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Extension of number sets

@ Natural numbers: N = {0.1,2, ...}
There is no natural number x € N such that x +2 = 1!
On N subtraction is not defined for all numbers.

@ Integers: Z ={...,—2,-1,0,1,2,...}
In Z subtraction is always possible: x = —1.
There is no integer x € Z such that x -2 = 1l
On Z division is not defined by all numbers.

@ Rational numbers: () = {p Cp,qEL,qF 0}
q

We can divide by any nonzero number in Q: x = %
There is no rational number x € Q such that x° = 2!
Taking the square root of a rational number © does not always produce a

rational number, not even in the case of a nonnegative rational number.

@ Real numbers: R.
We can take the square root of any nonnegative number in R.
There is no real number x € R such that x> = —1!
We cannot take the square root of negative numbers in x € IR, since:
Vx e R: x2>0.
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Extension of number sets

Among complex numbers the equation x> = —1 can be solved!

Applications of complex numbers:
@ solving equations;
@ geometry;
@ physics (fluid dynamics, quantum mechanics, relativity theory);
@ computer graphics, quantum computers.

Introducing complex numbers
Definition (imaginary unit)

Let i be a solution to the equation x> = —1; i is called the imaginary
unit.

We would like to extend the operations of addition and multiplication
from the set of real numbers to a larger set containing /, while keeping
the 'usual rules’ of calculation and adding the rule: > = —1. E.g.:

14+ =14+2i+iP=14+2i+(-1)=2i
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Definition of complex numbers (informal definition)

Definition (complex numbers)
The expressions of the form a + bi where a, b € R, are called complex numbers with
addition and multiplication defined as:

@ addition: (a+ bi) + (c +di) = a+ c+ (b+ d)i.

@ multiplication: (a+ bi)(c + di) = ac — bd + (ad + bc)i.

The set of all complex numbers is denoted by C. The form a + bi where a,b € R is
called the algebraic form (or Cartesian or rectangular form) of a complex number.

Definition (real part and imaginary part of a complex number)

Let z = a+ bi (a, b € R) be a complex number. Then the
real part of z is Re(z) = a € R and the imaginary part of z is Im(z) = b € R.

@ Note: /m(z) # bi

@ The complex numbers of the form a + 0 - i are the real numbers. The complex
numbers of the form O -+ b/ are called pure imaginary numbers.

@ Two complex numbers with algebraic forms a + bi and ¢ -+ di are equal:
a-+ bi=c+di ifand only if a=c and b =d.
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The definition of complex numbers (formal definition)

Definition (formal definition of complex numbers)
The set C of complex numbers is the set R x R together with the
following operations:

e addition: (a,b) + (c¢,d) = (a+¢,d + b);

e multiplication: (a, b) - (¢,d) = (ac — bd, ad + bc).

The two definitions of complex numbers are equivalent: a + bi + (a, b),
e.g. /< (0,1).

The format a + bi is more convenient for manual calculations.

The format (a, b) is more convenient for use with computers.
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Basic properties of addition and multiplication on C

Based on the definitions it is easy to verify the following properties:

Proposition (Basic properties of operations on C)
Properties of addition
@ Associativity: Va,b,c € C: (a+ b)+c=a+ (b+c).
@ Commutativity: Va,b e C: a+ b= b+ a.
© Neutral element (zero element): 30€ C (zero element) such that
VaecC:0+a=a+0=a.
@ Additive inverse (opposite): Va € C : 9—ac C (opposite of a) such that
a+(—a)=(—-a)+a=0.
Properties of multiplication
@ Associativity: Va,b,c € C: (a-b)-c=a-(b-c).
@ Commutativity: Va,bc C:a-b=b-a.
© Unit element: 1€ C (unit element) such thatVac C:1-a=a-1= a.

© Multiplicative inverse (reciprocal): Va € C\ {0} : 33*1:§6 C (reciprocal of a)
such thata-a ' =a1l.-a=1

Distributivity: Va,b,c € C: a(b+ ¢) = ab + ac (and (a+ b)c = ac + bc)
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(C,+. ) is an algebraically closed field

Corollary:

@ Because of the above properties, the algebraic structure (C,+, ) is a
so called field (just like (R, +.-) and (Q,+,")).

@ Informally we can say that we can calculate with complex numbers
‘in the same way' as with real numbers (in sums and products we
can ‘move’ the brackets; the order of the terms in a sum and of the
factors in a product can be changed; brackets can be expanded by
the distributive property etc.) with the additional rule: /> = —1.

Fundamental Theorem of Algebra: It can also be shown — proof is not
easy — that all polynomial equations of positive degree has solution in C.
Hence the field (C,+,-) is algebraically closed. ('No need to introduce
further numbers!’):

Theorem (Fundamental Theorem of Algebra; no proof
required)

Let n € N'. Then for every ag,...,a, € C, a, # 0, there exists z € C
such that ag + a1z + a2 + ...+ a,z" =0 (i.e. the polynomial

ao + aix + axx?> + ... + a,x" has a root in C.)
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Representing complex numbers in the Complex plane
(Gaussian plane, Argand diagram)

Complex numbers can be represented in the complex plane (Gaussian
plane, Argand diagram):
@ z=a+ bi+ (a,b)
@ bijecion (one-to-one correspondence) between C and the points (or
vectors) of the plane.

Imaginary axis Im(z)

z=a+bi

Im(z) =b

Real axis

q 1 Re(z)=a Re(z)
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Calculating with complex numbers: absolute value,
conjugate

Definition (absolute value of a complex number)

The absolute value of a complex number z with algebraic form

z=a+ biis |z|=Va®+ b2

In particular, if z is a real number, then z = a and its absolute value is
the ‘usual’ absolute value of a real number: |z| = |a| = Va2,

Proposition (Hw)
For any complex number z:

Q 2| >0,
Q@ |z]=0&z=0.

Definition (conjugate of a complex number)

The conjugate of a complex number z with algebraic form z = a + bi is
Z= a— bi.
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Calculating with complex numbers: opposite, subtraction

Definition (opposite of a complex number)

The opposite of a complex number z is the complex number denoted by
—2z such that z + (—z) = 0.

Proposition (Opposite of a complex number; proof is hw)

The opposite of a complex number z with algebraic form z = a -+ bi is
the complex number with algebraic form —z = —a — bi.

Definition (subtraction of complex numbers)

The difference of complex numbers z and w is defined as:

z—w=2z+(—w)

10.
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Calculating with complex numbers: reciprocal, division

Definition (reciprocal of a nonzero complex number)

The reciprocal of a nonzero complex number 7 is the number z =1 = %

such that z -z~ = 1.

By the definition of multiplication it is easy to show that every nonzero
complex number has a reciprocal.

Using the reciprocal, we can define division by nonzero complex numbers:

Definition (division by nonzero complex numbers)
The quotient of two complex numbers z and w # 0 is:
= Zo

z 1
w w

11.
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Calculating with complex numbers: reciprocal, division

What is 2°° in algebraic form?

Idea: Similar to the rationalization of the denominator in fractions of real

numbers:
11 1-v2 1-+2 L 1-v2
1+v2 1+4v2 1-v2 (1+V2)1-v2) 12-2°
:111?:71+\@

Multiply both the numerator and the denominator by the conjugate of the
denominator:

243i 243i1—i (2+43i)(1—i) 5+i 54+i 54 5

1+i 1+i1-i (A+na—-i) - 1-(-1) 2 2

Why did this method work? When multiplying the denominator 1 + / by its
conjugate 1 — i, the result (the new denominator) is a real number.

1

+5i

12.
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Calculating with complex numbers: reciprocal, division

Lemma

For any complex number z we have z - z = |z|?> (hence z - 7 is a real number).

Proof

Let z = a + bi be the algebraic form of z. Then
z-Z = (a+ bi)(a— bi) = a% + b* = |z|2.

Hence:

Proposition (Calculating the quotient in algebraic form)

Let z,w € C, w # 0. Then the quotient = in algebraic form can be found as:

z z-w
W ow-w
Proof
Let z=a+ bi and w = c+di (a,b,c,d € R). Then
z _ zw _ (atbi)(c—di) _ actbd+(bc—ad)i __ actbd bc—ad -

w = ww — (crdi)(c—di) — 2 d? = Shar T e

13.
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Calculating with complex numbers

Theorem (Properties of conjugation and the absolute value of
complex numbers; proof is hw.)
Let z and w be complex numbers. Then:

Q@z=1z

@z w=z-
02+z—2Re()
ezfz—Zlm() i
Qz z=
Oifz;éOthenz’lzﬁ'

Q (0| =0 and if z # 0 then |z| > 0;
Q I7 = |2l
Q@ [z w|=|z]-
@ |z +w| < |z| + |w| (triangle-inequality).

14.
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Calculating with complex numbers

Theorem

® |z-w[=z|-|w|;

’

Proof

zwPl=zwzWwW=zwzZwWw=zZw-

w = |z|*-|w|* = (|z] - [w])*. |

15.
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The polar form of complex numbers
Let z=a+bicC (a,beR), z#0.

z=qa+bi=
r-(cos¢ +1i-sing)

i b=r-sing

N\ /

a
a=r-cos @ Re(z)

@ The length r of the vector (a,b) is: r = v/ a’> + b*> = |z|.

@ Denote by ¢ the angle from the positive real axis to the vector (a, b)
(comment: this angle is not unique, because integer multiples of 27
can be added to it).

The coordinates a and b expressed in terms of r and ¢ ('polar
coordinates’):
a=r-cosp, b=r-siny



Discrete mathematics | 7,

The polar form of complex numbers

Definition (polar form)

The polar form of a nonzero complex number z € C is:
z = r(cos p + isin )

where r = |z|.

Note:
@ The polar form of zero is usually not used, because the angle could be any
real number.

@ The polar form is not unique (because the angle is not unique):
r(cos ¢ + isinp) = r(cos(¢ + 27) + isin(p + 27)).

Definition (argument)

The argument of a nonzero z € C is the angle ¢ = arg(z) € [0, 27) such that
z = r(cos ¢ + isin ) where r = |z|.
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Converting from algebraic form to polar form

Given the algebraic form z = a + bi # 0 we would like to determine the
polar form of a nonzero complex number.

a+ bi = r(cosp + ising)

Given a and b we are looking for r = |z| and .
e Finding r: r = |z| = V/a% + b?.
e Finding ¢ Since a = rcos ¢, hence

A —

{arccos f, if b >0;

— arccos f if b <0.
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De Moivre's formulas

Theorem (De Moivre's formulas)
Let z, w € C be nonzero complex numbers: z = |z|(cos ¢ + isin ),
w = |w|(cos®) + isinv), and let n € N*. Then

Q@ zw = |z||w|(cos(p + ) + isin(p + 1)),

@ Z =2 (cos(p— )+ isin(p — 9));

@ z" = |z|"(cos ny + isin nyp).

The angles are added, subtracted, multiplied by n.

Geometric meaning

Multiplication by a nonzero complex number z € C acts on the complex
plane like an enlargement by a scale factor of |z| together with a rotation
by an angle of arg(z) around the origin.
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Proof

zw

|z|(cos ¢ + isinp) - |w|(costp + isiny) =

By commutativity of multiplication:

= |z||w|(cosp + isinp) - (cost) + isiny)) =

By definition of multiplication:

|z||w|(cos ¢ cos i — sin @ sin 1 + i(cos ¢ sin P + sin @ cos))) =
Hence by the trigonometric addition formulas:

= Jzllwl(cos( + %) + isin(ip + )

Trigonometric addition formulas:
cos(p + 1) = cos @ costh — sin psin
sin(¢ + 1) = cos @sin + sin ¢ cos ¥

@ The absolute value of the product: |zw| = |z||w/|.
@ The argument of the product:
e if 0 < arg(z) + arg(w) < 2w then arg(zw) = arg(z) + arg(w);
o if 27w < arg(z) + arg(w) < 4w then arg(zw) = arg(z) + arg(w) — 2.

The functions sin, cos are periodic with a period 27, for finding the
argument of the product, we may need to reduce the sum of the
arguments by 27.
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Roots of complex numbers

Definition (n*" roots of a complex number)

Let n € Nt and z € C. The n'" roots of z are those complex numbers w for which
w' = z.

Theorem (Formula for the n*’ roots of a complex number)

Let z = |z|(cos @ + isin ), n € Nt. The n" roots of z are:

" © 2k L., 0 2k
Wi = «/\z\(cos(% + T‘) + /sm(% 4+ 2

n

The following fact will be used in the proof of the theorem:
Two complex numbers given in polar forms z = |z|(cos ¢ + isin ) and
w = |w|(cos 1) + isin) are equal:
|z|(cos ¢ + isiny) = |w|(cosp + isin)),
if and only if:
@ |z| = |w| and

@ ¢ = 1+ 2kn for some k € Z.

21.
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Roots of complex numbers

Theorem (Formula for the n'" roots of a complex number)

Let z = |z|(cosp + isinp), n € NT. The n roots of z are:

Q 2k Q 2k
Wi = C/\z\(cos(%—i— 7—)—i—isin(f—s— 7—))

n n n

k=0,1,...,n—1.

Proof

By De Moivre's formula, for any complex number w = |w/|(cos) + isini)) we
have w" = |w/|"(cos ny) + isin m)).
Hence w" = z is equivalent to |w|"(cos ni) + isin ny) = |z|(cos ¢ + i sin @),
which holds if and only if:

° |w|"=|z| & |w| = {/|z| and

@ nY = o+ 2km forsomekeZ@qg):,i:—i-%T” for some k € 7.

If k€ {0,1,....,n— 1}, then we obtain all distinct n"" roots.

22,
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Example

Example

Find the 6% roots (w) of \[+'
1—i:f(§ %) V2(cos & + isin IF)
7%) =2(cos ¢ —|—/S|n?)

9 . 1= 197
Since f — § = 5, hence: = = \[(cos 5 +isin

So the 6% roots are:

Wy = —l\gﬁ (cos 19mL2AKT  jgjp 19md24kT) - f—0,1,...

1971').

N

28,
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Complex roots of unity

Definition (n™ roots of unit)

h h

For any n € N™ the n” roots of 1 are called the n™ roots of unity. (i.e. the

complex numbers ¢ satisfying ¢” = 1.)

Using the formula of the n' roots of a complex number we obtain the following:

Theorem (The polar form of the n" roots of unity)

th

For any n € N the n"" roots of unity are:

n 2k7 .. 2k
skzsi)z(cosTﬁT—Hsm n‘) : k=0,1,...,n— 1.

The 8% roots of unity:
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Roots of complex numbers

Theorem (Expressing all n® roots of a complex number using
one n root and the n®’ roots of unity)

Let z € C be a nonzero complex number, n € N™ and w € C be such
that w” = z. Then the n'" roots of z can be expressed in the following
form:

Wy = WSE(H) where k = 0,1, ..., n—1.

Proof

All numbers of the form we, are n'"" roots of z:
(wep)" = w"e]l = z-1 = z. These are n distinct values, hence we have
obtained all n'" roots of z.

25.
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Order

Definition (order of a complex number)

The order of a complex number z # 0, denoted by o(n), is the smallest
n € N such that z” = 1, if such an n € NT exists, otherwise it is defined

as o0o.
01,1,1,...=0(1)=1
o —1,1,-1,1,...= o(—-1)=2
o/, —1,—i,1i,—1,... = 0o(i)=4
14i ; —1+i —1—i i 1—i q 140 147y _
OW,I’ ﬂ,—1.7,—I7W.1777I,...$0(7)—8
Example

@ The order of 1 is 1;

@ The order of —1is 2: —1,1...;

@ The order of jis 4: /,—1,—i, 1, ..
@ The order of 2 is co : 2,4,8,16, .. ..
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Order

Theorem (The properties of the order of complex numbers)

Let z #+ 0 be a complex number. Then:

@ Ifo(z) = oo then the powers of z to any two distinct positive
integer exponents are always distinct.

@ If o(z) is finite, then the sequence of powers of z to positive integer
exponents is periodic with a period o(z), which means that for any
k,I € N* we have zX = z! < o(z)|k — I. In particular
Zk =1 < o(z)|k.

The proof of the above theorem is easy, but not required for the exam.
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Primitive n" roots of unity

The order of an n'" root of unity is not necessarily equal to n:

4" yoots of unity: 1,7, —1, —i.
@ the order of 1 is 1;
o the order of —1 is 2;

@ the order of / is 4.

Definition (primitive n" roots of unity)

If the order of an n‘" root of unity is equal to n, then we call it a
primitive n™ root of unity.

Two corollaries of the Theorem about the Properties of the order:

Corollary

o Ife is a primitive n'" root of unity, then the list <°. c', ...  c" ' isa

list of all n'"" roots of unity.

h

e A primitive n'" root of unity is a k" root of unity if and only if n|k.
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Polar forms of the primitive n'” roots of unity

Example
@ Primitive 1. root of unity: 1;
@ Primitive 2. roots of unity: —1;
@ Primitive 3. roots of unity: %"ﬂ;
@ Primitive 4. roots of unity: =/ ;

Primitive 5. roots of unity: ... (HW)

@ Primitive 6. roots of unity: -5

Proposition (Polar forms of the primitive n'" roots of unity; no
proof required)

An n'" root of unity cos(?“™) + isin(?5%) is a primitive n'" root of unity
if and only if gcd(n, k) = 1,




