈ Rn) .

12.18. Theorem Using the notations of the Principal Axis Theorem suppose
that the eigenvalues of A are denoted in nondecreasing order:

λ1 ≤ λ2 ≤ . . . ≤ λn .

Then
∀x ∈ Rn : λ1‖x‖2 ≤ Q(x) ≤ λn‖x‖2 .

Especially if ‖x‖ = 1 (x is a point of the unit sphere of Rn) we have:

λ1 ≤ Q(x) ≤ λn .



12.6. Quadratic Forms 95

Proof. Applying the Principal Axis Theorem and Corollary 11.8 we have for
any x ∈ Rn the following:

Q(x) =
n∑

i=1

λiξ
2
i ≤

n∑

i=1

λnξ2
i = λn ·

n∑

i=1

ξ2
i = λn‖x‖2 ,

and

Q(x) =
n∑

i=1

λiξ
2
i ≥

n∑

i=1

λ1ξ
2
i = λ1 ·

n∑

i=1

ξ2
i = λ1‖x‖2 .

¤

12.19. Corollary. Using the Rayleigh-Ritz-quotient (see Theorem 12.3) we have

λ1 =
〈Au1, u1〉
‖u1‖2

=
Q(u1)

1
= Q(u1) and similarly λn = Q(un) .

Thus we have proved

min
‖x‖=1

Q(x) = λ1 and max
‖x‖=1

Q(x) = λn .

Let us classify the quadratic forms by the signs of their values.

12.20. Definition Let Q : Rn → R be a quadratic form associated with the
symmetric matrix A ∈ Rn×n. We say that Q (or that A) is

(a) positive definite if ∀x ∈ Rn \ {0} : Q(x) > 0,

(b) negative definite if ∀x ∈ Rn \ {0} : Q(x) < 0,

(c) positive semidefinite if ∀x ∈ Rn : Q(x) ≥ 0,

(d) negative semidefinite if ∀x ∈ Rn : Q(x) ≤ 0,

(e) indefinite, if ∃x, y ∈ Rn : Q(x) > 0, Q(y) < 0.

Using the Principal Axis Theorem the above classification can be made using
the signs of the eigenvalues of A. It will be stated without proof in the following
theorem.

12.21. Theorem Using the previous notations the quadratic form Q (and its
matrix A) is

(a) positive definite if and only if ∀λ ∈ Sp (A) : λ > 0 .

(b) negative definite if and only if ∀λ ∈ Sp (A) : λ < 0 .
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(c) positive semidefinite if and only if ∀λ ∈ Sp (A) : λ ≥ 0 .

(d) negative semidefinite if and only if ∀λ ∈ Sp (A) : λ ≤ 0 .

(e) indefinite if and only if ∃λ, µ ∈ Sp (A) : λ > 0, µ < 0 .

In the following theorem we will classify the two-variable quadratic forms.

12.22. Theorem [classification of the two-variable quadratic forms]
Let

A =
[

a b
b c

]
∈ R2×2 ,

and Q : Rn → R be the quadratic form given by A. That is

Q(x1, x2) = ax2
1 + 2bx1x2 + cx2

2 (x = (x1, x2) ∈ R2) .

Then Q is

• positive definite if detA = ac− b2 > 0 and a > 0,

• negative definite if det A = ac− b2 > 0 and a < 0.

(The case det A = ac− b2 > 0 and a = 0 is impossible.)

• indefinite if det A = ac− b2 < 0.

• semidefinite but not definite if det A = ac− b2 = 0.

The semidefinite case is in detail as follows. Suppose that det A = ac − b2 = 0.
Then Q is

• positive semidefinite but not positive definite if a > 0 or if a = 0, c > 0,

• negative semidefinite but not negative definite if a < 0 or if a = 0, c < 0,

• the identical 0-function if a = c = 0.

Proof. The proof is based on the following elementary identities:

Q(x1, x2) = ax2
1 + 2bx1x2 + cx2

2 =





(ax1 + bx2)2 + (ac− b2)x2
2

a
if a 6= 0,

(bx1 + cx2)2 + (ac− b2)x2
1

c
if c 6= 0,

2bx1x2 if a = c = 0.

Using these identities one can easily discuss the sign of the values of Q. ¤
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12.7. Control Questions

1. State and prove the connection between 〈Ax, y〉 and 〈x, A∗y〉

2. State and prove the theorem about the Rayleigh-Ritz quotient

3. Define the concept of self-adjoint (Hermitian) and of real symmetric matrix

4. State and prove the 4 important properties of the self-adjoint matrices

5. Define the concept of unitary and of orthogonal matrix

6. State and prove the theorem about the equivalencies with ”A is unitary”

7. State and prove the 5 important properties of the unitary matrices

8. Define the concept of unitary and of orthogonal diagonalizability of a matrix

9. State and prove the necessary and sufficient condition of unitary and of the
orthogonal diagonalizability

10. State the Spectral Theorem of a self-adjoint matrix. Prove it in the case
when the n× n self-adjoint matrix has n different eigenvalues

11. State and prove the Spectral Theorem of a real symmetric matrix (reducing
back to self-adjoint matrices).

12. Define the quadratic form

13. State and prove the Principal Axis Theorem

14. What are the minimal and the maximal values of a quadratic form on the
unit sphere? At which vectors it takes these extreme values?

15. Define the definiteness of a quadratic form

16. State and prove the theorem about the definiteness of a quadratic form
using the eigenvalues

17. State and prove the theorem about the classification of the two-variables
quadratic forms
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12.8. Homework

1. Prove that the diagonal entries of a self-adjoint matrix all are real numbers.

2. Diagonalize orthogonally the following real symmetric matrix

A =




1 1 1
1 1 1
1 1 1


 .

3. Classify the quadratic forms according to the following matrices by their
sign (definiteness):

A =
[

2 −1
−1 3

]
, B =

[
4 3
3 2

]
, C =

[
1 3
3 9

]
.


