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1. Lesson 1

1.1. The Space Rn

In this book N denotes the set of positive integers and N0 denotes the set of nonnegative
integers:

N = {1, 2, 3, . . .} and N0 = {0, 1, 2, 3, . . .} = N ∪ {0} .

In Linear Algebra we have studied the vector spaces and their special type, the
Euclidean spaces. As you remember, Rn was an important example for real Euclidean
space. So every definition and theorem in connection with Euclidean spaces is valid for
Rn.

Why Rn is important in the multivariable analysis? ”Multivariable” means, that a
multivariable function has a finite number of real variables - say n variables. Thus its
domain can be regarded as a collection of ordered n-tuples, and forms a subset of Rn.
The Reader can consider that how connects the case n = 1 to the one-variable analysis
studied in the subjects Analysis-1 and Analysis-2.

We review shortly the most important properties of Rn.
For a fixed n ∈ N Rn is the set of all possible ordered n-tuples whose terms (com-

ponents) are in R:
Rn := {x = (x1, x2, . . . , xn) | xi ∈ R}.

Notice that in the case n = 2 the notation (x, y) is often used instead of (x1, x2).
Similarly in the case n = 3 the notation (x, y, z) may be used instead of (x1, x2, x3).

We have the following operations in Rn:
Let x, y ∈ Rn, λ ∈ R.

• Addition: x + y := (x1 + y1, x2 + y2, . . . , xn + yn) (x, y ∈ Rn);

• Scalar Multiplication: λx := (λx1, λx2, . . . , λxn) (x ∈ Rn, λ ∈ R);

• Scalar Product 〈x, y〉 := x1y1 + x2y2 + . . . + xnyn =
n∑

i=1
xiyi (x, y ∈ Rn);

• Norm (length):

‖x‖ :=
√
〈x, x〉 =

√
x2

1 + x2
2 + . . . + x2

n =

√
n∑

i=1
x2

i (x ∈ Rn);

We have learnt the properties of the above operations in Linear Algebra, and we
have proved that Rn is a real Euclidean Space. Consequently it is a Normed Vector
Space (see Linear Algebra).
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We have defined the distance in Rn as follows

d(x, y) := ‖x− y‖ =
√

(x1 − y1)2 + (x2 − y2)2 + . . . + (xn − yn)2 =

=

√√√√
n∑

i=1

(xi − yi)2 (x, y ∈ Rn) .

1.1. Theorem [the properties of the distance] Let X be a linear normed space with
norm ‖.‖, especially X = Rn with the above defined norm. Then

1. d(x, y) ≥ 0 (x, y ∈ X). Furthermore d(x, y) = 0 ⇔ x = y

2. d(x, y) = d(y, x) (x, y ∈ X)

3. d(x, y) ≤ d(x, z) + d(z, y) (x, y, z ∈ X) (triangle inequality)

Proof. The first and the second statements are obvious by the axioms of the norm.
Let us prove the triangle inequality:

d(x, y) = ‖x− y‖ = ‖(x− z) + (z − y)‖ ≤ ‖x− z‖+ ‖z − y‖ = d(x, z) + d(z, y)

¤

1.2. Remark. If we define a mapping d : V × V → R which satisfies the above
properties on a nonempty set X, then X is called metric space and the above properties
are called the axioms of the metric space. So we have proved that every linear normed
space is a metric space with the metric indicated by the norm d(x, y) = ‖x− y‖.

A lot of properties of Rn and of functions defined on Rn are based on the metric
structure of Rn, so we could describe them using the notation of the metric: d(x, y). But
for simplicity we will use the normed space structure, so the distance will be denoted
by ‖x− y‖ instead of d(x, y). The Reader can consider that a lot of the definitions and
statements can be generalized for any metric space.

Let us review some important relations which can be deduced from the Euclidean
structure of Rn (see: Linear Algebra):

1. Cauchy’s inequality. For any elements x, y of an Euclidean space holds

|〈x, y〉| ≤ ‖x‖ · ‖y‖ .

Here the equality holds if and only if the vectors x, y are linearly dependent
(parallel). Especially in Rn it is called Cauchy-Bunyakovsky-Schwarz inequality:

(x1y1 + · · ·+ xnyn)2 ≤ (x2
1 + · · ·+ x2

n) · (y2
1 + · · ·+ y2

n) (xi, yi ∈ R)

and equality holds if and only if the vectors (x1, . . . , xn) and (y1, . . . , yn) are
linearly dependent (parallel).
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2. Pythagorean Theorem. If N ∈ N and x1, . . . , xN is an orthogonal system in an
Euclidean space, especially in Rn then

‖
N∑

i=1

xi‖2 =
N∑

i=1

‖xi‖2 .

(The square of the hypotenuse equals to the sum of the squares of the perpendi-
cular sides.)

We will use the following consequence of the Pythagorean theorem. If x1, . . . , xN

is an orthogonal system in an Euclidean space and k ∈ {1, 2, . . . , N} is a fixed index
then

‖
N∑

i=1

xi‖2 =
N∑

i=1

‖xi‖2 ≥ ‖xk‖2,

thus taking square root we got:

‖
N∑

i=1

xi‖ ≥ ‖xk‖ .

Here equality holds if and only if xi = 0 for any i 6= k. This inequality expresses that
the length of the hypotenuse is at least the length of any perpendicular side.

Combining this result with the triangle inequality we obtain:

‖xk‖ ≤ ‖
N∑

i=1

xi‖ ≤
N∑

i=1

‖xi‖ (k = 1, . . . , N) . (1.1)

Let us apply this result in Rn as follows. If e1, . . . , en is the standard (orthonormal)
basis

e1 = (1, 0, . . . , 0), . . . , en = (0, 0, . . . , 1)

in Rn and x = (x1, . . . , xn) ∈ Rn then x can be written as the orthogonal sum

x =
n∑

i=1

xiei .

Apply the result (1.1) with N = n and with the vectors x1e1, . . . , xnen ∈ Rn. Then we
obtain on the one hand

‖x‖ = ‖
n∑

i=1

xiei‖ ≥ ‖xkek‖ = |xk| · ‖ek‖ = |xk| · 1 = |xk| (k = 1, . . . , n) ,

on the other hand

‖x‖ = ‖
n∑

i=1

xiei‖ ≤
n∑

i=1

‖xiei‖ =
n∑

i=1

|xi| .
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Thus we have the following result:

|xk| ≤ ‖x‖ ≤
n∑

i=1

|xi| (k = 1, . . . , n) . (1.2)

Notice that these inequalities can be deduced in elementary way too:

‖x‖ =

√√√√
n∑

i=1

x2
i ≥

√
x2

k = |xk| (k = 1, . . . , n) .

and

‖x‖ =

√√√√
n∑

i=1

x2
i =

√√√√
n∑

i=1

|xi|2 ≤

√√√√
(

n∑

i=1

|xi|
)2

=
n∑

i=1

|xi| .

1.2. k-arrays

Studying the higher order derivatives of a multivariate function it will be important
some basic knowledge about the k-arrays.

1.3. Definition Let n ∈ N and k ∈ N. The functions

A : {1, . . . , n}k → R

are called real k-arrays with size n× n× . . . × n. Their set is denoted by R
1
^
n×n× ...×

k
^
n

(the number of n-s is k) or by Rn
k .

The function value A(j1, . . . , jk) ∈ R is called the (j1, . . . , jk)-th entry of the k-array
and is denoted by (A)j1,..., jk

or by aj1,..., jk
.

1.4. Remarks.

1. In the definition {1, . . . , n}k denotes the k-times Cartesian product of the set
{1, . . . , n}:

{1, . . . , n}k = {1, . . . , n} × . . . × {1, . . . , n} ,

that is the set of k-long finite sequences (j1, . . . , jk)

where j1, . . . , jk ∈ {1, . . . , n}.
2. The 1-arrays are the vectors in Rn. The 2-arrays are the matrices in Rn×n and

can be represented by a square in the plane with size n× n.

3. The 3-arrays can be represented by a cube in the space with size

n×n×n. A general entry of a 3-array can be written using three indices as aijk.
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4. A general k-array can be represented by a k dimensional rectangular box whose
sides have the lengthes n. Here the length means the number of entries in the
current direction (dimension).

5. Rn
k is a vector space over R and dimRn

k = nk. It follows from the fact that
the elements of Rn

k are functions defined on an nk-element finite set. So Rn
k is

isomorphic with Rnk
as vector space.

1.5. Definition The k-array A ∈ Rn
k is called symmetric if for any permutation

p1, . . . , pk of the index system j1, . . . , jk holds

(A)p1,..., pk
= (A)j1,..., jk

.

Notice that here the permutation can be permutation with repetition.

1.6. Remarks. Every 1-array is symmetric. The interesting case is – from the point
of view of symmetry – the case k ≥ 2.

The symbol Axk

In the followings we will generalize the one variable monomials axk for n-variable.

1.7. Definition Let A ∈ Rn
k and x ∈ Rn. Then the symbol Axk denotes the real

number defined as

Axk :=
n∑

j1=1

n∑

j2=1

. . .
n∑

jk=1

aj1,..., jk
· xj1 · xj2 . . . · xjk

∈ R .

The n-multiple sum on the right side can be denoted by one sum-symbol where the
indices are running – independently of each other – from 1 to n:

Axk =
n∑

j1,...jk=1

aj1,..., jk
· xj1 · xj2 . . . · xjk

∈ R .

The mapping
Rn → R, x 7→ Axk

is called n-variable homogeneous polynomial of degree k.

1.8. Remarks.

1. Let n = 1, A ∈ R1
k. Denote by a the single entry of A that is (A)1,...,1 = a. Then

for any x = (x1) ∈ R1 ∼= R:

Axk =
1∑

j1,...jk=1

(A)j1,..., jk
· xj1 · xj2 . . . · xjk

= a ·
1
^
x1 ·x1 · . . . ·

k
^
x1 = axk ,

thus Axk is really a generalization of the one-variable monomial axk.
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2. The n-variable homogeneous polynomials of degree 1 are the linear functionals of
type Rn → R:

Ax =
n∑

i=1

ai · xi where A = (a1, . . . , an) ∈ Rn, x ∈ Rn .

3. The n-variable homogeneous polynomials of degree 2 are the quadratic forms:

Ax2 =
n∑

i,j=1

aij · xi · xj where A =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

an1 an2 . . . ann


 ∈ R

n×n, x ∈ Rn .

4. It is obvious that if A, B ∈ Rn
k and λ ∈ R then for any x ∈ Rn hold

(A + B)xk = Axk + Bxk , (λA)xk = λ(Axk)

A(λx)k = λk · (Axk) .

Axk with symmetric k-array.

Let us discuss another formula for the symbol Axk provided that A ∈ Rn
k is sym-

metric (in the sense of Definition 1.5). In this case the sum in the definition of Axk

contains a lot of identical terms, more precisely, the term

aj1,..., jk
· xj1 · xj2 . . . · xjk

equals to the term
ap1,..., pk

· xp1 · xp2 . . . · xpk

where p1, . . . , pk is a permutation of j1, . . . , jk. If the index system j1, . . . , jk contains
i1 times the index 1, i2 times the index 2, . . ., in times the index n where

i1, i2, . . . , in ∈ N0, i1 + i2 + . . . + in = k ,

then the number of the possible permutations (permutation with repetition) is

k!
i1! · i2! · . . . · in!

=
k!
i!

,

where the meaning of i! will be given in the following definition.

1.9. Definition The n-dimensional vector i = (i1, . . . , in) is called multi-index if
i1, i2, . . . , in ∈ N0. Thus the set of the multi-indices is Nn

0 . If i ∈ Nn
0 is a multi-index

and x ∈ Rn is a vector then the absolute value of i, the factorial of i and the power xi

are defined as

|i| := i1 + i2 + . . . + in , i! := i1! · i2! · . . . · in! , xi := xi1
1 · xi2

2 · . . . · xin
n

respectively.
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Using these abbreviations, the terms of the sum of the definition of Axk can be grouped
into subsets. A subset will contain the terms whose indices are the permutations of each
other, and these terms are equal. Such a subset can be described uniquely by a multi-
index in the following way. Let i ∈ Nn

0 , |i| = k be a multi-index and associate to this i
the non-increasing index system j(i) where

j(i) := (j1, j2, . . . , jk) := (n, . . . , n︸ ︷︷ ︸
in times

, n− 1, . . . , n− 1︸ ︷︷ ︸
in−1 times

, . . . , 1, . . . , 1︸ ︷︷ ︸
i1 times

) .

Denote by Perm (j(i)) the set of possible permutations p = (p1, . . . , pk) of the sequence
j(i). Thus the identical terms of the above mentioned subset are

ap1,..., pk
· xp1 · xp2 . . . · xpk

where p = (p1, . . . , pk) ∈ Perm (j(i)). We remind that the number of elements in

Perm (j(i)) is
k!
i!

.

After these considerations we can write the expression of Axk as follows:

Axk =
n∑

j1,...jk=1

aj1,..., jk
· xj1 · xj2 . . . · xjk

=
∑

i∈Nn
0

|i|=k

∑

p∈Perm j(i)

ap1,..., pk
· xp1 · xp2 . . . · xpk

=

=
∑

i∈Nn
0

|i|=k

k!
i!
· aj1,..., jk

· xj1 · xj2 . . . · xjk
=

∑

i∈Nn
0

|i|=k

k!
i!
· aj1,..., jk

· xi1
1 · xi2

2 · . . . · xin
n ,

where j(i) = (j1, j2, . . . , jk). If we use the notation ai := aj(i) = aj1,..., jk
, then we obtain

the following form (the so called multi-index form) for Axk:

Axk =
∑

i∈Nn
0

|i|=k

k!
i!
· ai · xi . (1.3)

Note that the number of terms in this sum equals to
(

n + k − 1
k

)
(see: combinations

with repetition).

The norm of a k-array.

Let us introduce the Euclidean vector norm on the vector space Rn
k (it is isomorphic

with Rnk
). This will be called the Frobenius-norm (or Euclidean norm).

1.10. Definition Let A ∈ Rn
k . Its Frobenius-norm (or Euclidean norm) is defined as

‖A‖F :=

√√√√
n∑

j1,...jk=1

a2
j1,..., jk
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1.11. Remark. The Frobenius-norm satisfies the axioms of vector norm. Moreover
Rn

k supplied with the Frobenius-norm and Rnk
supplied with the Euclidean norm are

isomorphic as linear normed spaces.

The following theorem gives us an upper estimation for |Axk|.

1.12. Theorem Let A ∈ Rn
k and x ∈ Rn. Then

|Axk| ≤ ‖A‖F · ‖x‖k .

Proof. The proof is based on the application of the Cauchy-Bunyakovsky-Schwarz
inequality several times.

We will prove the theorem for the case k = 2. The general proof is similar to this
case and requires mathematical induction.

Suppose that k = 2. Then we can use the indices i and j instead of j1 and j2.

|Ax2|2 = (Ax2)2 =




n∑

i,j=1

aijxixj




2

=




n∑

i=1

xi ·
n∑

j=1

aijxj




2

≤

≤
(

n∑

i=1

x2
i

)
·



n∑

i=1




n∑

j=1

aijxj




2
 ≤

≤ ‖x‖2 ·
n∑

i=1




n∑

j=1

a2
ij







n∑

j=1

x2
j


 = ‖x‖2 · ‖A‖2

F · ‖x‖2 = ‖A‖2
F · ‖x‖4 .

So |Ax2|2 ≤ ‖A‖2
F · ‖x‖4, which implies the statement of the theorem. ¤

1.3. Homeworks

1. The following vectors are given in R4:

x := (−1, 3, 5, 2) y := (2, −3, −1, 1).

Determine:

a) x + y b) x− y c) 3x d) 2x− 5y

e) 〈x, y〉 f) ||x|| g) d(x, y)

2. Let A ∈ R2
3 be a symmetric 3-array and x ∈ R2. Write Ax3 in the original form

(see Defininition 1.7) and in the multi-index form (see formula (1.3)) respectively,
and check their identity.
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3. Compute the Frobenius-norm of the following 2-arrays:

a) A =
[
2 −1
3 1

]
b) B =




0 4 −1
−3 1 2
−2 0 −3




c) Compute Ax2 if x = (1, 2) then check the statement of Theorem 1.12.

d) Compute Bx2 if x = (1, 1,−1) then check the statement of Theorem 1.12.

4. a) Compute the Frobenius-norm of the following 3-array:

A ∈ R2×2×2, aijk := i + j − k2 (i, j, k = 1, 2) .

b) Compute Ax3 if x = (−2, 1) then check the staement of Theorem 1.12.
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2.1. Balls in Rn

2.1. Definition The neighbourhood (or ball or environment) of the point a ∈ Rn with
radius r > 0 is the set

B(a, r) := {x ∈ Rn | ‖x− a‖ < r } .

2.2. Remark. In the case n = 1 the ball is the open interval

B(a, r) = (a− r, a + r) .

In the case n = 2 the ball is the open circular disk

B(a, r) = {x = (x1, x2) ∈ R2 | (x1 − a1)2 + (x2 − a2)2 < r2} .

One can easily prove the following basic properties of neighbourhoods:

2.3. Theorem 1. If 0 < r1 < r2 then B(a, r1) ⊂ B(a, r2)

2.
⋂

r∈R+

B(a, r) = {a}

3. (T2-property, separation) Let a, b ∈ Rn, a 6= b Then there exists r1 > 0, r2 > 0
such that

B(a, r1) ∩B(b, r2) = ∅
Proof. We will prove only the third statement of the theorem.

Let r1 = r2 = r =
‖a− b‖

3
. We will prove that B(a, r) ∩B(b, r) = ∅.

Assume, on the contrary that ∃x ∈ B(a, r) ∩B(b, r).
Then it holds for such an x that

‖x− a‖ <
‖a− b‖

3
and ‖x− b‖ <

‖a− b‖
3

.

Using this and the triangle inequality:

‖a− b‖ = ‖a− x + x− b‖ ≤ ‖a− x‖+ ‖x− b‖ = ‖x− a‖+ ‖x− b‖ <

<
‖a− b‖

3
+
‖a− b‖

3
=

2
3
‖a− b‖

holds which is a contradiction. ¤

We add briefly some concepts in connection with the neighbourhoods in different
dimensions:



14 2. Lesson 2

2.4. Definition Let k ∈ {1, . . . , n} and I := {i1, . . . , ik} ⊆ {1, . . . , n}. Suppose that
1 ≤ i1 < i2 < . . . < ik ≤ n. Denote by i the index vector i = (i1, i2, . . . ik). The set

CHP (i) := {x ∈ Rn | xi = 0 if i /∈ I} ⊆ Rn

is called i-coordinate (or: (i1, i2, . . . ik)-coordinate) hyperplane.

E. g. in R3 the (1, 2)-coordinate hyperplane is the xy-plane, the (2)-coordinate
hyperplane is the y-axis, etc.

Obviously the set CHP (i) is a k-dimensional subspace in Rn that is isomorphic
with Rk via the following mapping:

ϕ : CHP (i) → Rk, ϕ(x) := (xi1 , . . . , xik).

Thus a point a ∈ CHP (i) has two kinds of neighbourhoods: in Rn (n-dimensional,
denote it by B(a, r)) and in Rk (k-dimensional, denote it by Bi(a, r)). You can easily
prove that

Bi(a, r) = B(a, r) ∩ CHP (i).

If e. g. the point a lies on the xy-plane in R3 then this connection expresses that the
intersection of a ball with a plane is a circle.

2.2. Topology in Rn

In the previous section we have defined the ball. Using this concept we can define
important classes of points in connection of a fixed set.

2.5. Definition Let ∅ 6= H ⊂ R, a ∈ Rn. Then

1. a is an interior point of H, if ∃ r > 0 : B(a, r) ⊆ H.

2. a is an exterior point of H, if ∃ r > 0 : B(a, r) ∩H = ∅.
In other words: ∃ r > 0 : B(a, r) ⊆ H.

Here H denotes the complement of H that is H = R \H.

3. a is a boundary point of H, if

∀ r > 0 : B(a, r) ∩H 6= ∅ and B(a, r) ∩H 6= ∅.

2.6. Remark. Every interior point lies in H, every exterior point lies in H. But a
boundary point can belong to H or to its complement.

2.7. Definition 1. The set of the interior points of H is called the interior of H
and is denoted by intH. So

intH := {a ∈ R | ∃ r > 0 : B(a, r) ⊆ H} ⊆ H.
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2. The set of the exterior points of H is called the exterior of H and is denoted by
extH. So

extH := {a ∈ R | ∃ r > 0 : B(a, r) ⊆ H} ⊆ H.

3. The set of the boundary points of H is called the boundary of H and is denoted
by ∂H. So

∂H := {a ∈ R | ∀ r > 0 : B(a, r) ∩H 6= ∅ and B(a, r) ∩H 6= ∅} ⊂ R.

2.8. Remark. R = intH ∪ ∂H ∪ ext H and this is a union of disjoint sets.

You can easily see that intH= H \ ∂H, so we obtain the interior of a set if we
subtract from the set its boundary. If we add the boundary to the set then we obtain
the closure of the set as you see in the following definition.

2.9. Definition The set H ∪ ∂H is called the closure of H and is denoted by closH.
So closH := H ∪ ∂H.

It is obvious that closH = intH and intH = closH. This is based on the simple
fact that ∂H = ∂H.

2.10. Definition Let H ⊆ Rn. Then

1. H is called an open set df⇔ ∂H ⊆ H.

2. H is called a closed set df⇔ ∂H ⊆ H.

2.11. Remarks.

1. H is open if and only if it does not contain any boundary point and it is closed
if and only if it contains all of its boundary points.

2. ∅ and Rn are open and closed sets at the same time. There is no other set in Rn

that is open and closed at the same time.

3. H is open ⇔ H is closed, H is closed ⇔ H is open.

4. H is open ⇔ H ⊆ intH ⇔ H = intH.

5. H is closed ⇔ closH ⊆ H ⇔ H = closH.

2.12. Definition Let ∅ 6= H ⊆ Rn. Then H is called bounded if

∃M > 0 ∀x ∈ H : ‖x‖ ≤ M .
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2.3. Homeworks

1. Prove the statements 1. and 2. of Theorem 2.3.

2. Let a ∈ Rn, r > 0. Prove that in Rn

a) B(a, r) is an open set.

b) The set {x ∈ Rn | ‖x− a‖ ≤ r} (the closed ball) is a closed set.

c) The set {x ∈ Rn | ‖x− a‖ = r} (the sphere) is a closed set.

3. a) Prove that any ball B(a, r) contains n linearly independent vectors.

b) Prove that for any subspace W & Rn intW = ∅.
c) Prove that for any subspace W ⊆ Rn W is a closed set.

4. Determine intH, ∂H, ext H and closH if H ⊂ R2 and

a) H = {(x, y) ∈ R2 | 1 ≤ x < 3, 1 ≤ y < 2}.
b) H = {(x, y) ∈ R2 | x ≥ 0, x2 + y2 < 1}.

5. Prove that a set ∅ 6= H ⊂ Rn is bounded if and only if it can be covered by a ball
that is

∃ a ∈ Rn and ∃ r > 0 : H ⊆ B(a, r) .
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3.1. Sequences in Rn

Similarly to number sequences we can define vector sequences in Rn.

3.1. Definition A function a : N→ Rn is called a vector sequence in Rn. The function
value a(k) ∈ Rn ordered to the number k ∈ N is called the k-th term of the sequence.
If we want to indicate the components of the k-th term then we will rather use the
notation a(k) instead of a(k). If we don’t want to indicate the components then we can
use the usual notation ak for the k-th term.

3.2. Definition Let a(k) ∈ Rn (k ∈ N) be a vector sequence in Rn. Then

a(k) = (a(k)
1 , a

(k)
2 , . . . , a(k)

n ) ∈ Rn (k ∈ N) .

The number sequence a
(k)
i ∈ R (k ∈ N) is called the i-th coordinate sequence of (a(k))

(i = 1, . . . , n).

3.3. Definition The sequence a(k) ∈ Rn (k ∈ N) is called bounded if

∃M > 0 ∀ k ∈ N : ‖a(k)‖ ≤ M .

It is obvious that the vector sequence (a(k)) is bounded if and only if the real number
sequence (‖a(k)‖) is bounded. Moreover, using the inequalities (1.2) one can prove, that
a vector sequence is bounded if and only if its every coordinate sequence is bounded.
That is

(a(k)) is bounded ⇔ (a(k)
i ) is bounded (i = 1, . . . , n) .

3.4. Definition The vector sequence a : N→ Rn is called convergent if

∃A ∈ Rn ∀ε > 0 ∃N ∈ N ∀k ≥ N : a(k) ∈ B(A, ε) .

The definition can be written using inequalities as follows:

∃A ∈ Rn ∀ε > 0 ∃N ∈ N ∀k ≥ N : ‖a(k) −A‖ < ε .

A vector sequence is called divergent if it is not convergent.

It can be proved (using the T2-property of the neighbourhoods) that the vector A
in the above definition is unique. It is called the limit (or limit vector) of the vector
sequence (a(k)), and it is denoted in one of the following ways:

lim a = A , lim a(k) = A , lim
k→∞

a(k) = A , a(k) → A (k →∞).
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3.5. Remark. If a : N → Rn is a vector sequence and A ∈ Rn then lim
k→∞

a(k) = A is

equivalent with
∀ε > 0 ∃N ∈ N ∀k ≥ N : a(k) ∈ B(A, ε) ,

or – using inequalities – with

∀ε > 0 ∃N ∈ N ∀k ≥ N : ‖a(k) −A‖ < ε .

The number N is called threshold index to ε.

3.6. Theorem Let a(k) ∈ Rn (k ∈ N) be a vector sequence and A ∈ Rn be a vector.
Then

lim
k→∞

a(k) = A ⇐⇒ lim
k→∞

||a(k) −A|| = 0

Proof. The proof is obvious, if we consider that

||a(k) −A|| = | ||a(k) −A|| − 0 | .

¤
In the following theorem we reduce the convergence of a vector sequence back to

the convergence of its coordinate sequences.

3.7. Theorem Let a(k) ∈ Rn (k ∈ N) be a vector sequence and A ∈ Rn be a vector.
Then

lim
k→∞

a(k) = A ⇐⇒ lim
k→∞

a
(k)
i = Ai (i = 1 , . . . , n) .

Proof. Applying the inequalities (1.2) for the vectors a(k) −A we obtain

|a(k)
i −Ai| ≤ ‖a(k) −A‖ ≤

n∑

i=1

|a(k)
i −Ai| (i = 1 , . . . , n) ,

which implies both directions of the statement. ¤
This reduction to the coordinate sequences makes it possible to prove easily some

important basic theorems: connection between the convergence and the boundedness,
between the convergence and the algebraic operations, and also to prove the complete-
ness of Rn.

Similarly to the number sequences one can prove that a convergent sequence is
bounded (using norm instead of the absolute value). The opposite direction is not true:
there exist bounded sequences in Rn that are divergent. For example if x ∈ Rn \ {0}
then the sequence ak := (−1)k · x (k ∈ N) is such a sequence.

3.8. Theorem [Bolzano-Weierstrass] Let a(k) ∈ Rn (k ∈ N) be a bounded vector se-
quence. Then it has a convergent subsequence.
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Proof. For simplicity we will present the proof in the case n = 2. The general case
can be proved in the same way.

As (a(k)) is bounded, its first coordinate sequence (a(k)
1 ) is a bounded real num-

ber sequence. Using the Bolzano-Weierstrass theorem in R (see: Analysis-1) it has a
convergent subsequence (a(km)

1 , m ∈ N). But the subsequence (a(km)
2 , m ∈ N) of the

second coordinate sequence (a(k)
2 ) is also bounded, so – applying once more the Bolzano-

Weierstrass theorem in R – it has a convergent subsequence (a(kms )
2 , s ∈ N). Then the

vector sequence
a(kms ) = ( a

(kms )
1 , a

(kms )
2 ) (s ∈ N)

is obviously convergent. ¤

3.2. Characterization of closed sets with sequences

The closeness of a set in Rn can be described with vector sequences.

3.9. Theorem Let ∅ 6= H ⊆ R. Then H is closed if and only if

∀ ak ∈ H (k ∈ N) convergent sequence : lim
k→∞

ak ∈ H .

Proof. ⇒:
Let ak ∈ H (k ∈ N) be a convergent sequence and A := lim ak. We need to prove that
A ∈ H.

Suppose indirectly A /∈ H. Then A ∈ H. But H is open (because H is closed),
therefore

∃ ε > 0 : B(A, ε) ⊂ H .

But to this ε:
∃N ∈ N ∀ k ≥ N : ak ∈ B(A, ε) ⊂ H .

This is a contradiction: ak ∈ H and ak ∈ H cannot be at the same time.
⇐:

Suppose indirectly that H is not closed. This implies that H is not open, thus ∃A ∈ H
that is not interior point of H. This means that

∀ r > 0 : B(a, r) 6⊂ H that is B(a, r) ∩H 6= ∅ .

Applying this fact for the numbers r :=
1
k

(k ∈ N) we obtain

∀ k ∈ N ∃ ak ∈ B(a,
1
k
) ∩H .

So we have defined a sequence ak ∈ H (k ∈ N). Since

||ak −A|| < 1
k

(k ∈ N) ,

the limit of this sequence is A. So by the condition A ∈ H. But A was chosen from the
set H. This is a contradiction. ¤

The intuitive content of the above theorem is that it is impossible to go out from a
closed set via convergence.
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3.3. Compact sets

3.10. Definition Let ∅ 6= H ⊆ Rn. H is called a compact set if

∀ ak ∈ H (k ∈ N) sequence ∃ (akm , m ∈ N) subsequence :

(akm , m ∈ N) is convergent and lim
m→∞ akm ∈ H .

The ∅ is called to be compact by definition.

Similarly to the case of compact sets in R (see: Analysis-2) the following theorem
can be proved. We need only use the norm instead of the absolute value.

3.11. Theorem Let ∅ 6= H ⊆ Rn. Then H is compact if and only if it is closed and
bounded.

3.12. Remark. The theorem is not valid in infinite dimensional normed spaces. Every
compact set is closed and bounded but there exists a closed and bounded set, that is
not compact (see: Functional Analysis).

3.4. Homeworks

1. Prove by definition of the convergence, that in R2

lim
n→∞

(
n + 1
2n− 3

,
3n− 2
n + 5

)
=

(
1
2
, 3

)

Determine a threshold index to ε = 10−3.

2. Determine the limit of the following sequence in R3:

an =
(

1
n

,

(
1 +

1
n

)n

,
2n− 1
3n + 7

)
(n ∈ N) .

3. Using sequences prove that the following set is not closed:

H = {(x, y) ∈ R2 | 1 ≤ x < 3, 1 ≤ y < 2} ⊂ R2

4. Using the definition of compactness prove that the following sets in R2 are not
compact:

a) H = {(x, y) ∈ R2 | x2 + y2 < 4}

b) {(x, y) ∈ R2 | 1 ≤ x ≤ 3}
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4.1. The limit of functions of type Rn → Rm

As in the one variable case the concept of limits expresses where tend the function
values to if the variable tends to a certain point. The first problem is to discuss the
points where the variable can tend. These points are the so called accumulation points
of the domain of the function.

4.1. Definition (Accumulation point) Let ∅ 6= H ⊆ Rn and a ∈ Rn. We say that
a is an accumulation point of H if

∀ r > 0 : (B(a, r) \ {a}) ∩H 6= ∅ .

The set of accumulation points of H is denoted by H ′ that is

H ′ := {a ∈ Rn | a is an accumulation point of H} .

The points of the set H \H ′ are called isolated points of H.

4.2. Definition (isolated point) Let ∅ 6= H ⊆ Rn and a ∈ Rn. We say that a is an
isolated point of H if a ∈ H and

∃ r > 0 : B(a, r) \ {a} ∩H = ∅ .

After these preliminaries follows the definition of the limit:

4.3. Definition Let f ∈ Rn → Rm, a ∈ D′
f . We say that f has limit at the point a if

∃A ∈ Rm ∀ ε > 0 ∃ δ > 0 ∀x ∈ (B(a, δ) \ {a}) ∩Df : f(x) ∈ B(A, ε) .

Using the T2-property of neighbourhoods it can be proved that the vector A in this
definition is unique. This unique A is called the limit of the function f at the point a.
The notations are:

A = lim
a

f, A = lim
x→a

f(x), f(x) → A (x → a) .

4.4. Remark. Thus the fact lim
a

f = A can be expressed with neighbourhoods:

∀ ε > 0 ∃ δ > 0 ∀x ∈ (B(a, δ) \ {a}) ∩Df : f(x) ∈ B(A, ε) ,

and with inequalities:

∀ ε > 0 ∃ δ > 0 ∀x ∈ Df , 0 < ‖x− a‖ < δ : ‖f(x)−A‖ < ε .



22 4. Lesson 4

4.5. Examples

1. (the constant function) Let f : Rn → Rm, f(x) = c where c ∈ Rm is a fixed
vector. Then for any a ∈ Rn: lim

x→a
c = c, because for any ε > 0 any δ > 0 is good:

∀x ∈
(
B(a, δ) \ {a}

)
∩Df : f(x) = c ∈ B(c, ε) .

2. (identity function) Let f : Rn → Rn, f(x) := x. Let a ∈ Rn. Then lim
x→a

x = a,
because for any ε > 0 let δ := ε. It will be good, since

∀x ∈
(
B(a, δ) \ {a}

)
∩Df : f(x) = x ∈ B(a, δ) = B(a, ε) .

3. (canonical projections) Let f : Rn → R, f(x) := xi where i ∈ {1, . . . , n} is fixed
and x = (x1, . . . , xn). Let a = (a1, . . . , an) ∈ Rn. Then lim

x→a
f(x) = ai because for

any ε > 0 let δ := ε. This is good since if 0 < ‖x− a‖ < δ, then by (1.2):

|f(x)− ai| = |xi − ai| = ‖(x− a)i‖ ≤ ||x− a|| < δ = ε .

Note, that in the case n = 1, the projection coincides with the identity.

Similarly to the one variable case it can be proved the theorem of Transference
Principle:

4.6. Theorem [Transference Principle for limits] Using the previous notations:

lim
x→a

f(x) = A ⇔ ∀
allowed sequence︷ ︸︸ ︷

xk ∈ Df \ {a} (k ∈ N), lim xk = a : lim f(xk) = A .

The most important corollaries of the Transference Principle are – like in the one
variable case – the algebraic operations with the limits.

For m ≥ 2 we can speak about the limits by coordinates. To formulate this statement
we have to define the coordinate function.

4.7. Definition Let f ∈ Rn → Rm, f(x) = (f1(x), . . . fm(x)) ∈ Rm. Then the func-
tion fi : Df → R is called the i-th coordinate function of f (i = 1, . . . m). We often
use the notation f = (f1, . . . , fm).

Clearly in the case m = 1 f1 = f . Using the Transference Principle and the convergence
of sequences by coordinates, one can prove the following theorem:

4.8. Theorem [limit by coordinates] Suppose that m ≥ 2 and let
f ∈ Rn → Rm, a ∈ D′

f , A = (A1, . . . , Am) ∈ Rm. Then

lim
a

f = A ⇔ lim
a

fi = Ai (i = 1, . . . , m) .

4.9. Remark. With short notation our theorem is:

lim
x→a

f(x) =
(

lim
x→a

f1(x), . . . , lim
x→a

fm(x)
)

.

Moreover the existence of one side of the above equality implies the existence of the
other side.
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4.2. Limit along a set

Sometimes we approach a point in such way that the variable remains in a fixed given
set. In this case we speak about limit along a set. First we define the restriction of a
function.

4.10. Definition Let f ∈ A → B, ∅ 6= C ⊂ Df . The function

f|C : C → B, f|C(x) := f(x)

is called the restriction of f onto the set C.

4.11. Definition (limit along a set) Let f ∈ Rn → Rm, ∅ 6= H ⊆ Rn. Suppose that
a ∈ Rn and a ∈ (H ∩Df )′. Then the limit along the set H is defined as follows:

lim
x→a
x∈H

f(x) := lim
x→a

f|H∩Df
(x) .

Since the definition reduces the limit along a set back to the limit of functions, all
the statements (Transference Principle, algebraic operations, limit by coordinates) are
valid for limits along a set.

4.12. Remarks.

1. If H = Df then lim
x→a
x∈H

f(x) = lim
x→a

f(x).

2. If n = 1 then we may obtain the one-sided limits, that is

for H = (−∞, a): lim
x→a
x∈H

f(x) = lim
x→a−0

f(x),

and for H = (a,+∞): lim
x→a
x∈H

f(x) = lim
x→a+0

f(x).

3. If ∃ lim
x→a

f(x) = A, then for any set H for which a ∈ (H ∩ Df )′ follows that

lim
x→a
x∈H

f(x) = A .

The practically useful corollary of this statement is, that if we tend to a point ”in
two different way” and we obtain two different results, then the function has no
limit at this point (two-way-method).

4. If lim
x→a
x∈H

f(x) = lim
x→a
x∈K

f(x) = A then lim
x→a

x∈H∪K

f(x) = A.
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4.3. The continuity of functions of type Rn → Rm

We can define the continuity similarly to the one-variable case:

4.13. Definition Let f ∈ Rn → Rm, a ∈ Df . f is continuous at a if
∀ ε > 0 ∃ δ > 0 ∀x ∈ B(a, δ) ∩Df : f(x) ∈ B(f(a), ε).
Let us denote the set of functions that are continuous at a by C(a).

From the definition it follows immediately that

– if a is an isolated point of Df then f is continuous at a.

– if a is an accumulation point of Df then

f is continuous at a ⇔ lim
x→a

f(x) = f(a).

4.14. Definition Let f ∈ Rn → Rm. Then f is continuous if it is continuous at every
point of its domain, that is

∀ a ∈ Df : f ∈ C(a).

Using the results of Examples 4.5, the constant function, the identity function and
the canonical projections are continuous.

4.15. Theorem [Transference Principle for continuity] Using our notations:

f ∈ C(a) ⇔ ∀xk ∈ Df (k ∈ N), lim xk = a : lim f(xk) = f(a) .

The proof of this theorem is similar to the one-variable case.

Using the Transference Principle one can easily see that

1.
f, g ∈ C(a), c ∈ R ⇒ f + g, f − g, c · f ∈ C(a) ,

2.
g ∈ C(a), f ∈ C(g(a)) ⇒ f ◦ g ∈ C(a) ,

3.
f = (f1, . . . , fm) ∈ C(a) ⇔ fi ∈ C(a) (i = 1, . . . , m) .

Similarly to the one-variable case, one can prove the most important theorems for
continuous functions defined on compact sets.

4.16. Theorem [the compactness of the image]
Let f ∈ Rn → Rm be a continuous function and suppose that Df is compact. Then

Rf is compact.
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Before stating the following theorem, let us define the extreme values of an n-
variable function:

4.17. Definition Let f ∈ Rn → R. The minimum of f is the minimal element of its
range (if exists), that is

min f := minRf = min {f(x) | x ∈ Df} = min
x∈Df

f(x) .

The vector a ∈ Df is called the place of the minimum, if f(a) = min f .

Respectively, the maximum of f is the maximal element of its range (if exists), that
is

max f := maxRf = max {f(x) | x ∈ Df} = max
x∈Df

f(x).

The vector a ∈ Df is called the place of the maximum, if f(a) = max f . These numbers

are called the absolute (or global) extreme values, (absolute (or global) minimum,
absolute (or global) maximum) of f .

4.18. Theorem [the minimax theorem of Weierstrass] Let f ∈ Rn → R be a continu-
ous function and Df be compact. Then ∃ min f and ∃ max f .

The definition of the uniform continuity is defined in a similar way as in the one-
variable case:

4.19. Definition Let f ∈ Rn → Rm. We say that f is uniformly continuous if

∀ ε > 0 ∃ δ > 0 ∀x, y ∈ Df , ‖x− y‖ < δ : ‖f(x)− f(y)‖ < ε .

4.20. Theorem [theorem of Heine] Let f ∈ Rn → Rm be a continuous function and
Df be compact. Then f is uniformly continuous.

4.4. Homeworks

1. Determine the following limits if they exist:

a) lim
(x,y)→(0,0)

xy · x2 − y2

x2 + y2
b) lim

(x,y)→(0,0)

3xy
√

x + xy2

x2 + 2y2

c) lim
(x,y)→(0,0)

x2 + y2

√
x2 + y2 + 4− 2

d) lim
(x,y)→(0,0)

xy

x− y
.
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2. Discuss the continuity of the following R2 → R type functions:

a) f(x, y) =





x− y

x + y
if x + y 6= 0,

0 if x + y = 0;

b) f(x, y) =





x2y2

x2 + y2
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).
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5.1. The derivative of functions of type Rn → Rm

5.1. Definition Let f ∈ Rn → Rm, a ∈ intDf . We say that f is differentiable at the
point a (denoted by f ∈ D(a)) if

∃A ∈ Rm×n : lim
h→0

f(a + h)− f(a)−A · h
‖h‖ = 0 .

5.2. Theorem The matrix A in the above definition is unique.

Proof. Suppose that the matrices A,B ∈ Rm×n satisfy the definition. In this case

lim
h→0

(
f(a + h)− f(a)−Ah

||h|| − f(a + h)− f(a)−Bh

||h||
)

= 0− 0 = 0 .

After calulations we have
lim
h→0

(B −A) · h
||h|| = 0 .

Let h → 0 along the rays of the unit vectors

ej = (0, . . . ,
j
^
1 , . . . , 0), (j = 1, . . . , n)

that is let h := t · ej , where t > 0, t → 0 + 0. Since

||t · ej || = |t| · ||ej || = t · 1 = t ,

so

lim
h→0

(B −A) · h
||h|| = 0 ⇒ lim

t→0+0

(B −A) · t · ej

||t · ej || = 0 ⇒

⇒ lim
t→0+0

(B −A) · t · ej

t
= 0 ⇒ (B −A) · ej = 0 ⇒

⇒ B −A = 0 ⇒ B = A.

¤

5.3. Definition The matrix A in the above definition is called the derivative (or:
derivative matrix) of f at the point a and is denoted by f ′(a). So f ′(a) := A.

5.4. Remarks.

1. If n = m = 1, then we obtain the definition in the case R→ R, that was studied
in Analysis-2.
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2. In the case n = 1 the derivative can be defined equivalently as it was present in
Analysis-2:

f ′(a) = lim
h→0

f(a + h)− f(a)
h

= lim
x→a

f(x)− f(a)
x− a

−

3. In the case n ≥ 2 we cannot use the ratio of differences because the division with
a vector is undefined.

5.5. Theorem If f ∈ D(a) then f ∈ C(a).

Proof.

f(a + h)− f(a) =
f(a + h)− f(a)− f ′(a) · h

||h|| · ||h||+ f ′(a) · h → 0 (h → 0) .

So lim
h→0

f(a + h) = f(a) which implies f ∈ C(a). ¤

In the following theorem we state some differentiation rules without proof.

5.6. Theorem 1. Let f, g ∈ Rn → Rm, f, g ∈ D(a). Then f + g ∈ D(a) and

(f + g)′(a) = f ′(a) + g′(a)

(in the sense of matrix addition).

2. Let f ∈ Rn → Rm, λ ∈ R, f ∈ D(a). Then λf ∈ D(a) and

(λf)′(a) = λ · f ′(a)

(in the sense of matrix scalar multiplication).

3. (Chain Rule) Let g ∈ Rn → Rm, g ∈ D(a), f ∈ Rm → Rp, f ∈ D(g(a)). Then
f ◦ g ∈ D(a) and

(f ◦ g)′(a) = f ′(g(a)) · g′(a)

(in the sense of matrix multiplication).

5.2. Partial Derivatives

What are the entries of the derivative matrix? This is a natural question. In this section
we prepare the answer.

5.7. Definition Let f ∈ Rn → Rm, a = (a1, . . . , an) ∈ intDf and j ∈ {1, . . . , n}.
Define the following auxiliary function

ga,j(x) := f(a1, . . . , aj−1, x, aj+1, . . . , an) (x ∈ B(aj , r)) ,
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where r denotes the radius for which B(a, r) ⊆ Df .
The column matrix g′a,j(aj) ∈ Rm×1 – if it exists – is called the j-th partial derivative

(more precisely: the partial derivative by the j-th variable) of the function f at the point
a. Its notations are:

∂jf(a), or f ′xj
(a), or

(
∂f

∂xj

)

x=a

, or
(

∂f(x)
∂xj

)

x=a

.

5.8. Remarks.

1. Roughly speaking we can compute the the j-th partial derivative, if we fix every
variable except the j-th one and then differentiate the obtained one-variable func-
tion at aj .

2. By the isomorphism between Rm and Rm×1 we can say that the partial derivative
is a vector in Rm. Especially in the case m = 1 (f is a scalar-valued function) –
because of the isomorphism between R and R1×1 – we can say that the partial
derivative is a number. We will use these representations in the followings.

5.9. Definition Using the notations of the previous definition, let D ⊆ Rn denote the
set of all points of Df where the j-th partial derivative exists. Suppose that D 6= ∅.
Then the function

∂jf : D → Rm, a 7→ ∂jf(a)

is called the j-th partial derivative function of f .

It is obvious that the partial derivative function is of type Rn → Rm, and in the
case m = 1 it is of type Rn → R.

5.3. Homeworks

1. Using the definition prove that the following functions are differentiable at the
given point (a, b), and compute the derivatives:

a) f : R2 → R, f(x, y) = x3 + xy − 2y, (a, b) = (2,−1) ;
b) f : R2 → R2, f(x, y) = (x2y + 5y, x2 − xy) (a, b) = (2,−1) .

2. Determine the partial derivatives of the following R2 → R type functions:

a) f(x, y) = x2 − 5xy + 3y2 − 6x + 7y + 8; b) f(x, y) = arcsin
x

y
;

c) f(x, y) =
xy

x + y
; d) f(x, y) =

√
x3 − 5x2y + y4;

e) f(x, y) = ex cos y − x ln y; f) f(x, y) = arc tg
1− x

1− y
;

g) f(x, y) =
e2x−3y

2x− 3y
; h) f(x, y) =

x · tg x

exy
.
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6.1. The entries of the derivative matrix

In the previous lesson we have defined the partial derivatives. Using this concept we
can determine the entries of the derivative matrix.

First we will give another form of the partial derivative.
Let f ∈ Rn → Rm, a = (a1, . . . , an) ∈ intDf , j ∈ {1, . . . , n} and ga,j be the

auxiliary function defined in the previous section. Let F = Fa,j be the following other
auxiliary function:

F (t) := f(a + tej) (t ∈ R, a + tej ∈ Df ) ,

where ej denotes the j-th standard unit vector in Rn. Then

F (t) =f(a + tej) =
= f(a1 + t · 0, . . . , aj−1 + t · 0, aj + t · 1, aj+1 + t · 0, . . . , an + t · 0) =
= f(a1, . . . , aj−1, aj + t, aj+1, . . . , an) = ga,j(aj + t) ,

and F is defined for |t| < r, where r denotes the radius, for which B(a, r) ⊆ Df .
Using the Chain Rule we deduce that

F ′(t) = g′a,j(aj + t) · 1 consequently F ′(0) = g′a,j(aj) = ∂jf(a) .

After these preliminaries we can discuss the columns of f ′(a).

6.1. Theorem Let f ∈ Rn → Rm, f ∈ D(a), j ∈ {1, . . . , n}. Then ∃∂jf(a) and it is
identical with the j-th column of f ′(a).

Proof. f ∈ D(a) implies that lim
h→0

f(a + h)− f(a)− f ′(a) · h
‖h‖ = 0. Apply this relation

with the vectors h = t · ej where ej is the j-th standard unit vector, and t ∈ R, t → 0.
Then

0 = lim
t→0

f(a + t · ej)− f(a)− f ′(a) · t · ej

‖t · ej‖ =

= lim
t→0

f(a + t · ej)− f(a)− f ′(a)ej · t
|t| · ‖ej‖ =

= lim
t→0

f(a + t · ej)− f(a)− (the j-th column of f ′(a)) · t
|t|

This means – by the definition of the derivative – that F ∈ D(0), and that

∂jf(a) = F ′(0) = the j-th column of f ′(a) .

¤
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The following theorem speaks about the rows of the derivative matrix.

6.2. Theorem Let f ∈ Rn → Rm, f = (f1, . . . , fm) and a ∈ intDf . Then

f ∈ D(a) ⇔ fi ∈ D(a) (i = 1, . . . , m) .

In this case:
f ′i(a) = the i-th row of f ′(a) (i = 1, . . . , m) .

Proof. Let A ∈ Rm×n. Then the fact

lim
h→0

f(a + h)− f(a)−A · h
‖h‖ = 0

is equivalent with

lim
h→0

fi(a + h)− fi(a)− (Ah)i

‖h‖ = 0

(see: limit by coordinates). But (Ah)i = (the i-th row of A) ·h, so the above relation is
equivalent with

lim
h→0

fi(a + h)− fi(a)− (the i-th row of A) · h
‖h‖ = 0 .

Using these equivalencies in both directions, the statement of the theorem follows im-
mediately. ¤

Using the two previous theorems we obtain:

(f ′(a))ij = the j-th column of the i-th row = ∂jfi(a) .

6.3. Remark. The derivative matrix is:

f ′(a) =




∂1f1(a) ∂2f1(a) . . . ∂nf1(a)

∂1f2(a) ∂2f2(a) . . . ∂nf2(a)

...
...

∂1fm(a) ∂2fm(a) . . . ∂nfm(a)




∈ Rm×n.

6.4. Definition Let f ∈ Rn → R, f ∈ D(a). The vector

grad f(a) := ∇f(a) := (∂1f(a), ∂2f(a), . . . , ∂nf(a)) ∈ Rn

is called the gradient vector (or simply: gradient) of f at the point a.

Obviously the gradient vector ∇f(a) is the vector representation of the derivative
matrix f ′(a) ∈ R1×n.
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6.2. Connection between the derivatives and the partial
derivatives

In the previous section we have proved that the differentiability of a function at a point
implies the existence of all the partial derivatives at this point. The converse statement
is not true as the following example shows.

6.5. Example
Let f : R2 → R be the following function:

f(x, y) :=





1 if xy = 0

0 if xy 6= 0

Then ∂1f(0, 0) = ∂2f(0, 0) = 0, but f /∈ C(0, 0) so f /∈ D(0, 0).

Using some further assumptions the existence of partial derivatives can imply the
differentiability as will be stated – without proof – in the following theorem.

6.6. Theorem Let f ∈ Rn → Rm, a ∈ intDf . Suppose that

1. ∃r > 0 ∀x ∈ B(a, r) : ∃ ∂jf(x) (j = 1, . . . , n) and

2. ∂f ∈ C(a).

Then f ∈ D(a).

6.3. Directional Derivatives

The partial derivatives can be regarded as the derivatives of the functions restricted to
a line through the point a, and parallel with one of the coordinate axis. If we take a
general direction instead of the directions of coordinate axis then we obtain the concept
of directional derivative.

6.7. Definition Let f ∈ Rn → Rm, a ∈ intDf , e ∈ Rn, ‖e‖ = 1. Let F = Fa,e be the
following other auxiliary function:

F (t) := f(a + te) (t ∈ R, a + te ∈ Df )

Then the directional derivative of f at the point a along the direction e is defined as

∂ef(a) := F ′(0) =
(

d

dt
f(a + te)

)

t=0

.

In many cases the directional derivative can be computed with the help of the
derivative.
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6.8. Theorem Let f ∈ Rn → Rm, f ∈ D(a). Then for any e ∈ Rn, ‖e‖ = 1:

∂ef(a) = f ′(a) · e

in the sense of matrix-vector product.

Proof. Let g(t) = a + te (t ∈ R). Then g′(t) = e and using the Chain Rule we obtain

∂ef(a) =
(

d

dt
f(a + te)

)

t=0

=
(
f ′(a + te) · g′(t))

t=0
=

=
(
f ′(a + te) · e)

t=0
= f ′(a) · e .

¤

6.9. Remark. The direction is often given not by a unit vector but by another way
(see Homework 3.). In this cases we have to determine a unit vector that shows in the
given direction.

6.4. Homeworks

1. Discuss the differentiability of the function (i.e. at which point of its domain it is
differentiable, and what are the derivatives at these points):

f : R2 → R, f(x, y) = 3
√

xy

2. Prove that the following function is differentiable, and determine its derivative:

f : R2 → R2, f(x, y) = ( arc tg
x

x2 + y2 + 1
, cos(x3 − 4xy) ) .

3. Determine the directional derivatives in the following case:

f : R2 → R, f(x, y) = x3 + xy − 2y3

at the point P0(2, 1) along the following directions

a) v = (−2, 3); b) α = 330◦;

c) The direction from A(1, 0) to B(4, 4).
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7.1. Higher order derivatives

In this section we will study the higher order derivatives of functions of type Rn → R.
Similarly to the one-variable case the second order derivative is defined as the derivative
of the derivative function.

7.1. Definition Let f ∈ Rn → R, a ∈ intDf . We say that f is 2 times differentiable
at a (its notation is: f ∈ D2(a)) if

∃ r > 0 ∀x ∈ B(a, r) : f ∈ D(x) and f ′ ∈ D(a) .

The derivative function f ′ can be regarded as a vector valued function with the co-
ordinate functions ∂jf (j = 1, . . . , n). So the equivalent definition of the 2 times
differentiability can be given as follows.

7.2. Definition Let f ∈ Rn → R, a ∈ intDf . We say that f is 2 times differentiable
at a if

∃ r > 0 ∀x ∈ B(a, r) : f ∈ D(x) and ∂jf ∈ D(a) (j = 1, . . . , n) .

Suppose that f ∈ D2(a). Since its derivative function is

f ′ = (∂1f, ∂2f, . . . , ∂nf) : Rn → Rn ,

its second derivative is the derivative matrix of f ′ at a:

f ′′(a) =
(
f ′

)′ (a) =




∂1∂1f(a) ∂2∂1f(a) . . . ∂n∂1f(a)

∂1∂2f(a) ∂2∂2f(a) . . . ∂n∂2f(a)

...
...

∂1∂nf(a) ∂2∂nf(a) . . . ∂n∂nf(a)




∈ Rn×n .

This matrix is called the Hesse-matrix of f at a. The ij-th entry of the Hesse-matrix is
(
f ′′(a)

)
ij

= ∂j∂if(a) (i, j = 1, . . . , n) .

7.3. Definition The entries of the Hesse-matrix f ′′(a) are called the second order
partial derivatives of f at a.

7.4. Remark. We have defined the second order partial derivatives only for the func-
tions that are 2 times differentiable at a. The concept of the second order partial deriva-
tive can be defined in more general case but we will use it only for 2 times differentiable
functions.
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7.5. Theorem [Theorem of Young] If f ∈ D2(a), then the Hesse-matrix f ′′(a) is sym-
metric that is

∂j∂if(a) = ∂i∂jf(a) (i, j = 1, . . . , n) .

7.6. Definition Let f ∈ Rn → R and suppose that the set

Df ′′ :=
{
x ∈ intDf | f ∈ D2(x)

}

is nonempty. Then the function

f ′′ : Df ′′ → Rn×n, x 7→ f ′′(x)

is called the second derivative function (or simply: the second derivative) of f . The
functions

∂j∂if : Df ′′ → R, x 7→ ∂j∂if(x) (i, j = 1, . . . , n)

are called the second order partial derivative functions (or simply: the second order
partial derivatives) of f .

If we want to define the 3 times differentiability of f at a point a ∈ intDf (deno-
ted by f ∈ D3(a) ) then we have to suppose that f ′′ is differentiable at a. Since the
coordinate functions of f ′′ are the second order partial derivatives, so

f ∈ D3(a) ⇔ f ′′ ∈ D(a) ⇔ ∂j∂if ∈ D(a) (i, j = 1, . . . , n) .

7.7. Definition Suppose that f ∈ D3(a). Then the numbers

∂k∂j∂if(a) (i, j, k = 1, . . . , n)

are called the 3-rd order partial derivatives of f at a. The 3-array with entries
(
f ′′′(a)

)
ijk

= ∂k∂j∂if(a) (i, j, k = 1, . . . , n)

is called the 3-rd order derivative of f at a.

In similar way – recursively – we can define the k-th derivative and the k-th order
partial derivatives for k = 4, 5, . . .. Thus these concepts are defined for any k ∈ N. We
agree that the 0-th derivative is the function itself.

Some notations:

• f ∈ Dk(a): f is k times differentiable at a.

• f (k)(a): the k-th derivative of f at a.

• ∂jk
∂jk−1

. . . ∂j2∂j1f(a) (j1, . . . , jk = 1, . . . , n):

the k-th order partial derivatives of f at a. Their number is nk.
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So f (k)(a) ∈ Rn×n×...×n = Rn
k is a k-array with the entries

(
f (k)(a)

)
j1,..., jk

= ∂jk
∂jk−1

. . . ∂j2∂j1f(a) (j1, . . . , jk = 1, . . . , n) . (7.1)

Applying several times the Theorem of Young we obtain the following theorem.

7.8. Theorem If f ∈ Dk(a) then the k-array f (k)(a) is symmetric in the following
sense.

Let j1, . . . , jk ∈ {1, . . . , n} and the finite sequence p1, . . . , pk be a permutation
(may be: permutation with repetition) of the finite sequence j1, . . . , jk. Then

(
f (k)(a)

)
p1,..., pk

=
(
f (k)(a)

)
j1,..., jk

that is
∂pk

∂pk−1
. . . ∂p2∂p1f(a) = ∂jk

∂jk−1
. . . ∂j2∂j1f(a) .

7.9. Definition Let f ∈ Rn → R, a ∈ intDf . We say that f is k times continuously
differentiable at a (its notation is: f ∈ Ck(a)) if

∃ r > 0 ∀x ∈ B(a, r) : f ∈ Dk(x) and f (k) ∈ C(a) .

Naturally, the definition is equivalent with the continuity of the k-th order partial
derivative functions at a.

7.2. Taylor’s Formula

7.10. Definition (Taylor’s polynomial) Let m ∈ N ∪ {0}, f ∈ Rn → R,
f ∈ Dm(a). The n-variable polynomial

Tm(x) := f(a) +
f ′(a)(x− a)

1!
+

f ′′(a)(x− a)2

2!
+ . . . +

f (m)(a)(x− a)m

m!
=

= f(a) +
m∑

k=1

f (k)(a)(x− a)k

k!
(x ∈ Rn)

is called the m-th Taylor-polynomial of f at the center a.

7.11. Remarks.

1. For the meaning of the terms of the above sum we remind the Reader of the
definition of the symbol Axk where A is a k-array and x is a vector (see: Definition
1.7 in Lesson 1).

2. It is obvious that the degree of Tm is at most m and that Tm(a) = f(a).



7.2. Taylor’s Formula 37

In the followings we will use the abbreviation h = x−a. To approximate f with the
help of its Taylor-polynomials and to prove the Taylor Formula, we need the concept of
the line segment in Rn and a theorem about the k-th derivative of an auxiliary function.

7.12. Definition Let a ∈ Rn, h ∈ Rn \ {0}. The set

[a, a + h] := {a + th ∈ Rn | 0 ≤ t ≤ 1} ⊂ Rn

is called a closed line segment in Rn. a is the starting point and a + h is the terminal
point of the line segment.

7.13. Theorem Let f ∈ Rn → R, k ∈ N∪{0}. Let the closed line segment [a, a+h] be
a subset of intDf and suppose that f is k times differentiable at any point of [a, a+h].
Let

F ∈ R→ R, F (t) := f(a + th) (t ∈ R, a + th ∈ Df ) .

Then [0, 1] ⊂ intDf , F is k times differentiable at any point of the closed interval [0, 1]
and

F (k)(t) = f (k)(a + th)hk (t ∈ [0, 1]) (7.2)

in the sense of the symbol Axk (see Definition 1.7 in Lesson 1).

Proof. The precise proof of this formula requires mathematical induction. For simp-
licity we will prove it only for the cases n = 1 and n = 2. One will see from these two
cases the general inductional step.

Proof of (7.2) in the case k = 1:
F is a composition of functions f and t 7→ a + th. Using the Chain Rule we obtain:

F ′(t) = f ′(a + th) · h =
n∑

j=1

∂jf(a + th) · hj = f ′(a + th)h1 .

Proof of (7.2) in the case k = 2 (using that it is true for k = 1):
F ′ is an n-term sum of functions t 7→ ∂jf(a + th) · hj . The j-th term is a scalar

multiple of the composition of functions ∂jf and t 7→ a + th. Applying the previous
result (case k = 1) for ∂jf instead of f we obtain:

F ′′(t) = (F ′(t))′ =
d

dt




n∑

j=1

∂jf(a + th) · hj


 =

n∑

j=1

hj · d

dt
(∂jf(a + th)) =

=
n∑

j=1

hj ·
n∑

i=1

∂i∂jf(a + th) · hi =
n∑

i,j=1

∂i∂jf(a + th) · hi · hj = f ′′(a + th)h2 .

¤
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7.14. Theorem [Taylor’s formula]
Let f ∈ Rn → R, a ∈ Df , h ∈ Rn, h 6= 0, m ∈ N ∪ {0}. Suppose that f is m + 1

times differentiable at any point of the closed line segment

[a, a + h] := {a + th ∈ Rn | 0 ≤ t ≤ 1} .

(Remember that it requires [a, a + h] ⊆ intDf ).
Then there exists ϑ ∈ R, 0 < ϑ < 1 such that

f(a + h)− Tm(a + h) =
f (m+1)(a + ϑh)hm+1

(m + 1)!

that is

f(a + h) = f(a) +
m∑

k=1

f (k)(a)hk

k!
+

f (m+1)(a + ϑh)hm+1

(m + 1)!
(7.3)

Proof. Let us define the auxiliary function

F ∈ R→ R, F (t) := f(a + th) (t ∈ R, a + th ∈ Df ) .

Then – by the previous theorem – F satisfies the assumptions of the one-variable Taylor
Formula (see: Analysis-2) at the center 0. Applying the one-variable Taylor Formula
for approximation of F (1) we have:

∃ϑ ∈ (0, 1) : F (1) =
m∑

k=0

F (k)(0)
k!

· (1− 0)k +
F (m+1)(ϑ)
(m + 1)!

· (1− 0)m+1 =

= F (0) +
m∑

k=1

F (k)(0)
k!

+
F (m+1)(ϑ)
(m + 1)!

.

(7.4)

Using

F (1) = f(a + h), F (0) = f(a)

and the result of the previous theorem for F (k) we have

F (k)(0) = f (k)(a + 0h)hk = f (k)(a)hk (k = 1, . . . , m)

and F (m+1)(ϑ) = f (m+1)(a + ϑh)hm+1 .

Substituting this result into (7.4) we obtain the statement of the theorem. ¤



7.2. Taylor’s Formula 39

The multi-index form of Taylor’s Formula

Since f (k)(a) and f (m+1)(a + ϑh) are symmetric k-arrays, we can apply the multi-
index form of Axk (see in Lesson 1). Using (7.1) we have:

f (k)(a)hk =
∑

i∈Nn
0

|i|=k

k!
i!
· (f (k)(a))i · hi =

=
∑

i∈Nn
0

|i|=k

k!
i!
· (f (k)(a))n, . . . , n︸ ︷︷ ︸

in times

,n− 1, . . . , n− 1︸ ︷︷ ︸
in−1 times

, . . ., 1, . . . , 1︸ ︷︷ ︸
i1 times

· hi =

=
∑

i∈Nn
0

|i|=k

k!
i!
· ∂1 . . . ∂1︸ ︷︷ ︸

i1 times

∂2 . . . ∂2︸ ︷︷ ︸
i2 times

. . . ∂n . . . ∂n︸ ︷︷ ︸
in times

f(a) · hi =

=
∑

i∈Nn
0

|i|=k

k!
i!
· ∂if(a) · hi ,

where
∂if(a) := ∂1 . . . ∂1︸ ︷︷ ︸

i1 times

∂2 . . . ∂2︸ ︷︷ ︸
i2 times

. . . ∂n . . . ∂n︸ ︷︷ ︸
in times

f(a) .

f (m+1)(a + ϑh) can be rewritten into similar form.
Let us substitute these results into (7.3):

f(a + h) = f(a) +
m∑

k=1

f (k)(a)hk

k!
+

f (m+1)(a + ϑh)hm+1

(m + 1)!
=

= f(a) +
m∑

k=1

1
k!
·

∑

i∈Nn
0

|i|=k

k!
i!
· ∂if(a) · hi +

1
(m + 1)!

·
∑

i∈Nn
0

|i|=m+1

(m + 1)!
i!

· ∂if(a + ϑh) · hi .

Simplifying with k! and with (m + 1)! we obtain the multi-index form of Taylor’s
Formula:

f(a + h) = f(a) +
m∑

k=1

∑

i∈Nn
0

|i|=k

∂if(a)
i!

· hi +
∑

i∈Nn
0

|i|=m+1

∂if(a + ϑh)
i!

· hi .

The Mean Value Theorem

As an important corollary of the Taylor Formula we state the following theorem.

7.15. Theorem [Mean Value Theorem]
Let f ∈ Rn → R, a ∈ Df , h ∈ Rn, h 6= 0. Suppose that f is differentiable at any

point of the closed line segment [a, a + h] (it requires [a, a + h] ⊆ intDf ). Then

∃ϑ ∈ (0, 1) : f(a + h)− f(a) = f ′(a + ϑh) · h .

Proof. Apply Taylor’s Formula for m = 0. ¤
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7.3. Homeworks

1. Determine the all order partial derivatives of the following function and check the
theorem of Young:

f : R2 → R, f(x, y) = 3xy3 + 2x2y − xy .

2. Let a ∈ R be a nonzero constant. Prove that the function

u(x, t) =
1

2a · √πt
· e− x2

4a2t (x ∈ R, t > 0)

satisfies the following partial differential equation

∂2u = a2 · ∂1∂1u .

3. Using the Taylor-formula rearrange the following polynomial by the powers (x +
1)i(y − 1)j :

f(x, y) = x3 + x2y − 2xy2 − xy + y ((x, y) ∈ R2) .

4. Determine the second order Taylor-polynomial of the function

f(x, y) =
cosx

cos y
((x, y) ∈ R2, cos y 6= 0) .

if the center is the origin.
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8.1. Local extreme values: the First Derivative Test

In connection with the Weierstrass-theorem (see: Theorem 4.18) we have defined the
(global or absolute) extreme values of a function. Now we will discuss the so called local
extrema.

8.1. Definition Let f ∈ Rn → R, a ∈ Df . We say that f has at a

1. local minimum df⇔ ∃ r > 0 ∀x ∈ B(a, r) ∩Df : f(x) ≥ f(a);

2. strict local minimum df⇔ ∃ r > 0 ∀x ∈ B(a, r) ∩Df \ {a} : f(x) > f(a);

3. local maximum df⇔ ∃ r > 0 ∀x ∈ B(a, r) ∩Df : f(x) ≤ f(a);

4. strict local maximum df⇔ ∃ r > 0 ∀x ∈ B(a, r) ∩Df \ {a} : f(x) < f(a);

Here a is the place of the local extremum and f(a) is the local extreme value.

8.2. Theorem [First Derivative Test] Let f ∈ Rn → R, f ∈ D(a) and suppose that f
has a local extremum at a.

Then f ′(a) = 0 (or: ∇f(a) = 0).

Proof. Let us introduce the following auxiliary functions for j ∈ {1, . . . , n}:
gj(u) := f(a1, . . . , aj−1, u, aj+1, . . . an) (u ∈ R, (a1, . . . , aj−1, u, aj+1, . . . an) ∈ Df ).

Since f has local extremum at a, then gj has the same type of local extremum at aj .
Applying the First Derivative Test for one-variable functions (see: Analysis-2) and the
definition of the partial derivative we have

∂jf(a) = g′j(aj) = 0 (j = 1, , . . . , n) .

Consequently f ′(a) =
[
∂1f(a) . . . ∂nf(a)

]
= 0. ¤

8.3. Remarks.

1. The above theorem is often mentioned as the first order necessary condition of
local extrema.

2. The equation f ′(x) = 0 is equivalent with the scalar equation system

∂1f(x1, x2, . . . , xn) = 0
...

∂nf(x1, x2, . . . , xn) = 0

The roots of this system are called the stationary points of f .
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8.2. Quadratic Forms

To formulate the second order conditions of the local extrema we need a short study
of quadratic forms.

8.4. Definition Let A ∈ Rn×n be a symmetric matrix, that is a symmetric 2-array.
The function

Q : Rn → R, Q(x) := Ax2 =
n∑

i,j=1

aij · xi · xj

is called quadratic form determined by the symmetric matrix A. A is called the matrix
of Q.

8.5. Remarks.

1. The connection between the n × n symmetric matrices and the quadratic forms
is one-to-one.

2. The quadratic forms are exactly the homogeneous n-variable polynomials. This
means that they are polynomials whose each term is of second degree.

3. From the definition it follows immediately that

Q(λx) = λ2 ·Q(x) (λ ∈ R, x ∈ Rn) .

8.6. Theorem Let Q : Rn → R be a quadratic form. Then there exist constants
m, M ∈ R such that

m · ‖x‖2 ≤ Q(x) ≤ M · ‖x‖2 (x ∈ Rn) .

Proof. The quadratic forms – because of their construction – are continuous functions.
Let us restrict Q to the compact set

H := {x ∈ Rn | ‖x‖ = 1} ,

and apply the Weierstrass minimax theorem (Theorem 4.18). Thus Q|H attains its
minimal and maximal values. Denote by m the minimal value and by M the maximal
value of Q|H . Let x ∈ Rn, x 6= 0. Then

x

‖x‖ ∈ H, so

m ≤ Q

(
x

‖x‖
)
≤ M that is m ≤ 1

‖x‖2
·Q(x) ≤ M

which implies immediately the statement of the theorem for x 6= 0. The case x = 0 is
trivial. ¤
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8.7. Remark. It can be proved (see: Linear Algebra) that the above defined m is the
minimal and M is the maximal eigenvalue of the matrix A.

In the next part we classify the quadratic forms by the signs of their values.

8.8. Definition Let Q : Rn → R be a quadratic form represented by the symmetric
matrix A ∈ Rn×n. We say that Q is

(a) positive definite if ∀x ∈ Rn \ {0} : Q(x) > 0,

(b) negative definite if ∀x ∈ Rn \ {0} : Q(x) < 0,

(c) positive semidefinite if ∀x ∈ Rn : Q(x) ≥ 0,

(d) negative semidefinite if ∀x ∈ Rn : Q(x) ≤ 0,

(e) indefinite, if ∃x, y ∈ Rn : Q(x) > 0, Q(y) < 0.

8.9. Remarks.

1. Since a quadratic form can be uniquely represented by a symmetric matrix, the
above classification means the classification of symmetric matrices at the same
time.

2. Every positive definite quadratic form is positive semidefinite and every negative
definite quadratic form is negative semidefinite.

3. The constant 0 function is a quadratic form (represented by the 0 matrix). It is
positive and negative semidefinite at the same time. Apart from this case the set of
n-variable quadratic forms bursts into three disjoint classes: positive semidefinite,
negative semidefinite, indefinite.

4. It is obvious that if Q is positive definite then both the constants in theorem 8.6
are positive: m, M > 0.

Let us study the classification of 2-variable quadratic forms. A 2-variable quadratic
form is given by a symmetric matrix of size 2× 2.

8.10. Theorem [classification of the 2-variable quadratic forms]

Let A =
[
a b
b c

]
∈ R2×2 and Q : Rn → R be the quadratic form given by A, that is

Q(x1, x2) = ax2
1 + 2bx1x2 + cx2

2 (x = (x1, x2) ∈ R2) .

Then Q is

• positive definite if detA = ac− b2 > 0 and a > 0,

• negative definite if det A = ac− b2 > 0 and a < 0.

(The case det A = ac− b2 > 0 and a = 0 is impossible.)
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• indefinite if det A = ac− b2 < 0.

• semidefinite but not definite if det A = ac− b2 = 0.

The semidefinite case is in detail as follows. Suppose that det A = ac − b2 = 0. Then
Q is

• positive semidefinite but not positive definite if a > 0 or if a = 0, c > 0,

• negative semidefinite but not negative definite if a < 0 or if a = 0, c < 0,

• the identical 0-function if a = c = 0.

Proof. The proof is based on the following elementary identities:

Q(x1, x2) = ax2
1 + 2bx1x2 + cx2

2 =





(ax1 + bx2)2 + (ac− b2)x2
2

a
if a 6= 0,

(bx1 + cx2)2 + (ac− b2)x2
1

c
if c 6= 0,

2bx1x2 if a = c = 0.

Using these identities one can easily discuss the sign of the values of Q. ¤

8.3. Homeworks

1. Using the first order condition of local extremum and the Weierstrass’s minimax
theorem solve the following absolute extreme value problems in R2:

a) f(x, y) = x2 + y2 − xy (0 ≤ x ≤ 4, 0 ≤ y ≤ x);

b) f(x, y) = x2 − 2xy + 2y (0 ≤ x ≤ 2, 0 ≤ y ≤ 3);

c) f(x, y) = x2 − y2 − x (x ≥ 0, y ≥ 0, x2 + y2 ≤ 1).

2. Rotate a rectangular region around one of its sides. In which case will have the
resulted cylinder the maximal volume if the perimeter of the rectangle is a given
number a > 0. Give the sizes of the rectangle in the answer.

3. Write the matrices of the following quadratic forms. Determine in which class of
definiteness they are.

a) Q(x, y) = 3x2 − 4xy + 4y2

b) Q(x, y) = x2 + 5xy + 4y2

c) Q(x, y) = x2 − 2xy + y2
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9.1. Local extreme values: the Second Derivative Test

In this section we will prove two theorems – that use second order derivatives – in
connection with the local extrema.

9.1. Theorem [the definite case] Let f ∈ Rn → R, f ∈ C2(a), f ′(a) = 0. Then

(a) If f ′′(a) is positive definite then f attains local minimum at a;

(b) If f ′′(a) is negative definite then f attains local maximum at a;

Proof. It is enough to prove part (a). The part (b) can be reduced back to (a) applying
it for −f .

To prove part (a) we will show that

∃ δ > 0 ∀h ∈ Rn \ {0}, ‖h‖ < δ : f(a + h)− f(a) > 0 .

Denote by r the radius of a ball with center a which is a subset of Df (this r exists
because a is an interior point of Df ). Let h ∈ Rn \ {0}, ‖h‖ < r. Then we can apply
the Taylor’s formula with m = 1. So ∃ϑ = ϑ(h) ∈ R, 0 < ϑ < 1 such that

f(a + h) = f(a) +
f ′(a)h1

1!
+

f ′′(a + ϑh)h2

2!

Since f ′(a) = 0 then we have

f(a + h)− f(a) =
f ′′(a + ϑh)h2

2!
.

Let us smuggle the term
f ′′(a)h2

2!
in this formula:

f(a + h)− f(a) =
f ′′(a)h2

2!
+

(f ′′(a + ϑh)− f ′′(a))h2

2!
,

that is

f(a + h)− f(a) =
1
2
· (Ah2 + B(h)h2

)
(h ∈ Rn, 0 < ‖h‖ < r)

where
A = f ′′(a) and B(h) = f ′′(a + ϑh)− f ′′(a) .

Since A is positive definite so

∃m > 0 ∀h ∈ Rn : Ah2 ≥ m · ‖h‖2 .
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Using the continuity of f ′′ at a we obtain lim
h→0

B(h) = 0 so

∃ δ > 0 : δ < r and ∀h ∈ Rn, ‖h‖ < δ : ||B(h)||F <
m

2

where ||B(h)||F denotes the Frobenius-norm of the 2-array B(h) (see Definition 1.10 in
Lesson 1). Hence – using the norm-estimation in Theorem 1.12 in Lesson 1 – we obtain

|B(h)h2| ≤ ||B(h)||F · ‖h‖2 <
m

2
· ‖h‖2 that is

−m

2
· ‖h‖2 ≤ B(h)h2 ≤ m

2
· ‖h‖2 .

Using the left hand side inequality and the previous results we have
for h ∈ Rn, 0 < ‖h‖ < δ:

f(a + h)− f(a) =
1
2
· (Ah2 + B(h)h2

) ≥ 1
2
·
(
m‖h‖2 − m

2
‖h‖2

)
=

m

4
‖h‖2 > 0 .

¤

9.2. Theorem [the indefinite case] Let f ∈ Rn → R, f ∈ C2(a), f ′(a) = 0. If f ′′(a)
is indefinite then f has no local extremum at a.

Proof.
The first part of the previous proof is independent of the type of f ′′(a). So we have

f(a + h)− f(a) =
1
2
· (Ah2 + B(h)h2

)
(h ∈ Rn, 0 < ‖h‖ < r)

where r > 0 is the radius for which B(a, r) ⊆ Df , and

A = f ′′(a) and B(h) = f ′′(a + ϑh)− f ′′(a) .

Denote by Q the quadratic form defined by A. Now A is indefinite, so
∃x, y ∈ Rn : Q(x) > 0, Q(y) < 0. Naturally x 6= 0 and y 6= 0.

First we will work with x. The values of Q along the line E1 = {h = tx | t ∈ R} are

Q(h) = Q(tx) = Q

(
t‖x‖ · x

‖x‖
)

= t2‖x‖2 ·Q
(

x

‖x‖
)

= m1 · ‖tx‖2 = m1 · ‖h‖2

where

m1 := Q

(
x

‖x‖
)

=
1

‖x‖2
·Q(x) > 0 independently of h .

Hence we can apply the considerations of the proof of the previous theorem, so

∃ δ1 > 0 : f(a + h)− f(a) ≥ m1

4
‖h‖2 > 0

that is f(a + h) > f(a) (h ∈ E1, 0 < ‖h‖ < δ1) .

Then working with y we can deduce in similar way, that along the line
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E2 = {h = ty | t ∈ R}:

∃ δ2 > 0 : f(a + h)− f(a) ≤ m2

4
‖h‖2 < 0

that is f(a + h) < f(a) (h ∈ E2, 0 < ‖h‖ < δ2)

where

m2 := Q

(
y

‖y‖
)

=
1

‖y‖2
·Q(y) < 0 independently of h .

Since any neighbourhood of a contains points on the lines E1 and E2 with norm less
than min{δ1, δ2} and different from a, it follows that f has no local extreme value at
a. ¤

9.3. Corollary. (Second Order Necessary Condition) Let f ∈ Rn → R,
f ∈ C2(a), f ′(a) = 0. If f has local extremum at a then f ′′(a) is semidefinite.

9.2. Homeworks

1. Determine the local extrema and the places of local extrema of the following
R2 → R type functions:

a) f(x, y) = y3 − x2 − 4y2 + 2xy

b) f(x, y) = f(x, y) = x4 − 4xy + y4

c) f(x, y) = x2 + xy + y2 +
8
x

+
8
y
;

d) f(x, y) = x4 + y4 − x2 − 2xy − y2

2. Let f : R2 → R and g : R2 → R be the following functions:

f(x, y) = x4 + y2 g(x, y) = x3 + y2 ((x, y) ∈ R2) .

a) Show that f ′(0, 0) = g′(0, 0) = 0.

b) Neither the theorem 9.1 nor the theorem 9.2 can be applied for f and g at
the point (0, 0).

c) f has local extreme value at (0, 0).

d) g has no local extreme value at (0, 0).
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10.1. Multiple integrals over intervals

In Analysis-2 we have studied the Riemann-integral over intervals in R. Now we will
follow a similar way to construct the integral over n-dimensional intervals. Since the
precise discussion requires long and complicated proofs, a lot of proofs will be omitted.

10.1. Definition Let n ∈ N and ak, bk ∈ R, ak < bk (k = 1, . . . n). The set

I := [a1, b1]× [a2, b2]× . . .× [an, bn] =
= {x = (x1, . . . , xn) ∈ Rn | ak ≤ xk ≤ bk (k = 1, . . . , n)} ⊂ Rn

is called an n-dimensional interval (or: n-dimensional box).
The measure (or: n-dimensional volume) of I is defined as

µ(I) :=
n∏

k=1

(bk − ak) .

The diameter (or: length of diagonal) of I is defined as

d(I) :=

√√√√
n∑

k=1

(bk − ak)2 .

Remember (see: Analysis-2) that in one dimensional case the partition P of an
interval [a, b] into n closed subintervals is a finite number set {x0, x1, . . . , xn}, where

a = x0 < x1 < x2 < . . . < xn = b .

Let us modify a bit the notation P . Denote by P the set of subintervals instead of the
set of the divisor points. That is let the partition P be as follows:

P := {[xi−1, xi] | i = 1, . . . , n)} .

The set of all partitions of the interval [a, b] is denoted by P[a, b].
After these review and preliminaries we can define the partition of an n-dimensional

interval.

10.2. Definition Let

I = [a1, b1]× [a2, b2]× . . .× [an, bn]

be an interval in Rn. Let Pk ∈ P[ak, bk] be partitions ”along the k-th coordinate
direction” (k = 1, . . . , n). Then the interval set

P := {J1 × . . .× Jn | Jk ∈ Pk (k = 1, . . . , n)}
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is called a partition of I.
The norm of P is the longest diagonal of the subintervals that is

||P || := max{d(J) | J ∈ P} .

The set of all partitions of I is denoted by P(I).

One can easily see that for every δ > 0 there exists a partition P ”finer” than δ
that is ||P || < δ.

10.3. Definition Let I ⊂ Rn be an interval and f : I → R be a bounded function and
P ∈ P(I). Let

mJ := inf{f(x) | x ∈ J}, MJ := sup{f(x) | x ∈ J} (J ∈ P ) .

We introduce the following sums:

a) lower sum: s(f, P ) :=
∑

J∈P

mJ · µ(J),

b) upper sum: S(f, P ) :=
∑

J∈P

MJ · µ(J).

10.4. Theorem If P, Q ∈ P(I), P ⊆ Q then

s(f, P ) ≤ s(f, Q) and S(f, P ) ≥ S(f, Q) .

10.5. Corollary. If P, Q ∈ P(I) then s(f, P ) ≤ S(f, Q). Hence follows that the set
of the lower sums is bounded above and the set of the upper sums is bounded below.

10.6. Definition The number I∗(f) := sup{s(f, P ) | P ∈ P(I)} is called the lower
integral of f . Respectively the number I∗(f) := inf{S(f, P ) | P ∈ P(I)} is called the
upper integral of f .

10.7. Definition A function f : I → R is called to be Riemann-integrable if it is
bounded and I∗(f) = I∗(f). This common value of the lower and upper integral is
called the Riemann-integral of f .

We will use simply ”integrable” and ”integral” instead of ”Riemann-integrable” and

”Riemann-integral” respectively since no other integral concept occurs in our subject.

The definition can be extended easily to the case when the domain of f is wider
than I:

10.8. Definition Let f ∈ Rn → R, I ⊆ Df be an interval. We say that f is integrable
over the interval I if the restricted function f∣∣I is integrable. The integral of f over I

is defined as the integral of f∣∣I and is denoted as follows:

∫

I

f,

∫

I

f(x) dx .

The set of integrable functions over I is denoted by R(I).
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10.9. Examples

1. Let c ∈ R be fixed and f(x) := c (x ∈ I) be the constant function. Then for any
partition P ∈ P(I) mJ = MJ = c thus

s(f, P ) :=
∑

J∈P

c · µ(J) = c ·
∑

J∈P

µ(J) = c · µ(I) ,

which implies that I∗(f) = c · µ(I).

On the other hand

S(f, P ) :=
∑

J∈P

c · µ(J) = c ·
∑

J∈P

µ(J) = c · µ(I) ,

which implies that I∗(f) = c · µ(I).

So ∫

I

f(x) dx = I∗(f) = I∗(f) = c · µ(I) .

10.2. Properties of the integral

In this section the theorems are stated without proofs.

10.10. Theorem [Addition] Let I ⊆ Rn be an interval, f, g ∈ R(I). Then

f + g ∈ R(I) and
∫

I

(f + g) =
∫

I

f +
∫

I

g .

10.11. Theorem [Constant Multiple] Let I ⊆ Rn be an interval, f ∈ R(I), c ∈ R.
Then

cf ∈ R(I) and
∫

I

cf = c ·
∫

I

f .

10.12. Theorem [Interval Additivity]
Let p ∈ {1, . . . , n} and c ∈ R, ak < c < bk. Let

I ′ := [a1, b1]× . . .× [ap−1, bp−1]× [ap, c]× [ap+1, bp+1]× . . .× [an, bn]

and

I ′′ := [a1, b1]× . . .× [ap−1, bp−1]× [c, bp]× [ap+1, bp+1]× . . .× [an, bn] .

Then
f ∈ R(I) ⇔ f ∈ R(I ′) and f ∈ R(I ′′) .

In this case: ∫

I

f =
∫

I′

f +
∫

I′′

f .
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10.13. Corollary. 1. Applying several times the interval additivity we obtain for
a partition P ∈ P(I) that

f ∈ R(I) ⇔ ∀ J ∈ P : f ∈ R(J) . in this case:
∫

I

f =
∑

J∈P

∫

J

f .

2. If f ∈ R(I) then for every subinterval K ⊆ I: f ∈ R(K).

10.14. Theorem [Monotonicity]
Let f, g ∈ R(I). Suppose that f(x) ≤ g(x) (x ∈ I). Then

∫

I

f ≤
∫

I

g .

10.15. Theorem [”Triangle” inequality] Let f ∈ R(I). Then |f | ∈ R(I) and
∣∣∣∣∣∣

∫

I

f

∣∣∣∣∣∣
≤

∫

I

|f | .

10.16. Theorem [Mean value Theorem]
Let f, g ∈ R(I), g(x) ≥ 0 (x ∈ I). Let

m := inf{f(x) | x ∈ I}, M := sup{f(x) | x ∈ I} .

Then
m ·

∫

I

g ≤
∫

I

fg ≤ M ·
∫

I

g .

Moreover if f is continuous on I then

∃ ξ ∈ I :
∫

I

fg = f(ξ) ·
∫

I

g .

10.17. Theorem Let I ⊆ Rn be an interval and f : I → R be a continuous function.
Then f is integrable.

10.3. Computation of the integral over intervals

In this section we will show how the integral can be computed via reduction back to
one-variable integrals.

10.18. Theorem Let

I = [a1, b1]× [a2, b2]× . . .× [an, bn]
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be an interval in Rn, x ∈ Rn and p ∈ {1, . . . , n}. Define the interval I(p) ⊂ Rn−1 and
the vector x(p) ∈ Rn−1 as follows:

I(p) := [a1, b1]× . . .× [ap−1, bp−1]× [ap+1, bp+1]× . . .× [an, bn]

and
x(p) := (x1, . . . xp−1, xp+1, . . . , xn) .

Let f ∈ R(I) and suppose that for any fixed t ∈ [ap, bp] the functions

ϕp,t : I(p) → R, ϕp,t(x(p)) := f(x1, . . . xp−1, t, xp+1, . . . , xn)

are all integrable. Then
∫

I

f =

bp∫

ap




∫

I(p)

ϕp,t


 dt .

10.19. Corollary. If the function f is continuous on I, then the assumptions of the
above theorem are satisfied. Applying the theorem n − 1 times, the integral can be
reduced into n one-variable integrals, for example:

∫

I

f(x1, . . . , xn)dx =

b1∫

a1

b2∫

a2

. . .

bn∫

an

f(x1, . . . , xn) dxn . . . dx2 dx1 .

The number of the possible reductions is n!. A possible reduction is named as an order
of integration. In this sense we can say that the integral can be evaluated in n! order.
If we write the equality of two possible evaluation order then we say that we have
interchanged the order of integration.

Suppose that the function f is ”product of one-variable functions” in the following
sense

f(x1, x2, . . . , xn) = g1(x1) · g2(x2) · . . . · gn(xn)

where the functions gk ∈ R→ R are continuous on [ak, bk], then

∫

I

f = (

b1∫

a1

g1) · (
b2∫

a2

g2) · . . . · (
bn∫

an

gn) .

This case is called ”separable case”. We will prove the above identity only for n = 2.
The other cases are similar.

Let us see the special cases n = 2 and n = 3 of the integration process.
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Case n = 2 (double integral)

Let I = [a, b] × [c, d] ⊂ R2 be an interval and the function f be continuous on I.
Then

∫∫

I

f(x, y) d(x, y) =

b∫

a

d∫

c

f(x, y) dy dx =

d∫

c

b∫

a

f(x, y) dx dy .

In the separable case let f(x, y) = g(x) · h(y) with continuous g and h. Then
∫∫

I

f(x, y) d(x, y) =
∫∫

I

g(x)h(y) d(x, y) =

=

b∫

a

d∫

c

g(x)h(y) dy dx =

b∫

a

g(x) ·



d∫

c

h(y) dy


 dx =

=




d∫

c

h(y) dy


 ·

b∫

a

g(x) dx =




b∫

a

g(x) dx


 ·




d∫

c

h(y) dy


 .

Case n = 3 (triple integral)

Let I = [a, b] × [c, d] × [p, q] ⊂ R3 be an interval and the function f be continuous
on I. Then

∫∫

I

∫
f(x, y, z) d(x, y, z) =

b∫

a

d∫

c

q∫

p

f(x, y, z) dz dy dx =

=

d∫

c

q∫

p

b∫

a

f(x, y, z) dx dz dy = . . . (6 possibilities) .

In the separable case let f(x, y, z) = g(x) · h(y) · k(z) with continuous g, h and k.
Then

∫∫

I

∫
f(x, y, z) d(x, y, z) =

∫∫

I

∫
g(x)h(y)k(z) d(x, y, z) =

=




b∫

a

g(x) dx


 ·




d∫

c

h(y) dy


 ·




q∫

p

k(z) dz


 .
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10.4. Homeworks

Compute the following integrals

1. ∫∫

H

2x2 + 3xy + 4y2 d(x, y) where H = [1; 2]× [0; 3] ⊂ R2

2. ∫∫

H

ex+y d(x, y) where H = [1; 4]× [1; 2] ⊂ R2

3.
∫∫

H

∫
2x− 4y + 6z − 3 d(x, y, z) where H = [0; 2]× [0; 1]× [0; 3] ⊂ R3

4. ∫∫

H

∫
xy2z3 d(x, y, z) where H = [1; 2]× [0; 1]× [0; 2] ⊂ R3
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11.1. Integration over bounded sets

11.1. Definition Let ∅ 6= H ⊂ Rn be a bounded set, f ∈ Rn → R and suppose that
the restriction f|H is a bounded function. Since H is bounded then there exists an
interval I ⊂ Rn such that H ⊆ I. Define the following function:

f̃(x) :=





f(x) if x ∈ H

0 if x ∈ I \H

f is called integrable over H if f̃ is integrable. In this case the integral of f over H is
defined as ∫

H

f :=
∫

I

f̃ .

One can easily see that the integrability of f over H and the value of the integral∫
H f are independent of choosing I.

The set of functions that are intgrable over H is denoted by R(H).

11.2. Definition Let ∅ 6= H ⊂ Rn be a bounded set. The set H is called measurable
(more precisely: Jordan-measurable) if the constant 1 function is integrable over H. In
this case the number

µ(H) :=
∫

H

1 dx

is called the n-dimensional measure (more precisely: n-dimensional Jordan-measure) or
simply the measure of H.

As a generalization of Theorem 10.17 it can be proved that the continuous functions
are integrable over a compact measurable set.

11.3. Theorem Let ∅ 6= H ⊂ Rn be a compact and measurable set.
Then C(H) ⊆ R(H) that is every continuous function is integrable over H.

11.2. Computation of the integral over normal regions

The normal regions are the most simple regions after the intervals. Here – as we did
earlier – we will use the notation

x(p) := (x1, . . . xp−1, xp+1, . . . , xn) ∈ Rn−1 ,

where x ∈ Rn and p ∈ {1, . . . , n}.
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11.4. Definition Let ∅ 6= T ⊂ Rn−1 be a compact and measurable set.
Let ϕ, ψ be functions for which hold

ϕ : T → R, ψ : T → R, ϕ(t) ≤ ψ(t) (t ∈ T ) .

Then the set

H := {x ∈ Rn | x(p) ∈ T, ϕ(x(p)) ≤ xp ≤ ψ(x(p))} ⊂ Rn

is called x(p)-normal region (sometimes it is called xp-normal region).

11.5. Theorem Using the above notations the followings are true:

1. H is compact and measurable.

2. If f ∈ Rn → R and f ∈ C(H) then

∫

H

f(x) dx =
∫

T




ψ(x(p))∫

ϕ(x(p))

f(x1, . . . xp−1, xp, xp+1, . . . , xn) dxp


 dx(p)

11.6. Corollary. If H ⊂ Rn is a compact measurable set and the nonnegative function
f ∈ Rn → R is continuous on H, then let

R := {(x, t) ∈ Rn+1 | x ∈ H, 0 ≤ t ≤ f(x)}

be the (n+1)-dimensional region ”under the graph of f”. Then R is an x-normal region
in Rn+1 so it is compact and measurable set. Its measure is

µ(R) =
∫

R

1 d(x, t) =
∫

H




f(x)∫

0

1 dt


 dx =

=
∫

H

1 · (f(x)− 0) dx =
∫

H

f(x) dx .

So the value of the integral gives us the measure of the region under the graph of
the function. This is the geometrical meaning of the integral, that is familiar from the
one-variable case.

Let us see the special cases of normal regions.

Case n = 2 (double integral)

Let T = [a, b] ⊂ R be a closed bounded interval, ϕ, ψ : [a, b] → R be continuous
functions with ϕ(u) ≤ ψ(u) (u ∈ [a, b]). Then the x-normal region is:

H = {(x, y) ∈ R2 | x ∈ [a, b], ϕ(x) ≤ y ≤ ψ(x)} ⊂ R2 ,
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and for every function f ∈ R2 → R that is continuous on H holds

∫∫

H

f(x, y) d(x, y) =

b∫

a

ψ(x)∫

ϕ(x)

f(x, y) dy dx .

Furthermore the y-normal region is:

H = {(x, y) ∈ R2 | y ∈ [a, b], ϕ(y) ≤ x ≤ ψ(y)} ⊂ R2 ,

and for every function f ∈ R2 → R that is continuous on H holds

∫∫

H

f(x, y) d(x, y) =

b∫

a

ψ(y)∫

ϕ(y)

f(x, y) dx dy .

Case n = 3 (triple integral)

Let ∅ 6= T ⊂ R2 be a compact measurable set, ϕ, ψ : T → R be continuous functions
with ϕ(u, v) ≤ ψ(u, v) ((u, v) ∈ T ). Then the xy-normal region is:

H = {(x, y, z) ∈ R3 | (x, y) ∈ T, ϕ(x, y) ≤ z ≤ ψ(x, y)} ⊂ R3 ,

and for every function f ∈ R3 → R that is continuous on H holds

∫∫

H

∫
f(x, y, z) d(x, y, z) =

∫∫

T

ψ(x,y)∫

ϕ(x,y)

f(x, y, z) dz d(x, y) .

Furthermore the yz-normal region is:

H = {(x, y, z) ∈ R3 | (y, z) ∈ T, ϕ(y, z) ≤ x ≤ ψ(y, z)} ⊂ R3 ,

and for every function f ∈ R3 → R that is continuous on H holds

∫∫

H

∫
f(x, y, z) d(x, y, z) =

∫∫

T

ψ(y,z)∫

ϕ(y,z)

f(x, y, z) dx d(y, z) .

Finally the xz-normal region is:

H = {(x, y, z) ∈ R3 | (x, z) ∈ T, ϕ(x, z) ≤ y ≤ ψ(x, z)} ⊂ R3 ,

and for every function f ∈ R3 → R that is continuous on H holds

∫∫

H

∫
f(x, y, z) d(x, y, z) =

∫∫

T

ψ(x,z)∫

ϕ(x,z)

f(x, y, z) dy d(x, z) .
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11.3. Homeworks

Compute the integrals of the given functions f over the given regions H:

1. f(x, y) = x2 + y2, H = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, x2 ≤ y ≤ √
x};

2. f(x, y) = 2y + x + 2, H = {(x, y) ∈ R2 | 1 ≤ x ≤ 3, 0 ≤ y ≤ 1
x
};

3. f(x, y) = x2 + y, H = {(x, y) ∈ R2 | 0 ≤ y ≤ 1, y2 ≤ x ≤ √
y};

4. f(x, y, z) = x−2y +4z, the region H is the polyhedron determined by the planes
x = 0, y = 0, z = 0, x + y + z = 1;

5. f(x, y, z) = x2 +2y+z2, the region H is the polyhedron determined by the planes
x = 0, y = 0, z = 0, x + z = 2, y = 2;
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12.1. Integral Transformation

In this section we give the theorem that is the multivariate analogy of the ”Change of
Variables” in one-dimensional integrals. The proof is complicated, therefore it will be
omitted.

12.1. Theorem [Integral Transformation] Let ∅ 6= T ⊂ Rn be a bounded measurable
set. Let Φ ∈ Rn → Rn be a function. Suppose that

a) Φ is continuously differentiable on closT that is there exists an open set G ⊆ Rn

for which closT ⊂ G and f is continuously differentiable on G.

b) The restriction of f to intT that is the function f|int T is one-to-one.

Denote by Φ[T ] the picture of T by Φ that is

Φ[T ] = {Φ(t) ∈ Rn | t ∈ T} .

Then Φ[T ] is bounded and measurable in Rn and for any function f ∈ Rn → R which
is integrable over Φ[T ] holds

∫

Φ[T ]

f =
∫

T

(f ◦ Φ) · |detΦ′| .

12.2. Remark. The above equation can be written using variables as follows:
∫

H

f(x)dx =
∫

T

f(Φ(t)) · |detΦ′(t)| dt

where H = Φ[T ].

12.2. Double integral in polar coordinates

The polar transformation in the plane is a special case of the integral transformation.
Let

Φ : R2 → R2, Φ(r, ϕ) := (r cosϕ, r sinϕ) ((r, ϕ) ∈ R2).

Then Φ is continuously differentiable everywhere and it is one-to-one on intT if

T ⊂ [0, +∞)× [α, α + 2π]
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where α is a fixed real number. In most cases α = 0 or α = −π.
Let us compute the determinant of Φ′:

Φ′(r, ϕ) =
∣∣∣∣
cosϕ −r sinϕ
sinϕ r cosϕ

∣∣∣∣ = r cos2 ϕ + r sin2 ϕ = r · (cos2 ϕ + sin2 ϕ) = r .

Applying the integral transformation formula we obtain:
∫∫

H

f(x, y) d(x, y) =
∫∫

T

f(r cosϕ, r sinϕ) · r d(r, ϕ)

where H = Φ[T ].

12.3. Triple integral in cylindrical coordinates

The cylindrical transformation in the space is the following mapping:

Φ : R3 → R3, Φ(r, ϕ, h) := (r cosϕ, r sinϕ, h) ((r, ϕ, h) ∈ R3).

Obviously Φ is continuously differentiable everywhere and it is one-to-one on intT if

T ⊂ [0, +∞)× [α, α + 2π]× R
where α is a fixed real number. Mainly α = 0 or α = −π.

The determinant of Φ′ can be computed by expansion along its last row:

Φ′(r, ϕ, h) =

∣∣∣∣∣∣

cosϕ −r sinϕ 0
sinϕ r cosϕ 0

0 0 1

∣∣∣∣∣∣
= 1 ·

∣∣∣∣
cosϕ −r sinϕ
sinϕ r cosϕ

∣∣∣∣ = r .

Applying the integral transformation formula we obtain:
∫∫

H

∫
f(x, y, z) d(x, y, z) =

∫∫

T

∫
f(r cosϕ, r sinϕ, h) · r d(r, ϕ, h)

where H = Φ[T ].

12.4. Triple integral in polar coordinates

The polar (or: spherical) transformation in the space is the following mapping:

Φ : R3 → R3, Φ(r, ϕ, ϑ) := (r sinϑ cosϕ, r sinϑ sinϕ, r cosϑ) ((r, ϕ, ϑ) ∈ R3).

Obviously Φ is continuously differentiable everywhere and – using geometrical ideas –
it is one-to-one on intT if

T ⊂ [0, +∞)× [α, α + 2π]× [0, π]
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where α is a fixed real number. Mostly α = 0 or α = −π.
Compute the determinant of Φ′ by expansion along its last row:

Φ′(r, ϕ, ϑ) =

∣∣∣∣∣∣

sinϑ cosϕ −r sinϑ sinϕ r cosϑ cosϕ
sinϑ sinϕ r sinϑ cosϕ r cosϑ sinϕ

cosϑ 0 −r sinϑ

∣∣∣∣∣∣
=

= (cosϑ) ·
∣∣∣∣
−r sinϑ sinϕ r cosϑ cosϕ
r sinϑ cosϕ r cosϑ sinϕ

∣∣∣∣ + (−r sinϑ) ·
∣∣∣∣
sinϑ cosϕ −r sinϑ sinϕ
sinϑ sinϕ r sinϑ cosϕ

∣∣∣∣ =

= (cosϑ) · (−r2 sin2 ϕ sinϑ cosϑ− r2 cos2 ϕ sinϑ cosϑ)−

− (r sinϑ) · (r sin2 ϑ cos2 ϕ + r sin2 ϑ sin2 ϕ) =

= −(cosϑ) · r2 sinϑ cosϑ− (r sinϑ) · r sin2 ϑ =

= −r2 sinϑ cos2 ϑ− r2 sinϑ sin2 ϑ = −r2 sinϑ .

Applying the integral transformation formula we obtain:
∫∫

H

∫
f(x, y, z) d(x, y, z) =

∫∫

H

∫
f(r sinϑ cosϕ, r sinϑ sinϕ, r cosϑ) · r2 sinϑ d(r, ϕ, ϑ)

where H = Φ[T ].

12.5. Homeworks

Compute the following integrals using integral transformations.

1. ∫∫

H

sin(x2 + y2) d(x, y)

where H ⊂ R2 is given by the inequalities x ≥ 0, y ≥ 0, x2 + y2 ≤ 1.

2. ∫∫

H

∫
x2 + y2 d(x, y, z)

where H is the part of the cylinder x2 +y2 = 4 which is between the planes z = 0
and z = 8.
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3. ∫∫

H

∫
x2 + y2 d(x, y, z)

where H is a right circular cone standing on the xy-plane. The basic circle of this
cone is the unit circle of the xy-plane, the height of the cone is 5 units.

4. ∫∫

H

∫
x2yz d(x, y, z)

where H is that part of the unit ball, which lies in the

positive octant (x ≥ 0, y ≥ 0, z ≥ 0) of the coordinate system.


