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Basic concepts of graphs

Definition (graph (undirected))
A triple G = (ϕ,E ,V ) is called an (undirected) graph, if E and V are
sets such that V 6= ∅, V ∩ E = ∅ and ϕ : E → {{v , v ′} |v , v ′ ∈ V }.
E is called the set of edges, V is called the set of vertices (nodes) and ϕ
is the incidence function. (The map ϕ assigns to each element of E an
unordered pair of elements in V .)

Note: The graphs according to the above definition are often called
multigraphs, because they can have so called parallel edges.

Definition (incidence of a vertex and an edge)
If v ∈ ϕ(e) then we say that e is incident to v and v is incident to e, or –
in other words – v is an endpoint of e.

Definition (incidence relation)
The incidence function determines the so called incidence relation
I ⊆ E × V : (e, v) ∈ I ⇔ v ∈ ϕ(e).
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Example

V = {v1, v2, v3, v4, v5}
E = {e1, e2, e3, e4, e5}
ϕ = {(e1, {v1, v2}), (e2, {v1, v2}), (e3, {v1, v4}), (e4, {v3, v4}), (e5, {v4})}
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Basic concepts of graphs

Definition (loops, parallel edges, simple graphs)
If an edge is incident only to one vertex then we call this edge a loop.
If e 6= e′ and ϕ(e) = ϕ(e′) then e and e′ are called parallel edges.
If a graph does not contain any loops nor any parallel edges, then this
graph is called a simple graph.

Definition (finite graphs and empty graphs)
If E and V are both finite sets, then the graph is called a finite graph,
otherwise it is an infinite graph.
If E = ∅ then the graph is called an empty graph.

Most graphs considered in informatics are finite, therefore in the rest of
this course we are going to study finite graphs.
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Basic concepts of graphs

Definition (incident edges, adjacent vertices)
The edges e 6= e′ are called incident (or in some sources adjacent), if there
exists v ∈ V such that v ∈ ϕ(e) and v ∈ ϕ(e′). The vertices v 6= v ′ are
adjacent, if there exists e ∈ E such that v ∈ ϕ(e) and v ′ ∈ ϕ(e).

Definition (degree of a vertex)
The degree of a vertex v is the number of edges incident to it, counting each
loop twice. Notation: d(v) or deg(v).

Definition (isolated vertex)
If d(v) = 0 for some v ∈ V then v is called an isolated vertex.
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The sum of the degrees of all vertices in a graph

Theorem (Handshaking Theorem)
In any graph G = (ϕ,E ,V ) we have:∑

v∈V
d(v) = 2|E |.

Proof
Induction by the number of edges in the graph:
Base step: If |E | = 0 then the values on both sides of the equality are 0.
Inductive step: Assume that the statement is true when |E | = n, for
some n ∈ N. Let G be a graph with n + 1 edges. By deleting one edge of
G we obtain a graph G ′ with n edges. By our inductive hypothesis, the
statement is true for G ′. If we now add to G ′ the edge deleted earlier
from G, the values on both sides of the equality will increase by 2, hence
the equality remains true. Therefore the statement also holds for G.
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Basic concepts of graphs

Definition (deleting edges from a graph)
Let G = (ϕ,E ,V ) be a graph and E ′ ⊆ E . The graph obtained by
deleting the set of edges E ′ from G is the graph G ′ = (ϕ|E\E ′ ,E \ E ′,V ).

Definition (deleting vertices from a graph)
Let G = (ϕ,E ,V ) be a graph and V ′ ⊆ V . Denote by E ′ the set of
those edges in E which are incident to at least one vertex in V ′. The
graph obtained by deleting the set of vertices V ′ from G is the graph
G ′ = (ϕ|E\E ′ ,E \ E ′,V \ V ′).
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Basic concepts of graphs

Definition (subgraphs, supergraphs)
A graph G ′ = (ϕ′,E ′,V ′) is called a subgraph of a graph G = (ϕ,E ,V ),
if E ′ ⊆ E , V ′ ⊆ V and ϕ′ ⊆ ϕ. In this case we also say that G is a
supergraph of G ′.
If E ′ contains all those edges of G which have both endpoints in V ′, then
G ′ is called a subgraph spanned (or induced) by V ′.

Example

G

v1

v2

v3 v4

v5

e1

e2
e3 e4

e5

G1

v1

v2

v3

v5e3

e5

G2

v1

v2

v3

v5

e1

e2
e3

e5

G1 is a subgraph, but not a spanned subgraph of G and G2 is a spanned
subgraph of G .
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Basic concepts of graphs

Definition (isomorphic graphs)
Two graphs G = (ϕ,E ,V ) and G ′ = (ϕ′,E ′,V ′) are said to be
isomorphic to each other, if there exist bijections f : E → E ′ and
g : V → V ′ such that for every e ∈ E and v ∈ V , e is incident to v if
and only if f (e) is incident to g(v).

Example
w1

w2

w3 w4

w5

c1
c2

c3

c4
c5

v1

v2

v3 v4

v5

e1

e2
e3 e4

e5

Suitable bijections f and g :
f = {(e1, c5), (e2, c2), (e3, c3), (e4, c4), (e5, c1)}
g = {(v1,w1), (v2,w4), (v3,w2), (v4,w5), (v5,w3)}
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Basic concepts of graphs

Definition (complete graphs)
A simple graph in which any two vertices are adjacent is called a complete
graph. The complete graph with n (n ∈ N+) vertices is denoted by Kn.

Comment: It is easy to show that for any n ∈ N+, all complete graphs
on n vertices are isomorphic, hence Kn is unique up to graph
isomorphism.

Proposition (The number of edges in Kn)
For every n ∈ N+, Kn has

(n
2
)

= n(n−1)
2 edges.

Definition (regular graphs)
If the degree of every vertex in a graph is equal to n for some n ∈ N then
the graph is called n-regular. A graph is called regular, if it is n-regular
for some n ∈ N.

Comment: For any n ∈ Z Kn is (n − 1)-regular.
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Complement of a graph

Definition (complement of a simple graph)
The complement of a simple graph G is the simple graph G which has
the same set of vertices as G and in which two (distinct) vertices are
connected by an edge if and only if they are not connected in G .

Examples
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Basic concepts of graphs

Definition (bipartite graphs)
A graph G = (ϕ,E ,V ) bipartite graph, if V can be expressed as the
union of two disjoint sets V ′ and V ′′ such that for every edge e in E one
endpoint of e is in V ′ and the other endpoint of e is in V ′′.

Definition (the graphs Km,n)
Let m, n ∈ N+. The simple bipartite graph in which |V ′| = m and
|V ′′| = n and every vertex in V ′ is adjacent to every vertex in V ′′, is
denoted by Km,n.

Example

K3,3
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Further special graphs

Definition (cycle graphs, path graphs, stars)
For every n ∈ N+ the cycle graph Cn on n vertices (or n-cycle or n-gon)
is a simple graph with n vertices v1, v2, . . . , vn and n edges e1, e2, . . . , en
such that for every 1 ≤ i ≤ n − 1 : ϕ(ei) = {vi , vi+1} and
ϕ(en) = {vn, v1}.
For every n ∈ N the path graph Pn is the graph obtained by deleting one
edge from the graph Cn+1.
For every n ∈ N+ the star graph Sn is the graph Kn,1. (S0 can also be
defined as a graph consisting of a single vertex and containing no edges.)

Examples

K4 C4 P3 S4
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Basic concepts of graphs

Definition (walk)
Let G = (ϕ,E ,V ) be a graph, n ∈ N. A walk of length n from vertex v0
to vn is a sequence

v0, e1, v1, e2, v2, . . . , vn−1, en, vn

where
vj ∈ V 0 ≤ j ≤ n,
ek ∈ E 1 ≤ k ≤ n,
ϕ(em) = {vm−1, vm} 1 ≤ m ≤ n.

If v0 = vn, then the walk is a closed walk, otherwise it is an open walk.

Definition (trail/line)
If a walk does not contain repeated edges, then it is called a trail (or
line). According to the above definition, a trail can be an open trail or a
closed trail.
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Basic concepts of graphs

Definition (path)
If a walk does not contain repeated vertices then it is called a path.

Comments
Every path is also a trail.
A walk of length 0 is also a path consisting of a single vertex.
A walk of length 1 is a path if and only if the single edge contained
by it is not a loop.

Definition (circuit)
A circuit is a closed trail of length ≥ 1.

Definition (cycle)
A cycle is a circuit which contains no repeated vertices apart from the
first and last vertices, which are identical.
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Example

path: v1, e1, v2, e2, v3, . . . , v6, e6, v7;
line, but not a path: v1, e1, v2, e2, v3, e3, v4, . . . , e7, v3, e8, v9;
cycle: v3, e3, v4, e4, v5, e5, v6, e6, v7, e7, v3.
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Basic concepts of graphs

Proposition (Creating a path from a walk)
Given any walk between two distinct vertices v and v ′ of a graph, we can
obtain a path from v to v ′ by deleting suitable vertices and edges of the walk.

Proof
Consider the walk:

v = v0, e1, v1, e2, v2, . . . , vn−1, en, vn = v ′.

If this walk does not contain any repeated vertices, then it is already a path.
Otherwise we have vi = vj for some i < j . By deleting the part

ei+1, vi+1, ei+2, vi+2, . . . , vj−1, ej , vj

from the walk we obtain a shorter walk from v to v ′. Repeat this step until
there are no repeated vertices in the walk. The process will finish in finite
number of steps, since the length of the walk reduces in each step. When the
process stops there are no repeated vertices, hence we obtained a path.
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Basic concepts of graphs

Definition (connected graphs)
A graph is said to be connected if there is a walk (or, equivalently, there
is a path) between any pair of vertices of the graph.

For a graph G = (ϕ,E ,V ) define the relation ∼ on V : let v ∼ v ′ if and
only if there exists a walk (or, equivalently, there is a path) from v to v ′
in G .
Since ∼ is an equivalence relation (Why?), the set of corresponding
equivalence classes will be a partition of V .

Definition (components of a graph)
The subgraphs spanned by these equivalence classes are called the
components of the graph.

Comment
A graph is connected if and only if it consists of only one component.
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Trees

Definition (tree)
A graph is called a tree if it is connected and contains no cycle (in other
words: it is an acyclic graph).

Theorem (Equivalent characterisations of trees 1.)
For a simple graph G the following conditions are equivalent:
(1) G is a tree;
(2) G is connected, and by deleting any of its edges, the remaining

subgraph is not connected (i.e. G is a minimally connected graph);
(3) any vertices v and v ′ in G there is exactly one path from v to v ′;
(4) G contains no cycles, but by adding any new edge to G, the new

graph will contain a cycle (i.e. G is a maximally acyclic graph).

Structure of the proof
(1)⇒ (2)⇒ (3)⇒ (4)⇒ (1)
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Trees

Proof
(1)⇒ (2)
By the definition of a tree, G is connected. The other part of the statement we
show by proof by contradiction. Suppose there is an edge e (denote its
endpoints by v and w) in the graph such that after deleting e the remaining
subgraph is connected. Then in the remaining subgraph there is a path from v
to w: v = v0, e1, v1, e2, . . . , vn−1, en, vn = w. Adding e and v to this path we
obtain a cycle in G: v = v0, e1, v1, e2, . . . , vn−1, en, vn = w , e, v.
(2)⇒ (3)
Let v and w be vertices in G. Since G is connected, there is at least one path
from v to w. We show that there cannot exist two different paths from v to w,
by proof by contradiction: Suppose there exist 2 different paths from v to w:
v = v0, e1, v1, e2, . . . , vn−1, en, vn = w and
v = v0, e′1, v ′1, e′2, . . . , v ′m−1, e′m, v ′m = w. Let k be the smallest index such that
vk 6= v ′k . (Why does such a k exist?) By deleting the edge ek from G we obtain
a connected subgraph, because the walk vk−1, ek , vk can be replaced by the
walk vk−1, e′k , v ′k , . . . , e′m, v ′m = w , en, vn−1, en−1, vn−2, . . . , vk+1, ek+1, vk . E



Graphs Discrete mathematics I 21.

Trees

Proof
(3)⇒ (4)
We show that G contains no cycle, by proof by contradiction: Suppose
there is a cycle v = v0, e1, v1, e2, . . . , vn−1, en, vn = v. Then there exist
two different paths from v1 to v: v1, e2, . . . , vn−1, en, vn = v and
v1, e1, v0 = v. E
Showing that G is maximally acyclic: If the newly added edge e is a loop
and v is its endpoint, then v , e, v is a cycle. Otherwise e has two distinct
endpoints v and w. Let v = v0, e1, v1, e2, . . . , vn−1, en, vn = w be the
path from v to w in G. By adding the edge e and vertex v to this path
we obtain the cycle: v = v0, e1, v1, e2, . . . , vn−1, en, vn = w , e, v.
(4)⇒ (1)
By our assumption in (4), G contains no cycle. It remains to show that
G is connected, i.e. for any vertices v and w there is a path in G. Add
an edge e with endpoints v and w to the graph. The resulting new graph
will contain a cycle with the edge e in it (Why?):
w , e, v , e1, v1, e2, . . . , vn−1, en,w. Then v , e1, v1, e2, . . . , vn−1, en,w is a
path from v to w.
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Trees

Lemma (Vertices of degree 1 in finite acyclic graphs)
If a finite graph G does not contain a cycle and contains at least one
edge then there are at least 2 vertices with degree 1 in G.

Proof
Since G is finite, among all paths in G there is at least one path P of
maximal length (i.e. a path P such that there is no path longer than P in
G). Let P be: v0, e1, v1, e2, . . . , vn−1, en, vn. As G contains at least one
edge, the length of P is at least 1, hence v0 6= vn.
We show that deg(v0) = deg(vn) = 1. Proof by contradiction: Suppose
that there is an edge e 6= e1 which is incident to v0. Then the other
endpoint v0 of e must lie on P, because otherwise
v0, e, v0, e1, v1, e2, . . . , vn−1, en, vn would be a path longer than P, a
contradiction. Hence v0 = vk for some vertex vk on P. Then
vk , e, v0, e1, v1, e2, . . . , vk−1, ek , vk is a cycle, which is also a
contradiction. Therefore there is no edge e 6= e1 incident to v0 and so
deg(v0) = 1. Similarly deg(vn) = 1.
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Trees

Theorem (Equivalent characterisations of trees 2 - using the
number of edges)
For a simple graph G on n vertices (n ∈ N+) the following conditions are equivalent:
(1) G is a tree;
(2) G contains no cycles (i.e. acyclic) and it has n − 1 edges;
(3) G is connected and it has n − 1 edges.

Proof
If n = 1 then the statement is clearly true. (Why?)
(1)⇒ (2): Proof by induction on n: Suppose the statement is true for some n ∈ N+.
Let G be a tree with n + 1 vertices. Then G has a vertex v of degree 1. (Why?)
Delete vertex v from G. The new graph G ′ is clearly acyclic. It is also connected:
since v can be contained only as an endpoint in any path in G, hence for any vertices
v ′ and v ′′ in G ′, the path between v ′ and v ′′ in G cannot contain v, and so it is also
a path in G ′. Therefore G ′ is connected, hence a tree, and so by our inductive
hypothesis it has n − 1 edges, and so G has n edges.
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Trees

Proof
(2)⇒ (3): Proof by induction on n: Suppose the statement is true for some
n ∈ N+. Let G be an acyclic graph with n + 1 vertices and n edges. It is
sufficient to show that G is connected. The graph G contains a vertex v of
degree 1. (Why?) Delete v from G. The resulting graph G ′ is also acyclic and
has n vertices and n − 1 edges. Hence, by our inductive hypothesis G ′ is
connected. Between any vertices v ′ and v ′′ in G ′ there is a path in G ′, which is
also a path in G. From any vertex v ′ in G ′ we can obtain a path in G to v if
we consider the path in G ′ from v ′ to the vertex adjacent to v in G and to this
path we add the edge incident to v, and v.
(3)⇒ (1): Let G be a graph satisfying Condition (3). It is sufficient to show
that G is acyclic. Proof by contradiction: Suppose G contains a cycle. Then by
deleting any edge of a cycle in G we obtain a connected graph. (Why?) Repeat
this step, while the graph still has a cycle. The process halts after finite steps
(Why?), when the new graph T is a tree. If we omitted k > 0 edges during the
process, then T has n − 1− k < n − 1 edges. Because of the implication
(1)⇒ (2), T has n − 1 edges, a contradiction. E
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Spanning trees

Definition (spanning tree)
A subgraph T of a graph G is called a spanning tree of G , if T is a tree
and T contains all vertices of G .

Example

G

v1

v2

v3 v4

v5

e1

e4
e3 e5

e2

e6
F

v1

v2

v3 v4

v5

e1

e4
e3 e5
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Spanning tree

Proposition (Existence of a spanning tree)
Every finite connected graph has a spanning tree.

Proof
Let G be a finite, connected graph. If G contains a cycle then delete an
edge from one of the cycles in G. The new graph is still connected.
(Why?) Repeat this step until the graph becomes acyclic. This process
will terminate in finite number of steps, since the number of edges in the
graph decreases in each step. When the process stops, the graph
obtained is a spanning tree of G.
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Spanning tree

Proposition (A lower bound on the number of cycles)
A finite connected graph G = (ϕ,E ,V ) contains at least |E | − |V |+ 1 cycles with
pairwise different sets of edges.

Proof
Let T be a spanning tree of G. Then T has |V | − 1 edges. Denote by E ′ the set of
those edges in G which are not in T . If we add any edge e ∈ E ′ to T there will be a
cycle Ke in the new graph F ′ (Because T is a maximally acyclic graph), which is also
a cycle in G. The cycle Ke contains the edge e (Why?) and if e 6= e′ ∈ E ′ then Ke′

does not contain e. This way we obtain |E ′| = |E | − |V |+ 1 cycles with pairwise
different sets of edges.

Comment
The above lower bound does not necessarily give the exact number of cycles in the
graph (3 > 7− 6 + 1 = 2).
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Forests, spanning forests

Definition (forest, spanning forest)
An acyclic graph is called a forest.
A subgraph F of a graph G containing one spanning tree from each
component of G is called a spanning forest of G .

Proposition (Spanning forests in finite graphs)
Every finite graph has a spanning forest.

Proposition (Number of edges in a finite forest)
The number of edges in a finite forest F equals the number of vertices in
F minus the number of components in F .

Comment
Among all (not necessarily connected) graphs, forests and spanning
forests play a similar role to those of trees and spanning trees among
connected graphs.
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Euler trail

Definition (Euler trail)
A trail that contains all edges of a graph is called an Euler trail. (An Euler trail
can be an open Euler trail or a closed Euler trail, depending on whether it is an
open or a closed trail.)

Comment
Since a trail does not contain repeated edges, an Euler trail contains every edge
of the graph exactly once.



Graphs Discrete mathematics I 30.

Euler trail

Theorem (Existence of a closed Euler trail)
A finite connected graph contains a closed Euler trail if and only if the
degree of every vertex in the graph is even.

Proof
⇒: Let v0, e1, v1, e2, . . . , vn−1, en, v0 be a closed Euler trail in the graph.
Following the Euler trail we ’enter’ each vertex v the same number of
times as we ’leave’ it. Hence the trail contains an even number of edges
incident to any vertex v (counting loops twice), and so the degree of
every vertex is even.
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Euler trail

Proof
⇐: The proof is constructive. First consider an arbitrary closed trail (a
closed trail certainly exists in any graph, for example a trail containing no
edges, just a single vertex), call it T . As any closed trail, T contains an
even number of edges incident to any vertex of the graph (counting each
loop twice). (Why?)
If the current closed trail T does not contain all edges of the graph, then
– because the graph is connected – there is a vertex w in our closed trail,
which has incident edges not included in T . Start a new trail T ′ from w
leaving w on an edge not used in T and proceed always on unused edges.
As every vertex has an even number of edges not used in T , we can only
get stuck when returning to w. Consider the following new trail: starting
at w move along T , then after arriving back at w at the end, move along
T ′, at the end of which arriving back at w. This way we obtain a closed
trail longer than T . Hence, by repeating this expansion step, after a
finite number of expansions we obtain a closed Euler trail.
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Hamiltonian path, Hamiltonian cycle

Definition (Hamiltonian path)
If a path in a graph contains all vertices of the graph then we call it a
Hamiltonian path.

Comment
Since a path does not contain repeated vertices, a Hamiltonian path contains
each vertex of the graph exactly once.

Definition (Hamiltonian cycle, Hamiltonian graph)
A Hamiltonian cycle in a graph is a cycle that contains all vertices of the graph.
A graph is called a Hamiltonian graph if it contains a Hamiltonian cycle.

Theorem (Dirac, NP)
If in a simple graph G = (ϕ,E ,V ), |V | > 2, and the degree of every vertex is
at least |V |/2, then the graph contains a Hamiltonian cycle.
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Planar graphs

Definition (planar graph)
A graph G is called a planar graph, if it can be drawn in (with a more
technical word ’embedded in’) the plane (R2) in such a way that its
edges intersect only at their endpoints. (In other words, it can be drawn
on the plane in such a way that no edges cross each other, except for at
the vertices.) Such a drawing is called a plane graph representation or
planar embedding of the graph.

Comment
Not all graphs are planar, i.e. not all graphs can be embedded into R2

(not even all finite graphs are planar). However every finite graph can be
embedded into R3.
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Planar graphs

Definition (faces in a planar representation)
Given a planar embedding of a graph G , a face is a region – i.e.
connected subset – of the plane surrounded by edges of G , (i.e. a face is
a set of points, such that between any two points of a face, there is a line
(curve) in the plane, such that it does not cross any of the edges (or
vertices) of G). A face can be unbounded, and in that case it is an
external face, otherwise it is an internal face.

Comment
The status of internal/external face is not significant: An external face
can become an internal face in a different planar embedding. However,
the number of faces is independent from the embedding.
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Planar graphs

Example

v1 v2

v3 v4

e1
e2

e3

e4

v1 v4

v3 v2

e1

e2

e3

e4

Example
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Planar graphs

Theorem (Euler’s formula)
Let G = (ϕ,E ,V ) be a connected planar graph. Then for any planar
embedding of G:

|E |+ 2 = |V |+ f

where f denotes the number of faces in the planar embedding.

Proof
Suppose there is a cycle in G. By deleting an edge of the cycle, two faces
are merged, so both f and |E | is reduced by 1. In the end, we obtain a
tree for which the equation holds (Why?).
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Planar graphs

Proposition (Upper bound on the number of edges in simple
planar graphs)
For any simple, connected, planar graph G = (ϕ,E ,V ) with |V | ≥ 3: |E | ≤ 3|V | − 6.

Proof
In case |V | = 3 there are two such graphs: P2 and C3, both of which satisfy the
inequality.
Assume |V | > 3. Then |E | ≥ 3 (Why?). Since G is simple, every face is surrounded
by at least 3 edges. Therefore if we count the number of edges surrounding each face
and then add up these numbers for all faces then the sum obtained will be ≥ 3f . As
every edge separates at most two regions, in this sum every edge was counted at most
twice, hence this sum is ≤ 2|E |. Therefore 2|E | ≥ 3f . Expressing f from Euler’s
formula and substituting for it we obtain 2|E | ≥ 3(|E |+ 2− |V |), which after
rearrangement yields |E | ≤ 3|V | − 6.

Comment
The theorem holds for disconnected graphs as well, since it can be made a connected
planar graph by adding edges.
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Planar graphs

Proposition (Lower bound on the minimal degree in simple
planar graphs)
If G = (ϕ,E ,V ) is a simple planar graph, then

δ = min
v∈V

d(v) ≤ 5.

Proof
We can assume |V | ≥ 3 (Why?).
Proof by contradiction: Suppose δ ≥ 6. Then 6|V | ≤ 2|E | (Why?),
furthermore, using our previous theorem, 2|E | ≤ 6|V | − 12, implying
6|V | ≤ 6|V | − 12, a contradiction.

Comment
There exists 5-regular simple planar graph.
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Planar graphs

Proposition
K3,3 is not a planar graph.

Proof
Proof by contradiction: Suppose that on the contrary, K3,3 is a planar graph.
Denote by f the number of faces in its planar embeddings. Since |E | = 9 and
|V | = 6, by Euler’s formula f = 5 must hold. Since it is a simple bipartite
graph, each face is surrounded by at least 4 edges (Why?), and every edge
separates at most 2 faces, so 4f ≤ 2|E |, implying 20 ≤ 18, a contradiction.

Proposition
K5 is not a planar graph.

Proof
Proof by contradiction: Suppose that on the contrary, K5 is a planar graph.
Since |E | = 10 and |V | = 5, by the theorem about the upper bound on the
number of edges in simple planar graphs 10 ≤ 3 · 5− 6 = 9, a contradiction.
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Planar graphs

Definition (topological isomorphy of graphs)
The finite graphs G and G ′ are topologically isomorphic if they can be converted into
each other applying the following transformation or its inverse a finite number of times:
delete a vertex with degree two and connect its neighboring vertices with an edge.

Example

Theorem (Kuratowski (NP))
A simple and finite graph is a planar graph if and only if it has no subgraph
topologically isomorphic to K5 or K3,3.
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Labelled graphs

Definition
Let G = (ϕ,E ,V ) be a graph, Ce and Cv be sets and ce : E → Ce and
cv : V → Cv be functions. Then (ϕ,E ,V , ce ,Ce , cv ,Cv ) is called a
labelled graph, Ce the set of edge labels, Cv the set of vertex labels,
ce : E → Ce edge labelling and cv : V → Cv vertex labelling.

Definition (edge labelled and vertex labelled graphs)
If only the set of edge labels and the edge labelling, or only the set of
vertex labels and the vertex labelling are given then we talk about an
edge labelled or vertex labelled graph, respectively.

Note
Labelled graphs are also called coloured graphs.
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Labelled graphs

Definition (edge weighted and vertex weighted graphs)
If in a labelled graph Ce = R or Cv = R we talk about edge weighting and edge
weighted graph, and vertex weighting and vertex weighted graph, respectively, and Ce
and Cv respectively, is ommitted from the notation.

Definition
Egy G = (ϕ,E ,V ,w) edge weighted graph the weight weight of a set of edges E ′ ⊆ E
is
∑

e∈E ′ w(e).

Theorem (Kruskal’s algorithm)
Given an edge weighted graph G Kruskal’s algorithm finds a minimum weight
spanning forest of G.

1 Let F be the empty subgraph of G containing all vertices of G.
2 In each step the algorithm adds a new edge e of G to F with the following

property (if such an edge e exists): by adding e to F no cycle is created in F and
e has minimal weight among all edges of G not in F with this property.

3 If there does not exist any edge e in G not in F such that by adding e to F no
cycle is created, the algorithm stops.
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Labelled graphs

Theorem (Kruskal’s algorithm)
Given an edge weighted graph G Kruskal’s algorithm finds a minimum
weight spanning forest of G.

Proof
Later...

Definition (greedy algorithm)
An algorithm is called a greedy algorithm if in each step it chooses the
option which appears to be the most favourable in the given step (no
forward thinking’).

Note
Kruskal’s algorithm is a greedy algorithm.
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Labelled graphs

Note
A greedy algroithm does not always find an optimal solution to a problem.

Example
Find a minimum-weight Hamiltonian cycle in the following graph:

v1

v2 v3

v4

0

2

99

2

199
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Directed graphs

Definition (directed graph)
A triple G = (ψ,E ,V ) is called a directed graph (or digraph), where E
and V are sets such that V 6= ∅, V ∩ E = ∅ and ψ : E → V × V .
E is called the set of edges, V is the set of vertices (points) and ψ is the
incidence function. Function ψ assigns to each element of E an ordered
pair of vertices.

Terminology
If ψ(e) = (v , v ′) v is the starting point and v ′ is the endpoint of e.

Definition (orientation of an undirected graph)
For any directed graph G = (ψ,E ,V ) an undirected graph
G ′ = (ϕ,E ,V ) can be obtained in the following way: for every edge e if
ψ(e) = (v , v ′) then define ϕ(e) as {v , v ′}.Then G is called an orientation
of G ′.
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Directed graphs

Definition (strictly parallel edges)
If for some edges e 6= e′ we have ψ(e) = ψ(e′) then e and e′ are said to
be strictly parallel edges.

Definition (outdegree and indegree of a vertex)
The number of edges with starting point v is called the outdegree of v ,
denoted by deg+(v) or d+(v).
The number of edges with endpoint v is called the indegree of v denoted
by deg−(v) or d−(v).
If deg+(v) = 0 then v is called a sink; deg−(v) = 0 then v is called a
source.
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Directed graphs

Theorem (Handshaking Theorem for Directed Graphs)
In any directed graph G = (ψ,E ,V ):∑

v∈V
d+(v) =

∑
v∈V

d−(v) = |E |.

Definition (isomorphism of directed graphs)
The directed graphs G = (ψ,E ,V ) and G ′ = (ψ′,E ′,V ′) are said to be
isomorphic, if there exist bijections f : E → E ′ and g : V → V ′ such that
for every e ∈ E and v ∈ V : v is a starting point of e if and only if g(v)
is a starting point of f (e) and v is an endpoint of e if and only if g(v) is
an endpoint of f (e).
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Directed graphs

Definition (directed subgraphs and supergraphs)
Let G ′ = (ψ′,E ′,V ′) and G = (ψ,E ,V ) be directed graphs. G ′ is called
a directed subgraph of G if E ′ ⊆ E , V ′ ⊆ V and ψ′ ⊆ ψ. Then G is a
directed supergraph of G ′.
If the directed subgraph G ′ contains all edges of G with starting- and
endpoints both lying in V ′ then G ′ is called the directed subgraph of G
spanned (or induced) by V ′.


	Graphs

