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Relations

Relations

describe relationships;

examples: =, <, <, C, divisibility, ...

°
@ are a generalization of the concept of functions;
@ functions are special type of relations;

("]

are 'multivalued’ functions;
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Ordered pair

For any objects x # y in the ordered pair (x, y) the order of the objects
matters:

o {x,yt ={y:x}

® (x,y) # (y,x).
We define the concept of an ordered pair (x, y) using sets so that it has
the following property: (x,y) = (v,w) if and only if x = v and y = w.
Definition (ordered pair)

The ordered pair (x, y) is defined as the set {{x}.{x,y}}; x is the first
coordinate and y is the second coordinate of (x,y).

Definition (Cartesian product of sets)

The Cartesian product of two sets X and Y is defined as

XxY={(x,y) : xe X,y e Y}
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Binary relations

Definition (binary relation)

Let X and Y be sets. If R C X x Y then we call R a relation from X to
Y. If X =Y, then we say that R is a relation on X and in this case we
call R a homogeneous binary relation.

If R is a binary relation, then (x,y) € R is often written as x R y.

Examples
Q Let X ={1,2.3} and Y = {a,b,c,d}. Then
R ={(2,b),(2,¢),(3,a).(3,b)} C X x Y is a binary relation from X to
Y.
Q Ix = {(x,x) : x & X} C X x X is the identity relation on set X.
Q {(x,y)€ZxZ : x|y} CZ x Zis the divisibility relation on 7.
@ For a system of sets .7, {(X,Y) e .7 x.7 : X C Y} C.7 x.7 is the
subset relation on .7 .
@ For any function f : R — R, {(x,f(x)) € R xR:x € R} is a relation on
R.
Note: If R is a relation from X to Y (i.e. RC X x Y )and X C X’ and
Y C Y/, then R is also a relation from X’ to Y'!
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Domain and range of a binary relation

Definition (domain and range)
The domain of a relation R C X x Y is the set

dmn(R) = {x € X | 3y € Y : (x,y) € R},
and the range of R is the set

mg(R)={y € Y|3xe X:(x,y) € R}

Examples
Q Let R = {(x,1/x*) : x € R}. Then:
dmn(Ry) = {x €R : x #0} and rmg(R)) ={x €R : x> 0}.
@ Let R = {(1/x*,x) : x € R}. Then:
dmn(R:) = {x € R : x>0} and rmg(R:) = {x € R : x #0}.
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Restrictions and extensions of a binary relation

Definition (restriction and extension of a binary relation)

If S C R for some binary relations R and S, then we say that R is an extension
of S and S is a restriction of R.
Let A be a set. Then the restriction of the binary relation R to A is the relation

Rla={(x,y) € R : x € A}.

Example

Let R={(x,x*) €ERxR : xcR}and S={(/x,x) ERxR : x € R}.
Then R a is an extension of S and S is a restriction of R, furthermore

S= R\Eo\ (R7 is the set of nonnegative real numbers).
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Inverse of a binary relation

Definition (inverse of a binary relation)

The inverse of a binary relation R is defined as

R™H ={(y;x): (x,y) € R}

Examples
o Let T ={(2,5),(1,a),(4,4).(5,7)}. Then:
T-1={(5,2),(a1),(4,4),(7,5)}
Define R and S as in the previous slide. Then:
e RI={(x,x)eRxR:xeR}
o S71={(x,v/x) eRxR:xeR}
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Image and inverse image of a set

Definition (image and inverse image of a set)

Let R € X x Y be a binary relation and A be a set. The image of A
under the relation R is the set R(A) = {y € Y |Ix € A: (x,y) € R}.
The inverse image or preimage of a set B is R~ !(B), that is the image of
B under the relation R~ .

Examples
Let R={(x*>,x) eRxR:xeR}and S={(x,v/x) eERxR:xeR}
Then

e R({9}) = {—3,+3} (using a shorter notation: R(9) = {—3,3}),
R({9,10,16}) = {-3,3,1/10, —/10, —4, 4}
(9) ={3}.

~1({2,5}) = {4, 25}
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Example

Let R = {(a,¢),(a,e),(b,a),(d,a),(d,c),(d,e), (e, g),(f,g)} CXxY
where X = {a,b,c.d,e,f,g} and Y = {a,c, e, g}.

Then:
dmn(R) = {a,b,d,e, f} R({a,c,e}) ={c,e,g}
rmg(R) ={a,c,e,g} =Y R=*({a,c,e}) = {a, b,d}

Rl{acey = {(a,¢),(a €), (e 8)}
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Composition of binary relations

Definition (composition of binary relations)

Let R and S be binary relations. The composition of R and S is the binary
relation defined as:

RoS={(x,2)[Fy : (x,y) € 5,(y,2) € R}.

In the composition we write relations “from right to left’:
Example
Let Rin = {(x,y) ERxR:sinx =y} and S,z = {(x,y) ERXR : logx = y}.

Then:
Rsin0Siog = {(x,2)|3y : logx = y,siny = z} = {(x,z) € RxR :sinlogx = z}.
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Composition of relations: representation on arrow diagram

Example: Let SC X x Y and R C Y x Z be two relations. Consider the
composition T = Ro S:

X

Y

S R z




Relations Discrete Mathematics |

Properties of composition

Proposition (Properties of the composition of relations)
Let R, S and T be binary relations. Then

Q@ Ro(SoT)=(RoS)o T (composition is associative).

Q@ (RoS)1=S51oR1.

Proof
Q@ (x,w)eRo(SoT)<3z:(x,z)€SoT AN(z,w) e R 3z Ty :
(x,y) € TA(y,2) e SA(z,w) ER <& Ty Tz : (x,y) € TA(y,2) €
SA(z,w)eR< Ty : (x,y) e TA(y,w) ERoS & (x,w) €
(ROS)OT

(z,x) €(RoS) & (x,2) ERoS & Ty : (x,y) Ay, z) €

o €S
R& 3y :(y,x) €S TA(z,y)eRT & (z,x) €S toRTL
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Properties of homogeneous binary relations

Example
Relations: =, <, <, |, G, T={(x,y) : x,y € R, |x —y| < 1}.

Definition (properties of homogeneous binary relations)
Let R be a relation on X. Then:
© R transitiveif Vx,y,z€ X: (x RyAy Rz) = xRz (= <, <, |, ©)
@ Rsymmetricif Vx,y e X : xRy =y Rx; (=, T)
© R anti-symmetricif Vx,y e X : (x Ry Ay Rx) = x=y; (=, <, <, Q)
@ R strictly anti-symmetric if Vx,y € X : x Ry = =y R x; (<)
Q@ Rreflxiveif Yxe X :xRx; (= <, |, G T)
Q R irreflexive if Vx € X : =x R x; (<)

@ R trichotomous if Vx, y € X exactly one of the following three statements is
true: x =y, x Ry or y R x; (<)

@ R dichotomous if Vx,y € X at least one of the following two statements holds
(perhaps both): x R y or y R x. (<)

13.
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Properties of homogeneous binary relations

The reflexive, trichotomous and dichotomous properties of a relation also

depend on the underlying set:

Vel

For example, {(x,x) e R xR x e R} CR x R C (

2

x C considered as a
relation on R is reflexive, but as a relation on C, it is not reflexive.

Example
X

@«\c

|

b
transitive strictly anti-symmetric | x | trichotomous
symmetric reflexive x | dichotomous
anti-symmetric irreflexive X

14.
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Equivalence relations, equivalence classes

Definition (equivalence relation)

Let X be a set. A binary relation R on X is called an equivalence relation
if it is reflexive, symmetric and transitive.

Examples
Q@ = (e.g. ontheset C, R, Q, Z or N);
@ ~ on Z, where Vx,y € Z: x ~ y if and only if 5|(x — y);
@ the relationship of being parallel, on the set of all straight lines in a
given plane.

Definition (equivalence class of an element)

Let ~ be an equivalence relation on a set X. The equivalence class
% = [x] of an element x in X is the set of those elements of X which are
~-related to x, that is:

[x] ={y e X |y ~x}.
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Partitions of sets

Definition (partition of a set)
Let X # () be a set. A system & of subsets of X is called a partition of
X (or quotient set of X) if:
@ the elements of /7 are nonempty,
e 7/ is a pairwise disjoint system and
o UZ = X.
The elements of 7 are called the blocks or cells of the partition .

Examples
@ a partition of X = {a,b,c,d, e, f.g}: {{a.c},{b}. {e}, {d.f,g}}
@ a partition of R: {{a} : a € R}
@ another partition of R: {{ac R:|a|=r}:recR;}

16.
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Partitions determined by equivalence relations

Theorem (Partitions determined by equivalence relations)

Let ~ be an equivalence relation on a set X # (). Then the set of all equivalence
classes of ~: {[x| | x € X} is a partition of X. This partition is called the partition
determined by ~ or the quotient set of X by ~ and is denoted by X/ ~.

Proof (For sake of completeness; not required for the exam)

Let ~ be an equivalence relation on X. We need to show that X/ ~= {[x] : x € X} is
a partition of X.

@ As ~ is reflexive, x € [x]| and so
o U{[x] : x € X} = X and
o [x]#0
@ We show that if [x]| # [y| for some x,y € X then [x] N [y] = (. Suppose
[x]N[y] # 0 for some x,y € X and let z € [x] N [y]. As z € [x], hence z ~ x,
which — by symmetry of ~ — implies x ~ z. Similarly, z € |y| implies z ~ y. If
x1 € [x], then x; ~ x, hence by transitivity of ~, x; ~ x A x ~ z = x1 ~ z, and
sox|~zANz~y=x1~Yy=x1 € |y]l. Therefore [x] C [y].
It can be shown similarly that [y]| C [x]|. Therefore [x| = [y].

17.
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Equivalence relations determined by partitions

Theorem (The equivalence relation determined by a partition)

Let &7 be a partition of a nonempty set X. Then the relation
R = {(x,y) € X x X | x belongs to the same cell of & as y}

is an equivalence relation, and the partition determined by R is 7.

Proof (For sake of completeness; not required for the exam)

o R is reflexive: every x € X clearly belongs to the same cell as itself,
hence x R x.

e R is symmetric: if (x,y) € R then x belongs to the same cell as y,
hence y belongs to the same cell as x and so (y.x) € R.

e R transitive: if (x,y),(y,z) € R then x belongs to the same cell as
y and y belongs to the same cell as z, hence x belongs to the same
cell as z and so (x.z) € R.

18.
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Equivalence relations and partitions

For a nonempty set X, the equivalence relations on X and the partitions
of X can be put into a one-to-one correspondence with each other: they
mutually determine each other.

Examples (equivalence relations and the corresponding partitions)
@ =onR + {{a} :ac R}
o Vx,y € Ri x ~yiff x| = |y| & {{x,—x} : x € R}.
@ Let two lines in a plane be ~-related iff they are parallel to each

other. Then the equivalence classes of ~ can be identified with the
different directions in the plane.

@ Let two line segments of a given plane be ~-related iff they are
congruent to each other. Then the equivalence classes of ~ yield the
notion of length of the line segments in the plane.
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Partial orders and orders

Definition ((partial) order and (partially) ordered set)

@ A binary relation on a set X is called a partial order if it is reflexive, transitive
and anti-symmetric. (Notations: <, =<, ...)

@ If < is a partial order on a set X then the pair (X; <) is called a partially ordered
set.

@ If for some x,y € X x < y or y =< x holds, then x and y are said to be
comparable. (If x and y are comparable for every x,y € X then the relation is
dichotomous.)

@ A binary relation on a set X is called an order or a total order if it is reflexive,
transitive, anti-symmetric and dichotomous. (In other words, an order is a
dichotomous partial order: a partial order such that every pair of elements are
comparable.)

Examples

@ The standard < on R (or for example on X = {1,2,...,5}) is an order:
Vx,y e R(X):x<yory<x.

@ The subset relation C on X = Z({a, b, c}) (the power set of {a,b,c}) is a
partial order, but not an order: {a} Z {b.c}, {b,c} Z {a}.

@ The divisibility relation | on N is a partial order, but not an order: 4 )5, 5 f4.

20.
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Hasse-diagram of a partially ordered set

Definition (immediate predecessor, immediate successor)

Let (X; <) be a partially ordered set. If for some x # y € X we have x < y, but
Az e X such that z # x, z # y and x < z < y, then x is an immediate predecessor
of y (or x immediately predecedes y) and y is an immediate successor of x (or y
immediately succeeds x).

In a Hasse-diagram of a partially ordered set (X; <) the elements of the set are
represented by 'dots’; for every x, y € X we draw a directed edge ('arrow’) from x to
y if and only if x is an immediate predecessor of y. Sometimes they use undirected
edges ('lines’) instead of directed edges and in this case the smaller element has to be
placed vertically lower that the greater one, in the diagram.

Example: Consider X = {1,2,..., 8} with the divisibility relation:

5 8
7 ! 3 7 4 6
2
6 5 S 3
8 4
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Least, greatest, minimal and maximal element(s)

Definition (least, greatest, minimal and maximal element(s))

An element x in a partially ordered set (X; <) is called a
least element iff Vy € X : x < y;

greatest element iff Vy € X : y < x;

minimal element iff =dy € X : x # y, y < x;

maximal element iff =y € X : x £y, x < y.

Consider X = {1,2,...,8} with the divisibility relation:

8
least element: 1, 7 4 6
greatest element: does not exist,
minimal element: 1, 5 3
maximal elements: 5, 6, 7, 8. 2

1
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Strict partial orders

Definition (strict partial order)

A binary relation on a set X is called a strict partial order if it is

transitive and irreflexive. (Notations: <, <, ...)
A trichotomous strict partial order is called a strict order.

Examples
@ The relation < on R is a strict order: Vx,y € R : exactly one of the
following three conditions holds: x = y, x < y and y < x.
@ The proper subset C relation is a strict partial order on
X = 2({a, b, c}), but not a strict order: none of the statements
{a} ={b,c}, {a} € {b.c} and {b.c} C {a} is true.
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Functions

Definition (function)
A binary relation £ € X x Y is called a function (or map, mapping,
transformation, operator) if

Vx,y,y 1 (x,y) e fA(xy)ef=y=y"

If  is a function then for (x, y) € f, the notations f(x) =y, f : x — y
and . = y are also used and y is called the value of the function f at
(argument) x .

Examples
@ The relation ¥ = {(x,x?) € R x R} is a function: f(x) = x°.
o The inverse relation 1 = {(x? x) € R x R} of f is not a function:
(4,2),(4,-2) e fL.
@ The Fibonacci sequence F, defined as: Fp = 0,F; = 1 and
Fo="Fnp_1+ F,_oforn>2:0,1,1,2,3,5,8,... The the relation
F C N x N is a function; the value of F at nis F(n) = F,.
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Functions: the set of functions X — Y

Definition (set of functions X — Y)

Let X and Y be sets. The set of all functions f C X x Y is denoted by
X — Y, hence the notation f € X — Y can be also used. If

dmn(f) = X, then we can also write f : X — Y (but this notation can
be used only when dmn(f) = X).

Note: If : X — Y then dmn(f) = X and rg(f) C Y.
Example
Let f(x) = /x. Then

o f ¢ R — R, but we cannot write f : R — R.

o f:RS = R.

o f: Rd — C.
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Functions: injective, surjective and bijective functions

Definition (injective, surjective and bijective functions)
A function f : X — Y is called

@ injective if Vx1, € X : f(x1) = f(x) = x1 = x;

@ surjective if rng(f) = Y;

@ bijective if it is both injective and surjective.

Note: A function f is injective if and only if the relation f ! is a function.

Examples

@ The function f : R — R, f: x s x2

F(=1) = F(1), rng(f) = B

is not injective and not surjective:

@ The function f : R — R, f:x+— x? is not injective, but surjective.
@ The function f : R — Rg, f: x + x? is injective and surjective, hence bijective.

Note: Whether a function f : X — Y is surjective or not, depends on Y. If Y C Y/,
then rng(f) C Y C Y’, hence the function  : X — Y’ cannot be surjective.
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Functions: permutations

Definition (permutations on a set)

Let X be a set. A bijective function 7 : X — X is called a permutation of
X.

Examples
o Let X = {1,2,...,n}. Then the number of permutations of X is n!.
@ The function f : R — R, f(x) = x® is a permutation of the set of
real numbers.

e The function f(x) = x? is not a permutation of I: it is not injective
and not surjective.
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Composition of functions

Reminder

composition of relations: R oS = {(x,z)|dy : (x,y) € SA(y,z) € R}.
function: A relation f is a function, if Vx,y,y’ :
(x,y)efA(x,y)Yef=y=y"

Theorem (Properties of the composition of functions)

@ I/ff and g are functions, then the relation g o f is also a function.

@ I/ff and g injective functions, then g o f is also an injective function.

Q@ Iff: X — Y and g : Y — Z surjective functions, then
gof: X — Zis also a surjective function.

Proof
Q Let(x,z)egof and (x,z') € gof. Then

Jy:(x,y)ef,(y,z)egandIy : (x,y')ef,(y,2)ecg.
Since f is a function, y = y', and since g is a function, z — z'.

28.
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Composition of functions: proof of Theorem continued

Proof (continued)
© Let (gof)(x)=(gof)
injective, hence f(x) =
Q@ Hw.

x’)/, that is g(f(x)) = g(f(x’)). Asg is

(
f(x"). As f is injective, hence x = x'.

29.
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Operations

Definition (unary and binary operations)

Let X be a set. A function x : X x X — X is called a binary operation on

X. We often write x * y instead of #(x,y).
A function * : X — X is called a unary operation on X.

Examples
@ On R, + and - are binary operations and x — —x (opposite) is a
unary operation.
@ On R division = is not an operation, because dmn(=-) # R x R.
e R* =R\ {0} division = is a binary, x ~—+ L (reciprocal) is a unary
operation.
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Operations

An operation on a finite set can be defined by its operation table.
A ‘ T F \ ‘ T F XOR ‘ T F ‘
T| T F T| T T T F T T
F|F F F| T F F T F F

~

Definition (operations with functions)

Let X and Y be sets, « an operation on Y and f,g: X — Y be
functions. Then :

Vx € X : (f x g)(x) = f(x) x g(x).

Example

For the functions sin, cos : R — R we have: (sin+ cos)(x) = sin x + cos x
Vx € X.

31.
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Properties of binary operations

Definition (associative and commutative operations)
A binary operation * : X x X — X is
@ associative if Va,b,c € X : (a* b)*x c = ax* (bx*c);

@ commutative if Va,b € X :axb = bx* a.

Examples

@ Addition and multiplication are associative and commutative
operations on R.

@ The composition of functions is an associative operation:
(fog)oh="fo(goh).

@ The composition of R — R functions is not commutative:
f(x)=x+1,g(x) = x%
(fog)(x)=x*+1# (x+1)>=(gof)(x).

@ Division is not an associative operation on R*:
(axbh)+c=g#F=a+(b+0)
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Operation-preserving mappings

Definition (operation-preserving mapping)

Let X and Y be sets with binary operations * and ¢, respectively. A
function f : X — Y is operation-preserving if Vx;, x, € X:

f(Xl * X2) = f(Xl) & f(XQ).

Examples

e Consider X = R with the operation of addition + and ¥ = R with
the operation of multiplication -.
Then for any a € R" the function x — a* is operation-preserving:
Uxy,xo € R: @0 = 4. %,

@ Consider X = Y = R with the operation of addition +.
Then x — —x is operation-preserving:
Vxi,x0 ER: —(x1 + x2) = (—x1) + (—x2).

33.
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