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Extension of number sets
Natural numbers: N = {0, 1, 2, . . .}
There is no natural number x ∈ N such that x + 2 = 1!
On N subtraction is not defined for all numbers.

Integers: Z = {. . . ,−2,−1, 0, 1, 2, . . .}
In Z subtraction is always possible: x = −1.
There is no integer x ∈ Z such that x · 2 = 1!
On Z division is not defined by all numbers.

Rational numbers: Q =
{
p
q : p, q ∈ Z, q 6= 0

}
We can divide by any nonzero number in Q: x = 1

2 .
There is no rational number x ∈ Q such that x2 = 2!
Taking the square root of a rational number Q does not always produce a
rational number, not even in the case of a nonnegative rational number.

Real numbers: R.
We can take the square root of any nonnegative number in R.
There is no real number x ∈ R such that x2 = −1!
We cannot take the square root of negative numbers in x ∈ R, since:
∀x ∈ R : x2 ≥ 0.
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Extension of number sets
Among complex numbers the equation x2 = −1 can be solved!
Applications of complex numbers:

solving equations;
geometry;
physics (fluid dynamics, quantum mechanics, relativity theory);
computer graphics, quantum computers.

Introducing complex numbers

Definition (imaginary unit)
Let i be a solution to the equation x2 = −1; i is called the imaginary
unit.

We would like to extend the operations of addition and multiplication
from the set of real numbers to a larger set containing i , while keeping
the ’usual rules’ of calculation and adding the rule: i2 = −1. E.g.:

(1 + i)2 = 1 + 2i + i2 = 1 + 2i + (−1) = 2i

.



Discrete mathematics I 4.

Definition of complex numbers (informal definition)

Definition (complex numbers)
The expressions of the form a + bi where a, b ∈ R, are called complex numbers with
addition and multiplication defined as:

addition: (a + bi) + (c + di) = a + c + (b + d)i .
multiplication: (a + bi)(c + di) = ac − bd + (ad + bc)i .

The set of all complex numbers is denoted by C. The form a + bi where a, b ∈ R is
called the algebraic form (or Cartesian or rectangular form) of a complex number.

Definition (real part and imaginary part of a complex number)
Let z = a + bi (a, b ∈ R) be a complex number. Then the
real part of z is Re(z) = a ∈ R and the imaginary part of z is Im(z) = b ∈ R.

Note: Im(z) 6= bi
The complex numbers of the form a + 0 · i are the real numbers. The complex
numbers of the form 0 + bi are called pure imaginary numbers.
Two complex numbers with algebraic forms a + bi and c + di are equal:
a + bi = c + di , if and only if a = c and b = d .
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The definition of complex numbers (formal definition)

Definition (formal definition of complex numbers)
The set C of complex numbers is the set R× R together with the
following operations:

addition: (a, b) + (c, d) = (a + c, d + b);
multiplication: (a, b) · (c, d) = (ac − bd , ad + bc).

The two definitions of complex numbers are equivalent: a + bi ↔ (a, b),
e.g. i ↔ (0, 1).
The format a + bi is more convenient for manual calculations.
The format (a, b) is more convenient for use with computers.
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Basic properties of addition and multiplication on C
Based on the definitions it is easy to verify the following properties:

Proposition (Basic properties of operations on C)
Properties of addition

1 Associativity: ∀a, b, c ∈ C : (a + b) + c = a + (b + c).
2 Commutativity: ∀a, b ∈ C : a + b = b + a.
3 Neutral element (zero element): ∃0∈ C (zero element) such that

∀a ∈ C : 0 + a = a + 0 = a.
4 Additive inverse (opposite): ∀a ∈ C : ∃−a∈ C (opposite of a) such that

a + (−a) = (−a) + a = 0.

Properties of multiplication
1 Associativity: ∀a, b, c ∈ C : (a · b) · c = a · (b · c).
2 Commutativity: ∀a, b ∈ C : a · b = b · a.
3 Unit element: ∃1∈ C (unit element) such that ∀a ∈ C : 1 · a = a · 1 = a.
4 Multiplicative inverse (reciprocal): ∀a ∈ C \ {0} : ∃a−1= 1

a∈ C (reciprocal of a)
such that a · a−1 = a−1 · a = 1.

Distributivity: ∀a, b, c ∈ C : a(b + c) = ab + ac (and (a + b)c = ac + bc)
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(C, +, ·) is an algebraically closed field
Corollary:

Because of the above properties, the algebraic structure (C,+, ·) is a
so called field (just like (R,+, ·) and (Q,+, ·)).
Informally we can say that we can calculate with complex numbers
‘in the same way’ as with real numbers (in sums and products we
can ‘move’ the brackets; the order of the terms in a sum and of the
factors in a product can be changed; brackets can be expanded by
the distributive property etc.) with the additional rule: i2 = −1.

Fundamental Theorem of Algebra: It can also be shown – proof is not
easy – that all polynomial equations of positive degree has solution in C.
Hence the field (C,+, ·) is algebraically closed. (’No need to introduce
further numbers!’):

Theorem (Fundamental Theorem of Algebra; no proof
required)
Let n ∈ N+. Then for every a0, . . . , an ∈ C, an 6= 0, there exists z ∈ C
such that a0 + a1z + a2z2 + . . .+ anzn = 0 (i.e. the polynomial
a0 + a1x + a2x2 + . . .+ anxn has a root in C.)
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Representing complex numbers in the Complex plane
(Gaussian plane, Argand diagram)

Complex numbers can be represented in the complex plane (Gaussian
plane, Argand diagram):

z = a + bi ↔ (a, b)
bijecion (one-to-one correspondence) between C and the points (or
vectors) of the plane.
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Calculating with complex numbers: absolute value,
conjugate

Definition (absolute value of a complex number)
The absolute value of a complex number z with algebraic form
z = a + bi is |z |=

√
a2 + b2.

In particular, if z is a real number, then z = a and its absolute value is
the ‘usual’ absolute value of a real number: |z | = |a| =

√
a2.

Proposition (Hw)
For any complex number z:

1 |z | ≥ 0,
2 |z | = 0⇔ z = 0.

Definition (conjugate of a complex number)
The conjugate of a complex number z with algebraic form z = a + bi is
z= a − bi .
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Calculating with complex numbers: opposite, subtraction

Definition (opposite of a complex number)
The opposite of a complex number z is the complex number denoted by
−z such that z + (−z) = 0.

Proposition (Opposite of a complex number; proof is hw)
The opposite of a complex number z with algebraic form z = a + bi is
the complex number with algebraic form −z = −a − bi.

Definition (subtraction of complex numbers)
The difference of complex numbers z and w is defined as:

z − w= z + (−w)



Discrete mathematics I 11.

Calculating with complex numbers: reciprocal, division

Definition (reciprocal of a nonzero complex number)
The reciprocal of a nonzero complex number z is the number z−1 = 1

z
such that z · z−1 = 1.

By the definition of multiplication it is easy to show that every nonzero
complex number has a reciprocal.

Using the reciprocal, we can define division by nonzero complex numbers:

Definition (division by nonzero complex numbers)
The quotient of two complex numbers z and w 6= 0 is:

z
w = z · 1w .
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Calculating with complex numbers: reciprocal, division

What is 2+3i
1+i in algebraic form?

Idea: Similar to the rationalization of the denominator in fractions of real
numbers:

1
1 +
√
2

= 1
1 +
√
2
· 1−

√
2

1−
√
2

= 1−
√
2

(1 +
√
2)(1−

√
2)

= 1−
√
2

12 −
√
22

=

= 1−
√
2

1− 2 = −1 +
√
2

.
Multiply both the numerator and the denominator by the conjugate of the
denominator:

2 + 3i
1 + i = 2 + 3i

1 + i ·
1− i
1− i = (2 + 3i)(1− i)

(1 + i)(1− i) = 5 + i
12 − i2 = 5 + i

1− (−1) = 5 + i
2 = 5

2+1
2 i

.
Why did this method work? When multiplying the denominator 1 + i by its
conjugate 1− i , the result (the new denominator) is a real number.
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Calculating with complex numbers: reciprocal, division

Lemma
For any complex number z we have z · z = |z|2 (hence z · z is a real number).

Proof
Let z = a + bi be the algebraic form of z. Then
z · z = (a + bi)(a − bi) = a2 + b2 = |z|2.

Hence:

Proposition (Calculating the quotient in algebraic form)
Let z,w ∈ C, w 6= 0. Then the quotient z

w in algebraic form can be found as:

z
w

=
z · w
w · w

.

Proof
Let z = a + bi and w = c + di (a, b, c, d ∈ R). Then
z
w = z·w

w·w = (a+bi)(c−di)
(c+di)(c−di) = ac+bd+(bc−ad)i

c2+d2 = ac+bd
c2+d2 + bc−ad

c2+d2 i .
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Calculating with complex numbers

Theorem (Properties of conjugation and the absolute value of
complex numbers; proof is hw.)
Let z and w be complex numbers. Then:

1 z = z;
2 z + w = z + w;
3 z · w = z · w;
4 z + z = 2Re(z);
5 z − z = 2Im(z) · i ;
6 z · z = |z |2;
7 if z 6= 0 then z−1 = z

|z|2 ;
8 |0| = 0 and if z 6= 0 then |z | > 0;
9 |z | = |z |;
10 |z · w | = |z | · |w |;
11 |z + w | ≤ |z |+ |w | (triangle-inequality).
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Calculating with complex numbers

Theorem
...

10 |z · w | = |z | · |w |;
...

Proof
|z ·w |2 = z ·w · z · w = z ·w · z ·w = z · z ·w ·w = |z |2 · |w |2 = (|z | · |w |)2.
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The polar form of complex numbers
Let z = a + bi ∈ C (a, b ∈ R), z 6= 0.

The length r of the vector (a, b) is: r =
√
a2 + b2 = |z |.

Denote by ϕ the angle from the positive real axis to the vector (a, b)
(comment: this angle is not unique, because integer multiples of 2π
can be added to it).

The coordinates a and b expressed in terms of r and ϕ (’polar
coordinates’):

a = r · cosϕ, b = r · sinϕ
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The polar form of complex numbers

Definition (polar form)
The polar form of a nonzero complex number z ∈ C is:

z = r(cosϕ+ i sinϕ)

where r = |z|.

Note:
The polar form of zero is usually not used, because the angle could be any
real number.
The polar form is not unique (because the angle is not unique):
r(cosϕ+ i sinϕ) = r(cos(ϕ+ 2π) + i sin(ϕ+ 2π)).

Definition (argument)
The argument of a nonzero z ∈ C is the angle ϕ = arg(z) ∈ [0, 2π) such that
z = r(cosϕ+ i sinϕ) where r = |z|.
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Converting from algebraic form to polar form

Given the algebraic form z = a + bi 6= 0 we would like to determine the
polar form of a nonzero complex number.

a + bi = r(cosϕ+ i sinϕ)

Given a and b we are looking for r = |z | and ϕ.

Finding r : r = |z | =
√
a2 + b2.

Finding ϕ: Since a = r cosϕ, hence

ϕ =
{

arccos a
r , if b ≥ 0;

− arccos a
r , if b < 0.
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De Moivre’s formulas

Theorem (De Moivre’s formulas)
Let z ,w ∈ C be nonzero complex numbers: z = |z |(cosϕ+ i sinϕ),
w = |w |(cosψ + i sinψ), and let n ∈ N+. Then

1 zw = |z ||w |(cos(ϕ+ ψ) + i sin(ϕ+ ψ));
2 z

w = |z|
|w | · (cos(ϕ− ψ) + i sin(ϕ− ψ));

3 zn = |z |n(cos nϕ+ i sin nϕ).

The angles are added, subtracted, multiplied by n.

Geometric meaning

Multiplication by a nonzero complex number z ∈ C acts on the complex
plane like an enlargement by a scale factor of |z | together with a rotation
by an angle of arg(z) around the origin.
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Proof
1

zw = |z|(cosϕ+ i sinϕ) · |w |(cosψ + i sinψ) =
By commutativity of multiplication:

= |z||w |(cosϕ+ i sinϕ) · (cosψ + i sinψ) =
By definition of multiplication:

= |z||w |(cosϕ cosψ − sinϕ sinψ + i(cosϕ sinψ + sinϕ cosψ)) =
Hence by the trigonometric addition formulas:

= |z||w |(cos(ϕ+ ψ) + i sin(ϕ+ ψ))

Trigonometric addition formulas:
cos(ϕ+ ψ) = cosϕ cosψ − sinϕ sinψ
sin(ϕ+ ψ) = cosϕ sinψ + sinϕ cosψ

The absolute value of the product: |zw | = |z||w |.
The argument of the product:

if 0 ≤ arg(z) + arg(w) < 2π then arg(zw) = arg(z) + arg(w);
if 2π ≤ arg(z) + arg(w) < 4π then arg(zw) = arg(z) + arg(w)− 2π.

The functions sin, cos are periodic with a period 2π, for finding the
argument of the product, we may need to reduce the sum of the
arguments by 2π.
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Roots of complex numbers

Definition (nth roots of a complex number)
Let n ∈ N+ and z ∈ C. The nth roots of z are those complex numbers w for which
wn = z.

Theorem (Formula for the nth roots of a complex number)
Let z = |z|(cosϕ+ i sinϕ), n ∈ N+. The nth roots of z are:

wk = n
√
|z|(cos(

ϕ

n
+

2kπ
n

) + i sin(
ϕ

n
+

2kπ
n

))

k = 0, 1, . . . , n − 1.

The following fact will be used in the proof of the theorem:
Two complex numbers given in polar forms z = |z|(cosϕ+ i sinϕ) and
w = |w |(cosψ + i sinψ) are equal:

|z|(cosϕ+ i sinϕ) = |w |(cosψ + i sinψ),

if and only if:
|z| = |w | and
ϕ = ψ + 2kπ for some k ∈ Z.
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Roots of complex numbers

Theorem (Formula for the nth roots of a complex number)
Let z = |z|(cosϕ+ i sinϕ), n ∈ N+. The nth roots of z are:

wk = n
√
|z|(cos(ϕn + 2kπ

n ) + i sin(ϕn + 2kπ
n ))

k = 0, 1, . . . , n − 1.

Proof
By De Moivre’s formula, for any complex number w = |w |(cosψ + i sinψ) we
have wn = |w |n(cos nψ + i sin nψ).
Hence wn = z is equivalent to |w |n(cos nψ + i sin nψ) = |z|(cosϕ+ i sinϕ),
which holds if and only if:

|w |n = |z| ⇔ |w | = n
√
|z| and

nψ = ϕ+ 2kπ for some k ∈ Z ⇔ ψ = ϕ
n + 2kπ

n for some k ∈ Z.

If k ∈ {0, 1, . . . , n − 1}, then we obtain all distinct nth roots.
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Example

Example
Find the 6th roots (w) of 1−i√

3+i .
1− i =

√
2(
√
2
2 − i

√
2
2 ) =

√
2(cos 7π

4 + i sin 7π
4 )√

3 + i = 2(
√
3
2 + i 12 ) = 2(cos π

6 + i sin π
6 )

Since 7π
4 −

π
6 = 19π

12 , hence: 1−i√
3+i = 1√

2 (cos 19π
12 + i sin 19π

12 ).
So the 6th roots are:
wk = 1

12√2 (cos 19π+24kπ
72 + i sin 19π+24kπ

72 ) : k = 0, 1, . . . , 5
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Complex roots of unity

Definition (nth roots of unit)
For any n ∈ N+ the nth roots of 1 are called the nth roots of unity. (i.e. the
complex numbers ε satisfying εn = 1.)

Using the formula of the nth roots of a complex number we obtain the following:

Theorem (The polar form of the nth roots of unity)
For any n ∈ N+ the nth roots of unity are:

εk = ε
(n)
k = (cos 2kπn + i sin 2kπ

n ) : k = 0, 1, . . . , n − 1.

The 8th roots of unity:
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Roots of complex numbers

Theorem (Expressing all nth roots of a complex number using
one nth root and the nth roots of unity)
Let z ∈ C be a nonzero complex number, n ∈ N+ and w ∈ C be such
that wn = z. Then the nth roots of z can be expressed in the following
form:

wk = wε(n)
k where k = 0, 1, . . . , n − 1.

Proof
All numbers of the form wεk are nth roots of z:
(wεk)n = wnεn

k = z · 1 = z. These are n distinct values, hence we have
obtained all nth roots of z.
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Order

Definition (order of a complex number)
The order of a complex number z 6= 0, denoted by o(n), is the smallest
n ∈ N+ such that zn = 1, if such an n ∈ N+ exists, otherwise it is defined
as ∞.

1, 1, 1, . . . ⇒ o(1) = 1
−1, 1,−1, 1, . . . ⇒ o(−1) = 2
i , −1,−i , 1, i ,−1, . . . ⇒ o(i) = 4
1+i√
2 , i ,

−1+i√
2 ,−1,

−1−i√
2 ,−i , 1−i√

2 , 1,
1+i√
2 , i , . . . ⇒ o( 1+i√

2 ) = 8

Example
The order of 1 is 1;
The order of −1 is 2: −1, 1, . . .;
The order of i is 4: i ,−1,−i , 1, . . .;
The order of 2 is ∞ : 2, 4, 8, 16, . . ..
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Order

Theorem (The properties of the order of complex numbers)
Let z 6= 0 be a complex number. Then:

1 If o(z) =∞ then the powers of z to any two distinct positive
integer exponents are always distinct.

2 If o(z) is finite, then the sequence of powers of z to positive integer
exponents is periodic with a period o(z), which means that for any
k, l ∈ N+ we have zk = z l ⇔ o(z)|k − l . In particular
zk = 1⇔ o(z)|k.

The proof of the above theorem is easy, but not required for the exam.
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Primitive nth roots of unity
The order of an nth root of unity is not necessarily equal to n:

4th roots of unity: 1, i ,−1,−i .
the order of 1 is 1;
the order of −1 is 2;
the order of i is 4.

Definition (primitive nth roots of unity)
If the order of an nth root of unity is equal to n, then we call it a
primitive nth root of unity.

Two corollaries of the Theorem about the Properties of the order:

Corollary
If ε is a primitive nth root of unity, then the list ε0, ε1, . . . , εn−1 is a
list of all nth roots of unity.
A primitive nth root of unity is a k th root of unity if and only if n|k.
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Polar forms of the primitive nth roots of unity

Example
Primitive 1. root of unity: 1;
Primitive 2. roots of unity: −1;
Primitive 3. roots of unity: −1±i

√
3

2 ;
Primitive 4. roots of unity: ±i ;
Primitive 5. roots of unity: . . . (HW)
Primitive 6. roots of unity: 1±i

√
3

2 .

Proposition (Polar forms of the primitive nth roots of unity; no
proof required)
An nth root of unity cos( 2kπ

n ) + i sin( 2kπ
n ) is a primitive nth root of unity

if and only if gcd(n, k) = 1.


