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Combinatorics

The goal of combinatorics:

To organize of elements of finite sets;

To enumerate the different possible arrangements.

Examples:

Among any eight people, there are always two who were born on the same day
of the week.

At least how many people do we need to have in a group in order to be certain
that two of them have their birthdays on the same day of the year?

At least how many people do we need to have in a group in order to be certain
that two of them were be born in the same month?

What is the number of all the possible car registration plates /telephone
numbers / IP addresses?

At least how many tickets do we have to complete in order to certainly win the
jackpot in the lottery? (In the lottery five numbers from among the numbers

1 — 90 are drawn randomly. You can bet by crossing out five from among the
numbers 1 — 90 on a lottery ticket. You win the jackpot if you crossed exactly
those numbers which are drawn later.)
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Addition principle (Rule of sum )

Addition principle

Given two finite, disjoint sets:

The number of possible choices: n -+ m.

Example

In a pastry shop, they have 3 kinds of sweet pastries (jam roll, cheese
cake, coconut cube) and 2 kinds of savory pastries (scones, pretzels). In
how many different ways can we choose one sweet or one savory pastry?
Solution: 3 + 2 = 5.
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Multiplication principle (Rule of product)

Multiplication principle

Given two finite, disjoint sets:

‘ b1 b2 bm
ail ‘ (21 bl) (al,bz) (al,bm)
a2 | (a2, b1) (a2,b2) (a2, bm)
.an ‘ (anwbl) (an-b2) (an-bm)

The number of possible choices: n - m.

Example

In a pastry shop, they have 3 kinds of sweet pastries and 2 kinds of
savory pastries. In how many different ways can we choose one sweet and
one savory pastry? Solution: 3 -2 = 6.

V.
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Summary: six basic arrangement types

Permutations without repetition: n!, a sequence of n distinct elements, containing

each element exactly once (order matters, each element occurs exactly once).

(ki + ko + ...+ km)!
kil kol - .- ky!

n = ki + ko + ...+ kn, containing the element of kind / exactly k; times (1 </ < m)

(order matters, an element can occur more than once: the it kind of element occurs

exactly k; times).

, a sequence of length

Permutations with repetition:

Variations without repetition: n!/(n — k)!, a sequence of length k chosen from n
different elements, containing each element at most once (order matters, an element
can occur at most once).

Variations with repetition: n*, a sequence of length k chosen from n different

elements (order matters, an element can occur more than once).
n
Combinations without repetition: <l<) k-element subset of an n-element set (order

does not matter, an element can occur at most once).

(n+k71)

Combinations with repetition: , choosing k times from among n elements

disregarding the order in which the elements were chosen and allowing for choosing an
element more than once (order does not matter, an element can occur more than
once).
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Permutations without repetition

Definition (permutation (without repetition))

A permutation (without repetition) of a finite set A is a sequence containing each
element of A exactly once. (In other words, a possible ordering of the elements of A.)

Equivalent definition: A permutation of a set A is a bijection A — A.

Definition (n factorial)

Let n € N. Then n factorial n! is defined as

nl=n(n—1)(n—2)-...-2-1ifn>0andas 0! =1if n=0. )
Theorem (Number of permutations)

Let n € N. The number of permutations of an n-element set is: P, = n!. )
Proof

The first element of the sequence can be chosen in n different ways. After this, the
second element of the sequence can be chosen in n — 1 different ways, ... Hence the
number of permutations is n(n — 1) -...-2-1. O

v
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Permutations without repetition

@ In a race 70 runners took part. In how many different orders can
they finish? (We assume that everybody completes the race and
there are no equal finishes.)

© For breakfast we can eat
2 different sandwiches in 2! = 2. 1 = 2 different orders.
3 different sandwiches in 3! = 3 -2 .1 = 6 different orders.
4 different sandwiches in 4! = 4.3 -2 .1 = 24 different orders.

@ A group of 200 students can sign the attendance sheet in
200! =200-199-198-...-2-1~ 7,89 -10°" different orders.
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Permutations with repetition

In an exam 5 students took part and 2 grade 4’s and 3 grade 5's
were awarded. In how many different orders can we list the results on a paper if
we do not distinguish between identical grades (i.e. we do not care about
which student each grade belongs to)?

If we take into account which student obtained each grade (for
example, we indicate each student’s name next to his/her grade) then there are
(2 4 3)! = 5! possible orders. If we now disregard which student obtained each
grade, then in the previous calculation we counted each possible order multiple

times:
5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5

4 4 4 4 4 4

The grade 5's can be permuted among themselves in 3! = 6 different ways.
Similarly, the grade 4's can be permuted 2! = 2 different ways amog

themselves. Therefore each order of the grades were counted 3!2! times. Hence

! 12
the number of different orders is: 2[? T % = 10.
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Permutations with repetition

Definition (permutations with repetition)

Let a1, a», ..., an be m different objects and ki, ko, ..., k, € N. A sequence of
length n = ki + ko + ... + ks, containing each a; exactly k; times (1 </ < m)
is called a permutation with repetition of the objects ai, a», ..., an with
repetition numbers ki, ko, ..., kp.

Theorem (Number of permutations with repetition)

The number of permutations with repetition of m different objects with
repetition numbers ki, ko, ... kp is:

n!

kil - kol - .. k!’
where n = ki + ko + ...+ k.
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Permutations with repetition

Theorem (Number of permutations with repetition)

The number of permutations with repetition of m different objects with
repetition numbers ki ko, . .., Km is:

n!
kil - kol - . k!’
where n = ki + ko + ... + k.
Proof
If we distinguish between all elements, then there are n! = (ki + ko + ... + kp)!

possible sequences of these n different elements.

However, we do not want to distinguish between elements of the same kind,
but for each i we are only interested in the set of positions occupied by the
elements of the i"" kind. If we fix the k;: positions for the elements of the it
kind, we can permute these elements in these positions in k;! ways. Hence, in
n!, each sequence has been counted ki! - k! - ... k! times. Therefore the

. . . . I
number of permutations with repetition is .
1:°K2: et Km

10.
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Variations without repetition (partial permutations)

In a horse race there are 30 runners. How many different outcomes are
possible for the first five places?

The winner can be chosen in 30 ways, then we can choose the horse for
the 27 place in 29 different ways, ..., we can choose the horse for the
5% place in 26 different ways.

Hence there are 30 - 29 - 28 - 27 - 26 possible outcomes for the first five
places.

Definition (variation (or partial permutation))

Let A be a set and k € N. A sequence of length k formed by elements of
A containing each element of A at most once, is called a k-variation
(without repetition) of A.
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Variations without repetition (partial permutations)

Theorem (Number of variations without repetition)

Let k € N". The number of k-variations without repetition of an
n-element set is

VE=Pk=Pnky=n-(n—=1)-...-(n—k+1)=n!/(n— k)

if Kk < n and is O otherwise.

Proof

Let k < n. The first element of the sequence can be chosen in n different
ways from set A. After this, the second element can be chosen in n — 1
different ways (the first element of the sequence cannot be chosen
again), then the third element can be chosen in n — 2 different ways...
the k" element can be chosen in n — k -+ 1 different ways. Therefore
there are n-(n—1)-...-(n—k+1) = n!/(n— k)! k-variations in total.
If k > n then A clearly does not have a k-variation without

repetition. O
o

12.
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Variations with repetition

How many different 2-digit numbers can be formed using the digits 1, 2,
3, if not all digits need to be used and the repetition of the digits is
allowed?

The first digit of the number can be chosen in 3 different ways:

1
2
3
The second digit of the number can be chosen again in 3 different ways:
11 21 31
12 22 32
13 23 33

The total number of possibilities:

33 =9
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Variations with repetition

Definition (variation with repetition)

Let A be a set and k € N. A sequence of length k formed by elements of
A (any element may occur more than once), is called a k-variation with
repetition of A.

Theorem (Number of variations with repetition)

Let n, k € N. The number of k-variations with repetition of an n-element

e ok
set is: n*. |

Proof

The first element of the sequence can be chosen in n different ways, then
the second element can be chosen also in n different ways .... Therefore
the sequence of length k can be chosen in n” different ways. O

v

14.
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Variations with repetition

© How many different 12-digit numbers can be formed using the digits
1 —9, if not all the digits have to be used and the repetition of
digits is allowed?

Each of the 12 digits can be chosen in 9 different ways
(independently of each other), hence there are 91 such numbers.

@ How many subsets does an n-element set have?

Let A= {a;,a,...,a,}. To each subset S of A we can assign a
0 — 1 sequence of length n: for each 1 </ < n let the ith element of
the sequence be 1 if S contains a; and 0 otherwise.

@ (0,0,...,0), {a,a3} & (1,0,1,0,...,0), ...,

A+ (1,1,...,1)

How many 0 — 1 sequences of length n are there? 2".
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Combinations without repetition

Definition (combination without repetition)

Let k € N. A k-element subset of a set A is called a k-combination (without
repetition) of A.

Definition (binomial coefficients)

For every n, k € N, k < n the binomial coefficient ‘n choose k' is defined as

n nl
K|~ Fo—R

Theorem (Number of combinations without repetition)

Let n, k € N. The number of k-combinations of an n-element set is:

. n n!
€ = Clantd) = (k) ~ Ki(n—k)!

if k < n and is 0 otherwise.

16.
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Theorem (Number of combinations without repetition)

Let n, k € N. The number of k-combinations of an n-element set is:

Ck = C(n. k) = <Z> - #Lk),

if k < n and is O otherwise.

Proof

Let A be an n-element set. Suppose k < n. First choose k elements from
among the n elements by taking into account the order. This way we
obtain k-variations of A, and the number of these is (n”—'k)l If we now
disregard the order of the elements then each subset of k elements has
been counted k! times, because this is how many ways we can arrange k
elements into order. Hence, by dividing by k! we obtain that the number

of k-element subsets is W

n:
n

If k > n then an n-element set clearly does not have any k-element
subsets.

17.
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Combinations
Examples

@ In how many different ways can you complete a lottery ticket (we
need to select 5 numbers from among the numbers 1 — 90)?

= 43949 268

<90) 90!  90-89-88-87-86

5) 51.851  5.4.-3.2.1

@ How many 0 — 1 sequences of length 12 exist containing exactly

seven 1's?
12\ 12!
7) 7151
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Combinations with repetition

Definition (combination with repetition)

Let kK € N. A k-combination with repetition (or k-multiset) from a set A
is a selection of k (not necessarily distinct) elements from A, where
repetition is allowed and the order does not matter.

Comment: In a combination with repetition what matters only is how
many times each element has been chosen.

In a post office 4 different types of postcards are sold. In how many
different ways can we buy 12 postcards?

12+4-1\ /15\ 15!
12 T \12) 12131
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Combinations with repetition

Theorem (Number of combinations with repetition)

Let n € N, k € N'. The number of k-combinations with repetition of an

n-element set is:
n+k—1
P .
Proof

Let A={a1,a,..., an}. Then each k-combination with repetition of A can be

represented by a 0 — 1-sequence:

— —
number of a1 '’s number of ay’s number of a,’s
chosen chosen chosen

This sequence contains k 1’s (number of elements chosen) and (n — 1) 0's
(number of separators). Hence the length of the sequence is n — 1 + k. There
are (” ’ iil) such sequences in total, because this is how many ways we can
choose the k positions from among n + k — 1 positions, for the 1's. Therefore

the number of k-combinations with repetition of A is (” ‘ i 1). O

Yy

20.
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Combinations with repetition

@ In a cake shop they sell 5 different types of cakes. We would like to buy 8
cakes. In how many different ways can we do this?

Here n =5 and k = 8:

5+8—1 12 12!
— — —4
< 8 > <8> gl

@ In how many different ways can we distribute 11 identical candies among
5 children?

For each candy we choose one from among the 5 children who to give the
candy to. We choose from among the 5 children 11 times: the order in
which we choose the children does not matter and any child can be
chosen more than once (what matters only is how many times each child
has been chosen). Combination with repetition where n =5 and k = 11:

114+5-1\ [15\ 15!
11 “—\11/) " 1114l
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Summary: six basic arrangement types

Permutations without repetition: n!, a sequence of n distinct elements, containing

each element exactly once (order matters, each element occurs exactly once).

(ki + ko + ...+ km)!
kil kol - .- ky!

n = ki + ko + ...+ kn, containing the element of kind / exactly k; times (1 </ < m)

(order matters, an element can occur more than once: the it kind of element occurs

exactly k; times).

, a sequence of length

Permutations with repetition:

Variations without repetition: n!/(n — k)!, a sequence of length k chosen from n
different elements, containing each element at most once (order matters, an element
can occur at most once).

Variations with repetition: n*, a sequence of length k chosen from n different

elements (order matters, an element can occur more than once).
n
Combinations without repetition: <l<) k-element subset of an n-element set (order

does not matter, an element can occur at most once).

(n+k71)

Combinations with repetition: , choosing k times from among n elements

disregarding the order in which the elements were chosen and allowing for choosing an
element more than once (order does not matter, an element can occur more than
once).
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Binomial theorem

Theorem (Binomial theorem)

For any x,y € R and n € N we have

n n n—
(x+vy) Z<k>xky “

Proof
(x+y)'=(x+y) (x+y) ... (x+y)

By the distributive law, the expansion of the above product will be the sum of
all those products that can be obtained by choosing x or y from each pair of
brackets and multiplying them together. Hence the expansion will be a sum of
terms of the form x“y"~* (0 < k < n). For a given k the term x"y"~* occurs
in the sum as many times as many different ways we can choose x from exactly
k of the n pairs of brackets. From among the n pairs of brackets those k

brackets from which we pick x can be chosen in (:) different ways. Therefore
for every 0 < k < n the coefficient of x“y"~* in the expansion is (Z) O

v

23.
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Binomial coefficients

Theorem (Some properties of the binomial coefficients)
For every n, k € N, k < n:

@ ()=(,",)

® ("} )= )+ (k=
For every n € N:

03 () -(O)+()+t()-7
© S ()= ()~ () rriar () =o

24.
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Binomial coefficients

Theorem (Some properties of the binomial coefficients)

For every n, k € N, k < n we have:
0 (:) o (nik)

@ (" H=(")+()irk>1

Proof

@ The number of all 0 — 1 sequences of length n containing exactly k number of
1-sis (Z) , because this is how many ways we can chose the k positions for the
1-s from among the n positions. Since these are exactly the 0 — 1 sequences of
length n containing exactly n — k number of O-s, their number is (nik), because
this is how many ways we can chose the n — k positions for the 0-s from among
the n posititions. Therefore (Z) = (””k>.

@ The number of 0 — 1 sequences of length n+ 1 which contain exactly k number

of 1-s is equal to (”Xl). Among the 0 — 1 sequences of length n + 1 containing

exactly k number of 1-s there are kil) sequences starting with 1 and there are

(Z) sequences starting with 0. Hence (”rl) = (kL) + (Z)
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Binomial coefficients

Theorem (Some properties of the binomial coefficients)

For every n € N we have:

° i(:) =@+ ++()=2
Q Xn:(ﬂ)k(:) _ (g) _ (’1’) I (,l)n(:) _o.

Proof

@ By our earlier theorem, for every 0 < k < n, the binomial coefficient (Z) equals
the number of k-element subsets of an n-element set. Adding up for all
0 < k < n, the number of k-element subsets of an n-element set we obtain the
number of all subsets of an n-element set, which — as shown earlier — is equal to
2",

; ; . _\\n kin—k — N\ k
@ By the Binomial theorem: (—1+1)" =5 "' (:)(71) k=3 (=1 (Z)
. . . n k o

Since (—1+1)" = 0" =0, we have ) | (—1) (Z) =@,
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Pascal’s triangle

B —

k=0
Q| (et )"

0 1 1

1 11 x+y

2 121 x2 4 2xy + y?

3 1331 x3 4+ 3x%y +3xy? + 3

4 14641 x* 4+ 4x3y + 6x%y% + dxy® + y*

5115101051 | x®+5x*y + 10x3y? + 10x2y3 + 5xy* + y°

27.



Discrete mathematics |

Multinomial theorem

Example
Expand the following:
(x+y+2)?=x>+y>+ 2° + 2xy + 2xz + 2yz. (x+y+z)P=...

Theorem (Multinomial theorem)

For any r and n € N we have

n! i i i
at+x+...+x)" = — o2,
mll ol St 2 "
Lojpl o]
i +ipt...Fir=n
i1 1ipy..rir €N

Proof

(atxet+...+x)"=(atxet.. . +x)0atxet+...+x) - Catxet...+x).
The coefficient of the term x'x; ... x/" is equal to:

n nfil nfl'lfllz nfl'lfiz*..,fl',71 o
i i» i3 It

n! (n—il)! - (n—l'l—l-g—...—lnrfl)! n! D

iln—i)il(n—i—i)  il(n—i—..—ir1— i)l Al-il--- il
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Multinomial theorem

% =3 | +3y°z
m =3 +3y22

3 3
olom — 1 | +2

(x1+xo+...+x)" = o Z | #.!.’rlexzb
11+rgf...+’/,‘:n
(x+y+2)=
ih || i3 ﬁ (x+y+2z)3=
3100 3.0.0| =1| x3
21110 W =3 | +3x%y
2101 % =3 | +3x%z
112]0 W =3 | +3xy?
1|11 %1' =6 | +6xyz
1102 1,0|2| =3 | +3xz°
013|0] 2g=1]+y°
021
0112
0/0]3
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Pigeonhole principle

Pigeonhole principle

If n-+ 1 items are put into n containers, then there must be a container
that contains at least two items.

@ In any group of eight people there must be at least two who were
born on the same day of the week.

@ If we choose any five (different) numbers from the set
A=1{1,2,3,4,56,7,8}, there will always be two numbers among
them which add up to 9.

Consider the sets {1,8}, {2,7}, {3,6}, {4,5}. By the Pigeonhole
principle, among the five numbers chosen from A there will be two
numbers which belong to the same set, hence their sum is 9.
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Inclusion-exclusion principle

Example
How many positive integers less than 1000 exist which are not divisible
by 2, nor by 3, nor by 57
First consider the following question: How many positive integers less
than 1000 exist which are divisible by 2, by 3 or by 57
A17{1<n<999 2(n} — |Ar] = |22

={1<n<999:3|n} — A = | 22];

={1<n<999:5|n} — |As| = | %]

Similarly, |A1 N Ax| = |53, As| = |35, AN Asl = |33,
AL N Az 0 As| = [ 225 .

The number of positive integers less than 1000 divisible by 2 or by 3 or
by 5:

|A1 U Az UA3‘ = \A1\+\A2\+|A3\7|A1ﬁA2\7|A1ﬁA3\7\A2mA3|+\A1 ﬁAQﬂA'j‘ =

-]+ 122+ 9P - 198 - (28] - 98] + s

31.
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Inclusion-exclusion principle

Example continued

|A1 U Az UAg‘ = ‘A1|+‘A2‘+|A3‘—|A1ﬁA2‘—|A1ﬂA3‘—‘A2ﬁA3|+‘A1 ﬂAQﬂAﬂ =

=)

= 12+ 2+ 2] - 135] - 18] - 58] + 1255) =
— 499 + 333 + 199 — 166 — 99 — 66 -+ 33 = 733,

The number of positive integers less than 1000, not divisible by 2, nor by
3, nor by 5: 999 — 733 = 266
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Inclusion-exclusion principle

Theorem (Inclusion-exclusion principle)
Let Aq, Ay, ..., A, be finite sets. Then

n n

UA,-:Z|A/|* Z Ay DAL+ Z A

i=1 i=1 1<ih<ib<n 1<ih<ih<iz<n

+(=1)"HA N AN ... N A

For every 1 < r < n introduce the notation:

S = > A NA, 0. N A

1<i <ip<...<i;<n

Then the Inclusion-exclusion principle can be written in the following, simpler form:

UAi =S5 -S4+ (-1)"s,
i=1

B8
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Inclusion-exclusion principle

For every 1 < r < n introducing the notation:

S = E ‘A,‘lﬁA,'zﬁ.“ﬂA,',‘
1<h<ih<...<ir<n

the Inclusion-exclusion principle can be written in the following form:
n
UAi =S - S+ +(-1)"s,
i=1

Proof

We show that every element of ULI A; was counted exactly once in the expression
S1—-S+...+ (—1)”“5,,. Let x € U:.Ll A; be arbitrary. Denote by t the number of
those sets among A1, ..., A, which contain x, and the sets containing x by

Aj ..., Aj,. Note that for any 1 < r < n, element x is contained in the intersection of
r sets if and only if all the r sets contain x, that is if all the r sets are among

Aj ..., Aj,. Hence for every 1 < r < n, we counted x in S, as many times as many
different ways r sets can chosen from among the sets A;,,..., A;,. Hence, in S,
element x was counted O times if r > t and (ﬁ) times if r < t. Therefore in

Si—So+ ...+ (—1)"LS, element x was counted exactly
t t t+1(t :
(1) — (2) +...+(-1) (t) times.

34.
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Inclusion-exclusion principle

Proof (Proof continued)

Finding the value of () — (5) + ...+ (—1)*1(}):
By Property 4 of the binomial coefficients:

(é) - @ ’ @ ...+(1)f(§) o,

By rearranging the above equation:

(6)-G) e (=)

Hence x was counted exactly once in the expression
S1—S+...+(=1)"1s,.

35.



