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készült
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1. Lesson 1

1.1. Complex Numbers

In our Linear Algebra studies we will use the real and the complex numbers as
scalars. The real numbers are supposed to be familiar from the secondary school.
Now we will collect shortly the most important knowledge about the complex
numbers.

Axiomatic Definition:

Let i denote the ”number” whose square equals −1. More precisely, we use
i2 = −1 about the symbol i.

1.1. Definition The set of complex numbers consists of the expressions a + bi
where a and b are real numbers:

C := {a+ bi | a, b ∈ R}

The operations + (addition) and · (multiplication) are defined as follows: let’s
compute with complex numbers as with binomial expressions and write in every
case −1 instead of i2. The number i is called: imaginary unit.

Let’s collect the complex basic operations in algebraic form:

1. (a+ bi) + (c+ di) = (a+ c) + (b+ d)i,

2. (a+ bi)− (c+ di) = (a− c) + (b− d)i,

3. (a+ bi) · (c+ di) = ac+ bci+ adi+ bdi2 = (ac− bd) + (bc+ ad)i,

4. At the division multiply the numerator and the denominator by the complex
conjugate (see below) of the denominator:

a+ bi

c+ di
=

(a+ bi) · (c− di)

(c+ di) · (c− di)
=

ac+ bci− adi− bdi2

c2 − d2i2
=

=
ac+ bd

c2 + d2
+

bc− ad

c2 + d2
· i

1.2. Definition Let z = a+ bi ∈ C. Then

1. Re z := a (real part),

2. Im z := b (imaginary part),
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3. z := a− bi (complex conjugate),

4. |z| :=
√
a2 + b2 (absolute value or modulus).

Some important properties of the introduced operations:

1.3. Theorem

1. C is a field with respect to the operations + and ·

2. z + w = z + w

3. z − w = z − w

4. z · w = z · w

5.
( z

w

)
=

z

w

6. z = z

7. |z| = |z|

8. |z + w| ≤ |z|+ |w|

9. |z · w| = |z| · |w|

10.
∣∣∣ z
w

∣∣∣ = |z|
|w|

Proof. On the lecture. �

From now on K denotes the set R or C.

1.2. Matrices

If we want to define the precise concept of matrix, then we have to define it as a
special function:

1.4. Definition Let m,n ∈ N. The m× n matrix (over the number field K) is a
mapping defined on the set {1, . . . m} × {1, . . . n} and maps into K:

A : {1, . . . m} × {1, . . . n} → K.

Denote by Km×n the set of m×n matrices. The number A(i, j) is called the j-th
element of the i-th row and is denoted by aij or (A)ij . The elements of the matrix
are called entries. The matrix is called square matrix (of order n) if m = n.
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Usually the matrices are given as a rectangular array (hence the concept row
and column):

A =


A(1, 1) A(1, 2) . . . A(1, n)
A(2, 1) A(2, 2) . . . A(2, n)

...
A(m, 1) A(m, 2) . . . A(m,n)

 =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
am1 am2 . . . amn

 .

The entries a11, a22, . . . are called diagonal elements or simply diagonal.
(main diagonal). Naturally, it coincides with the common concept of

”
diagonal”

only for square matrices.
Some special matrices: zero matrix, row matrix, column matrix, triangular

matrix (lower, upper), diagonal matrix, identity matrix.

1.5. Definition Operations with matrices:

1. Addition: Let A,B ∈ Km×n. Then

A+B ∈ Km×n, (A+B)ij := (A)ij +Bij .

2. Scalar multiple: Let A ∈ Km×n and λ ∈ K. Then

λA ∈ Km×n, (λA)ij := λ · (A)ij .

3. Product: Let A ∈ Km×n, B ∈ Kn×p. Then the product of A and B is as
follows:

AB ∈ Km×p, (AB)ij := ai1b1j + ai2b2j + . . .+ ainbnj =

n∑
k=1

aikbkj .

4. Transpose: Let A ∈ Km×n. Then

AT ∈ Kn×m, (AT )ij := (A)ji .

5. Adjoint or Hermitian adjoint: Let A ∈ Cm×n. Then

A∗ ∈ Cn×m, (A∗)ij := (A)ji .

1.3. Properties of Matrix Operations

1.6. Theorem [Sum and Scalar Multiple] Let A, B, C ∈ Km×n, λ, µ ∈ K. Then

1. A+B = B +A.

2. (A+B) + C = A+ (B + C).
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3. ∃ 0 ∈ Km×n ∀M ∈ Km×n : M + 0 = M .

It can be proved that 0 is unique and it is the zero matrix.

4. ∀M ∈ Km×n ∃ (−M) ∈ Km×n : M + (−M) = 0.

It can be proved that −M is unique and its elements are the opposite ones
of M .

5. (λµ)A = λ(µA) = µ(λA).

6. (λ+ µ)A = λA+ µA.

7. λ(A+B) = λA+ λB.

8. 1A = A.

Proof. Every statement can be easily verified by the help of
”
entry-vise” oper-

ations. �
This theorem shows us that Km×n is a vector space over K. The definition

and study of the vector space will follow later.

1.7. Theorem [Product]

1. Associative law:

(AB)C = A(BC) (A ∈ Km×n, B ∈ Kn×p, C ∈ Kp×q);

2. Distributive laws:

A(B+C) = AB+AC and (A+B)C = AC+BC (A ∈ Km×n, B, C ∈ Kn×p);

3. Multiplication with the identity matrix. Denote by I the identity matrix of
suitable size. Then:

AI = A (A ∈ Km×n), IA = A (A ∈ Km×n) .

Proof. On the lecture. �
You can easily consider that the multiplication of matrices is inner operation

if and only if m = n that is in the set of square matrices. In this case we can
establish that Kn×n is a ring with identity element. This ring is not commutative
and it has zero divisors as the following examples show:[

1 1
1 1

]
·
[
1 1
−1 −1

]
=

[
0 0
0 0

]
,

[
1 1
−1 −1

]
·
[
1 1
1 1

]
=

[
2 2
−2 −2

]
.

The connection between the product and the scalar multiple can be described by
the following theorem:
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1.8. Theorem

(λA)B = λ(AB) = A(λB) (A ∈ Km×n, B ∈ Kn×p, λ ∈ K) .

Proof.
�

This identity – and the ring and vector space structure of Kn×n – shows us that
Kn×n is an algebra with identity element over K.

1.9. Theorem [Transpose, Adjoint] Let A, B ∈ Km×n, λ ∈ K. Then

1.

(A+B)T = AT +BT , (A+B)∗ = A∗ +B∗ (A, B ∈ Km×n)

2.
(λA)T = λ ·AT , (λA)∗ = λ ·A∗ (A ∈ Km×n, λ ∈ K)

3.
(AB)T = BTAT , (AB)∗ = B∗A∗ (A ∈ Km×n, B ∈ Kn×p)

4.
(AT )T = A, (A∗)∗ = A (A ∈ Km×n)

Proof. On the lecture. �

1.4. Homeworks

1. Let z = 3 + 2i, w = 5− 3i, u = −2 + i. Compute:

z + w, z − w, zw,
z

w
,
2z2 + 3w

1 + u
.

2. Let

A =


1 1 5
−3 0 1
0 1 2
2 −4 1

 , B =


4 0 1
1 −4 2
2 −1 0
0 2 1

 , C =


2 4 0
−1 1 1
3 2 −1
1 0 1

 .

Compute:
A+ 2B − C, ATB, (ABT )C

3. Let

A =

1− i 2 + i 3 + i
0 1 + i 1

2 + i 1 1

 , B =

1 + i 2 + i 1 + 3i
4− i 0 −i
0 1 i

 .

Compute:
2A−B, AB, AB∗
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2.1. Decomposition of a matrix into Blocks

Sometimes we subdivide the matrix into smaller matrices by inserting imaginary
horizontal or vertical straight lines between its selected rows and/or columns.
These smaller matrices are called

”
submatrices” or

”
blocks”. The so decomposed

matrices can be regarded as
”
matrices” whose elements are also matrices.

The algebraic operations can be made similarly to the learned methods but
you must listen to the following requirements:

1. If you regard the blocks as matrix elements the operations must be defined
between the so obtained

”
matrices”.

2. The operations must be defined between the blocks itself.

In this case the result of the operation will be a partitioned matrix that coin-
cides with the block decomposition of the result of operation with the original
(numerical) matrices.

2.2. Determinants

If we delete some rows and/or columns of a matrix then we obtain a submatrix of
the original matrix. Now for us will be enough to delete one row and one column
from a square matrix. The so obtained submatrix will be called minor matrix.

2.1. Definition (Minor Matrix) LetA ∈ Kn×n and (i, j) ∈ {1, . . . n}×{1, . . . n}
a fixed index pair. The minor matrix of the position (i, j) is denoted by Aij and
is defined as follows:

(Aij)kl :=



akl if 1 ≤ k ≤ i− 1, 1 ≤ l ≤ j − 1

ak,l+1 if 1 ≤ k ≤ i− 1, j ≤ l ≤ n− 1

ak+1,l if i ≤ k ≤ n− 1, 1 ≤ l ≤ j − 1

ak+1,l+1 if i ≤ k ≤ n− 1, j ≤ l ≤ n− 1 .

Obviously Aij ∈ K(n−1)×(n−1). In words: the minor matrix is the remainder sub-
matrix after deletion the i-th row and the j-th column of A.
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2.2. Examples

If A =


3 5 −2 8 −1
0 3 −1 1 2
2 1 2 3 4
7 1 −3 5 8

 then A34 =

3 5 −2 −1
0 3 −1 2
7 1 −3 8



After this short preliminary let us define recursively the function
det : Kn×n → K as follows:

2.3. Definition 1. If A = [a11] ∈ K1×1 then det(A) := a11.

2. If A ∈ Kn×n then:

det(A) :=
n∑

j=1

a1j · (−1)1+j · det(A1j) =
n∑

j=1

a1j · a′1j ,

where the number a′ij := (−1)i+j · det(Aij) is called signed subdeterminant
or cofactor (assigned to the position (i, j).

The number det(A) is called the determinant of the matrix A and is denoted
by

det(A), detA, |A|,

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ .
We say that we have defined the determinant by expansion along the first row.
According to the last notation we can speak about the elements, rows, columns,
e.t.c. of a determinant.

2.4. Examples

Let us study some important special cases:

1. The 1× 1 determinant: for example det([5]) = 5.

2. The 2× 2 determinant:∣∣∣∣a b
c d

∣∣∣∣ = a · (−1)1+1 · det([d]) + b · (−1)1+2 · det([c]) = ad− bc ,

so a 2×2 determinant can be computed by subtracting from the product of
the entries in the diagonal (a11, a22) the product of the entries of the other
diagonal (a12, a21).
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3. Applying n− 1 times the recursive step of the definition we obtain that the
determinant of a lower triangular matrix equals the product of its diagonal
elements: ∣∣∣∣∣∣∣∣∣∣∣

a11 0 0 . . . 0
a21 a22 0 . . . 0
a31 a32 a33 . . . 0

...
an1 an2 an3 . . . ann

∣∣∣∣∣∣∣∣∣∣∣
= a11 · a22 · . . . · ann .

4. Immediately follows from the previous example that the determinant of the
unit matrix equals 1.

2.3. The properties of the Determinants

2.5. Theorem 1. The determinant can be expanded by its any row and by its
any column that is for every r, s ∈ {1, . . . , n} holds:

det(A) =

n∑
j=1

arj · a′rj =
n∑

i=1

ais · a′is .

2. det(A) = det(AT ) (A ∈ Kn×n). An important corollary of this that the
determinant of an upper triangular matrix equals the product of its diagonal
elements.

3. If a determinant has only 0 entries in a row (or in a column) then its value
equals 0

4. If we swap two rows (or two columns) of a determinant then its value will
be the opposite of the original one.

5. If a determinant has two equal rows (or two equal columns) then its value
equals 0.

6. If we multiply every entry of a row (or of a column) of the determinant by
a number λ then its value will be the λ-multiple of the original one.

7. ∀A ∈ Kn×n and ∀λ ∈ K holds det(λ ·A) = λn · det(A).

8. If two rows (or two columns) of a determinant are proportional then its
value equals 0.

9. The determinant is additive in its any row (and by its any column). This
means – in the case of additivity of its r-th row – that:

If (A)ij :=


αj if i = r

aij if i ̸= r,
and (B)ij :=


βj if i = r

aij if i ̸= r,
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and (C)ij :=


αj + βj if i = r

aij if i ̸= r ,

then det(C) = det(A) + det(B).

10. If we add to a row of a determinant a scalar multiple of another row (or
to a column a scalar multiple of another column) then the value of the
determinant remains unchanged.

11. The determinant of the product of two matrices equals the product of their
determinants:

det(A ·B) = det(A) · det(B) (A, B ∈ Kn×n) .

Proof.

1. It has a complicated proof, we don’t prove it.

2. Immediately follows from the previous statement.

3. Expand the determinant by its 0-row.

4. Use mathematical induction by n. For n = 2 the statement can be checked
immediately. To deduce from n−1 to n denote by r and s the indices of the
two (different) rows that are interchanged in the n×n matrix A and denote
by B the resulted matrix after interchanging. Expand det(A) and det(B)
along their kth row where k ̸= r, k ̸= s. Then the elements are the same
(akj) in both expansion but the cofactors – by the inductional assumption
– are opposite. So the two expansions are opposite.

5. Interchange the two equal rows. This implies det(A) = −det(A). After
rearrangement we obtain det(A) = 0.

6. Denote by r the index of the row in which every entry is multiplied by λ.
Expand the new determinant by its r-th row and take out the common
factor λ from the expansion sum.

7. Immediately follows from the previous property if you apply it for every
row.

8. Immediately follows from the previous property and the
”
two rows are

equal” property.

9. Expand the new determinant det(C) by its r-th row, apply the distributive
law in every term of expansion sum and group this sum into two sub-sums.
The sum of the first terms gives det(A), the sum of the second terms gives
det(B).
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10. Immediately follows from the previous two properties.

11. It has a complicated proof, we don’t prove it.

�

2.4. The Inverse of a Matrix

In this section we will extend the concept of
”
reciprocal” and

”
division” from

numbers to matrices. Instead of
”
reciprocal” will be used the name

”
inverse” and

instead of
”
division” will be used the name

”
multiplication by inverse”.

2.6. Definition Let A ∈ Kn×n and denote by I the identity matrix in Kn×n.
Then A is called

1. invertible from the right if ∃C ∈ Kn×n such that AC = I. In this case C is
called a right-hand inverse of A.

2. invertible from the left if ∃D ∈ Kn×n such that DA = I. In this case D is
called a left-hand inverse of A.

3. invertible if ∃C ∈ Kn×n such that AC = I and CA = I. In this case C is
unique and is called the inverse of A and is denoted by A−1.

2.7. Definition A matrix in Kn×n is called regular if it is invertible. A matrix
in Kn×n is called singular if it is not invertible.

In the following part of the section we characterize the regular and the singular
matrices with the help of their determinants.

2.8. Theorem A matrix A ∈ Kn×n is invertible from the right if and only if
det(A) ̸= 0. In this case a right-hand inverse can be given as

C :=
1

det(A)
· Ã , where (Ã)ij := a′ji .

Remember that here a′ji denotes the cofactor assigned to the position (j, i).

Proof. Assume first that A is invertible from the right and denote by C a
right-hand inverse. Then:

1 = det(I) = det(A · C) = det(A) · det(C) .

From this equality it follows immediately that det(A) ̸= 0. Remark that we

obtained another result too: det(C) =
1

det(A)
.
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Conversely suppose that det(A) ̸= 0 and let C be the following matrix:

C :=
1

det(A)
· Ã , where (Ã)ij := a′ji .

We will show that AC = I. Really:

(AC)ij =

(
A · 1

det(A)
· Ã

)
ij

=
1

det(A)
· (A · Ã)ij =

=
1

det(A)
·

n∑
k=1

(A)ik · (Ã)kj =
1

det(A)
·

n∑
k=1

aik · a′jk.

First suppose that i = j. Then the last sum equals 1 because – using the
expansion of the determinant along its i-th row– :

(AC)ii =
1

det(A)
·

n∑
k=1

aik · a′ik =
1

det(A)
· det(A) = 1 = (I)ii .

Now suppose that i ̸= j. In this case the above mentioned sum is the expan-
sion of a determinant along its j-th row which can be obtained from det(A) by
exchanging its j-th row to its i-th row. But this determinant has two equal rows
(the i-th and the j-th), so its value equals 0. This means that

∀ i ̸= j : (AC)ij = 0 .

So we have proved that AC = I. �
The existence of the left-hand inverse can reduce – with the help of the trans-

pose – to the case of right-hand inverse:

2.9. Theorem A matrix A ∈ Kn×n is invertible from the left if and only if
det(A) ̸= 0. In this case a left-hand inverse of A can be given as the transpose of
a right-hand inverse of AT .

Proof.

det(A) ̸= 0 ⇐⇒ det(AT ) ̸= 0 ⇐⇒ ∃D ∈ Kn×n : ATD = I ⇐⇒
⇐⇒ ∃D ∈ Kn×n : (ATD)T = DTA = IT = I.

�
Up to this point we have used intentionally the phrases

”
a right-hand inverse”

and
”
a left-hand inverse” instead of

”
the right-hand inverse” and

”
the left-hand

inverse” because their uniqueness was not proved. In the following theorem we
state the uniqueness:

2.10. Theorem Let A ∈ Kn×n and C ∈ Kn×n be a right-hand inverse of A,
D ∈ Kn×n be a left-hand inverse of A. Then C = D.
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Proof.

D = DI = D(AC) = (DA)C = IC = C, so C = D .

�

2.11. Corollary. Let A ∈ Kn×n. Then

1. Suppose that detA = 0. Then A has never left-hand inverse nor right-hand
inverse (it is not invertible from the left and it is not invertible from the
right).

2. Suppose that detA ̸= 0. Then A is invertible from the left as well as it
is invertible from the right. Any left-hand inverse equals any right-hand
inverse, so both inverses are unique and equal to each other. That means
that A has a unique inverse and its inverse is

A−1 =
1

det(A)
· Ã , where (Ã)ij := a′ji .

3. It follows immediately from the previous considerations that if we want to
prove that a matrix C is the inverse of A then it is enough to check only one
of the relations AC = I or CA = I, the other one holds

”
automatically”.

4. A matrix A ∈ Kn×n is regular if and only if detA ̸= 0.

5. A matrix A ∈ Kn×n is singular if and only if detA = 0.

Applying our results for 2×2 matrices we obtain easily the following theorem:

2.12. Theorem Let A =

[
a b
c d

]
∈ K2×2. Then A is invertible if and only if

ad− bc ̸= 0. In this case:

A−1 =
1

ad− bc
·
[
d −b
−c a

]
.

2.5. Homeworks

1. Compute the determinants:

a)

∣∣∣∣∣∣
3 1 −4
2 5 6
1 4 8

∣∣∣∣∣∣ b)

∣∣∣∣∣∣∣∣
1 0 0 −1
3 1 2 2
1 0 −2 1
2 0 0 1

∣∣∣∣∣∣∣∣
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2. Determine the inverse matrices of

a)

[
4 −5
−2 3

]
b)

3 2 −1
1 6 3
2 −4 0


and check that the products of the matrices with their inverses are really
the identity matrices.

3. Let A ∈ Kn×n be a diagonal matrix (that is aij = 0 if i ̸= j). Prove that it
is invertible if and only if no one of the diagonal elements equals 0. Prove
that in this case A−1 is a diagonal matrix with diagonal elements

1

a11
,

1

a22
, . . .

1

ann
.
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3.1. Cramer’s Rule

In this section we will study the solution of special system of linear equations. A
system of linear equations having n equations and n unknowns can be written in
the following form:

a11x1 + . . . + a1nxn = b1
a21x1 + . . . + a2nxn = b2

...
...

...
an1x1 + . . . + annxn = bn

,

where the coefficients aij ∈ K and the constants on the right side bi are given.
We are looking for the possible values of the unknowns x1, . . . , xn such that after
substitution them in the equations each equation will be true.

We can abbreviate the system if we collect the coefficients, the constants on
the right side and the unknowns into matrices:

A :=


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann

 ∈ Kn×n, B :=


b1
b2
...
bn

 ∈ Kn×1, X :=


x1
x2
...
xn

 ∈ Kn×1 .

Then the system of linear equations can be written as a matrix equation

AX = B .

3.1. Theorem [Cramer’s Rule]

Suppose that detA ̸= 0. Then there exists uniquely a matrix X ∈ Kn×1 such
that AX = B. The k-th element of the single column of this matrix is:

xk =
det(Ak)

det(A)
, where (Ak)ij :=


aij if j ̸= k

bi if j = k .

In words: the matrix Ak can be obtained by replacing the k-th column of A to the
column matrix B. Here k = 1, . . . n.

Proof. Since det(A) ̸= 0 so A is invertible. Moreover:

AX = B ⇐⇒ A−1(AX) = A−1B ⇐⇒ (A−1A)X = A−1B ⇐⇒
⇐⇒ Ix = A−1B ⇐⇒ X = A−1B ,
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that shows that the matrix equation (consequently the system of linear equations)
has only one solution: X = A−1B. Using the formula for the inverse matrix – the
k-th component of X is:

xk = (A−1B)k1 =
1

det(A)
· (ÃB)k1 =

1

det(A)
·

n∑
i=1

(Ã)kibi =

=
1

det(A)
·

n∑
i=1

a′ikbi =
1

det(A)
· det(Ak).

In the last step we have used the expansion of det(Ak) along its k-th column.
Here k = 1, . . . n. �

Remark that the Cramer’s rule is effective only for systems of low sizes. For
the systems of greater sizes there exist more effective methods that will be studied
in the subject

”
Numerical Methods”.

3.2. Homeworks

1. Solve the linear equation systems using the Cramer’s Rule

a)
7x − 2y = 3
3x + y = 5

b)

x − 4y + z = 6
4x − y + 2z = −1
2x + 2y − 3z = −20
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4.1. Vector Spaces

In this section we introduce the central concept of linear algebra: the concept of
vector space. This is an extension of the concept of geometrical vectors.

4.1. Definition Let V ̸= ∅ and let V × V ∋ (x, y) 7→ x+ y (addition), K× V ∋
(λ, x) 7→ λ · x = λx (multiplication by scalar) be two mappings (operations).
Suppose that

I. 1. ∀ (x, y) ∈ V × V : x+ y ∈ V (closure under addition)

2. ∀x, y ∈ V : x+ y = y + x (commutative law).

3. ∀x, y, z ∈ V : (x+ y) + z = x+ (y + z) (associative law)

4. ∃ 0 ∈ V ∀x ∈ V : x+ 0 = x (existence of the zero vector)

It can be proved that 0 is unique. Its name is: zero vector.

5. ∀x ∈ V ∃ (−x) ∈ V : x + (−x) = 0. (existence of the opposite
vector)

It can be proved that (−x) is unique. Its name is: the opposite of x.

II. 1. ∀ (λ, x) ∈ K× V : λx ∈ V (closure under multiplication by scalar)

2. ∀x ∈ V ∀λ, µ ∈ K : λ(µx) = (λµ)x = µ(λx)

3. ∀x ∈ V ∀λ, µ ∈ K : (λ+ µ)x = λx+ µx

4. ∀x, y ∈ V ∀λ ∈ K : λ(x+ y) = λx+ λy

5. ∀x ∈ V : 1x = x

In this case we say that V is a vector space over K with the two given operations
(addition and multiplication by scalar). The elements of V are called vectors, the
elements of K are called scalars. K is called the scalar region of V . The above
written ten requirements are the axioms of the vector space.

Remark that applying several times the associative law of addition we can
define the sums of several terms:

x1 + x2 + · · ·+ xk =
k∑

i=1

xi (xi ∈ V ) .

Let us see some examples for vector space:

4.2. Examples
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1. The vectors in the plane with the usual vector operations form a vector
space over R. This is the vector space of plane vectors. Since the plane
vectors can be identified with the points of the plane, instead of the vector
space of the plane vectors we can speak about the vector space of the points
in the plane.

2. The vectors in the space with the usual vector operations form a vector
space over R. This is the vector space of space vectors. Since the space
vectors can be identified with the points of the space, instead of the vector
space of the space vectors we can speak about the vector space of the points
in the space.

3. From the algebraic properties of the number field K immediately follows
that R is vector space over R, C is vector space over C and C is vector
space over R.

4. The one-element-set is vector space over K. Since the single element of this
set must be the zero vector of the space, we will denote this vector space
by {0}. The operations in this space are:

0 + 0 := 0, λ · 0 := 0 (λ ∈ K) .

The name of this vector space is: zero vector space.

5. Let

Kn := K×K . . . K︸ ︷︷ ︸ = {x = (x1, x2, . . . xn) | xi ∈ K}

be the set of n-term sequences (ordered n-tuples). Let us define the opera-
tions

”
componentwise”:

(x+ y)i := xi + yi (i = 1, . . . n); (λ · x)i := λ · xi (i = 1, . . . n) .

One can check that the axioms are satisfied, so Kn is a vector space over
K.

Remark that

- R1 can be identified with R or with the vector space of the points
(vectors) in the straight line.

- R2 can be identified with the vector space of the points (vectors) in
the plane.

- R3 can be identified with the vector space of the points (vectors) in
the space.

6. It follows immediately from the properties of the matrix operations that
(for any fixed m, n ∈ N) the set of m by n matrices Km×n is a vector space
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over K. The operations are the usual matrix addition and multiplication by
scalar.

Remark that

- K1×1 can be identified with K.

- Km×1 (column matrices) can be identified with Km.

- K1×n (row matrices) can be identified with Kn.

7. Now follows a generalization of Kn and Km×n.

Let H ̸= ∅ and V be the set of all functions that are defined on H and map
into K. A common notation for the set of these functions is KH . So

V = KH = {f : H → K} .

Define the operations
”
pointwise”:

(f+g)(h) := f(h)+g(h); (λf)(h) := λf(h) (h ∈ H) (f, g ∈ V ; λ ∈ K) .

Then – one can check the axioms – V is a vector space over K.

Remark that

- Kn can be identified with KH if H = {1, 2, . . . n}.
- Km×n can be identified with KH if H = {1, 2, . . . m} × {1, 2, . . . n}.

We can define other operations in the vector space V :

4.3. Definition

Subtraction: x− y := x+ (−y) (x, y ∈ V ).

Division by scalar:
x

λ
:=

1

λ
· x (x ∈ V, λ ∈ K, λ ̸= 0).

In the following theorem we collect some simple but important properties of
vector spaces.

4.4. Theorem Let x ∈ V, λ ∈ K. Then

1. 0 · x = 0 (remark that the 0 on the left side denotes the number zero in K,
but on the right side denotes the zero vector in V ).

2. λ · 0 = 0 (here both 0-s are the zero vector in V ).

3. (−1) · x = −x.

4. λ · x = 0 ⇒ λ = 0 or x = 0.
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4.2. Homeworks

1. Let V = R2 with the following operations:

x+ y := (x1 + y1, x2 + y2) and λx := (0, λx2)

where x = (x1, x2), y = (y1, y2) ∈ V , λ ∈ K.

Is V vector space or not? Find the vector space axioms that hold and find
the ones that fail.

2. (An unusual vector space.) Let V be the set of positive real numbers:

V := R+ = {x ∈ R | x > 0} .

Let us introduce the vector operations in V as follows:

x+ y := xy (x, y ∈ V ) λx := xλ (λ ∈ R, x ∈ V ) .

(On the right sides of the equalities xy and xλ are the usual real number
operations.) Prove that V is a vector space over R with the above defined
vector operations. What is the zero vector in this space? What is the op-
posite of x ∈ V ? What do the statements in the last theorem of the section
mean in this interesting vector space?
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5.1. Subspaces

The subspaces are vector spaces lying in another vector space. In this section V
denotes a vector space over K.

5.1. Definition Let W ⊆ V . W is called a subspace of V if W is itself a vector
space over K under the vector operations (addition and multiplication by scalar)
defined on V .

By this definition if we want to decide about a subset of V that it is a subspace
or not, we have to discuss the ten vector space axioms. In the following theorem
we will prove that it is enough to check only two axioms.

5.2. Theorem Let ∅ ̸= W ⊆ V . Then W is a subspace of V if and only if:

1. ∀x, y ∈ W : x+ y ∈ W ,

2. ∀x ∈ W ∀λ ∈ K : λx ∈ W .

In words: the subset W is closed under the addition and multiplication by scalar
in V .
Proof. The two given conditions are obviously necessary.

To prove that they are sufficient let us realize that the vector space axioms I.1.
and II.1. are exactly the given conditions so they are true. Moreover the axioms
I.2., I.3., II.2., II.3., II.4., II.5. are identities so they are inherited from V to W .

It remains us to prove only two axioms: I.4., I.5.
Proof of I.4.: Let x ∈ W and 0 be the zero vector in V . Then – because of the

second condition – 0 = 0x ∈ W , so W really contains zero vector and the zero
vectors in V and W are the same.

Proof of I.5.: Let x ∈ W and −x be the the opposite vector of x in V . Then
– also because of the second condition – −x = (−1)x ∈ W , so W really contains
opposite of x and the opposite vectors in V and W are the same.

�

5.3. Corollary. It follows immediately from the above proof that a subspace
must contain the zero vector of V . In other words: if a subset does not contain
the zero vector of V then it is no subspace. Similar considerations are valid for
the opposite vector too.

Using the above theorem the following examples for subspaces can be easily
verified.
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5.4. Examples

1. The zero vector space {0} and V itself both are subspaces in V . They are
called trivial subspaces.

2. All the subspaces of the vector space of plane vectors (R2) are:

- the zero vector space {0},
- the straight lines trough the origin,

- R2 itself.

3. All the subspaces of the vector space of space vectors (R3) are:

- the zero vector space {0},
- the straight lines trough the origin,

- the planes trough the origin,

- R3 itself.

4. In the vector space KK (the collection of functions f : K → K) the following
subsets form subspaces:

- P := P(K) := {f : K → K | f is polynomial}. This subspace P is
called the vector space of polynomials.

- Fix a nonnegative integer n ∈ N ∪ {0} and let

Pn := Pn(K) := {f ∈ P(K) | f = 0, or deg f ≤ n} .

Then Pn is a subspace that is called the vector space of polynomials
of at most degree n. Remark that although the zero polynomial has
no degree it is contained in Pn.

In connection with the polynomial spaces it is important to see that

{0} ⊂ P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ P,
∞∪
n=0

Pn = P .

5.2. Linear Combinations and Generated Subspaces

5.5. Definition Let k ∈ N, x1, . . . , xk ∈ V , λ1, . . . , λk ∈ K. The vector (and
the expression itself)

λ1x1 + · · ·+ λkxk =

k∑
i=1

λixi

is called the linear combination of the vectors x1, . . . , xk with coefficients λ1, . . . , λk.
The linear combination is called trivial if every coefficient is zero. The linear com-
bination is called nontrivial if at least one of its coefficients is nonzero.
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Obviously the result of a trivial linear combination is the zero vector.

One can prove simply by mathematical induction that a nonempty subset
W ⊆ V is subspace if and only if for every k ∈ N, x1, . . . , xk ∈ W , λ1, . . . λk ∈ K:

k∑
i=1

λixi ∈ W .

In other words: the subspaces are exactly the subsets of V closed under linear
combinations.

Let x1, x2, . . . , xk ∈ V be a system of vectors. Let us define the following
subset of V :

W ∗ :=

{
k∑

i=1

λixi | λi ∈ K

}
. (5.1)

So the elements of W ∗ are the possible linear combinations of x1, x2, . . . , xk.

5.6. Theorem 1. W ∗ is subspace in V .

2. W ∗ covers the system x1, x2, . . . , xk that is ∀ i : xi ∈ W ∗.

3. W ∗ is the minimal subspace among the subspaces that cover x1, x2, . . . , xk.
More precisely:

∀W ⊆ V,W is subspace, xi ∈ W : W ∗ ⊆ W .

Proof.

1. Let a =
k∑

i=1
λixi ∈ W ∗ and b =

k∑
i=1

µiyi ∈ W ∗. Then

a+ b =

k∑
i=1

λixi +

k∑
i=1

µiyi =

k∑
i=1

(λi + µi)xi ∈ W ∗ .

On the other hand for every λ ∈ K:

λa = λ

k∑
i=1

λixi =

k∑
i=1

(λλi)xi ∈ W ∗ .

So W ∗ is really a subspace in V .

2. For any fixed i ∈ {1, . . . , k}:

xi = 0x1 + . . . + 0xi−1 + 1xi + 0xi−1 + . . . + 0xk ∈ W ∗ .
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3. Let W be a subspace described in the theorem and let a =
k∑

i=1
λixi ∈ W ∗.

Since W covers the system so

xi ∈ W (i = 1, . . . , k) .

But the subspace W is closed under linear combination, which implies a ∈
W . So really W ∗ ⊆ W .

�

5.7. Definition The above defined subspace W ∗ is called the subspace spanned
(or generated) by the vector system x1, x2, . . . , xk and is denoted by span (x1, x2, . . . , xk).
Sometimes we say shortly that W ∗ is the span of x1, x2, . . . , xk. The system
x1, x2, . . . , xk is called the generator system (or: spanning set) of the subspace
W ∗. Sometimes we say that x1, x2, . . . , xk spans W ∗.

Remark that a vector is contained in span (x1, x2, . . . , xk) if and only if it
can be written as linear combination of x1, x2, . . . , xk.

5.8. Examples

1. Let v be a vector in the vector space of plane vectors (R2). Then

span (v) =

{
{0} if v = 0,
the straight line trough the origin with direction vector v if v ̸= 0 .

Using geometrical methods one can prove that in the vector space of plane
vectors any two nonparallel vectors form a generator system.

2. Let v1 and v2 be two vectors in the vector space of space vectors (R3). Then

span (v1, v2) =


{0} if v1 = v2 = 0,
the common straight line of v1 and v2 if v1 ∥ v2,
the common plane of v1 and v2 if v1 ∦ v2 .

Using geometrical methods one can prove that in the vector space of space
vectors any three vectors that are not in the same plane form a generator
system.

3. Let us define the standard unit vectors in Kn as

e1 := (1, 0, 0, . . . , 0), e2 := (0, 1, 0, . . . , 0), . . . , en := (0, 0, 0, . . . , 1) .
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Then the system e1, . . . , en is a generator system in Kn. Really, if x =
(x1, . . . , xn) ∈ Kn, then

x =


x1
x2
...
xn

 =


x1 · 1 + x2 · 0 + · · ·+ xn · 0
x1 · 0 + x2 · 1 + · · ·+ xn · 0

...
x1 · 0 + x2 · 0 + · · ·+ xn · 1

 =

= x1 ·


1
0
...
0

+ x2 ·


0
1
...
0

+ · · ·+ xn ·


0
0
...
1

 =
n∑

i=1

xiei,

so x can be written as a linear combination of e1, . . . , en.

4. A generator system in the vector space Pn is the so called power function
system defined as follows:

h0(x) := 1, hk(x) := xk(x ∈ K, k = 1, . . . n) .

Really, if f ∈ Pn, f(x) = a0+a1x+· · ·+anx
n (x ∈ K) then f =

n∑
k=0

akhk.

It is clear that if we enlarge a generator system in V then it remains generator
system. But if we leave vectors from a generator system then the resulted system
will be not necessarily generator system. The generator systems are – in this sense
– the

”
great” systems. Later we will study the question of

”
minimal” generator

systems.

The concept of generator system can be extended into infinite systems. In
this connection we call the above defined generator system more precisely finite
generator system. An important class of vector spaces are the spaces having finite
generator system.

5.9. Definition The vector space V is called finite-dimensional if it has finite
generator system. We denote this fact by dimV < ∞.

If a vector space V does not have finite generator system then we call it
infinite-dimensional. This fact is denoted by dim(V ) = ∞.

5.10. Examples

1. Some finite-dimensional vector spaces: {0}, the vector space of plane vec-
tors, the vector space of space vectors, Kn, Km×n, Pn.

2. Now we prove that dimP = ∞.
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Let f1, . . . , fm be a finite polynomial system in P. Let

k := max{deg fi | i = 1, . . . ,m} .

Then the polynomial g(x) := xk+1 (x ∈ K) cannot be expressed as linear
combination of f1, . . . , fm because the linear combination does not increase
the degree of the maximally k-degree polynomials over k.

So P cannot be spanned by any finite polynomial system that is it does not
have finite generator system.

5.3. Homeworks

1. Let A ∈ Km×n. Prove that the following subset of Kn is a subspace:

null(A) := {x ∈ Kn | Ax = 0} .

Here x is regarded as an n × 1 matrix. The subspace null(A) is called the
nullspace (or kernel) of A.

2. Let a = (1, 2,−1), b = (−3, 1, 1) ∈ R3.

a) Compute 2a− 4b.

b) Determine that the vector x = (2, 4, 0) is in the subspace span (a, b)
or not.

3. Let

A =

1 1 3 1
2 3 1 1
1 0 8 2

 .

Find a generator system in the subspace null(A).



6. Lesson 6

6.1. Linear Independence

6.1. Definition Let k ∈ N and x1, . . . , xk ∈ V be a vector system. This system
is called linearly independent (shortly: independent) if its every nontrivial linear
combination results nonzero vector, that is:

k∑
i=1

λixi = 0 =⇒ λ1 = λ2 = . . . = λk = 0 .

The system is called linearly dependent (shortly: dependent) if it is no indepen-
dent. That is

∃λ1, λ2, . . . λk ∈ K not all λi = 0 :

k∑
i=1

λixi = 0 .

6.2. Remarks.

1. The equation
k∑

i=1
λixi = 0 is called: dependence equation.

2. It can be simply shown that if a vector system contains identical vectors
or it contains the zero vector then it is linearly dependent. In other words:
a linearly independent system contains different vectors and it does not
contain the zero vector.

3. From the simple properties of vector spaces follows that a one-element vec-
tor system is linearly independent if and only if its single element is a
nonzero vector.

Let us see some examples for independent and dependent systems:

6.3. Examples

1. Using geometrical methods it can be shown that in the vector space of the
space vectors:

- Two parallel vectors are dependent;

- Two nonparallel vectors are independent;

- Three vectors lying in the same plane are dependent;

- Three vectors that are not lying in the same plane are independent.
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2. In the vector space Kn the system of the standard unit vectors e1, . . . , en is
linearly independent, since

0
0
...
0

 = 0 =

n∑
i=1

λiei =


λ1 · 1 + λ2 · 0 + · · ·+ λn · 0
λ1 · 0 + λ2 · 1 + · · ·+ λn · 0

...
λ1 · 0 + λ2 · 0 + · · ·+ λn · 1

 =


λ1

λ2
...
λn

 ,

which implies λ1 = λ2 = . . . = λn = 0.

3. It can be proved that in the vector space Pn the power function system

h0(x) := 1, hk(x) := xk (x ∈ K, k = 1, . . . n)

is linearly independent.

One can easily see that if we tighten a linearly independent system in V then
it remains linearly independent. But if we enlarge a linearly independent system
then the resulted system will be not necessarily linearly independent. The linearly
independent systems are – in this sense – the

”
small” systems. Later we will study

the question of
”
maximal” linearly independent systems.

6.2. Basis

6.4. Definition The vector system x1, . . . , xk ∈ V is called basis (in V ) if it is
generator system and it is linearly independent.

6.5. Remarks. Since in the zero vector space {0} there is no
linearly independent system, so this space has no basis. Later we will show that
every other finite-dimensional vector space has basis.

The following examples can be easily to consider because we have studied
them as examples for generator system and for linearly independent system.

6.6. Examples

1. - In the vector space of the plane vectors the system of every two non-
parallel vectors is a basis.

- In the vector space of the space vectors the system of every three
vectors that are not lying in the same plane is a basis.

2. In Kn the system of the standard unit vectors is a basis. This basis is called
the standard basis or the canonical basis of Kn.

3. In the polynomial space Pn the power function system h0, h1, . . . hn is a
basis.
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In the following part of the section we want to prove that every finite-dimensional
nonzero vector space has basis. To this proof we need the following lemma:

6.7. Lemma Let x1, . . . , xk ∈ V be a linearly dependent system. Then

∃ i ∈ {1, 2, . . . k} : span (x1, . . . , xi−1, xi+1, . . . , xk) = span (x1, . . . , xk) .

In words: at least one of the vectors in the system is redundant from the point of
view of the spanned subspace.

Proof. The
”
⊆” relation is trivial, because

{x1, . . . , xi−1, xi+1, . . . , xk} ⊆ {x1, . . . , xk} .

To prove the relation
”
⊇” observe first that

{x1, . . . , xi−1, xi+1, . . . , xk} ⊆ span (x1, . . . , xi−1, xi+1, . . . , xk) .

It remains the proof of

xi ∈ span (x1, . . . , xi−1, xi+1, . . . , xk) .

Indeed, by the dependence of the system there exist the numbers λ1, . . . , λk ∈ K
such that they are not all zero and

λ1x1 + . . .+ λkxk = 0 .

Let i be an index with λi ̸= 0. After rearrange the previous vector equation we
obtain that:

xi =

k∑
j=1
j ̸=i

(
−λj

λi

)
· xj .

That means that xi can be expressed as linear combination of x1, . . . , xi−1, xi+1, . . . , xk,
so it is really in the subspace span (x1, . . . , xi−1, xi+1, . . . , xk).

So the subspace span (x1, . . . , xi−1, xi+1, . . . , xk) covers the system x1, . . . , xk
which implies the relation

”
⊇”.

�

6.8. Remark. From the proof it turned out that the redundant vector is that
vector whose coefficient in a dependence equation is nonzero.

6.9. Theorem Every finite-dimensional nonzero vector space has basis.
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Proof. Let x1, . . . , xk be a finite generator system of V . If this system is linearly
independent then it is basis. If it is dependent then – by the lemma – a vector
can be left from it such that the remainder system spans V . If this new system is
linearly independent then it is a basis. If it is dependent then we leave once more
a vector from it, and so on.

Let us continue this process while it is possible.
So either in some step we obtain a basis or after k − 1 steps we arrive to an

one-element system that is generator system in V . Since V ̸= {0}, so this single
vector is nonzero that is linearly independent, consequently basis. �

6.10. Remarks.

1. We have proved more than the statement of the theorem: we have proved
that one can choose bases from any finite generator system, moreover, we
have given an algorithm to make this.

2. Using the theorem it can be proved that every linearly independent system
can be completed into basis.

6.3. Dimension

The aim of this section is to show that in a vector space every basis has the
same number of vectors. This common number will be called the dimension of
the space.

6.11. Theorem [Exchange Theorem] Let x1, . . . , xk ∈ V be a linearly indepen-
dent system and y1, . . . , ym ∈ V be a generator system in V . Then

∀ i ∈ {1, . . . , k} ∃ j ∈ {1, . . . ,m} : x1, . . . , xi−1, yj , xi+1, . . . , xk is independent .

Proof. It is enough to discuss the case i = 1, the proof for the other i-s is
similar.

Suppose indirectly that the system yj , x2, . . . , xk is linearly dependent for
every j ∈ {1, . . . ,m}. Then there exist the coefficients λ1, . . . , λk ∈ K such that
they are not all zero and λ1yj + λ2x2 + . . .+ λkxk = 0. If it were be λ1 = 0 then
it were be λ2x2 + . . .+λkxk = 0 with coefficients that are not all zero. This were
be in contradiction with the linear independence of the subsystem x2, . . . , xk. So
λ1 ̸= 0.

Since λ1 ̸= 0, yj can be expressed from the dependence equation:

yj = −λ2

λ1
x2 + . . .− λk

λ1
xk .

This expression implies yj ∈ span (x2, . . . , xk) (j = 1, . . . ,m). From here follows
that

V = span (y1, . . . , ym) ⊆ span (x2, . . . , xk) ⊆ V .
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Since the first and the last member of the above chain coincide, at every point in
it stand equalities. This implies that

span (x2, . . . , xk) = V .

But x1 ∈ V , so x1 ∈ span (x2, . . . , xk). This means that x1 is linear combination
of x2, . . . , xk in contradiction with the linear independence of x1, . . . , xk. �

6.12. Corollary. The number of vectors in a linearly independent system is not
greater than the number of vectors in a generator system.

To prove this let x1, . . . , xk be an independent system and y1, . . . , ym be a
generator system in V . Using the exchange theorem replace x1 into a suitable yj1 ,
so we obtain the linearly independent system yj1 , x2, . . . , xk. Apply the exchange
theorem for this new system: replace x2 into a suitable yj2 , so we obtain the
linearly independent system yj1 , yj2 , x3, . . . , xk. Continuing this process we arrive
after k steps to the linearly independent system yj1 , . . . , yjk . This system contains
different vectors (because of the independence). So we have the conclusion that
among the vectors y1, . . . , ym k piece are different. So really k ≤ m.

6.13. Theorem Let V be a finite dimensional nonzero vector space. Then in V
all bases have the same number of elements.

Proof. Let x1, . . . , xk and y1, . . . , ym be two bases in V .

x1, . . . , xk is independent
y1, . . . , ym is generator system

}
⇒ k ≤ m

On the other hand

y1, . . . , ym is independent
x1, . . . , xk is generator system

}
⇒ m ≤ k

Consequently k = m. �

6.14. Definition Let V be a finite-dimensional nonzero vector space. The com-
mon number of the bases in V is called the dimension of the space and is de-
noted by dimV . By definition dim({0}) := 0. If dimV = n then V is called
n-dimensional.

The statements of the following examples follow immediately from the exam-
ples for bases.

6.15. Examples

1. The space of the vectors on the straight line is one dimensional.

2. The space of the plane vectors is two dimensional.
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3. The space of the space vectors is three dimensional.

4. dim(Kn) = n (n ∈ N).

5. dimPn = n+ 1 (n ∈ N ∪ {0}).

6.16. Theorem Let 1 ≤ dim(V ) = n < ∞. Then

1. If x1, . . . , xk ∈ V and k ≥ n + 1 then x1, . . . , xk is linearly dependent. In
other words: the number of vectors in a linearly independent system is at
most the dimension of the space.

2. If k ≤ n− 1 then x1, . . . , xk is not generator system in V (it does not span
V ). In other words: the number of vectors in a generator system in V is at
least the dimension of the space.

3. If x1, . . . , xn ∈ V is a linearly independent system then it is generator sys-
tem (so it is basis).

4. If x1, . . . , xn ∈ V is a generator system then it is linearly independent (so
it is basis).

Proof.

1. Suppose indirectly that x1, . . . , xk is linearly independent and let e1, . . . , en
be a basis in V . Then it is generator system, so by the corollary of the
Exchange Theorem:

n+ 1 ≤ k ≤ n ,

which is an obvious contradiction.

The proofs of the remainder statements are left as exercises.

�

6.4. Homeworks

1. Let x1 = (1,−2, 3), x2 = (5, 6,−1), x3 = (3, 2, 1) ∈ R3. Determine that
this system is linearly independent or dependent.

2. Which of the following vector systems are bases in R3?

a) x1 = (1, 0, 0), x2 = (2, 2, 0), x3 = (3, 3, 3).

b) y1 = (3, 1,−4), y2 = (2, 5, 6), y3 = (1, 4, 8).
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7.1. Coordinates

In this section V is a vector space with 1 ≤ dimV = n ≤ ∞.

7.1. Theorem Let e : e1, . . . en be a basis in V . Then

∀x ∈ V ∃ | ξ1, . . . , ξn ∈ K : x =

n∑
i=1

ξiei .

Proof. The existence of the numbers ξi is obvious because e1, . . . en is generator
system. To confirm the uniqueness take two expansions of x:

x =

n∑
i=1

ξiei =

n∑
i=1

ηiei .

After rearrangement we obtain:

n∑
i=1

(ξi − ηi)ei = 0 .

From here – using the linear independence of e1, . . . en – follows that ξi − ηi = 0
that is ξi = ηi (i = 1, . . . , n). �

7.2. Definition The numbers ξ1, . . . , ξn in the above theorem are called the
coordinates of the vector x relative to the basis e1, . . . en (or shortly: relative to
the ordered basis e). The vector

[x]e := (ξ1, . . . , ξn) ∈ Kn

is called the coordinate vector of x relative to the ordered basis e.

7.3. Remark. If V = Kn and e1, . . . en is the standard basis in it then

∀x ∈ Kn : [x]e = x .

By this reason we call the components of x ∈ Kn coordinates.

7.4. Theorem Let e : e1, . . . en be an ordered basis in V . Then for every x, y ∈ V
hold

[x+ y]e = [x]e + [y]e ,

[λx]e = λ [x]e .
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Proof. To prove the first statement let

[x]e = (ξ1, . . . , ξn), [y]e = (η1, . . . , ηn) ∈ Kn .

Then

x+ y =

n∑
i=1

ξiei +

n∑
i=1

ηiei =

n∑
i=1

(ξi + ηi)ei ,

which implies that

[x+ y]e = (ξ1 + η1, . . . , ξn + ηn) = (ξ1, . . . , ξn) + (η1, . . . , ηn) = [x]e + [y]e .

So the first part is proved. The proof of the second part is similar. �

7.5. Theorem [Change of Basis]
Let e : e1, . . . , en and e′ : e′1, . . . , e

′
n two ordered basis in V . Define the e → e′

transition matrix as follows:

C :=
[[
e′1
]
e
, . . . ,

[
e′n
]
e

]
∈ Kn×n,

that is: the j-th column vector of C is the coordinate vector of e′j relative to the
basis e.

Then
∀x ∈ V : C · [x]e′ = [x]e .

Proof. Let [x]e′ = (ξ′1, . . . , ξ
′
n). Then

C·[x]e′ =
[[
e′1
]
e
, . . . ,

[
e′n
]
e

]
·


ξ′1
ξ′2
...
ξ′n

 =

n∑
j=1

ξ′j ·
[
e′j
]
e
=

n∑
j=1

[
ξ′j · e′j

]
e
=

 n∑
j=1

ξ′j · e′j


e

= [x]e .

�

7.6. Remark. The above theorem makes us possible to determine the coordi-
nates of a vector if we know its coordinates in another basis. In this connection
the basis e is called

”
old basis” and the basis e′ is called

”
new basis”.

7.2. Homeworks

1. It is given the following basis in R3:

v1 = (3, 2, 1), v2 = (−2, 1, 0), v3 = (5, 0, 0) .

Determine the coordinate vector of x = (3, 4, 3) relative to the given basis.

2. It is given the following basis in P2:

P1(x) = 1 + x, P2(x) = 1 + x2, P3(x) = x+ x2 .

Determine the coordinate vector of P (x) = 2− x+ x2 relative to the given
basis.
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8.1. The Rank of a Vector System

In this section we try to characterize by a number the
”
measure of dependence”.

For example in the vector space of the space vectors we feel that a linearly de-
pendent system is

”
better dependent” if it lies on a straight line than it lies in a

plane. This observation motivates the following definition.

8.1. Definition Let V be a vector space, x1, . . . , xk ∈ V . The dimension of the
subspace generated by the system x1, . . . , xk is called the rank of this vector
system. It is denoted by rank (x1, . . . , xk). So

rank (x1, . . . , xk) := dim span (x1, . . . , xk) .

8.2. Remarks.

1. 0 ≤ rank (x1, . . . , xk) ≤ k.

2. The rank expresses the
”
measure of dependence”. The smaller is the rank

the more dependent are the vectors. Especially:

rank (x1, . . . , xk) = 0 ⇔ x1 = . . . = xk = 0 and

rank (x1, . . . , xk) = k ⇔ x1, . . . , xk is linearly independent .

3. rank (x1, . . . , xk) is the maximal number of linearly independent vectors in
the system x1, . . . , xk.

8.2. The Rank of a Matrix

8.3. Definition Let A ∈ Km×n. Then we can decompose it with horizontal
straight lines into row submatrices. The entries of the ith row submatrix form
the vector:

ci := (ai1, ai2, . . . , ain) ∈ Kn (i = 1, . . . ,m)

which is called the ith row vector of A. The subspace generated by the row vectors
of A is called the row space of A and is denoted by row(A).

8.4. Definition Let A ∈ Km×n. Then we can decompose it with vertical straight
lines into column submatrices. The entries of the jth column submatrix form the
vector:

sj :=


a1j
a2j
...

amj

 ∈ Km (j = 1, . . . , n)
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which is called the jth column vector of A. The subspace generated by the column
vectors of A is called the column space of A and is denoted by col(A).

8.5. Remark. Obviously

row(AT ) = col(A) ⊆ Km and col(AT ) = row(A) ⊆ Kn .

8.6. Theorem dim row(A) = dim col(A).

Proof. On the lecture. �

8.7. Definition The common value of dim row(A) and of dim col(A) is called
the rank of the matrix A. Its notation: rank (A). So

rank (A) := dim row(A) = dim col(A) .

8.8. Remarks.

1. The rank of the matrix equals the rank of its row vector system and equals
the rank of its column vector system.

2. rank (A) = rank (AT )

3. 0 ≤ rank (A) ≤ min{m,n}. rank (A) = 0 ⇔ A = 0.

8.3. System of Linear Equations

8.9. Definition Let m ∈ N and n ∈ N be positive integers. The general form of
the m× n system of linear equations (or: linear equation system) is:

a11x1 + . . . + a1nxn = b1
a21x1 + . . . + a2nxn = b2

...
...

...
am1x1 + . . . + amnxn = bm

,

where the coefficients aij ∈ K and the right-side constants bi are given. The
system is called homogeneous if b1 = · · · = bm = 0.

We are looking for all the possible values from K of the unknowns x1, . . . , xn
such that all the equations will be true. These systems of the unknowns are called
the solutions of the linear system. The linear equation system is called consistent
if it has solution. It is called inconsistent if it has no solution.
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Let us denote by a1, . . . , an the column vectors of A that and by b the vector
formed from the right-side constants:

a1 :=


a11
a21
...

am1

 , . . . , an :=


a1n
a2n
...

amn

 , b :=


b1
b2
...
bm

 .

Using these notations our linear system can be written more succinctly as a vector
equation in Km as

x1a1 + x2a2 + · · ·+ xnan = b .

Let us introduce the following matrix (the so called coefficient matrix)

A := [a1 . . . an] :=


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

 ∈ Km×n

and the unknown vector x := (x1, . . . , xn) ∈ Kn. Then the most succinct form of
our system is:

Ax = b.

In this connection the problem is to look for all the possible vectors in Kn

substituted instead of x the statement Ax = b will be true. Such a vector (if it
exists) is called a solution vector of the system.

8.10. Remark. It is easy to observe that

the system is consistent ⇔ b ∈ span (a1, . . . , an) = col(A) .

So the consistence of a linear system is equivalent with the question that b lies
in the column space of A or not. Consequently as smaller is the column space as
greater is the chance of inconsistence. If col(A) is the possible greatest subspace
that is col(A) = Km then the system is consistent.

Denote by S the set of solution vector of Ax = b that is:

S := {x ∈ Kn | Ax = b} ⊂ Kn .

Naturally if the system is inconsistent then S = ∅.

8.11. Definition Let Ax = b be a system of linear equations. Then the system
Ax = 0 is called the homogeneous system associated with Ax = b. Denote by Sh

the set of solution vectors of the homogeneous system that is:

Sh := {x ∈ Kn | Ax = 0} ⊂ Kn .
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Remark that the homogeneous system is always consistent because the zero
vector is its solution. So Sh ̸= ∅. Moreover Sh is a subspace in Kn.

About the structures of the set of solutions we tell the following theorem
without proof:

8.12. Theorem Let Ax = b be a consistent linear equation system and let r =
rankA. Then

1. If r = n then the system has a unique solution.

2. If r < n then the system has infinitely many solutions. In this case the
solution set Sh of the associated homogeneous system is an n−r dimensional
subspace of Kn. If v1, . . . , vn−r denotes a basis of Sh and x0 is a particular
solution of Ax = b then the general solution of Ax = b is:

x = x0 +

n−r∑
j=1

λjvj (λj ∈ K) .

where the constants λj ∈ K are arbitrary. So the solution set S is a trans-
lation of the n− r dimensional subspace Sh.

We will solve only low-measure systems and will use the
”
Substitution Method”

studied in the secondary school. In the process of solving the system we will see
the validity of the above theory.

For higher-measure systems the decision of consistence and the discussion
of all solutions requires an algorithmic method for example: Elementary Basis
Transformation Method, Gaussian Elimination, Gauss-Jordan Elimination. The
algorithmic methods will be studied in the subject Numerical Methods.

8.4. Linear Equation Systems with Square Matrices

Let us study the linear equation system with square matrix:

Ax = b (A ∈ Kn×n, b ∈ Kn) .

Denote by r the rank of A. In the following discussion plays important role the
fact that A is invertible if and only if all the linear systems Ax = ei are consistent
(i = 1, . . . , n).

We distinguish between the two basic cases as follows.

Case 1.: r = n.
In this case – because of r equals the number of rows – the system is consistent.

On the other hand – because of r equals the number of columns – the solution
is unique. So in the case rankA = n the square system has a unique solution
independently of b.
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If we apply this result for b = ei where ei denotes the ith standard unit vector
we obtain that in the case rankA = n the matrix A is invertible (it is regular)
consequently detA ̸= 0.

Case 2.: r < n.
In this case – since r is less than the number of rows – the system may be

consistent (if b ∈ col(A)) or inconsistent (if b /∈ col(A)). If the system is consistent
then – since r is less than the number of columns – the system has infinitely many
solutions.

Since col(A) ̸= Km so there exists a standard unit vector ei such that the
system Ax = ei is inconsistent. Consequently in the case rankA < n the matrix
A is not invertible (it is singular) and by this reason detA = 0.

Let us collect the our results in the following theorem:

8.13. Theorem Let A ∈ Kn×n be a square matrix. Then

1. rankA = n ⇔ detA ̸= 0 ⇔ A is invertible (regular);

2. rankA < n ⇔ detA = 0 ⇔ A is not invertible (singular).

8.5. Homeworks

1. Find the ranks of the matrices

a)

2 0 −1
4 0 −2
0 0 0

 b)

 1 3 1 4
2 4 0
−1 −3 0 5


2. Solve the systems of linear equations (with the Substitution Method):

a)

x1 + 2x2 − 3x3 = 6
2x1 − x2 + 4x3 = 1
x1 − x2 + x3 = 3

b)

x1 + x2 + 2x3 = 5
x1 + x3 = −2
2x1 + x2 + 3x3 = 3
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9.1. Eigenvalues and eigenvectors of Matrices

9.1. Definition Let A ∈ Kn×n. The number λ ∈ K is called the eigenvalue of A
if there exists a nonzero vector in Kn such that

Ax = λx

The vector x ∈ Kn \ {0} is called an eigenvector corresponding to the eigenvalue
λ.

The set of the eigenvalues of A is called the spectrum of A and is denoted by
Sp (A).

One can show by an easy rearrangement that the above equation is equivalent
with the homogeneous square linear system

(A− λI)x = 0

where I denotes the identity matrix in Kn×n.
So a number λ ∈ K is eigenvalue if and only if the above system has infinite

many solutions that is if its determinant equals 0:

det(A− λI) = 0.

The left side of the equation is a polynomial whose roots are the eigenvalues.

9.2. Definition The polynomial

P (λ) = PA(λ) = det(A− λI) =

∣∣∣∣∣∣∣∣∣
a11 − λ a12 . . . a1n
a21 a22 − λ . . . a2n
...

...
...

an1 an2 . . . ann − λ

∣∣∣∣∣∣∣∣∣ (λ ∈ K)

is called the characteristic polynomial of A. The multiplicity of the root λ is called
the algebraic multiplicity of the eigenvalue λ and is denoted by a(λ).

9.3. Remark. One can see by expansion along the first row that the coefficient
of λn is (−1)n. Furthermore from P (0) = det(A− 0I) = det(A) follows that the
constant term is det(A). So the form of the characteristic polynomial:

P (λ) = (−1)n · λn + · · ·+ det(A) (λ ∈ K) .

Since the eigenvalues are the roots in K of the characteristic polynomial we
can state as follows:
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• If K = C then Sp (A) is a nonempty set with at most n elements. Counting
every eigenvalue with its algebraic multiplicity the number of the eigenval-
ues is exactly n.

• If K = R then Sp (A) is a (possibly empty) set at most with n elements.

9.4. Remark. Let A ∈ Kn×n be a (lower or upper) triangular matrix. Then –
for example in lower triangular case – its characteristic polynomial is

P (λ) =

∣∣∣∣∣∣∣∣∣
a11 − λ 0 . . . 0
a21 a22 − λ . . . 0
...

...
...

an1 an2 . . . ann − λ

∣∣∣∣∣∣∣∣∣ =

= (a11 − λ) · (a22 − λ) · · · · · (ann − λ) (λ ∈ K) .

From here follows that the eigenvalues of a lower triangular matrix are the diag-
onal elements and the algebraic multiplicity of an eigenvalue is as many times as
it occurs in the diagonal.

Let us discuss some properties of the eigenvectors. It is obvious that if x is
eigenvector then αx is also eigenvector where α ∈ K \ {0} is arbitrary. So the
number of the eigenvectors corresponding to an eigenvalue is infinite. The proper
question is the maximal number of the linearly independent eigenvectors.

9.5. Definition Let A ∈ Kn×n and λ ∈ Sp (A). The subspace

Wλ := Wλ(A) := {x ∈ Kn | Ax = λx}

is called the eigenspace of the matrix A corresponding to the eigenvalue λ. The
dimension of Wλ is called the geometric multiplicity of the eigenvalue λ and is
denoted by g(λ).

9.6. Remarks.

1. The eigenspace consists of the eigenvectors and the zero vector as elements.

2. Since the eigenvectors are the nontrivial solutions of the homogeneous linear
system (A− λI)x = 0 it follows that

g(λ) = dimWλ = dimSh = n− rang (A− λI) .

3. It can be proved that for every λ ∈ Sp (A) holds

1 ≤ g(λ) ≤ a(λ) ≤ n .
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9.2. Eigenvector Basis

9.7. Theorem Let A ∈ Kn×n and λ1, . . . , λk be some different eigenvalues of

the matrix A. Let si ∈ N, 1 ≤ si ≤ g(λi) and x
(1)
i , x

(2)
i , . . . , x

(si)
i be a linearly

independent system in the eigenspace Wλi
(i = 1, . . . , k). Then the united system

x
(j)
i ∈ Kn (i = 1, . . . , k; j = 1, . . . , si)

is linearly independent.

Let us take from the eigenspace Wλ the maximal number of linearly indepen-
dent eigenvectors (this maximal number equals g(λ)). The united system – by
the previous theorem – is linearly independent and its cardinality is

∑
λ∈Sp (A)

g(λ).

So we can establish that ∑
λ∈Sp (A)

g(λ) ≤ n .

If here stands
”
=” then we have n independent eigenvectors in Kn so we have

a basis consisting of eigenvectors. This basis will be called Eigenvector Basis (E.
B.).

It follows simply from the previous results that

∃ E.B. ⇔
∑

λ∈Sp (A)

g(λ) = n .

9.8. Theorem Let A ∈ Kn×n and denote by a(λ) its algebraic and by g(λ) its
geometric multiplicity. Then there exists Eigenvector Basis in Kn if and only if∑

λ∈Sp (A)

a(λ) = n and ∀λ ∈ Sp (A) : g(λ) = a(λ) .

Proof. On the lecture. �

9.9. Remark. The meaning of the condition
∑

λ∈Sp (A)

a(λ) = n is that the number

of roots in K of the characteristic polynomial – counted with their multiplicities
– equals n. Therefore

- If K = C then this condition is
”
automatically” true.

- If K = R then this condition holds if and only if every root of the charac-
teristic polynomial is real.
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9.3. Diagonalization

9.10. Definition (Similarity) Let A,B ∈ Kn×n. We say that the matrix B is
similar to the matrix A (notation: A ∼ B) if

∃C ∈ Kn×n : C is invertible and B = C−1AC .

9.11. Remark. The similarity relation is an equivalence relation (it is reflexive,
symmetric and transitive). So we can use the phrase: A and B are similar (to
each other).

9.12. Theorem If A ∼ B then PA = PB that is their characteristic polynomi-
als coincide. Consequently the eigenvalues, their algebraic multiplicities and the
determinants are equal.

Proof. Let A,B,C ∈ Kn×n and suppose that B = C−1AC. Then for every
λ ∈ K:

PB(λ) = det(B − λI) = det(C−1AC − λC−1IC) = det(C−1(A− λI)C) =

= det(C−1) · det(A− λI) · det(C) = det(C−1) · det(C) · det(A− λI) =

= det(C−1C) · det(A− λI) = det(I) · PA(λ) = 1 · PA(λ) = PA(λ) .

�
The following definition gives us an important class of square matrices.

9.13. Definition Let A ∈ Kn×n. We say that the matrix A is diagonalizable
(over the field K) if

∃C ∈ Kn×n : C is invertible and C−1AC is diagonal matrix .

The matrix C is said to diagonalize A. The matrix D = C−1AC is called the
diagonal form of A.

9.14. Remarks.

1. Obviously A is diagonalizable if and only if it is similar to a diagonal matrix.

2. A matrix A can have more than one diagonal form.

3. If A is diagonalizable then the diagonal entries of its diagonal form are the
eigenvalues of A. More precisely every eigenvalue stands in the diagonal as
many as its algebraic multiplicity.

The diagonalizability of a matrix is in close connection with the Eigenvector
Basis as the following theorem shows:
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9.15. Theorem Let A ∈ Kn×n. The matrix A is diagonalizable (over the field
K) if and only if there exists Eigenvector Basis (E. B.) in Kn.

Proof. First suppose that A is diagonalizable. Let c1, . . . , cn ∈ Kn be the column
vectors of C to diagonalize A. So

C = [c1 . . . cn] .

We will show that c1, . . . , cn is Eigenvector Basis.
Since C is invertible so c1, . . . , cn is a linearly independent system having n

members. Consequently it is a basis in Kn.
To show that the vectors cj are eigenvectors, set out from the relation

C−1AC =

λ1

. . .

λn


where λ1, . . . , λn are the eigenvalues of A. Multiply by C from the left:

A · [c1 . . . cn] = C ·

λ1

. . .

λn

 = [c1 . . . cn] ·

λ1

. . .

λn


[Ac1 . . . Acn] = [λ1c1 . . . λncn]

Using the equalities of the columns:

Acj = λjcj (j = 1, . . . , n)

so the basis c1, . . . , cn really consists of eigenvectors.
Conversely suppose that c1, . . . , cn is an Eigenvector Basis. Let C be the

matrix whose columns are c1, . . . , cn. Then C is obviously invertible, moreover,
setting out from the equations

Acj = λjcj (j = 1, . . . , n)

and making the previous operations backward we obtain

C−1AC =

λ1

. . .

λn

 .

So A is really diagonalizable. �

9.16. Remarks.

1. You can see that the order of the vectors of E. B. in the matrix C is identical
with the order of the corresponding eigenvalues in the diagonal of C−1AC.

2. If the matrix A ∈ Kn×n has n different eigenvalues in K then the corre-
sponding eigenvectors (n vectors) are linearly independent. So they form
an Eigenvector Basis and by this reason A is diagonalizable.
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9.4. Homeworks

1. Find the eigenvalues and the eigenvectors of the following matrices:

a)

[
2 −1
10 −9

]
b)

[
−2 −7
1 2

]
c)

5 1 3
0 −1 0
0 1 2


2. Determine whether the following matrices are diagonalizable or not. In the

diagonalizable case determine the matrix C that diagonalizes A and the
diagonal form C−1AC.

a) A =

[
2 −3
1 −1

]
b)

 1 2 −2
−3 4 0
−3 1 3
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10.1. Inner Product Spaces

10.1. Definition Let V be a vector space over the number field K.
Let V × V ∋ (x, y) 7→ ⟨x, y⟩ (inner product) be a mapping (operation). Suppose
that

1. ∀ (x, y) ∈ V ×V : ⟨x, y⟩ ∈ K (the value of the inner product is a scalar)

2. ∀x, y ∈ V : ⟨x, y⟩ = ⟨y, x⟩ (if K = R: commutative law; if K = C:
antisymmetry)

3. ∀x ∈ V ∀λ ∈ K : ⟨λx, y⟩ = λ⟨x, y⟩ (homogeneous)

4. ∀x, y, z ∈ V : ⟨x, y + z⟩ = ⟨x, y⟩+ ⟨x, z⟩ (distributive law)

5. ⟨x, x⟩ ≥ 0 (x ∈ V ), furthermore ⟨x, x⟩ = 0 ⇔ x = 0 (positive definite)

Then we call V inner product space (Euclidean space). More precisely in the case
K = R we call it real inner product space, in the case K = C we call it complex
inner product space. The operation defined above is the inner product (or dot
product or scalar product).

10.2. Examples

1. The vector space of the plane vectors and the vector space of the space
vectors are real inner product spaces if the inner product is the common
dot product

⟨a, b⟩ = |a| · |b| · cos γ

where γ denotes the angle of vectors a and b.

2. The vector space Kn is inner product space if the inner product is

⟨x, y⟩ :=
n∑

k=1

xkyk .

This is the standard inner product in Kn. Naturally in the case K = R there
is no conjugation:

⟨x, y⟩ :=
n∑

k=1

xkyk .

3. Let −∞ < a < b < +∞. The vector space C[a, b] of all continuous functions
defined on [a, b] a mapping into K form an inner product space if the inner
product is
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- in the case K = C: ⟨f, g⟩ :=
b∫
a
f(x)g(x) dx.

- in the case K = R: ⟨f, g⟩ :=
b∫
a
f(x)g(x) dx.

This is the standard inner product in C[a, b].

4. Since the polynomial vector spaces P[a, b], Pn[a, b] are subspaces of C[a, b],
so they are also inner product spaces with the inner product defined in the
previous example.

Some basic properties of the inner product spaces follow.

10.3. Theorem Let V be an inner product space over K.

Then for every x, xi, y, yj , z ∈ V and for every λ, λi, µj ∈ K hold

1. ⟨x, λy⟩ = λ · ⟨x, y⟩

2. ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩

3. ⟨
n∑

i=1
λixi,

m∑
j=1

µjyj⟩ =
n∑

i=1

m∑
j=1

λiµj⟨xi, yj⟩ Naturally in the real case K = R

there is no conjugation: ⟨
n∑

i=1
λixi,

m∑
j=1

µjyj⟩ =
n∑

i=1

m∑
j=1

λiµj⟨xi, yj⟩

4. ⟨x, 0⟩ = ⟨0, x⟩ = 0

Proof.

1. ⟨x, λy⟩ = ⟨λy, x⟩ = λ · ⟨y, x⟩ = λ · ⟨y, x⟩ = λ · ⟨x, y⟩.

2. ⟨x+ y, z⟩ = ⟨z, x+ y⟩ = ⟨z, x⟩+ ⟨z, y⟩ = ⟨z, x⟩+ ⟨z, y⟩ = ⟨x, z⟩+ ⟨y, z⟩.

3. Apply several times the axioms and the previous properties:

⟨
n∑

i=1

λixi,
m∑
j=1

µjyj⟩ =
n∑

i=1

m∑
j=1

⟨λixi, µjyj⟩ =
n∑

i=1

m∑
j=1

λiµj · ⟨xi, yj⟩.

4. ⟨x, 0⟩ = ⟨x, 0 + 0⟩ = ⟨x, 0⟩ + ⟨x, 0⟩. After subtraction ⟨x, 0⟩ from both
sides we obtain the first statement. The other one can reduce to the first.

�
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10.2. The Cauchy’s inequality

10.4. Theorem [Cauchy’s inequality] Let V be an inner product space and let
x, y ∈ V . Then

|⟨x, y⟩| ≤
√

⟨x, x⟩ ·
√

⟨y, y⟩ .

Here stands equality if and only if the vector system x, y is linearly dependent (x
and y are parallel).

Proof. We will prove the statement of the theorem only in the case K = R. Let
us observe that for any λ ∈ R:

0 ≤ ⟨x+ λy, x+ λy⟩ = ⟨x, x⟩+ λ⟨y, x⟩+ λ⟨x, y⟩+ λλ⟨y, y⟩ =
= (⟨y, y⟩)λ2 + (2⟨x, y⟩)λ+ ⟨x, x⟩ = P (λ) .

So the above defined second degree polynomial P takes nonnegative values ev-
erywhere.

Suppose first that x and y are linearly independent. Then for any λ ∈ R holds
x+ λy ̸= 0 so P (λ) > 0 for any λ ∈ R. That means that the discriminant of P is
negative:

discriminant = (2⟨x, y⟩)2 − 4(⟨y, y⟩)(⟨x, x⟩) < 0 .

After division by 4 and rearranging the inequality we obtain that

|⟨x, y⟩| <
√

⟨x, x⟩ ·
√

⟨y, y⟩ .

Now suppose that x and y are linearly dependent. Then x+ λy = 0 holds for
some λ ∈ R. That means P (λ) = 0 so the nonnegative second degree polynomial
P has a real root. Consequently its discriminant equals 0:

discriminant = (2⟨x, y⟩)2 − 4(⟨y, y⟩)(⟨x, x⟩) = 0 .

After rearranging the equation we obtain that

|⟨x, y⟩| =
√

⟨x, x⟩ ·
√

⟨y, y⟩ .

From the proved parts immediately follow the statements of the theorem. �

10.5. Remark. Apply the Cauchy’s inequality in Rn:

(x1y1 + · · ·+ xnyn)
2 ≤ (x21 + · · ·+ x2n)(y

2
1 + · · ·+ y2n) (ii, yi ∈ R)

and equality holds if and only if the vectors (x1, . . . , xn) and (y1, . . . , yn) are lin-
early dependent (parallel). This is the well-known Cauchy-Bunyakovsky-Schwarz
inequality.
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10.3. Norm

In this section will be extended the concept of the length of vectors (in other
words: the distances of points from the origin).

10.6. Definition Let V be an inner product space and let x ∈ V . Then its norm
(or length or absolute value) is defined as

∥x∥ :=
√

⟨x, x⟩ .

The mapping ∥.∥ : V → R, x 7→ ∥x∥ is called norm too.

10.7. Examples

1. In the inner product space of plane vectors or of the space vectors the norm
of a vector a coincides with the classical length of a:

∥a∥ =
√

⟨a, a⟩ =
√

|a| · |a| · cos(a, a) = |a| .

2. In Cn: ∥x∥ =

√
n∑

i=1
|xi|2.

In Rn: ∥x∥ =

√
n∑

i=1
x2i .

3. In C[a, b]: ∥f∥ =

√
b∫
a
|f(x)|2 dx.

10.8. Remark. Using the notation of norm the Cauchy’s inequality can be writ-
ten as

|⟨x, y⟩| ≤ ∥x∥ · ∥y∥ (x, y ∈ V ) .

10.9. Theorem [the properties of the norm]

1. ∥x∥ ≥ 0 (x ∈ V ). Furthermore ∥x∥ = 0 ⇔ x = 0

2. ∥λx∥ = |λ| · ∥x∥ (x ∈ V ; λ ∈ K)

3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (x, y ∈ V ) (triangle inequality)

Proof. The first statement is obvious by the axioms of the inner product. The
proof of the second statement is as follows:

∥λx∥ =
√
⟨λx, λx⟩ =

√
λλ⟨x, x⟩ =

√
|λ|2 · ∥x∥2 = |λ| · ∥x∥ .
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To see the triangle inequality let us see the following computations:

∥x+ y∥2 = ⟨x+ y, x+ y⟩ = ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩ =
= ∥x∥2 + ⟨x, y⟩+ ⟨x, y⟩+ ∥y∥2 = ∥x∥2 + 2Re (⟨x, y⟩) + ∥y∥2 ≤
≤ ∥x∥2 + 2 · |⟨x, y⟩|+ ∥y∥2 ≤ ∥x∥2 + 2 · ∥x∥ · ∥y∥+ ∥y∥2 =
= (∥x∥+ ∥y∥)2 .

(In the last estimation we have used the Cauchy’s inequality.)
After taking square roots we obtain the triangle inequality. �

10.10. Remark. If we define on a vector space a mapping ∥.∥ : V → R which
satisfies the above properties then V is called (linear) normed space and the above
properties are named the axioms of the normed space. So we have proved that
every inner product space is a normed space with the norm indicated by the inner
product ∥x∥ =

√
⟨x, x⟩.

Other examples for norms and normed spaces will be studied in the subject
Numerical Methods.

10.11. Definition (distance in the inner product space) Let V be an in-
ner product space, x, y ∈ V . The number

d(x, y) := ∥x− y∥ =
√

⟨x− y, x− y⟩

is called the distance between the vectors x and y.

10.12. Remark. The above defined distance in Rn is

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2 (x, y ∈ Rn) .

10.4. Orthogonality

Let V be an inner product space over the number field K all over in this section.

10.13. Definition The vectors x, y ∈ V are called orthogonal (perpendicular) if
their inner product equals 0 that is if

⟨x, y⟩ = 0 .

The notation of orthogonality is x ⊥ y.

10.14. Definition Let ∅ ̸= H ⊂ V and x ∈ V . We say that the vector x is
orthogonal to the set H (notation: x ⊥ H) if

∀ y ∈ H : ⟨x, y⟩ = 0.
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10.15. Theorem Let e1, . . . , en be vector system in V , W := span (e1, . . . , en)
and x ∈ V . Then

x ⊥ W ⇔ x ⊥ ei (i = 1, . . . , n) .

Proof.
”
⇒”: It is obvious if You choose y := ei.

”
⇐”: Let y =

n∑
i=1

λiei ∈ W arbitrary. Then

⟨x, y⟩ = ⟨x,
n∑

i=1

λiei⟩ =
n∑

i=1

λi⟨x, ei⟩ =
n∑

i=1

λi · 0 = 0 .

�

10.16. Definition Let xi ∈ V (i ∈ I) a (finite or infinite) vector system.

1. This system (xi, i ∈ I) is said to be orthogonal system (O.S.) if any two
members of them are orthogonal that is

∀ i, j ∈ I, i ̸= j : ⟨xi, xj⟩ = 0 .

2. The system (xi, i ∈ I) is said to be orthonormal system (O.N.S.) if it is
orthogonal system and each vector in it has the norm 1:

∀ i, j ∈ I : ⟨xi, xj⟩ =
{
0 ha i ̸= j
1 ha i = j .

10.17. Remarks.

1. One can simply see that

- the zero vector can be contained in an orthogonal system

- the zero vector cannot be contained in an orthonormal system

- the zero vector can occur several times in an orthogonal system but
any other vector can occur only one times in it.

- the vectors in an orthonormal system are all different

2. (Normalization) One can construct orthonormal system from an orthogonal
system such that the two systems generate the same subspace. Really, first
leave the possible zero vectors from the orthogonal system, after it divide
every vector in the remainder system by its norm.

10.18. Examples

1. In the inner product space of the plane vectors the system of the common
basic vectors i, j is O.N.S.

2. In the inner product space of the space vectors the system of the common
basic vectors i, j, k is O.N.S.

3. In the space Kn he system of the standard unit vectors e1, . . . , en is O.N.S.
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10.5. Two important theorems for finite orthogonal
systems

10.19. Theorem If x1, . . . , xn ∈ V \ {0} is an orthogonal system then it is
linearly independent.

Proof. Multiply the dependence equation

0 =
n∑

i=1

λixi

by the vector xj where j = 1, . . . , n:

0 = ⟨0, xj⟩ = ⟨
n∑

i=1

λixi, xj⟩ =
n∑

i=1

λi⟨xi, xj⟩ = λj⟨xj , xj⟩ .

Since ⟨xj , xj⟩ ̸= 0 so λj = 0. �

10.20. Theorem [Pythagoras] If x1, . . . , xn ∈ V is an orthogonal system then

∥
n∑

i=1

xi∥2 =
n∑

i=1

∥xi∥2 .

Proof.

∥
n∑

i=1

xi∥2 = ⟨
n∑

i=1

xi,

n∑
j=1

xj⟩ =
n∑

i=1

n∑
j=1

⟨xi, xj⟩ =
n∑

i,j=1
i̸=j

⟨xi, xj⟩+
n∑

i,j=1
i=j

⟨xi, xj⟩ =

=
n∑

i,j=1
i ̸=j

0 +
n∑

i=1

⟨xi, xi⟩ =
n∑

i=1

∥xi∥2.

(We have used that ⟨xi, xj⟩ = 0 if i ̸= j.) �

10.6. Homeworks

1. Let x = (3,−2, 1, 1), y = (4, 5, 3, 1) z = (−1, 6, 2, 0) ∈ R4 and let λ = −4.
Verify the following identities:

a) ⟨x, y⟩ = ⟨y, x⟩
b) ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩
c) ⟨λx, y⟩ = λ⟨x, y⟩

Remark that in R4 we use the usual operations.
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2. Verify the Cauchy’s inequality in R4 with the vectors

x = (0,−2, 2, 1) and y = (−1,−1, 1, 1) .

3. Let x1 = (0, 0, 0, 0), x2 = (1,−1, 3, 0), x3 = (4, 0, 9, 2) ∈ R4. Determine
whether the vector x = (−1, 1, 0, 2) is orthogonal to the subspace span (x1, x2, x3)
or not.
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11.1. The Projection Theorem

11.1. Theorem [Projection Theorem] Let u1, . . . , un ∈ V \ {0} be an orthogo-
nal system, W := span (u1, . . . , un). (It is important to remark that in this case
u1, . . . , un is basis in W .) Then every x ∈ V can be written uniquely as x = x1+x2
where x1 ∈ W and x2 ⊥ W .

Proof. Look for x1 as

x1 :=

n∑
j=1

λj · uj and let x2 := x− x1 .

Then obviously x1 ∈ W and x = x1 + x2 independently of the coefficients λi. It
remains to satisfy the requirement x2 ⊥ W . It is enough to discuss the orthogo-
nality to the generator system u1, . . . , un:

⟨x2, ui⟩ = ⟨x−
n∑

j=1

λjuj , ui⟩ = ⟨x, ui⟩ −
n∑

j=1

λj⟨uj , ui⟩ =

= ⟨x, ui⟩ − λi⟨ui, ui⟩ (i = 1, . . . , n).

This expression equals 0 if and only if

λi =
⟨x, ui⟩
⟨ui, ui⟩

(i = 1, . . . , n) .

Since the numbers λi are obtained by a unique process and u1, . . . , un are linearly
independent then x1 and x2 are unique. �

11.2. Remarks.

1. The vector x1 is called the orthogonal projection of x ontoW and is denoted
by projWx or simply P (x). From the theorem follows that

P (x) = projWx =

n∑
i=1

⟨x, ui⟩
⟨ui, ui⟩

· ui .

Another name for P (x) is: the parallel component of x with respect to the
subspace W .
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2. The vector x2 is called the orthogonal component of x with respect to the
subspace W and is denoted by Q(x). From the theorem follows that

Q(x) = x− P (x) = x−
n∑

i=1

⟨x, ui⟩
⟨ui, ui⟩

· ui .

If we introduce the subspace

W⊥ := {x ∈ V | x ⊥ W}

then Q(x) can be regarded as the orthogonal projection onto W⊥:

Q(x) = projW⊥x .

11.2. The Gram-Schmidt Process

Let b1, b2, . . . , bn ∈ V be a finite linear independent system. The following pro-
cess converts this system into an orthogonal system u1, u2, . . . , un ∈ V \ {0}.
The two system is equivalent in the sense that

∀ k =∈ {1, 2, , . . . , n} : span (b1, . . . , bk) = span (u1, . . . , uk) .

Especially (for k = n) the generated subspaces by the two systems are the same.

The Gram-Schmidt process sounds as follows:

Step 1.: u1 := b1

Step 2.: u2 := b2 −
⟨b2, u1⟩
⟨u1, u1⟩

· u1

Step 3.: u3 := b3 −
⟨b3, u1⟩
⟨u1, u1⟩

· u1 −
⟨b3, u2⟩
⟨u2, u2⟩

· u2

...

Step n.: un := bn − ⟨bn, u1⟩
⟨u1, u1⟩

· u1 −
⟨bn, u2⟩
⟨u2, u2⟩

· u2 − . . .− ⟨bn, un−1⟩
⟨un−1, un−1⟩

· un−1.

It can be proved that this process results the system u1, u2, . . . , un that
satisfies all the requirements described in the introduction of the section. If we
want to construct an equivalent orthonormal system then apply the normalization
process for u1, u2, . . . , un.

11.3. Remark. One can see that

- u2 is the orthogonal component of b2 with respect to the subspace span (u1)

- u3 is the orthogonal component of b3 with respect to the subspace span (u1, u2)
...

- un is the orthogonal component of bn with respect to the subspace span (u1, u2, . . . , un−1).
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11.3. Orthogonal and Orthonormal Bases

11.4. Definition A finite vector system in the inner product space V is called

- Orthogonal Basis (O.B.) if it is orthogonal system and basis.

- Orthonormal Basis (O.N.B.) if it is orthonormal system and basis.

11.5. Remarks.

1. An O.B. cannot contain the zero vector.

2. An orthogonal system that does not contain the zero vector is O.B. if and
only if it is a generator system in V .

3. If we have an O.B. then we can construct from it – via normalization – an
O.N.B..

On can easily verify that in Kn the standard basis is orthonormal basis.

It can be proved that every finite dimensional nonzero inner product space
contains orthogonal and orthonormal basis. Moreover, every orthogonal system
that does not contain the zero vector can be completed into orthogonal basis and
every orthonormal system can be completed into orthonormal basis. The essential
idea of the proof is:

Construct a basis and apply the Gram-Schmidt process for it.

11.6. Remark. The existence of the orthogonal basis implies that the projection
theorem can be stated for every finite dimensional nonzero subspace of V .

In the remainder part of the section let us fix an orthonormal basis e :
e1, . . . , en in the n-dimensional inner product space V . We will prove first that
the inner product can be computed with the help of coordinates.

11.7. Theorem

∀x, y ∈ V : ⟨x, y⟩ = ⟨[x]e, [y]e⟩ =
n∑

i=1

ξiηj .

Here [x]e = (ξ1, . . . , ξn) and [y]e = (η1, . . . , ηn) are the coordinate vectors of x
and y.
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Proof. Since

x =

n∑
i=1

ξiei and y =

n∑
j=1

ηjej

so

⟨x, y⟩ = ⟨
n∑

i=1

ξiei,

n∑
j=1

ηjej⟩ =
n∑

i,j=1

ξiηj⟨ei, ej⟩ =
n∑

i=1

ξiηi =

= ⟨(ξ1, . . . , ξn), (η1, . . . , ηn)⟩ = ⟨[x]e, [y]e⟩.

�
The following theorem gives us the coordinates.

11.8. Theorem The ith coordinate of a vector x ∈ V relative to the orthonormal
basis e : e1, . . . , en is

ξi = ⟨x, ei⟩ (i = 1, . . . , n)

That is

x =

n∑
i=1

⟨x, ei⟩ · ei .

Proof. Apply the previous theorem with y = ei (i = 1, . . . , n). Then we obtain

⟨x, ei⟩ = ⟨[x]e, [ei]e⟩ = ⟨(ξ1, . . . , ξn), (0, . . . , 1, . . . , 0)⟩ = ξi (i = 1, . . . , n) .

�

11.9. Remark. One can simply consider – using the normalization process –
that the ith coordinate of a vector x ∈ V relative to an orthogonal basis u1, . . . , un
is

ξi =
⟨x, ui⟩
⟨ui, ui⟩

(i = 1, . . . , n) .

Consequently

x =

n∑
i=1

⟨x, ui⟩
⟨ui, ui⟩

· ui .

11.4. Homeworks

1. Find the orthogonal projections of the vector x = (1, 2, 0,−2) ∈ R4 onto
the subspaces of R4 generated by the given orthogonal systems.

a) u1 = (0, 1,−4,−1), u2 = (3, 5, 1, 1).

b) u1 = (1,−1,−1, 1), u2 = (1, 1, 1, 1), u3 = (1, 1,−1,−1).
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2. Use the Gram-Schmidt process to transform the given basis b1, b2, b3, b4 of
R4 into an orthonormal basis.

b1 = (0, 2, 1, 0), b2 = (1,−1, 0, 0), b3 = (1, 2, 0,−1), b4 = (1, 0, 0, 1)

3. Show that the vectors

u1 = (1,−2, 3,−4), u2 = (2, 1,−4,−3), u3 = (−3, 4, 1,−2), u4 = (4, 3, 2, 1)

form an orthogonal basis in R4. Find the coordinates and the coordinate
vector of x = (−1, 2, 3, 7) relative to the given basis.

Answer the same questions if the basis is the orthonormal basis obtained
from u1, u2, u3, u4 via normalization.


