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Preface

This work contains the translation of the Hungarian language lecture
notes used in the course of mathematical cartography in Eötvös Loránd
University.

The lessons of this curriculum do not follow a thematic logic, but gradu-
ally build up the concepts from the simple to the more complex. This is
why there are many references back to much earlier material in relating cal-
culations. The blue links in the text are clickable and facilitate navigation
within the work.

The lessons are grouped into three parts: Lessons of the first part define
general concepts and derive basic formulae of map projection theory. In
the second part, the reader will learn about the characteristics, history
and classification of conical projections followed by some technical notes
about their application in GIS and geodesy. In the third part, the focus is
on non-conical projections. After a systematic description of each projec-
tion, you will find a guide about recognizing projections and approximate
calculations of mappings with the smallest distortion possible.

Although I have endeavoured to cover topics that are related in each
lesson, to fit the topics into 90-minute long lectures, some loosely related
material may have been included in a single lesson. Colour formulae can be
found throughout the note. This is intended to aid understanding during
complex transformations. If you see expressions with the same colour on
both sides of an equals sign, they have the same value. Often, before or
after simplifying fractions or equations, expressions of the same colour
appear on both sides to highlight the transformation. It is therefore not
recommended printing the notes in greyscale.

In the description of the course material, I have tried to use language that
is understandable to students of cartography, and have therefore avoided
using formal mathematical terminology wherever possible. However, un-
derstanding some topics (such as conformal projections) requires deep
mathematical knowledge, which is understandably not part of a master’s
degree in cartography. In such cases, I have endeavoured to highlight, as far
as possible, the complexity of the mathematical problems involved so that
the projections that arise and can be applied in practice are not presented
as a fairy tale; at the same time, the tone of the text is more informative
than scientific. Therefore, I do not give the usual standard definitions used
in mathematical literature for new concepts, but try to convey their visual
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Preface

meaning. At the same time, where this is possible, I also include a few
mathematical points of interest in the form of footnotes.

I hope that this adventure of discovery will be enjoyable for both the
students of the courses and for the interested readers!
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Theory of map projections
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Lesson one

Parametrization of the sphere

and the ellipsoid

I.1 Units of measurement

When interpreting coordinate systems, it is very important to know what
units of measurement they use. Although the usage of the metric system
seems obvious today, it is not so evident on foreign or old maps.

Angles are usually given in degrees on maps, but minutes and seconds
are also common: 1° = 60′ = 3600′′. On French maps, we can find the
decimal gradian, the right angle used to be divided into 100g instead of 90°.
The gradian is divided into centesimal minutes and centesimal seconds:
1g = 100c = 10000cc. On old French maps, therefore, proceed with caution!

Formulae are often simpler if you calculate in radians, which is the ratio
between the length of the arc subtending the angle and the radius of
the circle: 180° = π radians. We denote radians by omitting the unit of
measurement. In this note, the notation �α (arc) indicates that the angle
α must be substituted into the formula in radians. For example, the arc
length s of radius R subtending the angle ϑ in radians, can be calculated
using the formula s = R�ϑ.

Theoretically, the unit of measurement called mil on military maps of
the Soviet era would be a thousandth of a radian, but in the Eastern Bloc
countries, for simplification, the turn is divided into 6000mils instead of
∼ 6283. The mil is denoted by placing a dash between the places of tens
and hundreds: the right angle expressed in mils is therefore 15-00.

Common coordinate systems usually use metres for distances.* The old
definition of a metre is a ten-millionth of a terrestrial half meridian, i.e.
1 km is approximately the length of the meridian arc subtending the angle
of 1c (centesimal minute). There may be other units of measurement besides
the metre:

* Since the Germans happened to have an old standard 15 µm longer than the others,
the metre on maps of former German colonies (e.g. Namibia) may still differ from the real
metre, and this must be adjusted in the GIS if necessary!

11



I. Parametrization of the sphere and the ellipsoid

• 1 US mile ≈ 1609m
• 1 nautical mile ≈ 1852m (the length of the meridian arc subtending

the angle 1′ at the centre of the Earth)
• 1 US foot ≈ 30·48 cm (used for altitude on air navigation maps)
• 1 Viennese klafter ≈ 1·896m (used on old Hungarian surveying and

military maps)
• 1 Viennese mile = 4000 klafters ≈ 7586m
Using the examples of the metre and the nautical mile, it can be seen that

distances on the Earth can be described by the angle they subtend, since
the radius of the Earth (R ≈ 6371 km) is known. As a rule of thumb, the
1° ≈ 111 km estimate can be used, but it is important to note that this only
gives a good value along meridians!

I.2 Surfaces of revolution

If an arbitrary smooth plane curve is rotated about an axis of rotation
lying in the same plane, the surface that the curve generates is called a
surface of revolution. The green generatrices on Fig. I.1 congruent with
the original plane curve are called meridians, and the blue circles in the
planes perpendicular to the axis of rotation are called parallels. Parallels
and meridians are always perpendicular to each other.

O

P

s

α

Figure I.1: Polar coordinates on a surface of revolution

The figure also shows one possible coordinate system, the polar coordin-
ate system of the surface of revolution, similar to the polar coordinate
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I. Parametrization of the sphere and the ellipsoid

system of planes. The radial distance s between the origin O and the point
P is measured along the shortest possible path on the surface. This shortest
path is called the geodesic. All meridians on a surface of revolution are
also geodesics, but parallels are usually not geodesics. The equivalent of
the polar angle here is the azimuth α, which is always measured clockwise
from the meridian passing through the origin.*

The other possible reference system is the parametric frame, which can
be defined by an arbitrary function f (u,v) 7→ (x,y,z), with the constraint
that the Cartesian coordinates (x,y,z) returned by the function must fall
on a point of our surface for all (u,v) in the domain. In this case, the
original pair (u,v) is called the parametric coordinate of the surface, and
the function f (u,v) is called the parametric representation of the surface.
We call coordinate curves those curves on the surface along which either
parameter u or v is constant.

I.3 The sphere

A locus of points equidistant from a point is called a sphere. The points
of a sphere of radius R centred at the origin always satisfy the following
equation:

x2 + y2 + z2 −R2 = 0

The sphere can have multiple parametric representations. One possible
parametrization is where the parameters u,v are the latitudeϕ and longitude
λ. The former is defined as the angle between the vector pointing to the
point and the plane subtended by axes x,y, the latter angle is measured
between axis x and the vector pointing to the point orthogonally projected
onto the plane x,y. This parametric representation can be formulated as
shown in Fig. I.2:

x = Rcosϕ cosλ
y = Rcosϕ sinλ
z = Rsinϕ

It can be seen that the coordinate curves ϕ are parallels of the sphere,
their radius is Rcosϕ, while the coordinate curves λ are meridians of the

* In very rare cases, it may be possible to connect two points on the surface of revolution
by several geodesics with different azimuths. An example is two points on the opposite
sides of a sphere. In such cases, the azimuth of the point is not unique, but the inverse
relation is always unique: a certain azimuth and distance still represent a single point on
the surface.
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I. Parametrization of the sphere and the ellipsoid
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(c) In the space

Figure I.2: Geographical coordinates of the sphere

sphere, their radius is R. If we want to get geographic coordinates from
Cartesian ones, we can also read from the figure that:

sinϕ =
z
R

=
z√

x2 + y2 + z2

tanλ =
y

x

In the case of the Earth, axis z is placed in the direction of the axis of
rotation, so the latitude is measured from the plane perpendicular to it.
The coordinate curve of latitude 0° is called the Equator. However, the
measurement of longitudes is not straightforward because axis x can be
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I. Parametrization of the sphere and the ellipsoid

rotated in the direction of any Prime meridian. In practice, the most com-
mon Prime meridian is the meridian through the Greenwich Observatory,*

but other Prime meridians are also used: for example, until recently, the
French often indicated longitudes starting from Paris,† and on old maps we
frequently find longitudes measured from Ferro.‡ For national surveying
purposes, most countries have also designated their own Prime meridians.
In Hungary, it passes through Gellérthegy at the end of the Citadel near
the Statue of Liberty.

I.4 The ellipsoid of revolution

An ellipsoid of revolution is obtained by rotating an ellipse around one of its
axes. The ellipsoid can be characterized by two data, the major semi-axis a
and the minor semi-axis b. The points constituting the ellipsoid with axis of
rotation z centred at the origin can be described by the following equation:

x2

a2
+
y2

a2
+
z2

b2
− 1 = 0

The shape of the rotation ellipsoid can also be characterized by the
flattening f , the first eccentricity e and the second eccentricity e′:

f =
a− b
a

e =

√
a2 − b2

a2

e′ =

√
a2 − b2

b2

The flattening is usually given by its reciprocal (f ≈ 1/300), while the first
eccentricity is often found squared in the literature. However, sometimes

* In fact, the International Prime meridian is located 102m east of the observatory to
correct for the vertical deflection.

† Moreover, it is in gradians, so pay special attention.
‡ This Prime meridian was defined as being 20° west of Paris in the Atlantic Ocean.
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I. Parametrization of the sphere and the ellipsoid

the eccentricity is not given at all, in which case we have to calculate it
from the flattening:

e =

√
a+ b
a

a− b
a

=

√
2a− (a− b)

a
f =

√
(2− f )f =

√
2f − f 2

By transforming the formula for the first eccentricity, we can obtain a
very important relation:

e2 =
a2 − b2

a2

e2 − 1 = −b
2

a2

a2(1− e2) = b2

b = a
√
1− e2

We will use this expression often! For example, we can get the flattening
from the first eccentricity:

f =
a− a
√
1− e2

a
= 1−

√
1− e2

Or the relation between the first and second eccentricities:

e′ =

√
a2 − b2

a2(1− e2)
=

e
√
1− e2

On the ellipsoid, we define the longitude Λ in the same way as before on
the sphere. However, we can define three different latitudes (Fig. I.3):

• The geocentric latitude Ψ is the angle between the vector from the
centre of the ellipsoid to the point and the plane of the Equator.

• The geodesic or geographic latitude Φ is the angle between the normal
(local vertical) of the surface and the plane of the Equator.

• The parametric latitude Θ is the latitude that would be measured on
the sphere of radius a if the ellipsoid were stretched by a factor of a/b
in the direction of axis z.

In cartographic practice, we most commonly use the geodesic latitude.
This is because it was easy to measure using astronomical methods: latitude
is equal to the angle between the tangent plane of the ellipsoid (local
horizontal) and the direction of the Earth’s axis of rotation (North Star).
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I. Parametrization of the sphere and the ellipsoid

a

b

r

z

Θ
ΦΨ

Φ

90°−Φ

Figure I.3: Latitudes on an ellipsoid

To convert between the three definitions of latitude, let us first formulate
the equation of the ellipse shown in the figure:

r2

a2
+
z2

b2
− 1 = 0

Expressing z:

z = b

√
1− r

2

a2
=
b
a

√
a2 − r2

The derivative is the slope of the tangent line of the ellipse:

dz
dr

=
−br

a
√
a2 − r2

In the figure, it can be seen that the slope angle of the tangent line of
the ellipse marked by the red dashed line supplements the latitude just
to the right angle. Knowing that the derivative is the signed slope of
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I. Parametrization of the sphere and the ellipsoid

the tangent line, and taking into account that the derivative is negative:
dz/dr = − tan(90°−Φ) = −cotΦ . That is:

−br
a
√
a2 − r2

= −cosΦ
sinΦ

b2r2

a4 − a2r2
=

cos2Φ
sin2Φ

b2r2 sin2Φ = a4 cos2Φ − a2r2 cos2Φ
r2(a2 cos2Φ + b2 sin2Φ) = a4 cos2Φ

r =
a2 cosΦ

√
a2 cos2Φ + b2 sin2Φ

This gives the radius of the parallel at latitude Φ . Substitute the result
into the equation of the ellipse to get z:

z =
b
a

√
a2 − r2 =

b
a

√
a2 − a4 cos2Φ

a2 cos2Φ + b2 sin2Φ

=

√
b2a2 cos2Φ + b2b2 sin2Φ − a2b2 cos2Φ

a2 cos2Φ + b2 sin2Φ
=

b2 sinΦ
√
a2 cos2Φ + b2 sin2Φ

The figure shows that tanΨ = z/r, so

tanΨ =
b2 sinΦ
a2 cosΦ

=
b2

a2
tanΦ

However, Θ is by definition the image of Ψ after stretching by a factor
of a/b:

tanΘ =
a
b

tanΨ

Substituting the two equations into each other:

tanΘ =
b
a

tanΦ

Thus, from any latitude, the other two can be calculated, and the relation
Ψ ≤Θ ≤Φ can be demonstrated in the Northern Hemisphere.
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Lesson two

Introduction to spherical

geometry

II.1 Non-Euclidean geometries

The Euclidean geometry taught in secondary school covers the geometric
relationships on a flat plane well, but in practice, we see differences. For
example, the first surveyors found that the sum of the interior angles of
triangles measured in the field was slightly greater than 180°. This is due
to the curvature of the Earth.

The geometries of curved spaces are called non-Euclidean geometries.
There are three main types:

• Hyperbolic geometry: the interior angles of triangles add up to less than
180°, a line can have several non-intersecting lines drawn through a
point outside it in the same plane. Such is the case in Bolyai geometry.*

• Parabolic geometry: the interior angles of triangles add up to 180°, a
single parallel line can be drawn for a line through a point outside it.
An example is the Euclidean geometry.

• Elliptic geometry: the interior angles of triangles add up to greater than
180°, any two lines lying in a plane intersect each other. This includes
the spherical geometry we are discussing.

In spherical geometry, the role of the plane is replaced by the sphere.
Points are defined in the usual way. We look for the equivalent of the
straight line that still represents the shortest distance between any two
points: this is the geodesic. Spherical geodesics are circles whose centre is
at the centre of the sphere and whose radius is equal to the radius of the
sphere.† The spherical straight line is also called the great circle.

Loci of points equidistant from a point on a sphere are also circles, but
they are called small circles, distinct from spherical lines. In fact, spherical

* Such geometries play an important role in Einstein’s theory of general relativity.
† Some of the statements can be demonstrated at home: take a roughly spherical orange

with a thick peel and stick pins or toothpicks into it. The rubber band stretches along the
geodesics of the orange.
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II. Introduction to spherical geometry

lines can be considered as special spherical circles with a maximum possible
radius. Angles are measured in the usual way between the tangents, while
the angle subtended by the vectors from the centre of the sphere to the
two points is used to characterize the distance. Coordinates are interpreted
here in the geographic coordinate system.

II.2 Notable parts of the sphere

A shape bounded by two concentric small circles and two great circles
perpendicular to them is a geographical quadrangle. Contrary to its name,
it is not a spherical polygon, because only two of its bounding sides are
spherical straight sections, the other two are arcs of spherical circles.

The surface area of the quadrangle can be calculated as follows: divide
its area into thin bands with concentric (latitude) circles. Then the surface
of each band can be approximated by a rectangle whose area is the product
of the base and the height (Fig. II.1). It is known that the radius of a
parallel is r = Rcosϕ (Sec. I.3). The length of the arc forming the base is
the product of the radius r and the subtended angle (in radians!). However,
the subtended angle is the difference in longitude λ2 −λ1, so the length of
the base is Rcosϕ(�λ2 − �λ1). The height of the tiny rectangle is a tiny arc
of circle whose length is the product of the change in latitude in radians
and the radius of the sphere (R�∆ϕ). Thus, the area of the small rectangle is
given by R2( �λ2 − �λ1)cosϕ�∆ϕ. Refining the partitioning, the summation of
the infinitesimal rectangles becomes an integration between the bounding
latitudes ϕ1 and ϕ2:

A =

ϕ2U
ϕ1

R2
(�λ2 − �λ1)cosϕdϕ = R2

(�λ2 − �λ1)(sinϕ2 − sinϕ1)

r�∆λ = Rcosϕ�∆λ
R�∆ϕ

Figure II.1: Dividing the area of a quadrangle into small rectangles

The surface bounded by a spherical small circle is the spherical cap,
and the surface between two concentric spherical circles is the spherical
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II. Introduction to spherical geometry

zone (Fig. II.2). The surface area of a spherical zone can be calculated
simply from the previous formula by substituting ±180° for the bounding
longitudes:

A⊚ = R2[π − (−π)](sinϕ2 − sinϕ1) = 2R2π(sinϕ2 − sinϕ1)

In the formula above, substituting the latitudes of the North and South
Poles (±90°) for the bounding latitudes gives the surface area of the entire
sphere:

A� = 2πR2[1− (−1)] = 4R2π

ϕ1

ϕ2

λ1
λ2

α

Figure II.2: Zone (blue), lune (red), and quadrangle (purple)

As mentioned earlier, in spherical geometry, any two spherical lines
(great circles) intersect each other. In addition, it is observed that two
spherical lines have not only one, but two points of intersection, which are
antipodal points of each other. It is thus possible to construct a spherical
polygon bounded by only two spherical sections and two vertices. This
shape is called a spherical lune (Fig. II.2). The surface area of the lune is in
direct proportion to the angle �α at the vertex, which is now measured in
radians for simplicity. If the angle of the lune is a turn (2π), then it covers
the entire surface of the sphere (4R2π). From this, we obtain the surface of
the lune using proportions:

A() = 2R2�α
21



II. Introduction to spherical geometry

A

B
C

Figure II.3: Concave spherical triangle

II.3 The spherical triangle

The equivalent of a planar triangle on a sphere is called a spherical triangle,
bounded by three spherical sections. It is possible to construct a spherical
triangle that has a concave angle (Fig. II.3); however, we usually do not
consider these, and the statements are given for convex spherical triangles.

The area of the triangle is obtained from the formula for the area of the
lune. Let us cover the sphere with two antipodal lunes of angle α starting
from vertex A. The combined surface area of the two lunes is 4R2�α. Repeat
it for vertices B and C and two of each corresponding lunes of angles β
and γ! Now the combined surface area of the lunes is 4R2(�α + �β + �γ). The
six lunes completely cover the surface of the sphere (4R2π), but we have
managed to cover the triangle in question and its antipodal three times
(Fig. II.4). This means that the area of the spherical triangle was covered
four times unnecessarily. So if we subtract the surface of the sphere from
that of the six spherical lunes (4R2(�α + �β + �γ −π)), we have four times the
area of the triangle. From this, it follows that:

A△ = R2
(�α + �β + �γ −π)

From the formula above, we can draw two very important conclusions:
• The spherical excess obtained by subtracting 180° from the sum of the

interior angles of the triangle is in direct proportion to the surface
area of the spherical triangle. So the larger the triangle, the more its
properties differ from those of Euclidean geometry.

• The sum of the interior angles of a triangle is always greater than
180°, otherwise the surface would be negative. However, the sum
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II. Introduction to spherical geometry

β
γ

α
A

B C

Figure II.4: Calculating the area of a convex spherical triangle using two each of red,
blue, and green lunes

of the interior angles of a convex triangle is certainly less than 540°,
otherwise at least one of the angles would have to be concave.
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Lesson three

Navigation in spherical geometry

III.1 Spherical trigonometry

When examining spherical triangles, we can see that many properties
known from Euclidean geometry still hold. For example, the sum of two
sides is greater than the third, a larger side corresponds to a larger opposite
angle, or three data uniquely define a triangle. In fact, three angles are now
sufficient to define a triangle, since the sum of the interior angles is not a
fixed value. It can be seen, therefore, that the rules of sines and cosines
used to calculate unknown data of planar triangles have counterparts in
spherical geometry.

For simplicity, we assume in this section that the sphere has unit radius
so that the sides and their subtended angles (in radians) are equal. Further-
more, the Cartesian coordinate system is rotated so that axis z coincides
with one vertex of the triangle, while another vertex of the triangle lies on
the plane subtended by axes x and z. Then the Cartesian coordinates of
the vertices can be simply described using formulae between the polar and
Cartesian coordinates (Fig. III.1. on the next page).

Let us consider case (a) and formulate the volume of the parallelepiped
generated by the vectors A⃗, B⃗, C⃗ starting from the origin. This is the triple
product (determinant) of the three vectors:∣∣∣∣∣∣∣∣

0 0 1
sinc 0 cosc

sinbcosα sinb sinα cosb

∣∣∣∣∣∣∣∣ = sinc sinb sinα

Case (b) shows the same triangle, but with the coordinate axes rotated.
Calculate the volume of the parallelepiped again. This time, it is useful to
expand the determinant along the second line:∣∣∣∣∣∣∣∣

sinccosβ sinc sinβ cosβ
0 0 1

sina 0 cosa

∣∣∣∣∣∣∣∣ = sinasinc sinβ
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III. Navigation in spherical geometry

x

y

z

c

c

b

b

a

a
β

γ

α
A
(0
0
1

)

B
( sinc
0

cosc

)
C
(

sinbcosα
sinb sinα

cosb

)

(a) Vertex A on axis z, B on plane xz

x

y

z

a

a
c

c

b

b
γ

α

βB
(0
0
1

)

C
( sina
0

cosa

)
A
(

sinccosβ
sinc sinβ

cosc

)

(b) Vertex B on axis z, C on plane xz

x

y

z

b

b

a

a

c
cα β

γC
(0
0
1

)

A
(

sinb
0

cosb

)
B
( sinacosγ

sinasinγ
cosa

)

(c) Vertex C on axis z, A on plane xz

Figure III.1: Cartesian coordinates of vertices in a spherical triangle
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III. Navigation in spherical geometry

The volume of the parallelepiped cannot depend on the rotation of the
coordinate system. This means that the two previous expressions must be
equal to each other:

sinc sinb sinα = sinasinc sinβ
Simplifying by sinc and rearranging, we get this:

sina
sinα

=
sinb
sinβ

The above relation is very similar to the sine rule of Euclidean geometry,
so we call it the spherical rule of sines and will use it regularly in the follow-
ing.

Let us also examine the rotation in figure (c). This time, let us form
the scalar product of the vectors A⃗ and B⃗. The scalar product can be
calculated by multiplying the lengths of the vectors and the cosine of the
angle c between them. This is quite simple, since the lengths of A⃗ and B⃗
pointing to the surface of a unit sphere are exactly one. However, it is also
possible to calculate the scalar product by the pairwise multiplication of
the coordinates, and then we should obtain the same result:

1× 1× cosc = sinb × sinacosγ + 0× sinasinγ + cosb × cosa
Converted to an easy-to-remember form:

cosc = cosacosb+ sinasinbcosγ
The equation obtained above is of fundamental importance in carto-

graphy. It is called the spherical rule of cosines, and it establishes a relation-
ship between three sides and one angle of a triangle, similarly to rule of
cosines used in secondary schools.

Since a spherical triangle can be defined by three angles, a formula is
missing that allows to determine the length of at least one side based on
the three angles. This has no analogy in Euclidean geometry. The missing
formula is called the second spherical rule of cosines, the proof of which is
given in App. B:

cosγ = −cosα cosβ + sinα sinβ cosc
The three relations can now be used to compute the unknown data for

any spherical triangle, but sometimes several steps are required. For this
reason, the cotangent four-part formula is useful in rare cases:*

cotasinb = cosbcosγ + sinγ cotα
For all four formulae, it makes sense to say that it does not matter which

vertex of the triangle is denoted byA, B, andC, as long as the corresponding
notations a,b,c,α,β, and γ are used consistently.

* For example, it is easier to use it to find the intersection of great circles.
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III. Navigation in spherical geometry

III.2 Orthodromic navigation

An example of the importance of spherical trigonometry is the navigation
task of finding the direction and the length of a path between two points
of known coordinates. The formulae derived here are still used in marine
navigation and aviation today. Two types of navigation have developed
throughout history, orthodromic and loxodromic.

In solving navigation problems, terrestrial geodesics are called ortho-
dromes. Its clear advantage is that its formulae are guaranteed to show
the shortest route to your destination. To develop the formulae for the
orthodrome, we will use a spherical triangle with one vertex at the pole
and the other two vertices at the origin and destination.

We want to go from point A to point B in Fig. III.2. The angle appearing
at the northern vertex of the blue triangle is the difference in longitude
λB − λA. We also know two sides of the triangle, since they supplement
the latitude to 90°. Then we can write the rule of cosines for the third
side to be calculated, which subtends angle s/R° (converted to degrees)
corresponding to the arc length s in question. Note that cos(90°− δ) = sinδ
and sin(90°− δ) = cosδ!

cos
s
R

°
= sinϕA sinϕB + cosϕA cosϕB cos(λB −λA)

Equator

Prim
e m

er
id

ia
n

s/R°α90
°−
ϕ
A

ϕA

90°−
ϕ
B

ϕB

λB −λAλA
λB

North Pole

A

B

Figure III.2: Calculation of the great-circle distance

In the previous formula, the degree sign next to s/R warns that the angle
in degrees must be converted back to radians, and only then multiplied by
the radius of the Earth to get the distance s.
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III. Navigation in spherical geometry

There are two ways of calculating the direction of the orthodrome, i.e.
the azimuth defined in Sec. I.2. It is simpler to formulate using the rule of
sines:

sin(s/R)°
sin(λB −λA)

=
cosϕB
sinα

sinα =
sin(λB −λA)cosϕB

sin(s/R)°

But the rule of cosines is also useful:

sinϕB = sinϕA cos
s
R

°
+ cosϕA sin

s
R

°
cosα

cosα =
sinϕB − sinϕA cos(s/R)°

cosϕA sin(s/R)°

For practical calculations, both formulae are needed, because neither the
sine nor the cosine characterizes the azimuth uniquely: sinα = sin(180°−α)
and cosα = cos(360°−α). Thus, in both cases we have two solutions: for
the sine rule, α and 180°−α; for cosine rule, α and 360°−α. One of the two
roots is false, so we have to consider which solution to accept. Note that
negative azimuths are not used, so if the result of the arc sine is negative,
either 360° must be added to the value or it must be subtracted from 180°.
The correct decision can be made by drawing, or by using both formulae
to calculate the two solutions for the azimuth, because in this case there is
usually only one common root.

In addition, the sine varies only slightly for nearly right angles for large
differences in the angle, while the same can be said for the cosine for nearly
straight angles. Thus, for east-west paths, the rule of cosines, while for
north-south paths, the rule of sines provides more numerical stability.

III.3 Loxodromic navigation

Spirals with constant azimuth on a surface of revolution are called rhumb
lines. Such curves connecting two points are usually longer than the
geodesic.* These lines are called loxodromes on Earth. It can be seen that
the meridians on a surface of revolution are not only orthodromes, but also
loxodromes corresponding to azimuth 0°. Although parallels are typically
not orthodromes, they are loxodromes of azimuth 90°. The Equator is an
exception because it is both an orthodrome and a loxodrome.

* Except on the cylinder, where geodesics and rhumb lines always coincide.
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III. Navigation in spherical geometry

The navigational importance of the loxodrome is that our heading may
maintain a constant bearing to the compass, which is easily achieved.
Counter-intuitively, to do this, you have to keep turning the vehicle
(Fig. III.3).* It is typically barely longer than the orthodrome, and in the
pre-GPS era, the changing azimuth of the orthodrome would have been
difficult to follow, so it used to be popular among sailors. Today’s air
navigation has moved to more economical, orthodromic navigation.†

α

α

Figure III.3: The path of a rhumb line

Plot an infinitesimal section of length ∆s along the loxodrome of azimuth
α. The arc lengths along the parallel and meridian (small arcs of circles)
can be calculated from the radii of the corresponding parallel and meridian
and from the subtended angles. Fig. III.4 clearly shows that:

tanα =
Rcosϕ�∆λ
R�∆ϕ�∆ϕ tanα

cosϕ
= �∆λ

* Loxodromes are usually spiral curves. Before reaching the pole, they wind around it
infinitely many times in sharper turns, yet their length is still finite.

† This is only partly true: points are calculated along the orthodrome, but traffic
between two calculated points still follows the loxodrome. This technique was used to a
limited extent before GPS.
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III. Navigation in spherical geometry

∆
sR�∆ϕ

Rcosϕ�∆λ

α

Figure III.4: An infinitesimal section of a loxodrome

Integrate both sides between the starting point A and the end point B,
knowing that α is constant:

ϕBU
ϕA

tanα
cosϕ

dϕ =

λBU
λA

dλ

tanα
[
lntan

(
45° +

ϕB
2

)
− lntan

(
45° +

ϕA
2

)]
= �λB −�λA

tanα =
�λB −�λA

lntan(45° +ϕB/2)− lntan(45° +ϕA/2)

So we have found the azimuth of the loxodrome between points A and
B. However, it is important to note that this time we have two solutions:
tanα = tan(180° +α). Whether we need to add 180° is a matter of common
sense. The arc tangent function of the calculator can also give a negative
value, in which case we need to add 180 or 360 degrees (again, using
common sense to decide which).

It is important to note that the difference of longitudes in the numerator
is always calculated strictly in radians! The difference in longitudes must
always be within the range ±180° (±π)! Larger longitude differences for
paths crossing meridian 180° must be constrained within the range by
adding or subtracting 360° (2π)!

In the previous calculation, the antiderivative of 1/cosϕ was substituted
without derivation, so check this by differentiating!

[
lntan

(
45° +

ϕ

2

)]′
=

1

2 tan
(
45° + ϕ

2

)
cos2

(
45° + ϕ

2

)
=

1

2sin
(
45° + ϕ

2

)
cos

(
45° + ϕ

2

) =
1

sin(90° +ϕ)
=
1

cosϕ
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III. Navigation in spherical geometry

Note that some textbooks do not write the antiderivative of 1/cosϕ as
lntan(45° +ϕ), but as a seemingly very different expression, but a simple
transformation yields it:

lntan
(
45° +

ϕ

2

)
= ln

√√√√
2sin2

(
45° + ϕ

2

)
2cos2

(
45° + ϕ

2

)
=
1
2

ln
sin2

(
45° + ϕ

2

)
+ cos2

(
45° + ϕ

2

)
+ sin2

(
45° + ϕ

2

)
− cos2

(
45° + ϕ

2

)
cos2

(
45° + ϕ

2

)
+ sin2

(
45° + ϕ

2

)
+ cos2

(
45° + ϕ

2

)
− sin2

(
45° + ϕ

2

)
=
1
2

ln
1− cos(90° +ϕ)
1+ cos(90° +ϕ)

=
1
2

ln
1+ sinϕ
1− sinϕ

= artanhsinϕ

So, the formula can be written in this form:

tanα =
�λB −�λA

artanhsinϕB − artanhsinϕA

We still do not know how far we have to travel. To calculate the distance,
let us formulate the cosine of α from the figure:

cosα =
R�∆ϕ
∆s

∆s =
R�∆ϕ
cosα

Let us integrate both sides again, α is still constant, and the constant of
integration on the left side can be omitted, because s is zero at the starting
point: U

ds =

ϕBU
ϕA

R
cosα

dϕ

s = R
�ϕB −�ϕA

cosα

If the distance is negative, check that we have not swapped the starting
and ending points during the process, or forgotten the signs of the hemi-
spheres and have constrained the difference in longitudes �λB −�λA within
the range ±π by adding or subtracting 2π. If neither, then we have chosen
the wrong one of the two solutions for the azimuth. Then add 180° to α
and invert the sign of s.
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III. Navigation in spherical geometry

For formulae of both the loxodrome and the orthodrome, it is very im-
portant to use the correct signs. Our formulae give the correct result if we
substitute north latitude and east longitude with positive signs and south
latitude and west longitude with negative signs. Failure to do so for paths
crossing the Equator or the Prime meridian will lead to a serious error!
Among formulae discussed so far, this remark is also true for the area of the
geographical quadrangle.
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Lesson four

Curvature and arc length on the

ellipsoid

IV.1 Meridional radius of curvature

The spherical geometry discussed so far was based on a surface of con-
stant curvature. This cannot be said for the ellipsoid of revolution, whose
curvature varies from place to place. The internal scale relations of such
surfaces are discussed by the discipline of differential geometry. Let us first
define some necessary concepts.

The osculating circle of a smooth plane curve at a given point is the circle
tangent to the curve at the point in question, its tangent coincides with
that of the curve (so its centre is on the normal of the curve) and its second
derivative is equal to that of the curve at the point. The latter causes the
tangents of the curve and the osculating circle to be close to each other near
the point (Fig. IV.1), so if one draws perpendiculars to the curve close to
the point, their intersection will tend to the centre of the osculating circle.
The radius of curvature of the curve at a point is the radius of the osculating
circle at that point.

ϱ

P

Figure IV.1: The radius of curvature ϱ of a plane curve at point P

The curve obtained as the intersection of a surface and an arbitrary plane
is called the section of the surface. All sections of an ellipsoid of revolution
are ellipses. The normal section of a surface at a point is the section whose
plane contains the point and the normal (local vertical) of the surface. All
other sections containing the point are called oblique sections. The radius
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IV. Curvature and arc length on the ellipsoid

of curvature of a surface for a given point and direction is the radius of
curvature of the normal section that passes through that point and its plane
contains that direction. We will consider normal sections containing and
perpendicular to meridians.*

The meridional radius of curvature, denoted by M(Φ), is the radius of
curvature on the ellipsoid in the direction of meridians (Fig. IV.2) Consider
a point at latitude Φ on the meridian and plot perpendiculars at latitudes
Φ1 = Φ −∆Φ/2 and Φ2 = Φ + ∆Φ/2, as ∆Φ → 0! To calculate the angle
subtended by the arc of the osculating circle between latitudes Φ1 and Φ2,
consider the triangle of blue legs in part (b). Its upper right angle is Φ1
and its upper left angle is 180°−Φ2. The sum of the interior angles is 180°,
so the third angle must be Φ2 −Φ1 = ∆Φ . Multiplying this by radius M(Φ)
gives the small arc length of the osculating circle between the two points:
M(Φ)�∆Φ .

The limit of the secant passing through latitudesΦ1 andΦ2 is the tangent
and is therefore perpendicular to the normal at latitude Φ . The other arm
of the upper angle in the right triangle at part (c) is perpendicular to the
plane of the Equator, so this angle is equal to Φ . From this, the chord
length between the two outer points is −∆r/sinΦ , where the horizontal
leg ∆r is the tiny change in the radius of the parallel with respect to the
difference in latitude ∆Φ (the negative sign in the formula makes the chord
length positive: ∆r is negative in the Northern Hemisphere, while sinΦ is
negative in the Southern Hemisphere). If ∆Φ → 0, the distance between
these two points along the osculating circle and the chord is the same:

lim
∆Φ→0

M(Φ)�∆Φ = lim
∆Φ→0

−∆r
sinΦ

Recall that we have already calculated the radius r of the parallel in
Sec. I.4!

r =
a2 cosΦ

√
a2 cos2Φ + b2 sin2Φ

=
acosΦ√

cos2Φ + b2

a2
sin2Φ

=
acosΦ√

1− sin2Φ + b2

a2
sin2Φ

=
acosΦ

√
1− e2 sin2Φ

* The reason why it is sufficient to consider the curvature of these two directions is
deeply rooted in the foundations of differential geometry: the German mathematician
Gauss showed that if we know the extremal values of the curvatures at a given point on a
surface, we can calculate the curvature of the smooth elementary surface in any direction.
He also proved that the minimum and maximum curvatures always occur in directions
perpendicular to each other, and that on surfaces of revolution the direction of one of the
extrema is always in the plane of the meridian.
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Figure IV.2: Calculating the meridional radius of curvature

From the first equation, M(Φ) can be expressed, using that the limit of
∆r/�∆Φ is the derivative:

M(Φ) = lim
∆Φ→0

−∆r�∆Φ sinΦ
=
−1

sinΦ
dr
dΦ

=
−1

sinΦ

−asinΦ
√
1− e2 sin2Φ − acosΦ −2e

2 sinΦ cosΦ
2
√
1−e2 sin2Φ

1− e2 sin2Φ

= a
1− e2 sin2Φ − e2 cos2Φ

(1− e2 sin2Φ)3/2
=

a(1− e2)
(1− e2 sin2Φ)3/2

Now also calculate the arc length of the meridian between latitudes
Φ1 and Φ2! To do this, we split the arc of the ellipse into tiny segments
approximated by arcs of circles. In the previous derivation, we obtained
∆s =M(Φ)�∆Φ for the small arc length (Fig. IV.3). Refining partitions, the
summation becomes an integration:

s =

Φ2U
Φ1

M(Φ)dΦ =

Φ2U
Φ1

a(1− e2)
(1− e2 sin2Φ)3/2

dΦ
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IV. Curvature and arc length on the ellipsoid

The antiderivative of the integrand above cannot be formulated using
standard mathematical functions because it is an elliptic integral.* It can
be solved by numerical approximation or by using tables. Modern GIS
typically uses Fourier series for approximation.

a

b

r

z

N
(Φ

)

M
(Φ

)

M(Φ) �∆ΦN (Φ)cosΦ

Φ

Φ

Figure IV.3: Radii of curvature on the ellipsoid of revolution

IV.2 Prime-vertical radius

The radius of curvature of the normal section perpendicular to the meridian
is the transverse or prime-vertical radius of curvature, denoted by N (Φ). Be-
fore calculating it, perform a thought experiment on an arbitrary surface of
revolution. Select two points symmetrically on a normal section perpendic-
ular to the meridian of the point in question. From each of these two points,
drop a perpendicular line onto the surface. Then, due to symmetry, the
intersection of the two lines must lie on the axis of rotation. Now approach
the two points simultaneously and symmetrically towards the point in
question. The normals at the two points will then be closer and closer to
the plane of the normal section, while their intersection will remain on the
axis of revolution. It follows that centre of osculating circle is also on the
axis of revolution. In this case, it can be seen from the figure that the radius

* Elliptic integrals are called as such, because they were first discovered when the
circumference of an ellipse was computed. Since then, they have been found to occur in
countless fields of science. They can be used to derive the formula for many conformal
projections elegantly. See Sec. XXIX.1.
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IV. Curvature and arc length on the ellipsoid

r of the parallel is r =N (Φ)cosΦ .* From the previous formula for r:

N (Φ) =
a

√
1− e2 sin2Φ

The arc length along parallels of radius r on an ellipsoid of revolution
between longitudes Λ1 and Λ2 can be formulated as the product of the
radius and the subtended angle:

s =N (Φ)cosΦ
(�Λ2 −�Λ1)

IV.3 Latitude, longitude, and height in space

Satellite navigation measures the distance between the satellite and the in-
strument based on the time the signal is received. The known distance from
each satellite represents a sphere. We are at the common intersection point
of them. The coordinates of the intersection point can be calculated in an
x,y,z Cartesian coordinate system. How do we get geographic coordinates
from this?

Less exciting, but equally useful, is the question of obtaining the
Cartesian coordinates of a point from its geographic coordinates. This may
be needed if we want to treat points referenced to differenly sized and
positioned ellipsoids in a uniform coordinate system. It is easy to see that
the two problems are the inverse of each other.

Dealing first with the second problem, let us plot the ellipsoidal meridian
on which we are located on the plane r,z. Here, the horizontal coordinate r
on the surface of the ellipsoid will coincide exactly with the radius of the
parallel, and z will coincide with the axis z of the spatial system. We are at
latitude Φ and height h above the ellipsoid. Assuming a small height, we
measure the height in a straight line perpendicular to the ellipsoid. Then
we can read from Fig. IV.4:

r = r0 + hcosΦ
z = z0 + hsinΦ

* Here we have in fact proven a special case of Meusnier’s theorem, well known in
differential geometry. This theorem is not only true for a surface of revolution, and the
ratio between the radii of curvature of any normal section and oblique section tangent
to each other at the point in question is found to be the cosine of the angle between the
planes of the sections.
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IV. Curvature and arc length on the ellipsoid

a

b

r

z

hr0

hcosΦ

hsinΦ

z0

Φ

Φ
Φ

Figure IV.4: Coordinates of a point at height h above ellipsoid

The radius r0 of the parallel is already known (N (Φ)cosΦ), and the
formula z0 has already been calculated in Sec. I.4, which we now rearrange:

z0 =
b2 sinΦ

√
a2 cos2Φ + b2 sin2Φ

=
a2(1− e2) sinΦ

√
a2 cos2Φ + b2 sin2Φ

=
a(1− e2) sinΦ
√
1− e2 sin2Φ

= (1− e2)N (Φ) sinΦ

We know from the definition of longitude (Sec. I.3) that x = r cosΛ and
y = r sinΛ. Knowing this, we can use the previous relation to calculate:

x = [N (Φ) + h]cosΦ cosΛ
y = [N (Φ) + h]cosΦ sinΛ
z = [(1− e2)N (Φ) + h] sinΦ

Now we know where a point of a given geographic coordinate is located
in the Cartesian coordinate system. For the other problem (i.e. GPS naviga-
tion), we need to invert this. Dividing the second equation by the first one
gives us:

tanΛ =
y

x

So we already know the longitude. The squared sum of the first and
second equations:

x2 + y2 = [N (Φ) + h]2 cos2Φ

h =

√
x2 + y2

cosΦ
−N (Φ)
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IV. Curvature and arc length on the ellipsoid

Substitute this into the formula z:

z =

√x2 + y2

cosΦ
− e2N (Φ)

sinΦ

Transforming the formula above, we get a quartic equation of tanΦ .
The quartic equation can be solved, for example, by Ferrari’s method,
the derivation for which is given in App. C. Then, knowing Φ , h can be
obtained from the formula before the previous one. It is important to note
that h is not measured above the sea level, but is the height above ellipsoid,
which is corrected by the value of geoid undulation by our GPS device.

The derivation of closed conversion formulae is credited to Borkowski.
Although closed formulae are more commonly used in modern satellite
navigation, for ease of computation, Bowring’s formula is also given, which
gives an approximation to Φ that can be refined to an arbitrary precision.
The recursive formula:

tanΦ ′′ =
z+ (e′)2b sin3Θ ′√
x2 + y2 − e2acos3Θ ′

Where the parametric latitude tanΘ = b/a tanΦ converted from the
corrected Φ (Sec. I.4) is substituted back into the formula above to get a
further corrected Φ . The proposed initial value of Θ is derived from the
condition h ≈ 0:

tanΘ ≈ az

b
√
x2 + y2

In general, even one iteration gives surprisingly good accuracy.

IV.4 Area of the ellipsoidal quadrangle

Another possible use of radii of curvature is to calculate the surface area of
the ellipsoidal geographical quadrangle. Recall that on a sphere, this could
be calculated by partitioning the sphere into small rectangles as illustrated
in Fig. II.1. The only difference is that now the length of the base parallel
is N (Φ)cosΦ(�Λ2 −�Λ1), while the length of the tiny meridian arc on the
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IV. Curvature and arc length on the ellipsoid

ellipsoid is M(Φ)�∆Φ . The summation of the small rectangles is also an
integration:

A =

Φ2U
Φ1

M(Φ)N (Φ)cosΦ
(�Λ2 −�Λ1)dΦ

= a2(1− e2)
(�Λ2 −�Λ1)Φ2U

Φ1

cosΦ
(1− e2 sin2Φ)2

dΦ

The antiderivative of the integrand:U
cosΦ

(1− e2 sin2Φ)2
dΦ

=
U

cosΦ + e2 sin2Φ cosΦ
2(1− e2 sin2Φ)2

+
cosΦ(1− e2 sin2Φ)
2(1− e2 sin2Φ)2

dΦ

=
U

cosΦ + e2 sin2Φ cosΦ
2(1− e2 sin2Φ)2

+
ecosΦ

2e(1− e2 sin2Φ)
dΦ

=
sinΦ

2(1− e2 sin2Φ)
+
1
2e

artanh(e sinΦ) + c

The last step can be checked by deriving back. Knowing that the area
hyperbolic tangent can be written as 1/2 ln[(1+x)/(1−x)], we can substitute
it back into the equation, obtaining the formula for the surface of the
quadrangle:

A = a2(1− e2)
(�Λ2 −�Λ1)[ sinΦ2

2(1− e2 sin2Φ2)

+
1
4e

ln
1+ e sinΦ2
1− e sinΦ2

− sinΦ1
2(1− e2 sin2Φ1)

− 1
4e

ln
1+ e sinΦ1
1− e sinΦ1

]
Substituting ±180° for the longitudes and ±90° for the latitudes gives the

surface of the entire ellipsoid:

A� = 4a2π(1− e2)
[

1
2(1− e2)

+
1
4e

ln
1+ e
1− e

]
= 2a2π

(
1+
1− e2

2e
ln
1+ e
1− e

)
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Lesson five

Geodetic problems

V.1 Geodetic problems on the plane

Geodetic instruments are mainly used to measure distance and angle (dir-
ection), while we need the coordinates of the measured point. It is therefore
very common to determine the coordinates of an unknown point in terms
of the azimuth and distance measured from a point. This is called the first
or direct geodetic problem. For the orientation of instruments and for the
determination of the North direction, we reverse this, and we calculate
distance and azimuth from coordinates. This is the second or inverse geodetic
problem.

Our measurements are most often made at such small distances that we
can neglect the curvature of the Earth and use the formulae of ordinary
Euclidean plane geometry. Let us look at Fig. V.1. The formulae for the
direct geodetic problem are easy to read (for distance s and azimuth α):

xB = xA + s sinα
yB = yA + scosα

y

xAy
B
−
y A

=
sc

os
α

B

xB − xA = s sinα

sα

Figure V.1: Geodetic problems on the plane
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V. Geodetic problems

The formulae of the inverse problem are derived from the Pythagorean
theorem:

s =
√

(xB − xA)2 + (yB − yA)2

tanα =
xB − xA
yB − yA

We have two solutions for the azimuth, because the period of the tangent
is 180°. So we may need to add 180° (or 360°) to the result. The function
arctan2 was invented for the discussion between the two solutions. The
exact syntax is different in every programming language, usually a comma
or semicolon is written in place of the fraction bar: atan2(∆x,∆x) instead
of atan(∆x/∆y), but in Excel, for example, the order of the denominator
and numerator is reversed. Always check the manual of the programming
language! Beware that this can also give a negative result, in which case
360° must be added. It is not always correct to use arctan2 instead of
arctan! This is specifically for calculating azimuth, but it can also be used
for formulae involving the tangent of longitude.

V.2 Geodetic problems on the sphere

To calculate the spherical geodetic problems, return to Fig. III.2. For the
first problem, ϕA,λA, s and α are known, the question is the position of
point B. Apply the spherical rule of cosines for the unknown ϕB.

sinϕB = sinϕA cos
s
R

°
+ cosϕA sin

s
R

°
cosα

The degree sign warns that in the formula, s/R is always in radians, if the
calculator is set to degrees, it must be converted from radians to degrees!
Now we can apply the spherical rule of sines for the unknown difference in
longitude.

cosϕB
sinα

=
sin(s/R)°

sin(λB −λA)

λB = λA + arcsin
sinα sin(s/R)°

cosϕB

Note that the two-valued arc sine is not a problem here, because longitude
differences greater than ±90° are extremely rare in geodetic practice.

The second problem, the calculation of distance and azimuth on a sphere,
has already been covered in Sec. III.2, so it will not be discussed again.
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V. Geodetic problems

With regard to the calculation on computers, let me add the suggestion
that azimuth can be obtained from the cotangent four-part formula. This
expression is suitable to apply the function arctan2 so that the two-valued
formulae can be resolved:

tanϕB cosϕA = sinϕA cos(λB −λA) + sin(λB −λA)cotα
tanϕB cosϕA − sinϕA cos(λB −λA)

cotα
= sin(λB −λA)

tanα =
sin(λB −λA)

tanϕB cosϕA − sinϕA cos(λB −λA)

V.3 Metacoordinates

A special application of the spherical problems of geodesy is the graticule
rotation, which means that not the Earth’s axis of rotation but an arbitrar-
ily chosen other axis is considered to be the axis of revolution (Fig. V.2).
The poles so designated are called metapoles, and the corresponding co-
ordinates are called the metacoordinates. Its two parameters (metalatitude
and metalongitude) are distinguished from the geographic coordinates by
a prime. The positioning of the rotated system is given by the geographic
coordinates of the metapole. The prime metameridian is defined as always
passing through the North Pole.*

Figure V.2: Rotating the graticule

* It only makes sense to use a different placement in non-conical projections. See
Sec. XIX.2.
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V. Geodetic problems

First, the coordinates of the metapole ϕ0,λ0 are given. As shown in
Fig. V.3, the point, the pole, and the metapole define a spherical triangle,
for which the spherical rule of cosines can be applied (this is essentially
the second geodetic problem):

sinϕ′ = sinϕ sinϕ0 + cosϕ cosϕ0 cos(λ−λ0)

90
°−
ϕ

90°−
ϕ
0

Prime metameridian

90°−ϕ
′

M
et

ae
qu

at
or

λ′

λ0 −λ

North Pole

P

Metapole

Figure V.3: Metacoordinates knowing the metapole

The missing λ′ can now be calculated from the spherical rule of sines:

cosϕ′

−sin(λ−λ0)
=

cosϕ
sinλ′

sinλ′ = −
sin(λ−λ0)cosϕ

cosϕ′

Or even from the rule of cosines:

sinϕ = sinϕ′ sinϕ0 + cosϕ′ cosϕ0 cosλ′

cosλ′ =
sinϕ − sinϕ′ sinϕ0

cosϕ′ cosϕ0

Neither the rule of sines and cosines is sufficient by itself, since both
give two solutions. The advantages of both formulae can be combined by
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V. Geodetic problems

dividing them by each other and then substituting sinϕ′:

tanλ′ =
− sin(λ−λ0)cosϕ

cosϕ′

sinϕ−sinϕ′ sinϕ0
cosϕ′ cosϕ0

=
−sin(λ−λ0)cosϕ cosϕ0

sinϕ − [sinϕ sinϕ0 + cosϕ cosϕ0 cos(λ−λ0)] sinϕ0

=
−sin(λ−λ0)cosϕ cosϕ0

sinϕ − sinϕ(1− cos2ϕ0)− cosϕ cosϕ0 cos(λ−λ0) sinϕ0

=
−sin(λ−λ0)cosϕ cosϕ0

sinϕ − sinϕ + sinϕ cos2ϕ0 − cosϕ cos(λ−λ0)cosϕ0 sinϕ0

=
−sin(λ−λ0)

tanϕ cosϕ0 − cos(λ−λ0) sinϕ0
The resulting formula is suitable for using the function arctan2 so that

λ′ can be uniquely determined.
The formulae for the inverse calculation (this is essentially the first geo-

detic problem) can be derived in the same way:

sinϕ = sinϕ′ sinϕ0 + cosϕ′ cosϕ0 cosλ′

tan(λ−λ0) =
−sinλ′

tanϕ′ cosϕ0 − cosλ′ sinϕ0
Sometimes it may also be useful to add additional relations. Rearranging

the rule of sines for λ′:

sinλ′ cosϕ′ = −sin(λ−λ0)cosϕ

Furthermore, from the previous relations:

cosλ′ cosϕ′ =
sinλ′ cosϕ′

tanλ′
=

−sin(λ−λ0)cosϕ
−sin(λ−λ0)

tanϕ cosϕ0−cos(λ−λ0) sinϕ0

= cosϕ[tanϕ cosϕ0 − sinϕ0 cos(λ−λ0)]
= sinϕ cosϕ0 − cosϕ sinϕ0 cos(λ−λ0)

In transverse aspect (ϕ0 = 0), the formulae are greatly simplified since
sinϕ0 = 0 and cosϕ0 = 1:

sinϕ′ = cosϕ cos(λ−λ0)

sinλ′ =
sin(λ−λ0)cosϕ

cosϕ′
=

sin(λ−λ0)cosϕ√
1− cos2ϕ cos2(λ−λ0)

cosλ′ = −
sinϕ
cosϕ′

= −
sinϕ√

1− cos2ϕ cos2(λ−λ0)
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V. Geodetic problems

The sign of trigonometric functions of λ′ has just been reversed because
otherwise the resulting maps would be oriented south-up, not north-up.

The other possibility is when the intersection of the metaequator and the
prime metameridian is known. Look at Fig. V.4. The reader may notice
that only two data of the spherical triangle have changed compared to
the previous one: instead of 90° − ϕ0, the corresponding side is ϕc, so
cosϕc should be written instead of sinϕ0 and vice versa sinϕc should be
written instead of cosϕ0. The other difference is that the angle at the pole is
180°+λc−λ instead of λ0−λ. Because of the latter, we substitute −cos(λ−λc)
for cos(λ−λ0) and sin(λ−λc) for −sin(λ−λ0) (of course, the formulae will
be the same if derived again as before):

sinϕ′ = sinϕ cosϕc − cosϕ sinϕc cos(λ−λc)

tanλ′ =
sin(λ−λc)

tanϕ sinϕc + cos(λ−λc)cosϕc
sinϕ = sinϕ′ cosϕc + cosϕ′ sinϕc cosλ′

tan(λ−λc) =
sinλ′

tanϕ′ sinϕc − cosλ′ cosϕc

Metaequator

90
°−
ϕ
c

Prime metameridian

ϕc

90°−
ϕ ′

90°−ϕ

180°− (λ−λc)
λ−λc

λ′
Metapole

North Pole

P

Central point

Figure V.4: The intersection of the metaequator and the prime metameridian is known

The purpose of the graticule rotation is to move the mapped area on the
sphere into the areas of favourable distortion. For example, as shown in
Fig. IX.2, a stereographic projection is the best possible conformal projec-
tion for circles centred on the pole. If our area is roughly circular but is not
near the pole, we simply rotate the graticule so that the metapole falls in
the centre of the area we want to display. In the projections rotated so, we
simply substitute metacoordinates for latitudes and longitudes.
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V. Geodetic problems

V.4 Geodetic problems on the ellipsoid

Imagine a point-like trolley on a surface of revolution and push it with
a unit initial speed. The trolley is only affected by the gravity of surface,
friction is neglected. Gravity is perpendicular everywhere to the surface of
revolution considered as an equipotential surface, and therefore also to the
path of the trolley. Thus, gravity does not do any work on the trolley, its
speed remains constant. Since it is not subject to lateral forces, its trajectory
can be considered to be straight within the surface, i.e. the trolley follows a
geodesic on the surface of revolution.

Let the current azimuth of the trajectory of the trolley be α, then the
component of its velocity in the direction of parallels is sinα. This is also
the peripheral velocity of the trolley with respect to the axis of rotation of
the surface. The direction of the gravity force (the normal of the surface)
intersects the axis of rotation due to symmetry, so it has no torque with
respect to the axis of rotation. Due to the conservation of angular mo-
mentum, the peripheral velocity of the trolley travelling along the geodesic
multiplied by the radius r of the parallel (i.e. the distance from the axis of
rotation) must be constant (Clairaut’s relation):*

r sinα = const·

At first glance, we did not learn much about the geodesics on the ellips-
oid of revolution, although this information alone should be enough to
determine the path. Let us start with the direct geodetic problem! From
Fig. V.5, we can see that:

cosα =
M(Φ)�∆Φ

∆s

sinα =
N (Φ)cosΦ�∆Λ

∆s

Rearrange, knowing that the ratio between infinitesimally small distances
tends to the derivative:

dΦ
ds

=
cosα
M(Φ)

dΛ
ds

=
sinα

N (Φ)cosΦ

* In fact, we are back in the depths of differential geometry. A rigorous proof of the
relation obtained here requires calculus of variations and the solution of complicated
differential equations.

47



V. Geodetic problems

∆
sM(Φ)�∆Φ

N (Φ)cosΦ�∆Λ

α

Figure V.5: An infinitesimal section of an ellipsoidal geodesic

We will also need the following derivative:

dr
ds

=
dN (Φ)cosΦ

dΦ
dΦ
ds

=
[
dN (Φ)

dΦ
cosΦ +N (Φ)

dcosΦ
dΦ

]
cosα
M(Φ)

=

 ae2 sinΦ cosΦ

(1− e2 sin2Φ)3/2
cosΦ −N (Φ) sinΦ

 cosα
M(Φ)

=M(Φ)
e2 sinΦ cos2Φ
1− e2

cosα
M(Φ)

−N (Φ) sinΦ
cosα
M(Φ)

=
e2 cos2Φ sinΦ cosα

1− e2
− a(1− e2 sin2Φ)3/2 sinΦ cosα

a(1− e2)
√
1− e2 sin2Φ

=
e2(1− sin2Φ) sinΦ cosα − (1− e2 sin2Φ) sinΦ cosα

1− e2

=
e2 − e2 sin2Φ − 1+ e2 sin2Φ

1− e2
sinΦ cosα = −sinΦ cosα

Next, let us also derive Clairaut’s relation!

dr
ds

sinα + r cosα
dα
ds

= 0

N (Φ)cosΦ cosα
dα
ds

= sinΦ cosα sinα

dα
ds

=
tanΦ sinα
N (Φ)

A function f differentiable any times in the neighbourhood of the point
x = a can be approximated with arbitrary precision by its Taylor series, i.e:

f (x) = f (a) +
x − a
1!

f ′(a) +
(x − a)2

2!
f ′′(a) +

(x − a)3

3!
f ′′′(a) + . . .

Of course, exact equality would only exist if all the infinitely many
members were added together, but the series converges quickly, so the
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V. Geodetic problems

small summands at the end of the series can be ignored.* Now let us see
why this was necessary! let us formulate ΦB and ΛB as a function of the
distance s from the point ΦA,ΛA. Let Φ and Λ be decomposed into Taylor

series around s = 0!

ΦB =ΦA +
s
1!

dΦ
ds

∣∣∣∣∣
s=0

+
s2

2!
d2Φ
ds2

∣∣∣∣∣
s=0

+
s3

3!
d3Φ
ds3

∣∣∣∣∣
s=0

+ . . .

ΛB =ΛA +
s
1!

dΛ
ds

∣∣∣∣∣
s=0

+
s2

2!
d2Λ
ds2

∣∣∣∣∣
s=0

+
s3

3!
d3Λ
ds3

∣∣∣∣∣
s=0

+ . . .

The first derivatives are known, while the higher order derivatives follow
naturally from further derivations of the first derivatives. If we look at
the formulae of the derivatives of Φ and Λ, we see that they also depend
on s through α, but this is not a problem, since we have calculated the
derivative of α, so we can substitute it while using the chain rule.

This method is due to Legendre. Although its derivation is insightful
and relatively simple to understand, it is not very applicable in practice.
The reason is that it converges very slowly, the sixth derivative is needed for
geodetic accuracy, and these higher order derivatives are extremely difficult
to compute. In addition to this, the high-degree terms in s makes the
solution of the inverse problem even more difficult: Then s is the unknown,
and there is a solver formula only for equations containing the fourth power
of s.

Geodesists typically use Gauss’s method, which decomposes the function
into a Taylor series around the bisector between the two points, resulting in
much faster convergence (it is sufficient to consider the second derivative).
The disadvantage of this method is that the coordinates of the bisector are
not known, and one can get better results by iteration after a first guess.

All the previously discussed methods assumed that s is relatively short
(< 1000 km). For longer distances, exact solutions are needed. A popular
solution is Bessel’s one, which reduces the problem to the simple spherical
geodetic problems and then corrects for the difference between the sphere
and the ellipsoid by elliptic integrals. Bessel’s formulae were adapted for
computer execution by Karney. Modern open-source GIS almost invariably
uses his formulae, and their results are considered highly reliable, in con-
trast to Vincenty’s formulae in slightly older packages. The latter converge
only at distances shorter than 10 000 km.

The calculation of long geodesics also provides an opportunity to illus-
trate them. Fig. V.6 shows that, unlike the sphere, ellipsoidal geodesics do

* The method works with all smooth functions, and can be used to efficiently approx-
imate complicated functions. The pocket calculator, for example, uses Taylor series to
calculate trigonometric functions.
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V. Geodetic problems

not return to themselves but move a bit back. The only exceptions are the
circular Equator and the elliptical bimeridians.

North Pole

Equator

B
im

er
id

ia
n

Figure V.6: Paths of geodesics on an ellipsoid (f = 1/10)

The results are used in satellite remote sensing. The orbit of a satellite is a
geodesic (remember the trolley). Some satellites orbit in a heliosynchronous
orbit, i.e. they always pass over areas at the same local time to provide the
same light conditions. As the Earth orbits the Sun, the orbital plane of the
satellite must be constantly varied to maintain a constant angle with the
Sun (i.e. the satellite’s orbital plane rotates 90° in three months, see Fig. V.7).
On a spherical Earth, this would be impossible because spherical geodesics
are flat curves and satellites would not change their orbital plane. On the
ellipsoid, however, only the meridians and the Equator are plane curves,
the orbital planes of the other geodesics precess. If the orbit subtends
just a tiny angle (∼ 1°) with the meridians, it is possible to achieve a tiny
precession of the geodesic that changes the orbital plane of the satellite just
as much as we need. Without the not-so-friendly calculations above, there
would be no LANDSAT, SPOT and many other similar successful projects.

Sun

Figure V.7: Precession of a heliosynchronous orbit
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Lesson six

The basics of map projections

VI.1 The Theorema Egregium

Take a round pizza slice and grab it by the edge! The tip of the pizza
slice towards you will immediately bend and the toppings will run off! A
common solution is to slightly lift the two corners of the pizza slice and
bend them into a curve. This will keep the pizza slice almost horizontal.
How is this possible, and how can you start a lecture on map projections
with such an example?

To examine the phenomenon, we introduce the concept of Gaussian
curvature. The curvature of a curve is the signed reciprocal of its radius of
curvature introduced in Sec. IV.1 (the sign depends on whether the turn
is to the right or left). The curvature of a smooth surface is the curvature
of its normal section (Sec. IV.1), which depends on position and direction.
The Gaussian curvature of a surface at a given point is the product of the
minimal and maximal curvatures at that point.

Some examples: the curvature of a plane is zero in all directions, so is
also the Gaussian curvature. The cone has no curvature in the direction
of the generating lines and positive curvature in all other directions. Con-
sequently, the Gaussian curvature is zero (since the minimal curvature
can be multiplied by anything). The Gaussian curvature of saddle-shaped
potato crisps is negative since the extremal curvatures have opposite signs
(opposite directions). The curvature of the sphere at all points and in all
directions is 1/R, so its Gaussian curvature is constant (positive) 1/R2. The
radii of curvature of an ellipsoid of revolution with major semi-axis a and
first eccentricity e are (Sec. IV.1–IV.2):

N (Φ) =
a

√
1− e2 sin2Φ

M(Φ) =
a(1− e2)

(1− e2 sin2Φ)3/2

The Gaussian curvature of the ellipsoid of revolution varies with latitude:
1/N (Φ)M(Φ).
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VI. The basics of map projections

Gauss’s famous theorem, the Theorema Egregium (remarkable theorem),
states: a distortion-free mapping (preserving distances, angles, and areas) can
be established between parts of two smooth surfaces if and only if their Gaussian
curvature is the same for each point. In other words, there are strict conditions
for distortion-free mappings (note that twisting a flat slice of pizza is a
distortion-free mapping):

• Both the cone and the plane have zero Gaussian curvature, so a distor-
tion-free mapping between them is possible. The flat pizza slice can
be bent into a cone.

• The Gaussian curvature of the sphere is constant positive. There is no
distortion-free projection between sphere and plane. If you bend the
pizza slice in one direction, you cannot simultaneously twist it in the
direction perpendicular to it. It is not possible to cover even a part of
a sphere with a slice of pizza without wrinkling or tearing.

• The Gaussian curvature of the rotation ellipsoid, although also positive,
is only constant along the parallels. It is not possible to map the entire
ellipsoid of revolution onto the sphere without distortion, but it is
possible to map the infinitesimally small neighbourhood of a selected
latitude (see Sec. IX.3).

• Potato crisps are fried into surfaces with negative Gaussian curvatures
(saddles) because they give great stability: they cannot be bent into
other shapes without distortion.

The proof of Theorema Egregium is extremely complicated, it uses
second-order partial derivatives and tensor algebra.

VI.2 What is a map projection?

The relation f : R2 ⊃→R
2 between some parametrizations of two smooth

surfaces is called a map projection. The domain is called the reference frame,
the codomain is the mapped plane. The rule of association, also called
the formulae of the projection, is usually given in the form of x = f1(ϕ,λ),
y = f2(ϕ,λ).

We can make the following practical assumptions for map projections,
but counterexamples can be found for all of them:

• The reference frame should be a surface of revolution describable in
closed from so that we have simple formulae. However, the shape of
certain small celestial bodies cannot be approximated by a surface of
revolution, so Russian cartographers have developed projections for
them with a triaxial ellipsoid as the reference frame.
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VI. The basics of map projections

• Thecodomain should have zero Gaussian curvature (developable sur-
face), since we want a flat map. In contrast, Google Earth uses a map
projection between the ellipsoid of revolution and a sphere.

• We do not want the same point of the reference frame to appear in
multiple places on the map, i.e. the mapping should be single-valued.
However, we can find maps that show the poles as lines and maps that
show the meridian ±180° twice.

• We do not want the map to have breaks and discontinuities, i.e. the
map projection should be a multiple times differentiable function. This
is impossible to satisfy everywhere based on the results of topology; in
every projection, we find a point or line, along which continuity is not
satisfied.

• We do not want the map to bend under itself, i.e. the mapping should
be injective. Especially among perspective projections, we will see
many counterexamples, where the problematic parts are simply not
drawn at all.

The reference frame of the projection will typically be a sphere of radius
R parametrized by the latitude ϕ and longitude λ (Sec. I.3). The other
common reference frame, the ellipsoid of revolution, is characterized by
the major semi-axis a and the first eccentricity e. Parallels Φ are still
circles of radius N (Φ)cosΦ (Sec. IV.2). However, the meridians Λ are semi-
ellipses with radius of curvature M(Φ) (Sec. IV.1).

VI.3 Surfaces approximating the Earth’s figure

What shape of the Earth should we consider for our calculations? We
have seen that planar computations are quite simple, the derivation of
the spherical formulae are also easy to follow, but the formulae for the
ellipsoid of revolution are quite complicated. Imagine then how difficult an
irregular surface like a geoid is to handle. Obviously, although the Earth is
a geoid, we only take this into account when measuring height, simplifying
for horizontal calculations. Four cases are distinguished according to the
longest extent of the area:

• We map a small area (extent < 4 km): the curvature of the Earth causes
negligible error, we can consider the Earth as plane and apply the
simple formulae.

• When measuring longer distances (< 13 km), the curvature of the Earth
is assumed to be constant, and an osculating sphere is chosen that fits
the surface well.

• For even larger areas, it is necessary to calculate on the ellipsoid of
revolution.
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VI. The basics of map projections

• If our area is very large (> 3500 km) and we are not aiming for geodetic
accuracy, but simply draw a small-scale map, the deviation between
ellipsoid and sphere (∼ 20 km) is below the accuracy of the small-
scale map. In this case, we can also use a sphere, but its radius, the
mean Earth radius, may be significantly different from the radius of the
osculating sphere described earlier!

VI.4 Geodetic datums

From the above requirements, it is clear that the shape of the Earth (geoid)
is approximated by an ellipsoid of revolution even if the highest accuracy
is required. This approximation is not unique for two reasons. On the
one hand, different measurements at different locations give different data
for the Earth’s major semi-axis and its flattening. On the other hand, it is
not certain that the centre of a well-fitting ellipsoid of revolution will lie
exactly at the geoid’s centre of mass, and its axis of revolution may even
differ from the Earth’s true axis of rotation. Together, the dimensions and
the placement of the ellipsoid of revolution are called the geodetic datum.
There can be a difference of up to ∼ 100m between the same geographic
coordinates interpreted on different datums, so it is always important to
check which datum your data uses!

Older ellipsoids of revolution (e.g. the Zách–Oriani of 1810) had a major
semi-axis and flattening smaller than those used today (Tab. VI.1). This
is because the first measurements were limited to Europe, and the shape
of the geoid corresponds to these dimensions here. Later ellipsoids (e.g.
the Bessel of 1841) were based on measurements taken in several places
averaged out and are therefore close to the shape of the Earth as we know it
today. Current ellipsoids (e.g. WGS84) are based on satellite measurements.

Table VI.1: Sizes of a few terrestrial ellipsoids

Name Year a (m) b (m) 1/f

Zách–Oriani 1810 6 376 130 6 355 561·839 310
Bessel 1841 6 377 397·155 6 356 078·963 299·152 815
Clarke 1880 6 378 249·145 6 356 514·870 293·465
Hayford 1924 6 378 388 6 356 911·946 297
Krasovskiy 1940 6 378 245 6 356 863·019 298·3
IUGG67 1967 6 378 160 6 356 774·516 298·247 167
WGS84 1984 6 378 137 6 356 752·314 298·257 224
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VI. The basics of map projections

For satellite surveys, the Earth’s centre of mass and axis of rotation are
measured easily, so the ellipsoid is positioned so that its centre and axis
of rotation coincide with that of the Earth. The resulting datum is called
a global datum, and it fits the geoid everywhere quite well (Fig. VI.1). An
example is WGS84, which is based on the WGS84 ellipsoid of the same
name.

Regional datum

Global datum
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Figure VI.1: The relationship between the geoid and the datums

For ground surveys, we can only rely on data from local measurements,
so we fit the ellipsoid locally to our area (regional datum).* The centre of the
ellipsoid placed such is offset (∼ 100 m) from the Earth’s centre of mass,
and its axis of revolution deviates (∼ 1′′) from the Earth’s axis of rotation,
but it fits the geoid well in our region. Importantly, the parameters of the
ellipsoid (major semi-axis, flattening) are not changed in the process, it
will be an ellipsoid based on a previous international measurement. In
Hungary, we use the datum HD72, which is based on the major semi-axis
and flattening of the ellipsoid IUGG67.†

* This does not actually mean that the difference in height (geoid undulation) between
the ellipsoid and the geoid is minimal, but that the deviation between the local vertical
direction of the geoid measured by astronomical methods and the normal of the ellipsoid
(vertical deflection) is as small as possible at the Laplace points used for the fit. This also
minimizes the discrepancy between geodetic latitudes measured with respect to the stars
and those calculated on the ellipsoid (see also App. D).

† The realization of regional datums relies on marked points, the latitude and longitude
of which are recorded on a sheet of paper, so the regional datum can slowly depart from
its original position as the tectonic plates move. Its typical rate is about one metre every
25 years.
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VI. The basics of map projections

For the conversion between the different datums, we can take into ac-
count 7 parameters: the translations ∆x, ∆y, and ∆z in the three directions
of space, the rotations σx, σy , and σz around the three axes and a rescaling s.*

Since the angles σ are small, we use the approximations sinσ ≈ �σ , cosσ ≈ 1,
and σiσj ≈ 0 to obtain the rotational matrix in a simpler form. Then, re-
scaling involves multiplication by a scalar, while translation involves the
addition of the corresponding vector:

x
′

y′

z′

 =

∆x∆y
∆z

+ (1+ s)


1 �σz −�σy
−�σz 1 �σx�σy −�σx 1


xy
z


The upper transformation is called Helmert transform (rarely Burša–

Wolf transform). It can be seen that the transformation requires Cartesian
coordinates rather than geographic ones. The formulae for the conversion
are given Sec. IV.3. The accuracy of the transformation is typically around
metres. It is important to note that some GIS packages use the opposite
sign convention for the direction of rotations, so if the conversion does not
work in a program with the parameters given in the literature, always try
to flip the signs of rotations!

Sometimes, for simplicity, only the translation is considered, in which
case the error is typically around five metres. This is called a Molodenskiy

transform, which has only three parameters. Although a form of the Mo-

lodenskiy transform can provide a direct relationship between the geo-
graphic coordinates of two datums (abridged transform), for simplicity, we
will use Cartesian coordinates:x

′

y′

z′

 =

∆x∆y
∆z

+

xy
z


Alternatively, for greater accuracy, a grid shift transform is usually

provided by GIS, which effectively adds or subtracts different values from
the geographic coordinates from place to place by interpolating data from a
raster file. This results in an accuracy of decimetres, but is computationally
expensive, as it is slow to extract the locally valid offsets from the raster.

* Due to the adjustment for measurement errors during triangulation, the scale rela-
tions of regional and global datums are inconsistent, and this is taken into account in the
transform, but the measurement accuracy of the angles is more reliable, so we take care to
preserve them. This is why we have chosen a similarity transformation.
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VI. The basics of map projections

VI.5 The radius of the Earth

We are now dealing with the sphere as a reference frame. There are several
ways to derive the radius of the Earth, now assumed to be spherical, from
the data of the ellipsoid of revolution. In this section, the values given
are the radii of the spheres approximating the ellipsoid WGS84, i.e. a =
6378137m, f = 1/298·257223563. The volumetric radius, which represents
a sphere having the same volume as the ellipsoid of revolution, is the most
commonly used radius in small-scale mapping. Its value is less than one
metre greater than 6371 km. To calculate it, formulate the volume of the
sphere and that of the ellipsoid:

4R3π
3

=
4a2bπ
3

R =
3√
a2b = a

6√
1− e2

The surface of the sphere corresponding to the authalic radius is the same
as that of the ellipsoid. Its value is 6371·007 km. When calculating, recall
that the surface of the sphere was obtained in Sec. II.2, while the surface of
the ellipsoid of revolution was obtained in Sec. IV.4:

4R2π = 2a2π
(
1+
1− e2

2e
ln
1+ e
1− e

)
R =

√
a2

2

(
1+
1− e2

2e
ln
1+ e
1− e

)
Likewise, the length of the meridians remains unchanged if a sphere of

rectifying radius is chosen. This is 6367·449 km, its calculation:

2Rπ = 2

90°U
−90°

M(Φ)dΦ

For local mapping, we use the radius of the osculating sphere or the
Gaussian radius of curvature, which varies from place to place. Its value is
the geometric mean of the radii of curvature taken at the point:

R =
√
M(Φ)N (Φ)

It is easy to see that according to the Theorema Egregium, a projection
between the ellipsoid and the osculating sphere can be distortion-free in
the infinitesimal neighbourhood of latitude Φ , as here they have the same
Gaussian curvature.
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VI. The basics of map projections

VI.6 Classification of projections

Projections can be classified in several ways. Most often, we classify them
according to the shape of the graticule. We then call conical projections those
mappings in which:

• the mapped parallels are concentric circles, arcs of circles, or parallel
straight lines;

• the mapped meridians are concurrent or parallel straight lines;
• parallels and meridians are everywhere perpendicular to each other;
• the meridians are spaced along the parallels evenly (in proportion to

their longitude).
If only one condition is not fulfilled, then we speak of a non-conical

projection.
Based on the images of the parallel circles, both conical and non-conical

projections are grouped further (Fig. VI.2):
• If the images of the parallels are complete circles, an azimuthal or a

pseudoazimuthal projection is obtained.
• If they are mapped only to arcs of circles, we speak of a (pseudo)conic

projection.
• If the mapped parallels are parallel lines, we have a (pseudo)cylindrical

map.
• Some non-conical projections do not fit either of these groups. These

are the miscellaneous projections.
Projections are also grouped according to their geometric construction:

a projection is perspective if it can be generated by a central perspective
projection (using light rays from a centre placed on the common axis of
revolution of a developable surface and the reference frame), all other
projections are non-perspective. All perspective projections are also conical
ones.

The projections must have some distortion due to the Theorema Egre-
gium. The distortions are characterized by local distortions. These are the
ratios of the corresponding mapped and original quantities as the quantity
on the reference frame approaches zero. Let l denote the linear scale, p the
areal scale and i the angular distortion. Let ∆s, ∆S, and µ denote distances,
areas, and angles, respectively, on the reference frame; and ∆s′, ∆S ′, and µ′

denote their corresponding mapped images. The distortions are defined as
follows:

l = lim
∆s→0

∆s′

∆s

p = lim
∆S→0

∆S ′

∆S
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VI. The basics of map projections

Parallels Conical Non-conical

Circles

Azimuthal Pseudoazimuthal

Arcs

Conic Pseudoconic

Straight

Cylindrical Pseudocylindrical

Other —

Miscellaneous

Figure VI.2: Classification according to the shape of the graticule

i =
tanµ′

tanµ

So a projection is distortion-free where all three distortions are one. On
this basis, we can also group projections according to distortion characterist-
ics: if at each point p = 1, then the projection is equal-area or equivalent. If
i = 1 for the whole map then our mapping is conformal. If at all points and
in all directions l = 1 then we have miscalculated something. This would
imply the absence of distortion, which is ruled out by the Theorema Egre-
gium. There are projections that have equidistant points, lines, and even
infinitely many lines (all meridians or all parallels) can be equidistant, but
even then they cannot be true-scale in all directions at the same time. So
our third possible category is aphylactic (neither equivalent nor conformal).

On the projections of all three categories, there may be points or lines,
along which there is absolutely no distortion. This is called a true-scale or
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VI. The basics of map projections

standard line of the projection and if it is a parallel, we may also use the
term standard parallel.

We can also classify projections according to their aspect: this grouping
is first defined on a sphere using the metageographic coordinate system.
We conceptualize this as rotating the graticule so that an arbitrarily chosen
point, the metapole, behaves like the original pole. The exact definition and
formulae are given in Sec. V.3. Subsequently, the projection will be plotted
in terms of the metageographic coordinates rather than the geographic
coordinates.

If the metapole coincides with one of the poles, the aspect is normal. if
the metapole is on the Equator, it is transverse. otherwise, it is oblique. For
an ellipsoid of revolution, we generalize this definition by considering the
aspect of the spherical projection obtained from the ellipsoidal formulae by
substituting e = 0. Projections not of normal aspect are classified according
to the image of the metagraticule (i.e. the network of mapped metaparallels
and metameridians) instead of the original graticule.

It is important to keep in mind that the rotation of the graticule preserves
the distortion characteristics of the projection (e.g. conformality and equi-
valency), but special properties of the graticule (e.g. equidistant meridians,
intersection angle between graticule lines) will apply to the metagraticule,
the original graticule will lose these properties. This does not affect the
classification according to the shape of the graticule; if the properties of
conical projections are satisfied for the metagraticule and the projection is
called a conical projection even if the mapped graticule would lead us to
conclude the opposite.
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Lesson seven

Distortions in terms of partial

derivatives

VII.1 The linear scale

Consider an infinitesimal section ∆s on the reference frame considered as a
plane due to small dimensions! The infinitesimal geographical quadrangle
enclosing the section is approximately a rectangle. Assuming from the
differentiability that the mapped slopes of the sides are essentially the
same, as they are close to each other, so the quadrangle is mapped to a tiny
parallelogram (Fig. VII.1).
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(b) Mapped onto the plane

Figure VII.1: Infinitesimal geographic quadrangle and its image

Projections are described by the pair of functions x(ϕ,λ), y(ϕ,λ). The
definition of the partial derivative is �xf (x,y) = lim∆x→0[f (x + ∆x,y) −
f (x,y)]/∆x. Rearranged: f (x + ∆x,y) − f (x,y) ≈ ∆x × �xf (x,y). Using this
relation, we can approximate the length of the green sections:

∆m′x ≈
�x

�ϕ
�∆ϕ

∆m′y ≈
�y

�ϕ
�∆ϕ
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VII. Distortions in terms of partial derivatives

∆n′x ≈
�x

�λ
�∆λ

∆n′y ≈
�y

�λ
�∆λ

From the Pythagorean theorem for ∆s′, it follows that:

∆2s′ = (∆m′x +∆n′x)
2 +

(
∆m′y +∆n′y

)2
≈

(
�x

�ϕ
�∆ϕ +

�x

�λ
�∆λ)2 +

(
�y

�ϕ
�∆ϕ +

�y

�λ
�∆λ)2

=
[(
�x

�ϕ

)2
+
(
�y

�ϕ

)2](�∆ϕ)2
+2

[
�x

�ϕ

�x

�λ
+
�y

�ϕ

�y

�λ

]�∆ϕ�∆λ+
[(
�x

�λ

)2
+
(
�y

�λ

)2](�∆λ)2
The factors in square brackets* will be denoted by E,F,G respectively for

brevity:

∆2s′ = E
(�∆ϕ)2

+ 2F�∆ϕ�∆λ+G
(�∆λ)2

The sides of the rectangle on the refernce frame in the directions of
parallels and meridians are ∆n and ∆m, respectively, so:

∆2s = ∆2m+∆2n ≈
(

dm
dϕ

)2(�∆ϕ)2
+
(

dn
dλ

)2(�∆λ)2
For the angle from the meridian to the section and the meridian (azimuth

α):

tanα =
∆n
∆m
≈

dn
dλ

�∆λ
dm
dϕ

�∆ϕ�∆λ�∆ϕ ≈
dm
dϕ
dn
dλ

tanα

The definition of the linear scale is:

l = lim
∆s→0

∆s′

∆s

* These quantities are called the coefficients of the Gaussian first fundamental form.
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Now we can count the linear scale!

l2 =
∆2s′

∆2s
=
E
(�∆ϕ)2

+ 2F�∆ϕ�∆λ+G
(�∆λ)2(

dm
dϕ

)2(�∆ϕ)2
+
(

dn
dλ

)2(�∆λ)2 =
E + 2F �∆λ�∆ϕ +G

(�∆λ)2(�∆ϕ)2(
dm
dϕ

)2
+
(

dn
dλ

)2 (�∆λ)2(�∆ϕ)2

=
E + 2F

dm
dϕ
dn
dλ

tanα +G

(
dm
dϕ

)2
( dn

dλ )2
tan2α(

dm
dϕ

)2
+
(

dn
dλ

)2 (dm
dϕ

)2
( dn

dλ )2
tan2α

=

E cos2α(
dm
dϕ

)2 + 2F tanα cos2α
dm
dϕ

dn
dλ

+G tan2α cos2α
( dn

dλ )2

cos2α + tan2α cos2α

= E
cos2α(

dm
dϕ

)2 + 2F
sinα cosα

dm
dϕ

dn
dλ

+G
sin2α(

dn
dλ

)2
We know that the small arc length on the reference frame is equal to the

product of the radius and the subtended angle (in the following formulae,
the ones on the left are for a sphere, the ones on the right are for the
ellipsoid of revolution):

∆m = R�∆ϕ ∆m =M(Φ)�∆Φ
dm
dϕ

= R
dm
dΦ

=M(Φ)

∆n = Rcosϕ�∆λ ∆n =N (Φ)cosΦ�∆Λ
dn
dλ

= Rcosϕ
dn
dΛ

=N (Φ)cosΦ

That is, on the sphere, expanding also the notations E,F,G:

l2 =
[(
�x

�ϕ

)2
+
(
�y

�ϕ

)2]cos2α
R2

+
[(
�x

�λ

)2
+
(
�y

�λ

)2] sin2α
R2 cos2ϕ

+ 2
[
�x

�ϕ

�x

�λ
+
�y

�ϕ

�y

�λ

]
sinα cosα
R2 cosϕ

And on the ellipsoid of revolution:

l2 =
[(
�x

�Φ

)2
+
(
�y

�Φ

)2] cos2α
M2(Φ)

+
[(
�x

�Λ

)2
+
(
�y

�Λ

)2] sin2α
N 2(Φ)cos2Φ

+ 2
[
�x

�Φ

�x

�Λ
+
�y

�Φ

�y

�Λ

]
sinα cosα

M(Φ)N (Φ)cosΦ

It can be seen that the linear scale depends (via the partial derivatives) on
both the location and the direction α. Let us calculate the linear scales along
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VII. Distortions in terms of partial derivatives

graticule lines! If α = 0°, we obtain the linear scale along meridians denoted
by h and if α = 90°, we obtain the linear scale along parallels denoted by k:

h =

√(
�x
�ϕ

)2
+
(
�y
�ϕ

)2
R

h =

√(
�x
�Φ

)2
+
(
�y
�Φ

)2
M(Φ)

k =

√(
�x
�λ

)2
+
(
�y
�λ

)2
Rcosϕ

k =

√(
�x
�Λ

)2
+
(
�y
�Λ

)2
N (Φ)cosΦ

We can find equidistant projections in meridians with the condition h = 1,
while we can find equidistant projections in parallels imposing k = 1.

VII.2 Intersection angle between graticule lines

Going back to Fig. VII.1, we can see that the angles ϑm and ϑn can be easily
derived from the corresponding right triangles:

sinϑm =
∆m′y
∆m′

=

�y
�ϕ

�∆ϕ
∆m′

cosϑm =
∆m′x
∆m′

=
�x
�ϕ

�∆ϕ
∆m′

sinϑn =
∆n′y
∆n′

=
�y
�λ

�∆λ
∆n′

cosϑn =
∆n′x
∆n′

=
�x
�λ

�∆λ
∆n′

Let ϑ denote the intersection angle between parallels and meridians. Then,
using that according to the figure ϑ = ϑm −ϑn:

sinϑ = sin(ϑm −ϑn) = sinϑm cosϑn − cosϑm sinϑn

=
(
�y

�ϕ

�x

�λ
− �x
�ϕ

�y

�λ

) �∆ϕ�∆λ
∆m′∆n′

cosϑ = cos(ϑm −ϑn) = cosϑm cosϑn + sinϑm sinϑn

=
(
�x

�ϕ

�x

�λ
+
�y

�ϕ

�y

�λ

) �∆ϕ�∆λ
∆m′∆n′
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Just one small step and you have a useful formula:

cotϑ =
cosϑ
sinϑ

=
�x
�ϕ

�x
�λ + �y

�ϕ
�y
�λ

�y
�ϕ

�x
�λ −

�x
�ϕ

�y
�λ

The interesting thing about this formula, which is also valid for the
ellipsoid of revolution, is that its numerator is the last coefficient of the
formula for the linear scale and its denominator will occur in the formula
for the areal scale. It is important to note that at all points of rectangular
projections, cotϑ = 0, which helps to find such projections.

VII.3 The areal scale

Let us go back to Fig. VII.1. The surface area ∆S of the small geographical
quadrangle (rectangle) is the product of the sides, while the area ∆S ′ of the
tiny parallelogram is the product of its two sides and the sine of the angle
ϑ between them:

∆S = ∆m∆n

∆S ′ = ∆m′∆n′ sinϑ

Substituting the value of sinϑ into the formula above:

∆S ′ =
(
�y

�ϕ

�x

�λ
− �x
�ϕ

�y

�λ

)�∆ϕ�∆λ
The definition of the areal scale is:

p = lim
∆S→0

∆S ′

∆S

Two useful formulae can be obtained for this, depending on which form
of ∆S ′ is substituted. On the one hand:

p = lim
∆m→0
∆n→0

∆m′∆n′ sinϑ
∆m∆n

= hk sinϑ
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VII. Distortions in terms of partial derivatives

On the other hand:*

p = lim
∆m→0
∆n→0

(
�y
�ϕ

�x
�λ −

�x
�ϕ

�y
�λ

)�∆ϕ�∆λ
∆m∆n

=

�y
�ϕ

�x
�λ −

�x
�ϕ

�y
�λ

dm
dϕ

dn
dλ

Substituting the spherical and ellipsoidal quantities:

p =

�y
�ϕ

�x
�λ −

�x
�ϕ

�y
�λ

R2 cosϕ
p =

�y
�Φ

�x
�Λ −

�x
�Φ

�y
�Λ

M(Φ)N (Φ)cosΦ

Since p = 1 in equal-area projections, we can find equivalent projections
simply by solving the equation hk sinϑ = 1. In rectangular projections,
sinϑ = 1, it suffices to write the even simpler equation hk = 1 for such
projections.

* The bracketed term in the numerator is the determinant of the Jacobian matrix of
partial derivatives. This implies that the Jacobian determinant of the projection is closely
related to the areal scale.
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Lesson eight

Tissot’s theory of map distortion

VIII.1 Map projections as local affine transforms

The modern theory of map projections is based on the works of the French
geodesist Tissot, written in the late 19th century. The main results of these
studies are called Tissot’s theorem. Since these theorems were summarized
by later authors, there are differences in the number of propositions, num-
bering and wording of the theorems, but these formulations are equivalent
to the statements in the original French text.

Tissot’s theorem is summarized in three propositions in this lecture
note:

I. Any differentiable mapping between two smooth surfaces can be interpreted
as an ensemble of affine transformations of infinitely many infinitesimal
areas. For this reason, the mapped image of an infinitesimal circle
on the reference frame is an ellipse that can be constructed from the
original circle using stretching and uniform scaling.

II. At any point on the reference frame of such a differentiable map projection,
there is at least one pair of perpendicular directions whose images on the
map are also perpendicular to each other. These special directions are
called the principal directions.

III. The directions of the minimal and maximal linear scales measured at a
single point always coincide with the principal directions. The direction
of the maximum linear scale is called the first principal direction and
the direction of the minimum linear scale is called the second principal
direction.

First, prove proposition II: Take a section and another section perpen-
dicular to it on the plane tangent to the reference frame, and examine
their image on the map (Fig. VIII.1). Since the two right angles on the
reference frame form a straight angle and the map projection is assumed
to be differentiable (smooth), it is certain that the directions on the map
also form a straight angle (otherwise the images of the straight lines would
be broken and the map projection would not be differentiable). This shows
that the image of the other section on the map either divides the straight

67



VIII. Tissot’s theory of map distortion

angle into two right angles or into an acute and an obtuse angle. In the
former case, we have already found two principal directions of projection,
in the latter case, we need to think further.

(a) On the reference frame (b) On the map

Figure VIII.1: The image of two perpendicular directions

Looking at the planar image, we see that the image of the red right
angle became smaller, while that of the blue right angle became larger.
Since the mapping is differentiable, we can apply Bolzano’s theorem
known in mathematical analysis to the images of right angles; that is,
continuous functions on an interval [a,b] take all possible values of the
interval [f (a), f (b)]: If the image of one right angle is an obtuse angle and
the image of the other one is an acute angle, there must surely be a right
angle between these two right angles rotated by some angle whose image is
a right angle. This completes the proof.

Next, we prove proposition I: Consider a rectangle of infinitesimal sides
∆ξ and ∆η on the reference frame (more precisely, on its tangent plane)
such that its sides lie in the principal directions. Then the image of this
rectangle on the map will be a rectangle since we have already seen that
the principal directions are perpendicular to each other on the map. Let us
superimpose the red rectangle of the reference frame and the corresponding
mapped blue rectangle (Fig. VIII.2).

∆ξ ′

∆η′

∆ξ

∆η ∆η

∆ζ

Figure VIII.2: The infinitesimal rectangles superimposed

The figure shows that the red rectangle can be transformed into the
blue rectangle first by stretching in the vertical direction (green dashed
rectangle) and then rescaling it to get the blue rectangle. If the factors of
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VIII. Tissot’s theory of map distortion

the stretching and the scaling are independent of the rectangle dimensions
and depend only on the distortions of the map projection, then these two
transformations perfectly describe the image of all points in the infinitely
small neighbourhood of our point.

Let a = ∆ξ ′/∆ξ denote the linear scale in one of the principal directions
and b = ∆η′/∆η the linear scale in the other principal direction. The scale
factor of between the red and green rectangles is then:

∆ζ
∆η

=
∆ζ

∆η′
∆η′

∆η
=

∆ξ

∆ξ ′
∆η′

∆η
=
b
a

In the derivation above, we exploited the fact that the right triangles of
legs ∆ξ,∆ζ and ∆ξ ′,∆η′ are similar, so the ratios of the corresponding legs
are the same. From the result, we see that the scale factor is independent of
the dimensions of the rectangle because we can express it from the linear
scales.

Let us look at the scale factor between the green and blue rectangles:

∆ξ ′

∆ξ
= a

Since this is also independent of the dimensions of the rectangle, it is
generally true that in the small neighbourhood of the point, the image of
the original shapes can be obtained after stretching them by b/a and scaling
by a, where a and b are the linear scales in the principal directions of the
map projection. This completes the proof. A more lengthy, algebraic proof
for those interested in of map projection theory can be found in App. E.

VIII.2 The ellipse of distortion

Before proving proposition III, we must consider the implications of the
first two statements. If we find two principal directions at a point on the
reference frame, let us denote the linear scales in these directions by a and
b, with the notation chosen such that a ≥ b. Let us call the direction of
a the first principal direction and the direction of b the second principal
direction. Consider a system of coordinates ξ,η on the tangent plane of
the reference frame such that the axis ξ is in the first principal direction.
Similarly, assume a coordinate system ξ ′,η′ on the map in an analogous
way.

Consider an infinitesimal circle on the reference frame assumed to be of
unit radius (due to the small size and our constraint on the smooth surface,
we can neglect the difference between the surface and its tangent plane).
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VIII. Tissot’s theory of map distortion

Then, using proposition I, we obtain a shape on the mapped plane which is
shrunk by a factor of b/a in the direction of the η axis and then enlarged
by a factor of a. This is an ellipse of semi-axis a in the direction ξ ′ and
semi-axis b in the direction η′. This ellipse is called an ellipse of distortion
or Tissot’s indicatrix (Fig. VIII.3).

1st princ. dir.

ξ

2n
d

p
ri

nc
.d

ir
.

η

µ
η = sinµ

ξ = cosµ

(a) On the reference frame

ξ ′

η′

l
µ′

a

b η′ = bη

ξ ′ = aξ

(b) On the map

Figure VIII.3: Tissot’s indicatrix

We know that the areal scale can be obtained as the ratio of a small
mapped area divided by its corresponding area on the reference frame.
Divide the area of the ellipse of distortion by the area of the original circle
to obtain a third method for calculating the areal distortion:

p = lim
∆S→0

∆S ′

∆S
=
abπ

12π
= ab

That is, for equal-area projections ab = 1, the area of the ellipses of
distortion is independent of location.

Let us examine the angular distortion of angles with one arm in the first
principal direction:

i =
tanµ′

tanµ
=

bη
aξ
η
ξ

=
b
a

That is, in conformal projections, a = b. This means that in the case of
conformality, the ellipses of distortion will be circles.

We can calculate the linear scale by taking the ratio of infinitesimal
mapped distances to corresponding distances on the reference frame. The
small radius subtending angle µ on the reference frame from the first prin-
cipal direction is assumed to be unit. Its image is the small semi-diameter
of the distortion ellipse, whose length can be calculated by multiplying the
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VIII. Tissot’s theory of map distortion

coordinates on the tangent plane of the reference frame by a and b, taking
into account the stretching by b/a and the scaling by a:

l =

√
ξ ′2 + η′2

1
=

√
a2ξ2 + b2η2 =

√
a2 cos2µ+ b2 sin2µ

Now we can prove proposition III. Earlier we stipulated that a ≥ b and
since the linear scale is by definition positive, a2 ≥ b2. Since cos2µ+sin2µ =
1, we have some weighted average of a2 and b2 under the square root. Its
value is maximal if a2 has weight 1 and b2 has weight 0, and minimal if
b2 has weight 1 and a2 has weight 0. It follows that b ≤ l ≤ a and l has a
maximum at µ = 0° and a minimum at µ = 90°, which is also a principal
direction of the map projection due to proposition II. Thus, the extrema
are in the principal directions of the projection. This completes the proof.
There is a problem if a = l = b because in this case, there are extrema
in all directions. However, in this case, the projection is conformal, any
pair of perpendicular directions will be mapped to a pair of perpendicular
directions. That is, in conformal projections, each direction is a principal
direction. Tissot’s theorem is thus fully proved.

Henceforth, a will be called maximum and b minimum linear scale. An-
other important result is that we have seen that in conformal projections,
the linear scale is independent of the direction because a = b = l.

VIII.3 Calculation of extremal linear scales

In the following, we look for practical formulae for a and b. Let υ denote the
angle on the reference frame formed by the parallel and the first principal
direction! Then the meridian will form υ+ 90°. The linear scale along the
meridian and the parallel is obtained by the formula:

h =
√
a2 cos2(υ+ 90°) + b2 sin2(υ+ 90°)

k =
√
a2 cos2υ+ b2 sin2υ

That is:*

h2 + k2 = a2 sin2υ+ b2 cos2υ+ a2 cos2υ+ b2 sin2υ = a2 + b2

* The relation obtained here is generally valid: Apollonius was the first to show that
the sum of the squares of two conjugate semi-diameters of an ellipse (considering the ellipse
as an affine image of a circle, the images of two perpendicular radii of the original circle)
is constant.
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VIII. Tissot’s theory of map distortion

Any formula obtained for the areal scale should give the same value:

p = hk sinϑ = ab

From the previous two equations:

(a+ b)2 = a2 + b2 + 2ab = h2 + k2 + 2hk sinϑ
(a− b)2 = a2 + b2 − 2ab = h2 + k2 − 2hk sinϑ

A simple transformation gives:

a =
a+ b+ a− b

2
=

√
(a+ b)2 +

√
(a− b)2

2

b =
a+ b − (a− b)

2
=

√
(a+ b)2 −

√
(a− b)2

2

That is, the final result:

a =

√
h2 + k2 + 2hk sinϑ +

√
h2 + k2 − 2hk sinϑ

2

b =

√
h2 + k2 + 2hk sinϑ −

√
h2 + k2 − 2hk sinϑ

2

Let us make some observations! In projections with rectangular graticule
(and hence in any conical projection), the graticule lines are principal
directions, so h and k are also the extremal linear scales. In conformal
projections, all directions, including the graticules, are principal directions,
i.e. the graticule is always rectangular (ϑ = 90°). To prove the conformality
if the graticule is rectangular, it is sufficient to check h = k, since h and k
can be substituted for a and b.

VIII.4 Maximum angular deviation

Before we start, let us do some calculations with the angle µ and its image
µ′ subtended from the first principal direction. Consider the following
fraction:

sin(µ−µ′)
sin(µ+µ′)

=
sinµcosµ′ − cosµsinµ′

sinµcosµ′ + cosµsinµ′

=

sinµcosµ′

cosµsinµ′ − 1
sinµcosµ′

cosµsinµ′ + 1
=

tanµ
tanµ′ − 1
tanµ
tanµ′ + 1

=
a
b − 1
a
b + 1

=
a− b
a+ b
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VIII. Tissot’s theory of map distortion

We have just applied our previous knowledge that for such angles, i =
tanµ′/tanµ = b/a. The equation above is multiplied by sin(µ+µ′):

sin(µ−µ′) =
a− b
a+ b

sin(µ+µ′) ≤ a− b
a+ b

µ−µ′ ≤ arcsin
a− b
a+ b

The relation above gives an upper bound on the maximal change in
the direction an arm of angle can undergo during the projection. This
necessarily leads to the conclusion that an angle will suffer the maximum
possible angular deviation if both arms change by that amount. Then the
maximum angular deviation is denoted by ω:

ω = 2arcsin
a− b
a+ b

Considering that the arc sine never gives a value greater than 90°, ω is
always less than or equal to 180°. The maximum angular deviation can
sometimes be more illustrative than the angular distortion.
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Lesson nine

Map distortions in practice

IX.1 Visualizing distortions

To choose the most appropriate projection for the purpose of our repres-
entation, we need to observe their distortions. We need to visualize the
distortions in some way, typically by using the concepts of diagrams and
isolines familiar from thematic cartography. The use of Tissot’s indicatrices
is obvious. The infinitely small ellipses of distortion must be enlarged
using some convention in order to make them finite. The ellipses must be
rotated so that the semi-axes are aligned with the corresponding principal
directions of the projection. The distortions are read as follows (Fig. IX.1):

• The linear scale is directly proportional to the semi-diameter of the
ellipse in the corresponding direction.

• The flattening of the ellipse illustrates the angular distortion. Circular
indicatrices indicate conformal projections.

• The area of the ellipse represents the areal scale. Ellipses of the same
area everywhere on the map suggest an equal-area projection.

Another option is the isoline of equal distortion (isocol). This can only
show quantities that do not depend on direction, only on the location, so it
is not possible to visualize linear scale in this way.* The areal scale, however,
depends only on location, so the method can be applied to it. Sometimes
p is replaced by its deviation from 1 on the maps. The angular distortion
is only independent of the direction of the second arm if the first arm is
in the first principal direction of the projection. Therefore, the maximum
angular variation ω is often plotted on the map instead.

Chebyshev’s theorem is helpful in finding the projection suitable to the
area to be plotted: if one of the isocols of a conformal projection coincides with
the boundary of the area to be plotted, then it has the lowest possible distortion
among conformal projections.† An example of Chebyshev’s theorem is that

* Except for conformal projections, as we have seen earlier that the linear scale in these
projections is independent of direction.

† To put it more precisely, the difference between the logarithms of the minimal and
maximal linear scales in the area shown is minimal.
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IX. Map distortions in practice

(a) In an equal-area projection (b) In a conformal projection

(c) In an aphylactic projection

Figure IX.1: Ellipses of distortion

the stereographic projection has isocols as circles (Fig. IX.2), so it is the
projection of the most favourable distortion for circular areas.

For non-conformal projections, the theorem does not hold, and a counter-
example is easy to find: the projections of Lambert and Wiechel are both
equal-area and their isocols are circles (Fig. IX.2). Yet the Wiechel projec-
tion has a much more unfavourable distortion, so the latter is certainly not
the best equal-area projection for representing circular areas. Nevertheless,
recent research suggests that the isocols of the best projections also follow
the boundary of the area being plotted, so in such cases, we also tend to
choose projections whose isocols are preferably parallel to the boundary of
our area.

IX.2 Distortions not predicted by Tissot’s theory

Our choice of map projection can also be affected by distortions that are not
predicted by Tissot’s theorem. For example, maps are typically oriented
to the North. However, the projected graticule does not necessarily satisfy
this at all points: the discrepancy between the vertical direction and true
north is called meridian convergence. This is not a distortion in the classical
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IX. Map distortions in practice

(a) In the stereographic projection (p − 1)

(b) In Lambert azimuthal (ω) (c) In Wiechel projection (ω)

Figure IX.2: Isocols
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IX. Map distortions in practice

sense, because it only rotates parts of the map. The meridian convergence
γ is calculated from the slope (derivative) of the tangent of the mapped
meridian, where λ is constant:

tanγ =
dx
dy

= lim
∆ϕ→0

x(ϕ +∆ϕ,λ)− x(ϕ,λ)
y(ϕ +∆ϕ,λ)− y(ϕ,λ)

=
�x

�ϕ

/
�y

�ϕ

There is no meridian convergence in cylindrical projections, and no me-
ridian convergence is expected for other projections in the centre of the
map. This is usually achieved by adjusting the central meridian* appropri-
ately. This can be thought of as substituting λ−λm for λ in the formulae,
where λm is the central meridian. Since in most projections, there is no
meridian convergence at the central meridian (λ = 0°), λm is usually the
longitude running through the centre of our area.

It rather counts as a distortion, yet Tissot’s theory does not predict that
mapped geodetic lines are not necessarily straight lines. The deviation
from this is expressed by the flexion f , which is the number of radians the
geodetic line turns for a unit distance on the line:

f =
dα
ds

A projection that maps geodesics to straight lines can be constructed in
case of a spherical surface, but not for an ellipsoid of revolution.

Conformal projections are locally similarity transformations according
to Tissot’s theory. Yet no one would think that, for example, Mercator’s
projection (Fig. XIII.3) would show Greenland as similar to the original
shape. The reason for the shape distortion seen here is that the linear scales
change rapidly from place to place; whereas in the same projection, the
shape of Africa looks less distorted because the linear scale changes slowly
here. The resulting degree of shape distortion is indicated by the skewness
s, which measures how the length distortion multiplies for a unit distance:

s =
1
l

dl
ds

Flexion and skewness were recently defined by two astrophysicists, Gold-

berg and Gott, to study the distortion of planetary maps. The formulae for
practical calculations were derived by Kerkovits.

* The Prime meridian is not the same as the central meridian! The Prime meridian is
the 0° meridian from which λ is measured; while the central meridian is the longitude of
typically round number that becomes the axis of symmetry of the mapped graticule. The
longitude ±180° from the central meridian, in which most projections have discontinuities,
is called the antimeridian.
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IX.3 Auxiliary spheres

Sometimes, it is easier to derive a map projection for the ellipsoid as a
double mapping: in the first step, we map the ellipsoid onto an auxiliary
sphere, then a spherical projection is applied between the sphere and the
plane. These spheres are not distortion-free, so it is important to use a
sphere that has the same distortion characteristic as the desired projection:
e.g. the authalic (equal-area) sphere should be chosen for an equal-area
double mapping.

For all auxiliary spheres, we expect parallels and meridians get mapped
onto parallels and meridians, respectively. We further expect that mapped
parallels are evenly divided by meridians:

ϕ = f (Φ)
λ = cΛ

Calculate the linear scales of auxiliary spheres.

h = lim
∆m→0

∆m′

∆m
= lim

∆Φ→0

R�∆ϕ
M(Φ)�∆Φ =

R
M(Φ)

dϕ
dΦ

k = lim
∆n→0

∆n′

∆n
= lim

∆Λ→0

Rcosϕ�∆λ
N (Φ)cosΦ�∆Λ =

Rccosϕ
N (Φ)cosΦ

Note that all auxiliary spheres are rectangular (ϑ = 90°), so h and k are
also the a and b maximal and minimal linear scales. The simplest auxiliary
sphere is the spherical model of Google Earth:

ϕ =Φ
λ =Λ

It can be seen that the projection meets all our expectations. The radius
of this sphere is the equatorial radius of the Earth (6378·137 km). The
mapping is aphylactic, i.e. h , k and hk , 1.

The authalic sphere is equal-area. We know that hk = 1.

R
M(Φ)

dϕ
dΦ

Rccosϕ
N (Φ)cosΦ

= 1

cosϕdϕ =
M(Φ)N (Φ)cosΦ

R2c
dΦU

cosϕdϕ =
a2(1− e2)
R2c

U
cosΦ

(1− e2 sin2Φ)2
dΦ

sinϕ =
a2(1− e2)
R2c

[
sinΦ

2(1− e2 sin2Φ)
+
1
4e

ln
1+ e sinΦ
1− e sinΦ

]
+κ
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Recall that we have already obtained the complicated integral on the
right-hand side in Sec. IV.4, and we could substitute it. κ is a constant of
integration, it can take any value. We usually choose c = 1 and κ = 0. Note
that it makes sense to use this projection with the authalic radius (Sec. VI.5)
only!

Let us also develop the rectifying sphere, which is equidistant in meridians
(h = 1).

R
M(Φ)

dϕ
dΦ

= 1

dϕ =
M(Φ)
R

dΦ

ϕ =
1
R

U
M(Φ)dΦ +κ

We usually use this projection with c = 1, κ = 0, but now we should
substitute the rectifying radius for R.

Now only the calculation of the conformal sphere (h = k) is left:

R
M(Φ)

dϕ
dΦ

=
Rccosϕ

N (Φ)cosΦ
1

cosϕ
dϕ =

cM(Φ)
N (Φ)cosΦ

dΦU
1

cosϕ
dϕ = c

U
1− e2

cosΦ(1− e2 sin2Φ)
dΦ

The left-hand side integral is already known since Sec. III.3. The one on
the right-hand side needs to be transformed:U

1− e2

cosΦ(1− e2 sin2Φ)
dΦ =

U
1− e2 sin2Φ − e2 cos2Φ

cosΦ(1− e2 sin2Φ)
dΦ

=
U
1

cosΦ
− e2 cosΦ
1− e2 sin2Φ

dΦ = lntan
(
45° +

Φ
2

)
− eartanh(e sinΦ) + lnκ

The last step can be checked again by deriving back, this time the con-
stant of integration is written as lnκ. Substituted back into the previous
equation:

lntan
(
45° +

ϕ

2

)
= c lntan

(
45° +

Φ
2

)
− ce
2

ln
1+ e sinΦ
1− e sinΦ

+ lnκ
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tan
(
45° +

ϕ

2

)
= κ tanc

(
45° +

Φ
2

)(1− e sinΦ
1+ e sinΦ

)ce/2
ϕ = 2arctan

[
κ tanc

(
45° +

Φ
2

)(1− e sinΦ
1+ e sinΦ

)ce/2]
− 90°

Φ cannot be expressed from the equation, but can be obtained using
fixed-point iteration:

Φ ′′ = 2arctg c

√√√√√ tg
(
45° + ϕ

2

)
κ

(
1−e sinΦ ′

1+e sinΦ ′
)ce/2 − 90°

First we use the approximation Φ ≈ ϕ, then we use the formula above to
obtain further and further improved values. Usually four or five approx-
imations are enough, the procedure converges rapidly. Remember that
the formula λ = cΛ still applies! The radius of the sphere does not affect
conformality. At small scales, we can give it any value, and we usually
choose κ = 1, c = 1.

At large scales, we choose the Gaussian conformal sphere, which declares
an arbitrarily chosen parallel Φs as distortion-free, and minimizes dis-
tortions in the vicinity of the parallel (i.e. the first two derivatives of the
logarithm of the linear scale are zero at this latitude). Skipping derivation,
the chosen radius is the radius of the osculating sphere, the calculation of c
and the spherical latitude ϕs of the standard parallel is:

tanϕs =
tanΦs√

1+ (e′)2 cos2Φs
R =

√
M(Φs)N (Φs)

c =
sinΦs
sinϕs

Then, by substituting Φs and ϕs back into the mapping formulae, we also
obtain the missing optimal value for κ. Sometimes, the spherical latitude
of the standard parallel is given for this projection, but the constants can
be calculated from the above formulae in this case as well. This projection
has a very low distortion: for Hungary, the deviation of the linear scale
from one is less than 1 :4000 000, the correction in azimuth due to the
difference between ellipsoidal and spherical geodesics can be ignored even
for distances up to 50 km (< 0·008′′).
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Conical map projections
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Lesson ten

Perspective azimuthals

X.1 Azimuthals in general

We are now at the point where we are getting to know specific map pro-
jections. Let us start our exploration of azimuthal projections: Azimuthals
are best discussed in a polar coordinate system. The mapped parallels
are concentric full circles. The straight concurrent meridians divide them
equidistantly, so the polar angle is equal to the longitude, and only the
radii of the mapped parallels can be varied. Let this radius be denoted
by the strictly increasing radius function ϱ(δ), where the colatitude δ is the
complementary angle of the latitude ϕ (δ = 90°−ϕ)! This uniquely defines
the azimuthal projection (Fig. X.1):

x = ϱ sinλ
y = −ϱcosλ

x

y

ϱλ

Figure X.1: Polar coordinates in azimuthals

These projections are called azimuthal because they preserve the azimuths
of the orthodromes starting from the centre; and they are also called zenithal
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X. Perspective azimuthals

because points at the same distance from the centre are also at the same
distance on the map. Linear scales along graticule lines:

h =

√(
�x
�ϕ

)2
+
(
�y
�ϕ

)2
R

=

√( dϱ
dϕ

)2
sin2λ+

( dϱ
dϕ

)2
cos2λ

R

=

√(
−dϱ

dδ

)2
sin2λ+

(
−dϱ

dδ

)2
cos2λ

R
=
1
R

dϱ
dδ

k =

√(
�x
�λ

)2
+
(
�y
�λ

)2
Rcosϕ

=

√
ϱ2 cos2λ+ ϱ2 sin2λ

Rsinδ
=

ϱ

Rsinδ

We have just taken advantage of the fact that:

dϱ
dϕ

=
dϱ
dδ

dδ
dϕ

=
dϱ
dδ

d(90°−ϕ)
dϕ

= −
dϱ
dδ

In general, we note that for the purpose of continuous representation at
the pole, we can expect ϱ(0) = 0. Furthermore, the colatitude δ need not be
measured from the North Pole for azimuthal and conic projections, it can
be measured from the South Pole. In this case, the Southern Hemisphere
will be at the centre of the map.

X.2 Vertical perspective projection

Vertical perspective projections can be produced by using a central per-
spective projection. Denote the distance between the centre of the sphere
and the focal point by f R, and the distance between the focal point and the
plane by cR. The perspective projection is tangent if the plane touches the
sphere (c = 1+ f ), secant if it intersects the sphere, otherwise, it is extern.
The ratios of the legs of the two similar right triangles in Fig. X.2 are equal:

R(f + cosδ)
Rsinδ

=
cR
ϱ

ϱ = R
c sinδ
f + cosδ

Of the vertical perspective projections, the ones with focal points outside
the sphere (|f | > 1) are the most common. If the centre of projection and
the plane are on the same side of the sphere (f < −1, near-side perspective),
then the Earth is represented as it appears from above. This is similar to
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X. Perspective azimuthals

R

P

δ

Rsinδ

f R

Focal point

cR

ϱ P ′

R
co

sδ

Figure X.2: The principle of the vertical perspective projection

Figure X.3: Oblique far-side perspective projection
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X. Perspective azimuthals

the mapping found in Google Earth. If the focal point is at the opposite
side of the sphere (far-side perspective), it can be used to represent areas
larger than a hemisphere (Fig. X.3).

Perspective azimuthals map those spherical circles whose plane contains
the centre of projection into a straight line. This is easy to see since the rays
from the centre of projection are in this plane. The line of intersection of
the plane of the projection and that of the rays is, of course, a straight line.
The images of other spherical circles are conic sections. This is also easy
to prove because this time the rays between the circle and the focal point
now form an oblique cone, whose planar sections are by definition conic
sections.

X.3 Gnomonic projection

In the case of f = 0 (projection from the centre):

ϱ = cR tanδ

This is called the gnomonic projection (Fig. X.4) and was created by
Thales. The formula shows that the Equator can no longer be represented
by it. The distortions for the tangent (c = 1) placement are:

h =
1
R

dϱ
dδ

=
1

cos2δ

k =
ϱ

Rsinδ
=

tanδ
sinδ

=
1

cosδ

At the pole h = k = 1, so it is true-scale, while at the Equator, the distor-
tions are infinitely large. In between, the distortions increase rapidly, with
a significant increase in areal (hk > 1) and angular distortion (h , k). Its
distortions are very unfavourable, but it is rarely used because this pro-
jection maps spherical geodesic lines to straight lines (since the centre of
projection is now in their plane). This may be of interest for communication
(e.g. positioning radio towers) or navigation purposes.

The projection is also easily recognizable in the transverse and oblique
aspects because its meridians are parallel or concurrent lines, and mapped
parallels are conic sections.
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X. Perspective azimuthals

Figure X.4: Gnomonic projection

X.4 Orthographic projection

Let us consider the case f →∞, c→∞ by limit calculus (in this case the
centre of projection is infinitely far away, the rays are parallel):

ϱ = Rsinδ

This is the orthographic projection, which shows the Earth as if viewed
from a great distance (Fig. X.5). It was created by Apollonius. Since distant
celestial bodies are seen in this way when viewed through a telescope, it
is a popular choice for planetary maps, especially in the transverse aspect.
No area larger than a hemisphere can be represented. The distortions:

h =
1
R

dϱ
dδ

= cosδ

k =
ϱ

Rsinδ
=

sinδ
sinδ

= 1

k = 1, so the projection is equidistant in parallels. There is no distortion at
the pole (h = 1), linear scale along meridians is unacceptable at the Equator
(h = 0). The distortions increase rapidly away from the pole causing areal
reduction (hk < 1) and angular distortion (h , k). In rotated aspects, the
mapped meridians are arcs of ellipses and the parallels are displayed as
arcs of ellipses or parallel lines (the latter in transverse aspect).
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X. Perspective azimuthals

(a) Normal (b) Transverse

Figure X.5: Orthographic projection

X.5 Stereographic projection

The most important perspective azimuthal projection is f = 1, i.e. when
the centre of projection is at the opposite pole. This is the stereographic
projection (Fig. X.6):

ϱ = Rc
sinδ
1+ cosδ

= Rc 2sin δ
2 cos δ2

sin2 δ2+cos2 δ2+cos2 δ2−sin2 δ2
= Rc tan

δ
2

To understand the properties of distortion, we calculate the linear scales
along graticule lines:

h =
1
R

dϱ
dδ

=
1
R

Rc

2cos2 δ2
=

c

2cos2 δ2

k =
ϱ

Rsinδ
=

Rc tan δ
2

2Rsin δ
2 cos δ2

=
c

2cos2 δ2

h = k, i.e. the stereographic projection is conformal. In addition, the every
spherical circle in this projection is either a circle or a straight line, i.e. the
projection preserves circles. The procedure of the proof can be followed in
Fig. X.7:

Take an arbitrary circle on the surface of the sphere. The figure shows the
vertical section of the sphere that is perpendicular to the plane of the circle.
We have seen earlier that if the plane of the circle contains the focal point
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X. Perspective azimuthals

(a) Normal

(b) Oblique (for Asia)

Figure X.6: Stereographic projection
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X. Perspective azimuthals

Plane of the circle

Centre of projection

Plane of projection

Figure X.7: The stereographic projection preserves circles

then its mapped image is straight in all perspective azimuthal projections;
we will now consider only circles in a general position. Each point of the
circle is connected to the focal point by a ray, forming an oblique cone
(blue). The plane of projection cuts out a conic section. The red and green
angles are the same because they are inscribed angles of the same thick blue
chord. The green and blue angles are equal because of symmetry, while the
blue and black are corresponding angles, so all four angles are equal.

The blue oblique cone is symmetrical to the plane marked by the blue
dashed line because it is the angle bisector of the aperture. Since the vertical
positioning of the plane of projection does not affect the preservation of
circles (since it is only a uniform scaling), it can be positioned without loss
of generality to contain the intersection line of the plane of the original
circle and the symmetry plane of the oblique cone (which is perpendicular
to the plane of the figure). Since the red and black angles are the same, the
plane of the circle and the plane of the projection are mirror images of each
other in the blue dashed plane. So the mapped image marked in red on the
plane of projection can also be produced as a mirror image of the original
circle, so it is also a circle, of course. This completes the proof.

This projection was known to the ancient Egyptians and was used in star
maps. Today it is used, among other things, on meteorological maps where
measurement of angles is important. The isocols of the projection are circles
centred on the pole, i.e. it is the least distorted conformal projection for
circular regions according to Chebyshev’s theorem. Therefore, it is often
found in transverse (e.g. conformal maps of hemispheres) and oblique
aspects for nearly circular areas. Because of its advantageous properties,
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X. Perspective azimuthals

this mapping is widely used despite the fact that the South Pole is mapped
to infinity.

The c = 2 (tangent) version is true-scale at the North Pole (h = k = 1), and
distortions increase rapidly away from it. Let the plane intersect the sphere
in the secant parallel δs! Then:

c = 1+ cosδs = sin2
δs
2

+ cos2
δs
2

+ cos2
δs
2
− sin2

δs
2

= 2cos2
δs
2

Substituting back into the formula for h and k and looking at δ = δs,
we find no distortion (h = k = 1), i.e. the secant parallel of the secant
stereographic projection is true-scale.* Note that c is just a scaling factor
in the projection, so the secant stereographic projection can always be
obtained by reducing the corresponding tangent projection.

Derivation of the oblique tangent stereographic projection (c = 2):

ϱ = 2R
sinδ′

1+ cosδ′
= 2R

cosϕ′

1+ sinϕ′

x = ϱ sinλ′ = 2R
cosϕ′ sinλ′

1+ sinϕ′

= −2R
sin(λ−λ0)cosϕ

1+ sinϕ sinϕ0 + cosϕ cosϕ0 cos(λ−λ0)

y = −ϱcosλ′ = −2R
cosϕ′ cosλ′

1+ sinϕ′

= −2R
sinϕ cosϕ0 − cosϕ sinϕ0 cos(λ−λ0)
1+ sinϕ sinϕ0 + cosϕ cosϕ0 cos(λ−λ0)

The derivation of the inverse projection formulae is given in App. H.
The graticule of an oblique stereographic projection is easily identified

by its conformality and preservation of circles: the mapped graticule lines
in each aspect are complete circles or straight lines, which always intersect
at right angles.

* Although, unfortunately, the literature on map projections sometimes states unin-
formedly the opposite, perspective projections are usually not true-scale in the secant
parallel, this is just a special property of the stereographic projection!
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Lesson eleven

Non-perspective azimuthals

XI.1 Azimuthal equidistant

Let us develop a map projection equidistant in meridians (h = 1)!

1
R

dϱ
dδ

= 1U
dϱ = R

U
dδ

ϱ = R�δ+ d

The constant of integration d = 0 because at the pole ϱ = 0. This is the
azimuthal equidistant projection (Fig. XI.1). Despite it is also named after
Postel, this projection was not invented by him: ancient Egyptians had
already used it for star maps. The linear scale along parallels:

k =
ϱ

Rsinδ
=

�δ
sinδ

At the North Pole (δ = 0), k is obtained by L’Hôpital’s rule:

lim
δ→0

k = lim
δ→0

�δ
sinδ

= lim
δ→0

1
cosδ

= 1

At the North Pole, the projection is distortion-free (h = k = 1), at the
South Pole the denominator of k is zero, the distortion is thus infinitely
large, and distortions increase gradually between the two.

The isocols are circles, since k is a function of δ only, while h is constant.
Although an azimuthal projection with a more favourable distortion is
known, its formulae are very complicated, and it does not deviate spectacu-
larly from this projection in areas smaller than a hemisphere. Therefore, if
neither conformality nor equivalency is required, this mapping is recom-
mended as a rule of thumb for nearly circular areas.

In the oblique aspect, the metapole of the projection will be undistorted
and the metameridians radiating from it will be azimuthal and equidistant.
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XI. Non-perspective azimuthals

(a) Normal

(b) Oblique (centred on North Korea)

Figure XI.1: Azimuthal equidistant projection
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XI. Non-perspective azimuthals

This is advantageous, for example, for applications in communication. It is
also advantageous that the concentric circles centred on the metapole are
metaparallels, which map to equidistant concentric circles. For example, if
one wants to represent the areas that North Korea’s missile of a given range
can hit, one simply needs to use this projection in the correct aspect, since
in this way circles centred on North Korea are mapped to circles of true
radii. This latter feature is also advantageous when, for example, flights
departing from a particular airport are to be shown.

The eastern and western hemispheres are also circular areas, and the
transverse aspect of this projection is used to represent them side by side,
especially in atlases. Derivation using the transverse formulae at the end of
Sec. V.3:

ϱ = R�δ′ = Rarccoscosδ′ = Rarccossinϕ′ = Rarccos(cosϕ cosλ)

x = ϱ sinλ′ = Rarccos(cosϕ cosλ)
sinλcosϕ√
1− cos2ϕ cos2λ

y = −ϱcosλ′ = Rarccos(cosϕ cosλ)
sinϕ√

1− cos2ϕ cos2λ

The graticule of the transverse and oblique azimuthal equidistant is
difficult to recognize but if the graticule of a regional map is formed by
complex lines, parallels intersect the central meridian at equal intervals,
and the distortions are small in the centre of the map and larger at the
edges then one can suspect it. In the transverse aspect, the spacing of
meridians is also uniform along the Equator.

XI.2 Lambert azimuthal equal-area

Let us also make an equal-area variant (hk = 1)! Let the constant of integra-
tion be R2 + d/2!

1
R

dϱ
dδ

ϱ

Rsinδ
= 1U

ϱdϱ = R2
U

sinδdδ

ϱ2

2
= −R2 cosδ+R2 +

d
2

= −R2
(
cos2

δ
2
− sin2

δ
2
− 1

)
+
d
2

ϱ =

√
−2R2

(
1− sin2

δ
2
− sin2

δ
2
− 1

)
+ d = 2Rsin

δ
2
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XI. Non-perspective azimuthals

In the laststep, we took advantage of the fact that at the pole ϱ = 0, which
can only be the case if d = 0. The result is the Lambert azimuthal equal-area
projection, known since 1772* (Fig. XI.2).

(a) Normal (b) Oblique (for depicting the EU)

Figure XI.2: Lambert azimuthal equal-area projection

Linear scales along graticule lines:

h =
1
R

dϱ
dδ

= cos
δ
2

k =
ϱ

Rsinδ
=

2sin δ
2

2sin δ
2 cos δ2

=
1

cos δ2

At the North Pole, h = k = 1, i.e. the projection is distortion-free. At
the South Pole the distortions are infinitely large, since h = 0 and k →
∞. The isocols follow parallels because h and k are independent of the
longitude. Therefore, the projection can be recommended for equal-area
representations of nearly circular areas. The official maps of the European
Union are drawn in an oblique Lambert azimuthal equal-area, centred on
52° N, 10° E.

* The Swiss mathematician Lambert was primarily concerned with physical and math-
ematical problems, with only a marginal interest in the theory of map projections. He
wrote only one article on the subject but revolutionized the field. Five of his seven new
projections (equal-area azimuthal, conic, and cylindrical; conformal conic and pseudopoly-
conic; transverse conformal and equal-area cylindrical) are still among the most widely
used ones. He was the first to seek conformal and equal-area mappings by solving the
differential equations h = k and hk = 1, which are also used in this note.
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XI. Non-perspective azimuthals

This projection is also used to represent the eastern and western hemi-
spheres in transverse aspect. Derivation:

ϱ = 2Rsin
δ′

2
= R
√
2

√
sin2

δ′

2
+ cos2

δ′

2
− cos2

δ′

2
+ sin2

δ′

2

= R
√
2
√
1− cosδ′ = R

√
2− 2sinϕ′ = R

√
2− 2cosϕ cosλ

x = ϱ sinλ′ = R
√
2− 2cosϕ cosλ

sinλcosϕ√
1− cos2ϕ cos2λ

= R

√
2(1− cosϕ cosλ) sinλcosϕ√

(1− cosϕ cosλ)(1+ cosϕ cosλ)
= R

√
2sinλcosϕ√
1+ cosϕ cosλ

y = −ϱcosλ′ = R
√
2− 2cosϕ cosλ

sinϕ√
1− cos2ϕ cos2λ

= R
√
2sinϕ√

1+ cosϕ cosλ

This projection is even more difficult to recognize from its graticule in
rotated aspects. The best clue is that there is a significant angular distortion
at the edges of the map, and the spacing of parallels on the central meridian
becomes slightly denser towards the edge of the map.

XI.3 Ginzburg’s scheme

Ginzburg noticed that the radius functions of azimuthals used frequently
follow a single pattern:

ϱ = dRsin
δ
d

or ϱ = dR tan
δ
d

The orthographic and equal-area mappings fit the series of sines, with
d = 1 for the former and d = 2 for the latter. The tangent gnomonic and
stereographic projections are included in the series of tangents where d is
1 and 2, respectively. At first glance, the azimuthal equidistant seems to be
out of the pattern, but in fact it fits both series. We can prove its fit into the
formula with sine by L’Hôpital’s rule:

lim
d→∞

Rd sin
δ
d

= R lim
d→∞

sin δ
d
1
d

= R lim
d→∞

− �δ
d2

cos δd
− 1
d2

= R�δ
The limit of the formula with tangent can be computed similarly and

also results in R�δ. That is, this projection emerges from both formulae if d
is chosen to be infinitely large.
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Ginzburg was primarily concerned with the series with sine and in 1957
he proposed the use of variant d = 3:

ϱ = 3Rsin
δ
3

Figure XI.3: Ginzburg’s azimuthal projection

This is Ginzburg’s azimuthal (Fig. XI.3), which has very small distortions
(even more favourable than the azimuthal equidistant in terms of finite
length distortions), it is aphylactic, but has a very low areal distortion.
Ginzburg also recommended version d = 1·5, which resembles the spherical
shape of the Earth.

XI.4 Ellipsoidal azimuthals

The linear scales along graticule lines of azimuthals based on an ellipsoid
are as follows:

h = − 1
M(Φ)

dϱ
dΦ

k =
ϱ

N (Φ)cosΦ
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The azimuthal equidistant is obtained from the solution of the equation
h = 1:

ϱ =

ΦU
90°

M(Φ)dΦ

For the azimuthal equal-area, we have to solve the equation hk = 1 and
the constant of integration can be expressed from the requirement of ϱ = 0
at the pole:

ϱ = a
√
1− e2

( 1
1− e2

+
1
2e

ln
1+ e
1− e

− sinΦ
1− e2 sin2Φ

− 1
2e

ln
1+ e sinΦ
1− e sinΦ

)1/2
For an azimuthal conformal mapping, the constant of integration d in

the function obtained by solving the equation h = k is arbitrary:

ϱ = d tan
(
45°− Φ

2

)(1+ e sinΦ
1− e sinΦ

)e/2
If linear scale c is prescribed at the pole, then:

d =
2ca
√
1− e2

(1+ e
1− e

)e/2
This projection is applied by NATO to the polar regions as UPS (Uni-

versal Polar Stereographic) with c = 0·994 chosen on the reference frame
WGS84. To avoid negative coordinates, a false easting and a false northing
of 2000 km must be added to both coordinates. Please note that, unlike the
sphere, the ellipsoidal azimuthal conformal projection is not perspective,
so the name stereographic is misleading!* The UPS projection is used up to
latitude 84° in the Northern Hemisphere and latitude 80° in the Southern
Hemisphere instead of the UTM zones.

For the reference frame of an ellipsoid of revolution, the metacoordinate
system is not defined, so there are two methods to obtain an oblique projec-
tion: the first is called double mapping, in which case we first project onto
an auxiliary sphere, rotate the graticule on the sphere, and finally apply

* Remember that the term secant can only be applied to perspective projections, so
even though the UPS contains a scaling and therefore a true-scale parallel, it is not a secant
projection (despite what much of the literature claims), but rather, correctly speaking, a
reduced one!
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XI. Non-perspective azimuthals

the map projection in the spherical form. The other option is to arbitrar-
ily select some distortion characteristics of the spherical map projection
so that these conditions, when applied to the ellipsoid, uniquely define
the formulae of the projection. Thus, we obtain direct ellipsoid-to-plane
formulae. Below, we will look at both methods for determining oblique
ellipsoidal azimuthal projections.

Amersfoort (Bessel)

Φ,Λ

Projection
to sphere Conformal sphere

ϕ,λ

Rotation

Metacoordinates

ϕ′,λ′

Stereographic
projection RD (new)

x,y

Figure XI.4: Amersfoort projection in the Netherlands

The Amersfoort projection (Fig. XI.4) on Dutch topographic maps uses
method of double mapping. The reference frame is the Amersfoort Datum
based on the Bessel ellipsoid. The auxiliary sphere chosen is the Gaussian
conformal sphere (Sec. IX.3), the true-scale parallel is the latitude of the
fort in the town Amersfoort. The oblique stereographic projection with its
metapole on Amersfoort is then applied. Finally, the coordinate axes are
shifted so that there are no negative coordinates and the vertical coordinate
is always greater than the horizontal. Since only conformal mappings were
used, the result is conformal.

The Amersfoort projection is significant from a Hungarian point of view
because it is very similar to our old stereographic projection. The only
difference in principle is that the true-scale parallel of the auxiliary sphere
does not pass through the origin of the projection in the old Budapest
and Marosvásárhely stereographic systems. If your GIS does not support
the Hungarian stereographic projection, feel free to use the Amersfoort
projection instead, reparameterized to the origin Gellérthegy. The error
of the transformation will then be around centimetres, which is sufficient
for most practical applications. You may read more about old Hungarian
systems in App. F.

The other method is used by the Roussilhe projection. We know that
in the spherical tangent stereographic projection, points of the central
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meridian are mapped to y = 2R tan(s/2R), where s is the distance from the
metapole. We generalize this to the ellipsoid of revolution by interpreting
the distance s along the meridian on the ellipsoid, while substituting
the radius of the osculating sphere (

√
M(Φ0)N (Φ0)) at the origin of the

projection for the radius R. The resulting intervals of intersections along
the central meridian and conformality together clearly define the projection.
Since the projection requires trigonometric functions and elliptic integrals
defined over complex numbers, it is approximated in practice by several
series.

Roussilhe projection is found today, for example, in Romania called
Stereo70 centred near Bras, ov, translated and reduced. A similar projec-
tion was used until recently by the Poles, dividing the country into five
separately mapped zones, four of which were represented in this mapping.
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Lesson twelve

Perspective & equal-area

cylindricals

XII.1 General formulae

In cylindrical projections, parallels and meridians appear as parallel straight
lines perpendicular to each other. The vertical coordinate, therefore, de-
pends only on the latitude, which is a strictly increasing and often odd
function to have symmetry. The axis x usually coincides with the mapped
Equator. The condition of equal spacing implies that the horizontal coordin-
ate is in direct proportion to the longitude (Fig. XII.1). Let the coefficient
of proportionality be cR!

x = cR�λ
y = f (ϕ)

x

y

cR�λ P

f (ϕ)

Figure XII.1: Coordinates in cylindrical projections
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Let us write down the linear scales along the graticule:

h =

√(
�x
�ϕ

)2
+
(
�y
�ϕ

)2
R

=

√
02 +

( dy
dϕ

)2
R

=
1
R

dy
dϕ

k =

√(
�x
�λ

)2
+
(
�y
�λ

)2
Rcosϕ

=

√
(cR)2 + 02

Rcosϕ
=

c
cosϕ

Examining the formula for k, we can see that latitude ±ϕs is equidistant
if c = cosϕs.

XII.2 Central cylindrical projection

To derive the perspective cylindrical (or central cylindrical) projection,
see Fig. XII.2. The circumference of the base of the cylinder is equal to
the change in the coordinate x between the longitudes ±180, i.e. cR2π =
2Rπcosϕs. From this, the radius of the cylinder is cR = Rcosϕs, so ±ϕs is
just the two secant parallels of the cylinder.

R
R

ϕ

Rcosϕ
P

cR

cR

cf R

Focal point

f R

P ′

y

R
si

n
ϕ

Figure XII.2: The principle of the central cylindrical projection

Let the distance of the focal point from the centre be f R! Then the ratio
of the legs of the similar right triangles with green hypotenuse (illustrating
the mapping of the Equator) is the same, so the vertical leg of the smaller
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XII. Perspective & equal-area cylindricals

triangle is necessarily cf R. From the ratio of the legs of similar right
triangles with red hypotenuse:

y + cf R
cR

=
R(f + sinϕ)
Rcosϕ

y = cR
(
f + sinϕ

cosϕ
− f

)
The distortions of perspective cylindricals are highly unfavourable

(Fig. XII.3). The projection is aphylactic (h , k and hk , 1). Perspective
cylindricals are found almost exclusively in Russian atlases.

Figure XII.3: Central cylindrical projection

XII.3 Quasi-perspective cylindricals

Among cylindrical and conic projections, we can also consider mappings
as perspective in a broad sense in which each meridian is projected from a
separate focal point. The centre of projection is in a line perpendicular to
the generatrix of the developable surface corresponding to the meridian
currently being mapped and passing through the centre of the reference
frame, and changes position in a rotationally symmetrical manner with
the meridians during the mapping process. These are the quasi-perspective
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projections. In this course, we will explore two quasi-perspective mappings
(Fig. XII.4).

R

Rϕϕ/2
cR

y

(a) Gall and Braun projections

Rϕ

R
si

n
ϕ

R

y

(b) Lambert equal-area cylindrical

Figure XII.4: Major quasi-perspective cylindricals

In the first case, let the centre of projection be at the equatorial point
opposite to the meridian, as in the stereographic projection. The red
inscribed angle shown in the figure is half of the blue central angle. The
tangent of the inscribed angle:

tan
ϕ

2
=

y

R+ cR

y = R(1+ c) tan
ϕ

2

In cylindrical projections, the linear scale along parallels is k = c/cosϕ.
The linear scale along meridians is:

h =
1
R

dy
dϕ

=
1+ c

2cos2 ϕ2
=

1+ c

sin2 ϕ2 + cos2 ϕ2 + cos2 ϕ2 − sin2 ϕ2
=
1+ c
1+ cosϕ

That is, unlike the stereographic projection, the mapping is aphylactic
(h , k and hk , 1), but a property that is reminiscent of the stereographic
projection is that the secant parallels are exceptionally true-scale (if ϕ = ϕs
and c = cosϕs, then h = k = 1).

The projection was first derived by the Scottish cartographer Gall in
1855 with the secant parallel ϕs = ±45°, so the variant c =

√
2/2 is named

after him. The tangent (c = 1) version was independently created by Braun

in 1867.
Although it gives a rather pleasing representation, it is extremely rare

to come across it. Its use could be considered, for example, in time-zone
maps where no special distortion conditions are needed, but meridian
convergence is to be eliminated.

As is the case with perspective projections in general, such mappings are
primarily found in Russian atlases, sometimes with ϕs = ±30° for world
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(a) Normal

(b) Oblique (for the former USSR) following Solovyov

Figure XII.5: Gall projection
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maps. Quasi-perspective projections were also used in oblique aspect to
represent the Soviet Union (Fig. XII.5).

Our next quasi-perspective projection is obtained by placing the centre of
projection infinitely far away, as in the case of the orthographic projection.
Then the rays will be parallel. Let the cylinder be tangential, i.e., of radius
R (c = 1)! As shown in Fig. XII.4:

y = Rsinϕ

Distortions of the projection:

h =
1
R

dy
dϕ

= cosϕ

k =
c

cosϕ
=
1

cosϕ

Notice that hk = 1, so we have an equal-area projection. This is the
Lambert equal-area cylindrical projection (1772). Is this the only equal-
area cylindrical, or are there others among the non-perspective projections?

XII.4 Equal-area cylindricals

To answer our question, we solve the equation hk = 1:

1
R

dy
dϕ

c
cosϕ

= 1U
dy =

R
c

U
cosϕdϕ

y =
R
c

sinϕ + d

The constant of integration d is just a translation, so it can be ignored,
and c is the cosine of the equidistant parallel. If it is 0° (c = 1), then we get
the Lambert equal-area cylindrical, but otherwise, we get additional non-
perspective projections as a solution. The distortions:

h =
1
R

dy
dϕ

=
cosϕ
c

k =
c

cosϕ

Apart from the unsurprising equivalency, we can see that the parallel
±ϕs is true-scale, because here h = k = 1. Such parallels are called standard
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XII. Perspective & equal-area cylindricals

parallels of the projection. At the pole, h is zero, while k is infinitely large, so
the angular distortions are infinite. In 1910, Behrmann proposed ϕs = ±30°
(c =
√
3/2). He found its average angular distortion over the whole Earth to

be the most favourable among possible equal-area cylindricals (Fig. XII.6).
In 1967, the German historian Peters proposed the variant ϕs = ±45°

(c =
√
2/2), known as the Gall–Peters projection. It is still used relatively

often recently, although its angular distortions are disturbingly large.*

Numerous other equal-area cylindricals are known under various names,
differing only in the choice of standard parallels. The creators usually
named these projections after themselves. The graticule of equal-area
cylindricals can be recognized by denser spacing of parallels near the edge.

* The Gall–Peters projection is a typical example of a recurring phenomenon, where
laymen who do not know map projections reinvent the wheel. In 20th century American
cartography, it was common for world maps (whether school atlases or wall maps) to be
presented in the Mercator projection described in the next lesson. This is an inappropriate
choice of projection because at high latitudes there is considerable areal distortion, while
the conformal property is rarely advantageous for a map intended for indoor use. This
does not mean that this projection is bad in itself but rather that we can make good use of
its conformality on a medium to large-scale map of the (meta)equatorial region intended
for field use (e.g. a hiking map).

However, Peters made a political issue out of it. He claimed that the imperialist
superpower states were deliberately producing distorted maps that made developed
countries look larger than the more miserable regions of Africa and South America.
Peters claimed that the maps were lying and that only his depiction of the Earth correctly
represented it. His demagogic lobbying was successful and despite fierce protests from
professionals, he succeeded in getting official maps of various UN agencies to be edited in
his projection.

From a professional point of view, Peters’s claims are, to put it mildly, debatable. His
assumption that only an equal-area mapping can correctly represent the Earth is so-so,
but that his projection was the first equivalent projection in the world is ridiculous. He
was not even the first to invent the mapping he promoted, but the Scottish cartographer
Gall did it as early as 1855. And the angular distortions are small along the 45° latitude
of developed regions, whereas he flattens the countries around the Equator like a pancake
so that the distortions are greatest precisely where Peters claims to favour.

Unfortunately, the tabloid media is still picking up on this topic, and you can nowadays
also find articles like ‘Maps lie to us’. As a result, there was an article a few years ago that
Boston schools should be required to teach using Gall–Peters maps in schools because it
is fair to the former colonies.
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(a) Lambert equal-area cylindrical

(b) Behrmann projection

(c) Gall–Peters projection

Figure XII.6: Equal-area cylindricals
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Lesson thirteen

Other cylindrical projections

XIII.1 Equidistant cylindricals

Develop a cylindrical projection with equidistant meridians (h = 1)!

1
R

dy
dϕ

= 1U
dy = R

U
dϕ

y = R�ϕ + d

The constant of integration d results only in a translation again, so we
ignore it. Due to the equidistant meridians, we have h = 1, while in all
cylindrical projections, k = c/cosϕ (since x = cR�λ). Knowing that c = cosϕs,
it is easy to see that latitude ±ϕs is true-scale, i.e., a standard parallel
(h = k = 1). At the pole, k is infinitely large, less than one between standard
parallels, and increases away from them.

The projection of the choice c = 1 (true-scale Equator) is called the Plate
Carrée projection (Fig. XIII.1) due to the shape of its graticule and was
possibly created by Eratosthenes. Most GIS software displays data in
this projection if no projection is specified. Note, however, that if you do
not specify a map projection, the software interprets the coordinates in
degrees, whereas if you explicitly set the Plate Carrée projection, everything
is expressed in metres.

By choosing c appropriately, other standard parallels can be selected for
the equidistant cylindricals (equirectangular projection). This form of the
projection was first used by Marinos, who chose the true-scale latitude
through the island of Rhodes.

Since k is symmetrical about the Equator in all cylindrical map pro-
jections, and h also has this symmetry in most of the mappings we have
learned so far, we can conclude that the isocols of cylindrical projections
are usually also symmetrical about the Equator. Hence, it follows that this
family of projections should be applied to long regions that are symmetrical
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XIII. Other cylindrical projections

(a) Plate Carrée projection

(b) Equirectangular projection (ϕs = ±42°)

Figure XIII.1: Equidistant cylindricals

about the Equator. If the map’s theme requires neither equivalency nor
conformality, then it is worth using this projection because Györffy has
shown that there is no lower distortion cylindrical mapping to represent a
spherical belt that is symmetrical about the Equator than an equidistant
one. Although the choice of a cylindrical projection to represent the entire
Earth is acceptable only in rare cases, Frančula recognized that in this
case, the standard parallel should be chosen approximately at latitude ±42°
to minimize distortion.

In transverse aspect:

x = cR�λ′ = cRarctan
sinλ′

cosλ′
= cRarctan(−sinλcotϕ)

y = R�ϕ′ = Rarcsin(cosϕ sinλ)

In this aspect, and with c = 1, we know this mapping as the Cassini

projection (Fig. XIII.2), described by the famous French geodesist in 1745.
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XIII. Other cylindrical projections

Its distortions are favourable in the surroundings of the metaequator (a
bimeridian), therefore the spherical lunes to be mounted on a globe model
were made in this projection.

Figure XIII.2: Cassini projection for the Americas

XIII.2 Mercator projection

For the conformal version (h = k), the antiderivative of 1/cosϕ was obtained
from Sec. III.3:

1
R

dy
dϕ

=
c

cosϕU
dy = cR

U
1

cosϕ
dϕ

y = cR lntan
(
45° +

ϕ

2

)
+ d

This is the Mercator projection (Fig. XIII.3), originally created by the
Dutch cartographer Kremer in 1569.* The poles are mapped to infinity.

* It can be suspected that this projection has a much older origin, but its construction
was forgotten during the Middle Ages. From the beginning, portolan charts were copied
from base maps drawn in a strikingly similar map projection. Furthermore, distances
between the latitudes on Etzlaub’s compass of 1511 follow the Mercator projection
almost exactly.
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XIII. Other cylindrical projections

The projection is recognizable by arallels spaced at increasingly greater
distances as further away from the Equator. Its significance lies in the fact
that it maps the loxodromes into straight lines. This is why it used to be
very important in navigation: since it is also conformal, the azimuth of any
loxodrome between two points can be read directly from it.

Figure XIII.3: Mercator projection

The fact that loxodromes are straight is easy to see. The special lox-
odromes of azimuth α = 0° are meridians, which are always straight in
cylindrical projections. Other loxodromes intersect all meridians at an
angle of α because of conformality. A line that intersects meridians that
appear as parallel straight lines at a constant angle can only be straight.
This completes the proof.

Let us examine the distortions of the projection.

h = k =
c

cosϕ

The constant c makes the map smaller or larger. For c = 1, the Equator is
true-scale. The downscaled version (c < 1) may increase the size of areas
with favourable distortion since it produces two distortion-free parallels,
reduction of size between them and enlargement outwards, but the de-
viation of linear scale from unity is smaller than for c = 1. Downscaled
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XIII. Other cylindrical projections

conformal* projections (minimum of linear scale is between 0 and 1) are
called reduced projections.† This projection should also be applied to long
regions along the Equator based on Chebyshev’s theorem since its isocols
are parallel to the Equator.

A different form of the projection should be used to express it after the
rotation of the graticule:

y = cR lntan
(
45° +

ϕ′

2

)
= cR ln

√√√√√√√√2sin2
(
45° + ϕ′

2

)
2cos2

(
45° + ϕ′

2

)
=
cR
2

ln
sin2

(
45° + ϕ′

2

)
+ cos2

(
45° + ϕ′

2

)
+ sin2

(
45° + ϕ′

2

)
− cos2

(
45° + ϕ′

2

)
cos2

(
45° + ϕ′

2

)
+ sin2

(
45° + ϕ′

2

)
+ cos2

(
45° + ϕ′

2

)
− sin2

(
45° + ϕ′

2

)
=
cR
2

ln
1− cos(90° +ϕ′)
1+ cos(90° +ϕ′)

=
cR
2

ln
1+ sinϕ′

1− sinϕ′

This is advantageous because we already have a formula for sinϕ′ and
can substitute it without modification. We also use the conversion �λ′ =
arctantanλ′. Instead of the latitude of the metapole ϕ0, we will substitute
the latitude of the intersection between the metaequator and the prime
metameridian ϕc (see Sec. V.3).

x = cRarctantanλ′ = cRarctan
sinλ

tanϕ sinϕc − cosλcosϕc

y =
cR
2

ln
1+ sinϕ cosϕc − cosϕ sinϕc cosλ
1− sinϕ cosϕc + cosϕ sinϕc cosλ

The derivation of the inverse projection formulae can be found in App. H.

* While conformal projections remain conformal after downscaling, the same is not
true for equal-area and equidistant mappings, so the term reduced is meaningful only for
conformal projections.

† Unfortunately, many people refer to the reduced version of the Mercator projection
as a secant projection, and to the standard parallels as secant parallels. This is misleading,
as this projection is not perspective and we used neither a secant cylinder nor a central
projection to derive it, we just did some maths. The consequence of this incorrect use of
terminology is that properties of the stereographic projection is generalized erroneously
to all mappings. Widespread but easily disprovable misconceptions are that secant
projections can always be obtained by reducing the corresponding tangent projection
and that secant lines are always distortion-free, with reduction of size between them and
enlargement elsewhere.
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XIII. Other cylindrical projections

The transverse Mercator projection is called the Gauss–Schreiber pro-
jection, although it was actually first derived by Lambert. It is considered
to be a conformal projection with a favourable distortion for areas along a
meridian. Its graticule is similar to that of the Cassini projection, distin-
guished from it by the fact that in the Cassini projection the meridians are
placed along the Equator evenly, whereas in the Gauss–Schreiber projec-
tion the meridians cross the Equator at increasingly greater distances away
from the Prime meridian (Fig. XIII.4).

Figure XIII.4: Gauss–Schreiber projection for the Atlantic Ocean

XIII.3 Rarely occurring cylindricals

Although the Mercator projection is not really favourable for world maps,
it is still overused today. A problem is that the image of the poles is at
infinity, which means that the projection has to be arbitrarily truncated at
a bounding latitude. There has been a demand for mappings that resemble
the Mercator projection, but the poles are not mapped into infinity.

Among the quasi-perspective cylindricals, Braun found a version with
the centre of projection in the plane of the Equator, two-fifths spherical
radii away from the axis of revolution. Although this mapping is very
similar in appearance to the Mercator projection, it is not the same, since
it is not conformal, nor is the image of the pole at infinity. This research
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XIII. Other cylindrical projections

demonstrates that Mercator’s projection is indeed not possible to develop
as a perspective mapping.*

Somewhat more popular is the Miller projection, published in 1942,
which multiplies the latitude by four-fifths before applying the Mercator

projection (c = 1) and then divides the vertical coordinate by the same
number after the mapping:

y =
5R
4

lntan
(
45° +

2ϕ
5

)

Figure XIII.5: Miller projection

This projection, rarely used in atlases and wall maps, is aphylactic
and, unlike the Mercator projection, can be used to represent the poles
(Fig. XIII.5).

* Although this statement seems obvious, it is unfortunately not: A few years ago,
for example, a postage stamp was issued in Germany under the title ‘500. Geburtstag
Mercator’, showing this mapping as a quasi-perspective projection.
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Lesson fourteen

Cylindricals for the ellipsoid of

revolution

XIV.1 Cylindricals in normal aspect
In cylindrical map projections using an ellipsoid as the reference frame, the
constant c, which determines the spacing of the meridians, takes a different
form. Accordingly:

x = c�Λ
Consequently, the linear scales along the graticule lines of cylindricals

are:

h =
1

M(Φ)
dy
dΦ

k =
c

N (Φ)cosΦ

That is, latitudes ±Φs will be equidistant if c =N (Φs)cosΦs.
The cylindrical projection equidistant in meridians is given by the solu-

tion of the equation h = 1:

y =

ΦU
0°

M(Φ)dΦ

For the equal-area cylindrical, we solve the equation hk = 1 and the
constant of integration can be omitted because it only causes a vertical
translation:

y = a2
1− e2

2c

( sinΦ
1− e2 sin2Φ

− 1
2e

ln
1− e sinΦ
1+ e sinΦ

)
For the conformal cylindrical, the constant of integration in the function

obtained by solving the equation h = k can also be omitted:

y = c ln
[
tan

(
45° +

Φ
2

)(1− e sinΦ
1+ e sinΦ

)e/2]
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XIV. Cylindricals for the ellipsoid of revolution

XIV.2 Cassini–Soldner projection

The Cassini–Soldner projection is a generalization of the Cassini projec-
tion (transverse Plate Carrée projection) to an ellipsoid of revolution. The
Cassini projection is equidistant in the central meridian coinciding with
the metaequator and in the perpendicular metameridians. We want to
keep this for the ellipsoid of revolution so that the central meridian re-
mains equidistant and the geodesic lines perpendicular to it are mapped to
straight lines perpendicular to it, along which there is also equidistancy.
These conditions clearly define the projection over most parts of the ellips-
oid of revolution.*

This mapping was created by Soldner in 1810. The first topographic
mappings in Europe were developed in this projection before the spread of
modern conformal projections. The practical computation of coordinates
can be done by solving geodetic problems on an ellipsoid (Sec. V.4) or by
Mugnier’s approximate series, which demands less computation power.
The latter is only reliable in the narrow environment of the central meridian,
but since this is typically the only place where this projection is useful
anyway, this is the form typically used in GIS.

XIV.3 The Pseudo Mercator

The Pseudo Mercator is the favourite map projection of on-line map pro-
viders. What is the ideal projection for a zoomable on-line map?

• Whatever part I zoom in on, North should always be up. That is, it
should be a cylindrical projection.

• Whatever part I look at, there should be locally no noticeable distortion.
Maps showing local similarity transformations are conformal, so only
the Mercator projection remains.

• Keep the computational complexity of the formulae simple! Spherical
formulae require fewer resources on the server than complex ellipsoidal
formulae.

For the aforementioned conditions, the spherical conformal cylindrical
was selected. To project the ellipsoidal data onto a sphere with as little
computation as possible, the Google auxiliary sphere (Sec. IX.3, Fig. XIV.1)
was chosen. Since this auxiliary sphere is aphylactic, the Pseudo Mercator is
not a conformal projection in a strict sense either, but its angular distortion
is very small (nowhere more than half a degree). The deviation between

* In a small area opposite the central meridian, this definition is ambiguous, but since
this projection will not be used at a large distance from the central meridian anyway, this
is not a practical problem.
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XIV. Cylindricals for the ellipsoid of revolution

the true conformal cylindrical and the Pseudo Mercator is of the order of
10 km.

WGS84

Φ,Λ

Google Earth

ϕ,λ

Projection
to sphere Pseudo Mercator

x,y

Mercator

projection

Figure XIV.1: The Pseudo Mercator projection

The projection was first used by Google Maps, launched in 2005, and
became a de-facto standard. Since it is not suitable for world maps, it is
now only used at higher zoom levels in Google Maps, but it is still used in
the background for storing data and alternative map providers still display
their world maps in this projection.

XIV.4 Gauss–Krüger projection

Create a conformal projection that maps a selected meridian with no dis-
tortion and its surroundings with little distortion. In the case of a spherical
reference frame, the problem is straightforward. We know that the Mer-

cator projection is conformal and maps the Equator without distortion.
Let us rotate the metacoordinate system into a transverse aspect, i.e. let the
metapole fall on the Equator! The metaequator then falls on the bimeridian
at ±90° from the metapole. By applying the Mercator projection to the
metacoordinates, this bimeridian will be undistorted and the whole projec-
tion will be conformal, so the solution is the Gauss–Schreiber projection.

The situation is not so simple for the ellipsoid of revolution. Since
we defined the metagraticule on a sphere, we would have to convert the
ellipsoid to an auxiliary sphere. As we want to preserve conformality, only
the conformal sphere would be an option. However, a double mapping of a
conformal sphere and a transverse Mercator projection would not be true-
scale in the central meridian, since the conformal sphere can only have a
selected latitude without distortion. Therefore, only a projection directly
from the ellipsoid of revolution to a plane is suitable.

It may sound surprising, but if you define the distortions of a conformal
projection along a single arbitrary smooth curve, it clearly defines the entire
projection.* In the present case, the equidistancy of the central meridian is

* The reason lies deep in mathematical analysis. A conformal mapping between two
map planes parametrized by complex numbers can only be established by a function that
is differentiable over an open subset of the complex plane (Sec. XXIX.1).
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XIV. Cylindricals for the ellipsoid of revolution

predefined, i.e. this and the conformality define a single projection. The
final result can be written in this form:*

x = A0(Φ) +A2(Φ)
(�∆Λ)2

+A4(Φ)
(�∆Λ)4

+ . . .

y = A1(Φ) �∆Λ+A3(Φ)
(�∆Λ)3

+A5(Φ)
(�∆Λ)5

+ . . .

The formulae for the first two coefficients are simple:

A0(Φ) =

ΦU
0

M(Φ)dΦ

A1(Φ) =N (Φ)cosΦ

The recursive formulae for other coefficients Ai (i = 2,3, . . . ):

Ai =
(−1)i−1

i
N (Φ)cosΦ
M(Φ)

dAi−1
dΦ

The mapping was formulated by Gauss, while the series for practical
application was computed by Krüger in 1912, and is therefore known as
the Gauss–Krüger projection. The series converges only for small ∆Λ, and
Lee’s formulae containing elliptic functions can be applied far away from
the central meridian. Popular GIS software compute with series, so the
mapping can only be displayed correctly in the vicinity of ca. 10° from the
central meridian. Do not blindly trust the image of farther parts!

Although the projection looks similar to the transverse conformal cyl-
indrical, it is in fact not quite the same. For example, the conformal
cylindrical projection maps the two opposite points of the sphere into in-
finity, whereas the Gauss–Krüger projection maps the entire ellipsoid into
a finite shape (Fig. XIV.2). Although we would not do this from a strictly
mathematical point of view, we classify it in the family of cylindricals due
to its derivation.

We use this mapping to represent the narrow environment of a central
meridian. For topographic purposes, we divide the Earth into 6° wide
ellipsoidal lunes, known as zones, denoted by numbers starting from me-
ridian −180° (Fig. XIV.3). Zones are further divided into 4° wide bands,
denoted by capital letters starting from the Equator.

The official projection of the Warsaw Pact was the Gauss–Krüger pro-
jection system. The datum S42 (also known as Pulkovo) based on the

* The complicated derivation is based on a series expansion of elliptic integrals defined
over the complex plane.
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XIV. Cylindricals for the ellipsoid of revolution

Figure XIV.2: Gauss–Krüger projection of the ellipsoid WGS84

Krasovskiy ellipsoid was chosen as the reference frame. In Hungary, from
the beginning of the Soviet occupation until the accession to NATO, milit-
ary cartography (and for a short time, civil cartography) used this system.*

For geodetic purposes, several countries (mostly in Eastern Europe, but also
in Austria, Germany and the southern Slavic countries) use this projection,
but the distortions increase rapidly away from the central meridian, so
we also see 2° or 3° wide zones. A slightly modified version is the official
projection of British and Irish cartography.

* The introduction of the projection in Hungary was not without its problems: the
incoming Soviet commanders expected the army to immediately survey and map the
territory of the country in the Gauss–Krüger projection. As soon as the soldiers handed
over the first maps of the Tiszahát region, the Soviets immediately tried to match them
with their own map of Transcarpathia, but there was a gap of about 100m between them!
Naturally, a scandal broke out immediately, and the Soviets accused the Hungarians
of sabotage. All that really happened, of course, was that the Soviets did not say what
reference frame they were using. The Hungarians had already used the Gauss–Krüger

projection during World War II, because the German army used it in all its battlegrounds.
The Hungarians were happy, because the base points had already been converted to this
system. Yes, but the Germans then defined this mapping for a Bessel ellipsoid with
the datum RDN1940! Of course, they could explain to the Soviets afterwards about the
discrepancy between the Krasovskiy and the Bessel ellipsoids or about datum conversions,
the ‘competent’ Soviet comrades were very good at everything. . . Let this story remain as
a reminder that without a geodetic datum the description of a map projection is never
complete!
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Figure XIV.3: Zones and bands of the Gauss–Krüger projection
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XIV. Cylindricals for the ellipsoid of revolution

XIV.5 The systems of NATO

NATO also developed its own projection system. It uses two types of pro-
jection: the Universal Transverse Mercator (UTM) between 80° S and 84° N,
which is not a Mercator projection, and the Universal Polar Stereographic
(UPS), which is not stereographic (Sec. XI.4), at the poles.

The UTM projection actually applies the formulae of the Gauss–Krüger

projection system to the ellipsoid WGS84, but with a reduction of 0·9996
for better distortions. As a result, the distortions are more favourably
distributed: two lines almost parallel to the central meridian will be free
of distortion, with a reduction of length between them and an increase in
length outside them. To prevent negative horizontal coordinates, a false
easting of 500 km is used. In the Southern Hemisphere, a false northing
of 10 000 km is also applied so that the vertical coordinate is also positive.
The bands of UTM are 8° wide and are denoted by letters starting with C
at latitude 80° S, but the letters I and O are omitted. Hungary is in zones T
and U. The northernmost band, X, is 12° wide.

Topographic maps of Southern Europe and the Scandinavian countries
are all drawn in UTM, but there are slight irregularities in the zones near
Norway. Since NATO accession (the 1990s), Hungarian military topography
has been using UTM zones 33 and 34, bounded by the meridian 18° near
Veszprém.

To avoid the need to report three numbers (zone, x, y) to define a location,
NATO has developed a military geocode system called Military Grid Refer-
ence System (MGRS). The first two digits of the reference are the zone (in
the case of the UPS, this is omitted, of course), followed by the designation
of the band.

This is followed by the letter indicating a column: between the coordin-
ates 100 km and 900 km, zones are divided into 8 columns, each 100 km
wide. The letters are repeated for each three zones: A-H, J-R and S-Z, from
west to east, I and O are omitted. The third letter marks the row. Rows are
also 100 km wide, their designation starts with A for odd zones and F for
even zones, increasing in both directions from the Equator. Letters I, O,
W, X, Y and Z are omitted for the rows, so after reaching the letter V, the
designation starts again with A, the letters are recurring at every 2000 km.
In the UPS, a grid of 100× 100 km is also used, but letters D, E, M, N, V
and W are omitted for columns so that no UTM and UPS squares of the
same letter are next to each other, only I and O are omitted for rows. The
designation of the 100×100 km squares for Hungary is shown in Fig. XIV.4.

Last come the digits of the coordinates, first x, then y. Since the des-
ignation of rows and columns gives the coordinate unambiguously up to
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Figure XIV.4: MGRS in Hungary

the place value of 100 000, only the remaining 5 digits are written. If less
precision is required, it is possible to write fewer digits, in which case the
coordinates are truncated. For example, the tram stop Petőfi híd, budai
hídfő is located under the coordinates UTM 34T 353755 5259967, while
the MGRS reference with accuracy of 100m is 34TCT537599.

XIV.6 Rosenmund and Hotine projections

Like the stereographic projection, the Mercator projection is often used
in oblique aspect with reference frame as an ellipsoid of revolution. We
do not have direct ellipsoid-to-plane formulae because it is not possible to
represent a general geodesic line as an equidistant line in an ellipsoidal
conformal projection. We, therefore, resort to a double mapping.

In 1903, the Swiss Rosenmund developed the following projection: in
a first step, he transformed the ellipsoid of revolution into a Gaussian
conformal sphere of very low distortion. The standard parallel of the aux-
iliary sphere is the latitude of the Bern Observatory. In the second step,
the spherical oblique Mercator projection is used (c = 1, i.e. the mapped
metaequator is true-scale), the intersection of the metaequator and the
prime metameridian on the sphere is again the Bern Observatory. The
modern Swiss topographic projection differs from this in that it uses a uni-
form scaling and applies a translation against the negative coordinates on
the coordinate axes. Since all transformations (Fig. XIV.5) were conformal,
their succession was also a conformal mapping.

122
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Figure XIV.5: Rosenmund projection in Switzerland

This mapping is very similar to the Hungarian official map projection
(EOV), which:

• Uses the datum HD72 based on ellipsoid IUGG67.
• The ellipsoidal latitude of the standard parallel on the Gaussian auxili-

ary sphere is Φs = 47°10′.
• The spherical latitude of the metaequator is 47°6′.
• The coordinates of the cylindrical map were multiplied by 0·99993

(reduced projection), yielding two true-scale metaparallels. The distri-
bution of the distortions is thus more favourable: there is a reduction
of the length between the two distortion-free lines and an increase in
length outside them. The only areas where the linear scale exceeds
the required value of 1 : 10 000 are near Torna and Zemplén and in the
Ormánság region.

• The coordinate axes are unusual: x points to the North and y to the East.
To avoid negative signs, they have been shifted by 200 km to the South
and 650 km to the West. Thus, in Hungary, the vertical coordinates are
less than 400 km, the horizontal coordinates are always greater than
this (Fig. XIV.6).

Introduced in 1975, the EOV is used often in Hungary: except for military
topographic and geological maps, almost all map databases in Hungary
use this system. The most important application is the EOTR, which is a
series of topographic maps covering the whole territory of Hungary in this
system.

The EOV implementation of popular open-source GIS is not accurate
because it approximates it with the Rosenmund projection. The only dif-
ference, as we have seen, is that the standard parallel of the Gaussian
auxiliary sphere is not parametrizable, but coincides with the latitude of
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Figure XIV.6: The EOV coordinate system

the metaequator. The error is of the order of cm.
In 1946, British geodesist Hotine used a surface of revolution shaped like

a turnip (aposphere) instead of a Gaussian sphere as an intermediate surface
for the conformal double projection. This surface has a constant Gaussian
curvature, i.e. a distortion-free projection can be constructed between the
aposphere and the sphere (Sec. VI.1). The projection between the aposphere
and the plane employs a conformal mapping that maps a geodesic line
of the aposphere to a straight true-scale line. Hotine’s and Rosenmund’s
formulae theoretically give exactly the same projection, but because of the
different derivation, Hotine’s projection must be parametrized differently.
This projection was developed to represent Malaysia, which is located along
two oblique geodesic lines. This projection can also be used to approximate
the EOV if Rosenmund’s projection is not supported by the software.
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Lesson fifteen

Aphylactic conic projections

XV.1 Conic projections

In conic projections, the images of meridians are concurrent straight lines
and the images of parallels are concentric arcs of circles perpendicular to
them. Because of their equal spacing, the angle formed by the meridians is
in direct proportion to the difference in longitude. For this reason, conic
map projections differ from azimuthal projections only in that the polar
angle is nλ (Fig. XV.1). Together with the cone constant 0 < n < 1 (ratio of the
angle between mapped meridians to their difference in longitude), we are
still free to choose a strictly increasing radius function ϱ. The conversion
between polar and Cartesian coordinates:*

x = ϱ sin(nλ)
y = −ϱcos(nλ)

The conic projection is pointed-polar if ϱ = 0 at δ = 0, otherwise it is flat-
polar. When calculating the linear scales along graticule lines, we use the
relation found in Sec. X.1, namely dϱ/dϕ = −dϱ/dδ:

h =

√(
�x
�ϕ

)2
+
(
�y
�ϕ

)2
R

=

√(
−dϱ

dδ

)2
sin2(nλ) +

(
−dϱ

dδ

)2
cos2(nλ)

R
=
1
R

dϱ
dδ

k =

√(
�x
�λ

)2
+
(
�y
�λ

)2
Rcosϕ

=

√
ϱ2n2 cos2(nλ) + ϱ2n2 sin2(nλ)

Rsinδ
=

ϱn

Rsinδ

* In order to get simple formulae, we assume here that the origin is at the centre of
the mapped parallels. In geodesic practice, however, to avoid excessive numbers for
coordinates, we place the horizontal axis at the tangent of some freely chosen central
parallel. The colatitude of the central parallel is most often chosen as δm = arccosn, which
usually coincides with the equidistant parallel in conic maps with one equidistant parallel,
and lies between the equidistant parallels if the conic projection has two of them.
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x

y

ϱnλ

Figure XV.1: Polar coordinates in conic map projections

XV.2 Perspective conics

To derive perspective conic projections, see Fig. XV.2. Denote half the
aperture of the cone with σ ! Then we can see that the radius of the mapped
parallels before rolling out is ϱ sinσ from the right triangle of hypotenuse ϱ.
That is, the circumference of the mapped parallel on the cone is 2πϱ sinσ .
Developing the cone, the radius of the parallel rolled out to an arc becomes
ϱ and the central angle will be n2π. Since the development of the cone is
an isometry, the arc of the circle has the same length as the circumference
of the original circle:

n2πϱ = 2πϱ sinσ
n = sinσ

Thus, in perspective conics, the descriptive meaning of the cone constant
n is the sine of half the cone’s aperture.

As usual, let the centre of projection be at a distance of f R from the
centre of the sphere, while the apex of the cone is placed at a distance of cR
from the centre of projection. The distance marked by the red brace and
the vertical leg of the right triangle of hypotenuse ϱ (ϱcosσ ) together give
just cR, of which the distance highlighted by the brace is cR− ϱcosσ . The
two right triangles of the red hypotenuses are similar, their aspect ratios
are the same:

ϱ sinσ
Rsinδ

=
cR− ϱcosσ
R(f + cosδ)
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Figure XV.2: The principle of perspective conics

[
sinσ
Rsinδ

+
cosσ

R(f + cosδ)

]
ϱ =

c
f + cosδ

f sinσ + sinσ cosδ+ cosσ sinδ
Rsinδ(f + cosδ)

ϱ =
c

f + cosδ

ϱ =
cRsinδ

f sinσ + sin(σ + δ)

Perspective conics are even rarer than perspective cylindricals. This
is because they are aphylactic (h , k and hk , 1), their distortions are
very unfavourable (Fig. XV.3). Perspective conics are pointed-polar,* their
only benefit is that their tangent versions will provide the basis for the
construction of polyconic projections in Sec. XXVI.1.†

Consider Fig. XV.4. The two acute angles of a right triangle are each
other’s complementary angles, so σ = 90° − δs. Also, by formulating the
tangent of δs, the radius ϱs of the tangent parallel can be calculated:

ϱs = R tanδs
n = sinσ = cosδs

* Except for the case f = −1.
† As among cylindrical projections, there are quasi-perspective projections among

conic projections. In these, the centre of projection is located on the plane perpendicular
to the generatrix of the cone and passing through the centre of the sphere. For example,
from the opposite point of the sphere, one can project in a manner similar to stereographic
projection, while from an infinite distance, one can project with parallel rays in a manner
similar to orthographic projection. (The latter is not the same as the conic projection with
equidistant parallels, because the parallel rays are not vertical this time, but oblique!)
Quasi-perspective conics are flat-polar, neither of them has special distortions, so they are
of no practical use.
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XV. Aphylactic conic projections

Figure XV.3: Perspective conic

Rδs

σ
ϱs

Figure XV.4: Tangent perspective conic projection

After formulating the linear scales along graticule lines, it can be seen
that h = k = 1 at the tangent parallel, i.e. it is true-scale.* Surprisingly,
we will find that these three properties hold for non-perspective conic
projections with one standard parallel.

XV.3 Conic projection with equidistant parallels

Place the centre of projection infinitely far away, i.e. the rays should be
parallel vertical lines. Then f →∞ and c→∞. In the denominator of the

* This is a non-trivial statement, and for secant perspective conics, it is not even true
for secant parallels.
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XV. Aphylactic conic projections

radius function, it is insignificant to add sin(σ + δ) to the infinitely large
number. Since f and c are equally infinite, they can be simplified. The
vertical positioning of the cone does not change the projection because of
the parallel rays, so it can be considered tangent without loss of generality.
In this case, the relation sinσ = cosδs is applied:

ϱ =
Rsinδ
cosδs

n = cosδs

h =
1
R

dϱ
dδ

=
cosδ
cosδs

k =
ϱn

Rsinδ
=
Rsinδcosδs
cosδsRsinδ

= 1

Since k = 1, the projection is equidistant in parallels. It is unsuitable
to represent an area larger than a hemisphere. Apart from its theoretical
interest, it has no practical use (Fig. XV.5).

Figure XV.5: Conic projection with equidistant parallels

XV.4 Equidistant conic

Among the non-perspective conics, the derivation of the projection
equidistant in meridians (h = 1) is straightforward:

1
R

dϱ
dδ

= 1U
dϱ = R

U
dδ

ϱ = R�δ+Rd
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XV. Aphylactic conic projections

The constant of integration d characterizes the radius of the pole-line,
and the two parameters (n,d) allow for one or two equidistant parallels. Let
δ1 and δ2 be equidistant! For these two parallel circles, write the equation
k = 1:

R
(�δ1,2 + d

)
n

Rsinδ1,2
= 1

That is

n
(�δ1 + d

)
= sinδ1

n
(�δ2 + d

)
= sinδ2

Subtracting the two equations from each other:

n
(�δ1 − �δ2) = sinδ1 − sinδ2

n =
sinδ1 − sinδ2�δ1 − �δ2

Dividing the two equations by each other:

�δ1 + d�δ2 + d
=

sinδ1
sinδ2(�δ1 + d

)
sinδ2 =

(�δ2 + d
)
sinδ1�δ1 sinδ2 − �δ2 sinδ1 = d(sinδ1 − sinδ2)

d =
�δ1 sinδ2 − �δ2 sinδ1

sinδ1 − sinδ2

Note that at the equidistant parallels k = 1 and everywhere h = 1, i.e. the
equidistant latitudes are also true-scale standard parallels (h = k = 1). At
other latitudes:

k =
ϱn

Rsinδ
=

(�δ+ d
)
n

sinδ
Substituting δ = 0 into the formula above, we obtain that the distortion

at the pole is infinite. The exception is if d = 0 (the projection is pointed-
polar) because then we get a limit of type �δ/sinδ, which approaches 1, so
k = n. At the South Pole (δ = 180°), the term also diverges to infinity, so k
necessarily has a minimum somewhere, and increases towards the poles.
If we have two standard parallels, it follows that between them k < 1, and
k > 1 outwards.
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XV. Aphylactic conic projections

This mapping is called the equidistant conic (Fig. XV.6) and is attributed
to de L’Isle, although he was not the first to use it. This mapping is one
of the most favourable projections for areas extending along parallels (its
isocols run along parallels) so, a more favourable conic projection is not
worth using because of the complexity of the calculations. The projection
can be recognized by the even spacing of the parallels. It is most commonly
used for middle latitudes, but in theory, there is nothing to stop the two
standard parallels being in different hemispheres. It is advisable to pick
the standard parallels close to the edges of the area rather than the centre.

Special cases of projection are obtained by the special choice of δ1,2. If
δ2 = 0, i.e. taken at the pole, then substituted back into the equations:

n =
sinδ1 − 0�δ1 − 0 =

sinδ1�δ1
d =

�δ10− 0sinδ1
sinδ1 − 0

= 0

Thus, we obtain a pointed-polar conic. Interestingly, the pole is not true-
scale at the same time: although h = 1, k = n emerged at the pole. The
resulting angular distortion is visible to the naked eye: the meridians do
not form true angles at the pole. This variant is the work of the Russian
chemist Mendeleyev, and is not actually used in practice.

(a) Equidistant conic

Figure XV.6: Conic projections with equidistant meridians
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XV. Aphylactic conic projections

(b) Equidistant conic for the Indian Ocean

(c) Ptolemy I projection

Figure XV.6: (contd.)
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XV. Aphylactic conic projections

Let us consider the version where the two standard parallels coincide
(δ1 = δ2 = δs). Since the direct substitution leads to divisions of type 0/0,
we only substitute δs for δ2, and write δs +∆δ for δ1 temporarily, then let
∆δ approach zero and apply L’Hôpital’s rule:

n = lim
∆δ→0

sin(δs +∆δ)− sinδs(�δs + �∆δ)− �δs = lim
∆δ→0

cos(δs +∆δ)
1

= cosδs

d = lim
∆δ→0

(�δs + �∆δ)sinδs − �δs sin(δs +∆δ)

sin(δs +∆δ)− sinδs

= lim
∆δ→0

sinδs − �δs cos(δs +∆δ)
cos(δs +∆δ)

= tanδs − �δs
From the above formulae, it can be seen that, just like the case of tangent

perspective conics, the radius of the standard parallel is just R tanδs and
the cone constant is cosδs. We call this mapping the Ptolemy I projection.*

If both parallels approach the pole (δs = 0), the above formulae give n = 1
and d = 0, i.e. ϱ = R�δ, so we get the azimuthal equidistant, in which the
pole becomes true-scale.

It is exciting to consider the case δ2 = 180°− δ1. Then n = 0 is obtained,
i.e. the mapped meridians are parallel. Moreover, since the denominator
of d is zero and the numerator is not zero, d→∞, i.e. the parallel circles
have infinite radii and are therefore parallel lines. Ultimately, we have
the equidistant cylindrical. This shows that the conic projections are a
transition between azimuthals and cylindricals.

* We find this projection in Geographica, his work written in the 2nd century, which
laid the foundations for cartography.
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Lesson sixteen

Equal-area & conformal conic

mappings

XVI.1 Albers equal-area conic

First, the equal-area conic (hk = 1) is calculated. Let the constant of integ-
ration be R2/n+R2d/2n!

1
R

dϱ
dδ

ϱn

Rsinδ
= 1U

ϱdϱ =
R2

n

U
sinδdδ

ϱ2

2
= −R

2

n
cosδ+

R2

n
+
R2d
2n

ϱ2 =
R2

n

(
−2cos2

δ
2

+ 2sin2
δ
2

+ 2cos2
δ
2

+ 2sin2
δ
2

+
2d
2

)
ϱ =

R
√
n

√
4sin2

δ
2

+ d

The constant d determines the radius of the pole-line, since for the
substitution δ = 0, we get ϱ = R

√
d/n. By setting n and d appropriately,

one or two arbitrarily chosen parallels may be equidistant.* Let our two
equidistant parallels be δ1 and δ2! At these latitudes k = 1, so k2 = 1. Take

* Conic projections with two standard parallels are often called secant conics in the
literature, and there are beautiful illustrations of cones intersecting the sphere in two
circles. This is a very illustrative explanation, with only one flaw: it is absolutely false.
Such conic maps, when rolled to form a cone, will not happen to have the true-scale
parallels where the cone intersects the sphere. In addition, these projections may not
always be obtained by uniform scaling of the version with one standard parallel, so the
term reduced should also be avoided for not conformal projections.
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XVI. Equal-area & conformal conic mappings

the formula ϱ2 not from the final solution, but from the third line of the
derivation above.

ϱ2n2

R2 sin2δ1,2
= 1

2
(
−R
2

n
cosδ1,2 +

R2

n
+
R2d
2n

)
n2 = R2 sin2δ1,2

That is, after simplifying by R2:

n(2− 2cosδ1 + d) = sin2δ1
n(2− 2cosδ2 + d) = sin2δ2

Subtracting the two equations from each other:

n(2cosδ2 − 2cosδ1) = sin2δ1 − sin2δ2

n =
1− cos2δ1 − 1+ cos2δ2
2(cosδ2 − cosδ1)

=
(cosδ2 + cosδ1)(cosδ2 − cosδ1)

2(cosδ2 − cosδ1)
=

cosδ1 + cosδ2
2

The first equation of the system of equations:

n(2− 2cosδ1) +nd = sin2δ1

nd = sin2δ1 −
2(1− cosδ1)(cosδ1 + cosδ2)

2
Before calculating further, note that:

cosδ = cos2
δ
2
− sin2

δ
2

= cos2
δ
2

+ sin2
δ
2
− sin2

δ
2
− sin2

δ
2

= 1 − 2sin2
δ
2

This makes it easy to get the final result:

d =
sin2δ1 − (1− cosδ1)(cosδ1 + cosδ2)

n

=
sin2δ1 − (1− cosδ1)

(
1− 2sin2 δ12 + 1− 2sin2 δ22

)
n

=
sin2δ1 − 2

(
1− 1+ 2sin2 δ12

)(
1− sin2 δ12 − sin2 δ22

)
n

=
4sin2 δ12 cos2 δ12 − 4sin2 δ12

(
cos2 δ12 − sin2 δ22

)
n

=
4sin2 δ12

(
cos2 δ12 − cos2 δ12 + sin2 δ22

)
n

=
4sin2 δ12 sin2 δ22

n
This mapping is called the Albers equal-area conic (Fig. XVI.1). Although

he published the projection as early as 1805, we rarely see it until the
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middle of the 20th century. Its popularity is now on the rise, especially in
the USA. Let us examine the distortions!

h =
1
R

dϱ
dδ

=
4×2
2 sin δ

2 cos δ2

2
√
n
√
4sin2 δ2 + d

=
sinδ

√
n
√
4sin2 δ2 + d

k =
ϱn

Rsinδ
=
√
n

sinδ

√
4sin2

δ
2

+ d

This time, the equidistant parallels are also standard parallels, because
here k = 1 and h = 1/k = 1 due to equivalency. At the poles, the numerator
of h and the denominator of k are zero, so the former is zero and the latter
tends to infinity. Again, the case d = 0 is exception, because then we can
simplify by 2sinδ/2 so that at the North Pole h = 1/

√
n and k =

√
n. Apart

from this pointed-polar case, it can be seen that since k is infinitely large
at the poles and the projection has two standard parallels, h < 1 and k > 1
outward from the standard parallels, so the objects are stretched in the
east-west direction. On the other hand, between the two standard parallels,
where h > 1 and k < 1, the stretching is in the north-south direction. This
helps us to recognize the projection: the parallels in the middle of the map
cross the meridians less densely than at the bottom and top of the map.

Special cases will also be of interest. If δ2 = 0, i.e. at the pole, then:

n =
cosδ1 + 1
2

=
cos2 δ12 − sin2 δ12 + sin2 δ12 + cos2 δ12

2
= cos2

δ1
2

(a) Albers equal-area conic

Figure XVI.1: Equal-area conics
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(b) Albers projection for Australia

(c) Lambert equal-area conic

Figure XVI.1: (contd.)
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d =
4sin2 δ12 × 0

n
= 0

This pointed-polar conic projection (d = 0) is called Lambert equal-area
conic and has been known since 1772. Contrary to our expectation, the
pole is not true-scale because h = 1/

√
n and k =

√
n, so angular distortion is

present. This is logical since mapped meridians cannot arrive at the pole at
their true angle.

Let us now construct a flat-polar equal-area conic with only one standard
parallel! This can be easily done by substituting δ1 = δ2 = δs, this time no
limit calculus is needed:

n =
cosδs + cosδs

2
= cosδs

d =
4sin2 δs2 sin2 δs2

n
=
4sin4 δs2

cosδs

Substituting back and applying a sufficient amount of trigonometric
identities, it can be seen that, less and less surprisingly, the radius of the
standard parallel becomes again R tanδs.

If both standard parallels are placed at the pole (δs = 0), the result of the
above formulae is n = 1 and d = 0, i.e. we get the Lambert azimuthal equal-
area. If δ2 = 180°−δ1, then n = 0 and d→∞, giving a limit to the family of
equal-area cylindricals.

XVI.2 Lambert conformal conic

Only the conformal version (h = k) is left. In the derivation, the constant of
integration is lnd + lnR.

1
R

dϱ
dδ

=
ϱn

RsinδU
1
ϱ

dϱ = n
U
1

sinδ
dδ

lnϱ = n lntan
δ
2

+ lnd + lnR

ϱ = dR tann
δ
2

This time, the parameter d denotes a uniform scaling, the projection is
in any case pointed-polar.* The South Pole is mapped to infinity. This time

* In general, there is no flat-polar conformal projection, unless the pole at infinity is
considered to be a pole-line.
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XVI. Equal-area & conformal conic mappings

again, two equidistant parallels can be set by choosing n and d appropri-
ately. Let δ1 and δ2 be the equidistant parallels! Here, let k = 1! From
this:

ϱn

Rsinδ1,2
= 1

ndR tann
δ1,2
2

= Rsinδ1,2

Thus:

nd tann
δ1
2

= sinδ1

nd tann
δ2
2

= sinδ2

Dividing the two equations by each other:

tann δ12
tann δ22

=
sinδ1
sinδ2

n
(
lntan

δ1
2
− lntan

δ2
2

)
= lnsinδ1 − lnsinδ2

n =
lnsinδ1 − lnsinδ2
lntan δ1

2 − lntan δ2
2

d cannot be expressed in such a nice form, but it can be expressed from
either of the two equations:

d =
sinδ1
n tann δ12

=
sinδ2
n tann δ22

The mapping is called the Lambert conformal conic or the Lambert–

Gauss projection (Fig. XVI.2), and like Lambert’s other projections, it was
published in 1772. As it received little attention at first, its authorship
remained unknown for a long time, and several scientists of map projec-
tions, including Gauss, created it independently. How do the distortions of
projection arise?

h =
1
R

dϱ
dδ

=
dn tann−1 δ2
2cos2 δ2

=
nd

2sin1−n δ2 cos1+n δ2

k =
ϱn

Rsinδ
=

nd tann δ2
2sin δ

2 cos δ2
=

nd

2sin1−n δ2 cos1+n δ2
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(a) Lambert conformal conic

(b) Křovák projection

Figure XVI.2: Conformal conics
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Projection
to sphere Conformal sphere
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Metacoordinates
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Rotation

Lambert conic
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x,y

Figure XVI.3: Křovák projection in Czechia and Slovakia

Interestingly, at the North Pole, the mapping is not conformal, since the
meridians do not meet at their true angles. We can see from the formula
that at both poles h = k→∞, i.e. the distortions are infinitely large.* Since
they are of finite magnitude between the two poles, there is a minimum
somewhere between the two equidistant parallels. Thus, between the two
equidistant parallels h = k < 1, away from them h = k > 1. This helps
to recognize projection: the mapped parallels in the middle of the map
intersect the mapped meridians more densely than at the northern and
southern edges of the map. The equidistant parallels are now also standard
parallels: if k = 1, then h = k = 1.

What happens if δ1 = δ2 = δs? The division cannot be done in the formula
n, so again we resort to the trick δ1 = δs +∆δ, as ∆δ→ 0. Again, we can
calculate the limit using L’Hôpital’s rule.

* An interesting property of conformal projections is the singularity. It is known from
the analysis of complex numbers that a mapping is conformal if and only if the C→ C

(complex) function describing it is differentiable. However, discontinuities necessarily
appear in the projections, so our function here is not continuous and therefore cannot
be differentiable. Therefore, the mapping at the endpoints of the discontinuities (and
sometimes elsewhere, but even then only at isolated points) is necessarily singular, not
differentiable. Conformal projections exhibit three types of singularity:

The mapped point may be at infinity, in which case the conformality is not definable (for
example, the South Pole in the stereographic projection). The point may have infinitely
large distortions (l→∞ or very rarely l = 0), the conformality is lost at this single point
(see the North Pole in the projection we are discussing). It is rare that a line bifurcates
without a break at a point, in which case the conformality is preserved (turn to Fig. XIV.2
and you will find points on the Gauss-Krüger projection where the Equator divides into
two branches).
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XVI. Equal-area & conformal conic mappings

n = lim
∆δ→0

lnsin(δs +∆δ)− lnsinδs
lntan δs+∆δ

2 − lntan δs
2

= lim
∆δ→0

cos(δs+∆δ)
sin(δs+∆δ)

1
2 tan δs+∆δ

2 cos2 δs+∆δ2

=
cotδs
1

2sin δs
2 cos δs2

= cosδs

It still holds that:

d =
sinδs
n tann δs2

Once again, as n = cosδs, is the radius of the standard parallel R tanδs? If
we substitute it back into the radius function, then it will indeed come out.

Since d is just a scaling, you can get any versions with two standard
parallels by reducing the projection with one standard parallel of the same
cone constant. Therefore, in GIS, it is common that the projection is not
parametrized by the two standard parallels, but by a single parallel and a
reduction factor.

The Lambert–Gauss projection is preferred by international aviation
because, besides its conformality, it displays orthodromes shorter than
3000 km as almost straight lines. The World Aeronautical Chart (WAC)
also uses an ellipsoidal version of this projection for datum WGS84, but
most aeronautical charts are also produced in this projection. It is also used
as a projection for topographic maps in many countries, especially in the
French culture. It should be used for medium latitudes, for areas extending
along a parallel, because its isocols are arcs of circles.

In Czechia and Slovakia, the oblique aspect of this projection is still used
in a double projection known as the Křovák projection (Fig. XVI.3). The
reason for this is that the former Czechoslovakia (today’s Czechia, Slovakia,
and Transcarpathia of Ukraine) had a curved shape. They were looking
for a projection with isocols following this shape. Thus this projection
was chosen. Since the area is not located along a parallel but is rotated, a
graticule rotation is required. This was done in the usual way, by double
mapping. A conformal sphere is calculated based on the Bessel ellipsoid
and the graticule is rotated so that the metapole is near Helsinki. The con-
formal conic is characterized by the metaparallel δs and a reduction factor
so that the distortions meet the geodetic requirements almost everywhere
in the country. A similar projection was used in their national atlas to
represent Japan, which has a shape like a banana.
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XVI. Equal-area & conformal conic mappings

What happens if you move one of the standard parallels to the pole
(δ2→ 0)? In this case, to overcome the quotient of the logarithms of zero,
we repeat L’Hôpital’s rule with δ2 as an independent variable:

n = lim
δ2→0

lnsinδ1 − lnsinδ2
lntan δ1

2 − lntan δ2
2

= lim
δ2→0

−cosδ2
sinδ2

− 1
2 tan δ2

2 cos2 δ22

= lim
δ2→0

cosδ2 = 1

Contrary to our previous experience, we did not get a pointed-polar
conic (since the conformal projection was already pointed-polar), but it
was enough to place one of the standard parallels in the pole to get an
azimuthal projection (n = 1). But is not that the right way? After all,
unlike the azimuthal equal-area or equidistant, we could choose a standard
parallel for the stereographic projection, which is distortion-free. Thus, if
you place one of the standard parallels of the projection at the pole, the
other parallel will be the secant parallel of the stereographic projection. In
the pole, of course, conformality is then restored, but equivalency is lost
because the stereographic projection is only distortion-free at the standard
parallel.

The other limit is δ2 = 180°− δ1, which leads by simple substitution to
n = 0, i.e. the Mercator projection.

XVI.3 Ellipsoidal conic projections

The linear scales along graticule lines in conic projections for an ellipsoid
are as follows:

h = − 1
M(Φ)

dϱ
dΦ

k =
ϱn

N (Φ)cosΦ

The equidistant conic projection is obtained from the solution of the
equation h = 1 (d is a constant of integration):

ϱ = d +

ΦU
90°

M(Φ)dΦ

The equal-area conic is obtained by solving the equation hk = 1:

ϱ = a

√
1− e2
√
n

√
d − sinΦ
1− e2 sin2Φ

− 1
2e

ln
1+ e sinΦ
1− e sinΦ
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XVI. Equal-area & conformal conic mappings

We get the conformal conic by solving the equation h = k:

ϱ = d tann
(
45°− Φ

2

)(1+ e sinΦ
1− e sinΦ

)ne/2
Expressing the constants from two standard parallels leads to lengthy

formulae, but for all versions with a single standard parallel, n = sinΦs,
and the radius of the standard parallel is N (Φs)cotΦs, which is similar to
spherical maps.
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Lesson seventeen

Applied theory of map projections

XVII.1 Can distortion be useful?

Up until now, we have been struggling to keep the distortions of map
projections under control. However, there are times when distortion is an
advantage. Fig. XVII.1 shows such a map. It shows the results of an old
election in Germany. If our map did not contain distortion, it would be
hard to tell that the party in red was the winner, since typically only a few
major cities (Berlin, Hamburg, and the Saxon industrial cities) were won.
If the map editor were to show the area with slight distortions, it would
look as if the party with the most rural voters, the one in khaki, had won
overwhelmingly. The map editor rightly compensated for this by plotting
the constituencies by population rather than by actual area.

Figure XVII.1: Example of a distorted cartogram

Such representations are called distorted cartograms. They can be con-
sidered a special kind of map projections in a broad sense. The distortion
can be adjusted according to some quantitative measure, but we can also
choose, for example, to plot the distance of objects from a given point
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XVII. Applied theory of map projections

according to the travel time from the centre. A special kind of distor-
ted cartogram is the underground map, where the distance depends on
the number of stations travelled through. There is a variety of software
for creating classical cartograms distorted by quantitative data, such as
ScapeToad.

XVII.2 The focus of map projections

In large cities, streets and places of interest (pictograms) are often very
densely concentrated in the centre of the city, so the data density is too
high; while in the suburbs there are fewer landmarks to represent in a
unit area. For this reason, it might be a good decision to use a different
map scale in the city centre than in the outer districts. This problem is
addressed by the hyperboloid projection used in Falk’s urban maps. It takes
its name from the fact that the kilometre grid lines appear as hyperbolae.
They can also be recognized by the fact that the map scale is shown as an
interval (Fig. XVII.2). Projections, in which the linear scale is deliberately
increased at the centre, are called focused projections.

Figure XVII.2: Map of a town in hyperboloid projection

The mathematics of the mapping is a trade secret, but the Israeli carto-
grapher Kadmon got a very similar (perhaps exactly the same) map with
the following train of thought: let the centre of the coordinate system be
at the centre of the city where the linear scale is l0! In distance ϱp from
this, we want a linear scale of lp < l0. For these two points, we fit a linear
function:

l =
lp − l0
ϱp

ϱ+ l0

146



XVII. Applied theory of map projections

On the other hand, l is the infinitesimal new length divided by the old
length:

l =
dϱ′

dϱ
dϱ′

dϱ
=
lp − l0
ϱp

ϱ+ l0U
dϱ′ =

U
lp − l0
ϱp

ϱ+ l0dϱ

ϱ′ =
lp − l0
2ϱp

ϱ2 + l0ϱ

With this method, the scale varies continuously. Hungarian cartographer
Siklósi proposed a method where the centre of the map is magnified with
a lens while the edges are left unchanged. This is advantageous if the outer
districts are not to be distorted.

q

ϱϱ′ r

t

f

Figure XVII.3: Creating a focused map using a lens

The centre of the circle of radius r shown in Fig. XVII.3 is at distance
r − t from the plane of projection. Thus, the equation of the circle is:

(q+ r − t)2 + ϱ2 = r2

q =
√
r2 − ϱ2 − r + t

The ratio of the sides of two similar triangles in the figure is equal:

ϱ′

f + t
=
ϱ′ − ϱ
q

ϱ′
(√
r2 − ϱ2 − r + t

)
= (f + t)ϱ′ − (f + t)ϱ

ϱ′
(
f −

√
r2 − ϱ2 + r

)
= (f + t)ϱ

ϱ′ =
(f + t)ϱ

f + r −
√
r2 − ϱ2
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This transformation leaves intact the parts of the map that are not covered
by the lens.

XVII.3 Map projections and GIS

When applying a projection in GIS, it is always necessary to specify the
reference frame and the mapping unambiguously. This is quickly identified
by the EPSG number, behind which the type of projection, its parameters
and the reference frame with its placement are stored in a database. Some
important EPSG numbers:
4326 Datum WGS84, geographic coordinates
3857 Pseudo Mercator / datum WGS84
23700 EOV / datum HD72
32633 / 32634 UTM zones 33 / 34 / datum WGS84

In the QGIS application, when you apply a projection for the first time,
a dialogue box will pop up asking you which transformation to choose.
If there are three parameters in the parameter set, then it will use the
Molodenskiy transform, if there are seven parameters, then it will use
the more accurate Helmert transform (Sec. VI.4). Sometimes, for a given
datum, there may be several very different parameter sets, in which case
what usually happens is that the difference between them is negligible in a
horizontal sense, but there will be significant differences in the result in
the vertical sense. When converting 3D data, particular care must be taken
(see also App. D)!

As an example, the case of the EOV is shown in Fig. XVII.4. The trans-
formation one (in the pop-up) has seven parameters but is not recom-
mended because of its inaccuracy as described. The selected transformation
four (read in the main window) has three parameters.

If a map projection cannot be found in the GIS software, it is typically
possible to specify a new map projection. While in GlobalMapper this
means filling in a simple dialogue box, in other software this is possible
using the WKT format. As an example, let us look at the definition of the
EOV in ArcGIS software:

PROJCS["HD72_EOV",
GEOGCS["GCS_HD72",
DATUM["D_Hungarian_1972",
SPHEROID["GRS_1967",6378160,298.247167427],
TOWGS84[52.17,-71.82,-14.9,0,0,0,0]],

PRIMEM["Greenwich",0],
UNIT["Degree",0.017453292519943295]],
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XVII. Applied theory of map projections

Figure XVII.4: Setting the transormation in QGIS

PROJECTION["Hotine_Oblique_Mercator_Azimuth_Center"],

PARAMETER["latitude_of_center",47.14439372222222],
PARAMETER["longitude_of_center",19.04857177777778],
PARAMETER["azimuth",90],
PARAMETER["scale_factor",0.99993],
PARAMETER["false_easting",650000],
PARAMETER["false_northing",200000],
UNIT["Meter",1],
AXIS["Y",EAST],

AXIS["X",NORTH]]

It can be seen that ArcGIS derives the datum HD72 in the setting
TOWGS84 using the three-parameter form of Molodenskiy based on the
ellipsoid IUGG67. The mapping is approximated by the Hotine projection
(Sec. XIV.6) with appropriate parametrization. The advantage of the
format WKT is that one can specify the mapping precisely, but it is also
lengthy. In open-source software, it is possible to use the more compact
format PROJ.4, in which there is fewer possibility to define the projection
precisely, but this does not usually sacrifice the accuracy required in GIS.
An example is the definition of the EOV in QGIS:

+proj=somerc +lat_0=47.1443937222222
+lon_0=19.0485717777778 +k_0=0.99993 +x_0=650000
+y_0=200000 +ellps=GRS67 +towgs84=52.684,-71.194,-13.975,
-0.312,-0.1063,-0.3729,1.0191 +units=m +no_defs
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This time, towgs84 contains seven parameters, so it uses a Helmert

transform.* somerc is an abbreviation for Swiss Oblique MERCator, i.e. the
Rosenmund projection (Sec. XIV.6). Abbreviations of some projections in
PROJ.4:
aea Albers Equal-Area
aeqd Azimuthal EQuiDistant
eqdc EQuiDistant Conic
laea Lambert Azimuthal Equal-Area
lcc Lambert Conformal Conic
longlat No projection, geographic coordinates
tmerc Gauss–Krüger projection

Using our knowledge, georeference a map in the Budapest stereographic
system (App. F) as an example! Unfortunately, this projection is not suppor-
ted by QGIS, we have to teach it. The mapping is similar to the Amersfoort
projection (Sec. XI.4), coded sterea. The reference is the Bessel ellipsoid,
on which the regional datum HD1863 is based, whose placement was cal-
culated by Timár using both three and seven parameters. We use the latter
parameter set because it gives a more accurate result. The latitude and
longitude of the midpoint Gellérthegy can be found in the literature, the
false easting and northing are 500 km. From this, the required definition
in format PROJ.4:

+proj=sterea +lat_0=47d29'9.6380" +lon_0=19d3'7.5533"
+k=1 +x_0=500000 +y_0=500000 +ellps=bessel +towgs84=595.75,
121.09,515.50,8.2270,-1.5193,-5.0121,-2.6729 +units=m

+no_defs

By typing this into the QGIS custom projection dialogue box, the geore-
ferencing can be done (Fig. XVII.5). In the example, a map in the Budapest
stereographic system was transformed into the Pseudo Mercator projec-
tion for comparison to the OpenStreetMap database. Since the horizontal
position of the more accurately measured inhabited areas is the same on
both maps, the slightly different roads are due to inaccuracies and drawing
errors of the topographic survey. Our georeferencing, therefore, achieved
the desired accuracy.

XVII.4 Georeferencing

When georeferencing a map, the GIS software will usually ask you, after
selecting the control points, which method to use to calculate the projected

* A grid shift (Sec. VI.4) could be set with the parameter +nadgrids.
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Figure XVII.5: Comparison of OSM and an old topographic map

coordinates of the other points. Unfortunately, the nomenclature of the
methods is not intuitive. Let us denote the pixel coordinates of the image
by x,y and the corresponding projected coordinates by x′, y′!

The method called linear in GIS does not resample the image, but only
writes the spatial resolution. This corresponds to the equations x′ = ax+ b
and y′ = cy + d. This only gives acceptable results if the map is not rotated,
so it is only good for digital (not for scanned) maps. It requires two control
points. For scanned maps, the map sheet is usually rotated, so this must be
taken into account. This is what the Helmert transform is for:

x′ = px+ qy + c
y′ = −qx+ py + d

Here, c and d are the translations, and if the angle of rotation is δ and the
scaling factor is s, then p = scosδ and q = s sinδ. This method also requires
at least two control points. This is a similarity, so it preserves angles and
straight lines.

If, for example, the paper of an old map sheet has a different stretch
in the direction of fibres than perpendicular to it, similarity will not give
a good result. A transformation called linear in mathematics, which is
called Polynomial1 in QGIS, and Affine in Global Mapper and ArcGIS, scales
differently depending on the direction. It requires three control points, is
not conformal, but preserves the parallel straight lines:

x′ = a1x+ a2y + a0
y′ = b1x+ b2y + b0
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In aerial photography, it happens that the camera angle is skew, this
is corrected by the projective transform. GlobalMapper lacks it, but other
programs know it. It also preserves straight lines, but angles and parallel
lines are lost. Formulae for this method, which requires at least four control
points:

x′ =
a1x+ a2y + a0
c1x+ c2y + 1

y′ =
b1x+ b2y + b0
c1x+ c2y + 1

If the projection of the georeferenced map cannot be determined in any
way, it is possible to estimate coordinates using higher degree polynomials.
This will be expanded in Sec. XVIII.3.
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Transformations between

reference systems

XVIII.1 Transform via the reference frame

We are given a point in a coordinate system. How can we find the same point
in a different coordinate system? It is inaccurate but quick to read if you
have a map with both systems printed. In multi-zone systems of projections,
the coordinates of the neighbouring zone are often indicated on the map
frame by ticks near the zone boundaries to speed up the calculation.

The applicability of the more accurate methods depends on whether the
two projections use the same or different reference frames (Fig. XVIII.1).
In the case of the same base surface, reprojection can be performed exactly.
The projected coordinates are transformed back to the reference frame
using the inverse formulae of the projection, and then the mapped point in
the second system is obtained using the formulae of the other projection.
This method can be applied, for example, between the zones of the Gauss–

Krüger projection. It is also appropriate between UTM zones and UPS. It
is important that the reference frame is the same, so you cannot convert
from UTM to GK, for example.

For different reference frames, only approximate methods can be used.
In this case, it still makes sense to calculate the coordinates on the reference
frame, but the difference between the two datums must be corrected by
a Molodenskiy or Helmert transform (Sec. VI.4). The parameters of the
transformations can be determined on the basis of control points whose
coordinates and heights above the ellipsoid are known for both datums. The
Molodenskiy transform, which gives an accuracy of about 5-20m, requires
a single control point, whereas the Helmert transform, which typically
gives an accuracy of 0·5-2m, requires at least three such points. Therefore,
despite the lower accuracy, the 3 parameter method of Molodenskiy is still
popular today, and even has an abridged formula that does not require the
calculation of 3D Cartesian coordinates. Another, less popular method
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Projection I

x,y

Projection II

x′, y′

Common ref. frame

Φ,Λ

Inverse
projection

Direct
projection

(a) Same reference frame

Projection I

x,y

Projection II

x′, y′

Trasform with
control points

Read off
from a map

Ref. frame I

Φ,Λ

Ref. frame II

Φ ′,Λ′

Inverse
projection

Direct
projection

Abridged
Molodenskiy

Grid shift
transform

3D Cartesian I

X,Y ,Z

3D Cartesian II

X ′,Y ′,Z ′

Forward
calculation

Reverse
calculation

Helmert

transform

Molodenskiy

transform

(b) Different reference frames

Figure XVIII.1: Possible transforms between coordinate systems
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uses a grid shift raster to store the local differences between the geographic
coordinates.

XVIII.2 Transform with control points

Since it is not possible to convert between two different datums in a stand-
ard way, the question arises whether the new coordinates x′, y′ can be estim-
ated directly from the old coordinates x,y using a pair of functions x′(x,y)
and y′(x,y). Suppose that the new coordinate depends almost linearly on
the old one:

x′ = a+ bx+ cy
y′ = d + ex+ f y

We have six unknown parameters denoted by a to f . Each control point
known in both systems yields two equations according to the relation above.
So we need six equations, or three control points. For now, let us write
down only the three equations for coordinate x′:

x′1 = a+ bx1 + cy1
x′2 = a+ bx2 + cy2
x′3 = a+ bx3 + cy3

This is a system of linear equations in three variables, which can be
solved by any standard method:1 x1 y11 x2 y3

1 x3 y3


ab
c

 =


x′1
x′2
x′3


From the equations containing y′, the remaining three coefficients can

be derived in the same way:1 x1 y11 x2 y3
1 x3 y3


de
f

 =


y′1
y′2
y′3


Now, for any new pair x,y, we can estimate the coordinate pair x′, y′

using the previous parameters, marking the estimated coordinates with a
hat:

x̂′ = a+ bx+ cy
ŷ′ = d + ex+ f y

And what can we do if we have more than three control points? Then we
can take into account the higher degree terms in the original coordinates
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x,y. Calculating up to nth degree terms, we first compute only coordinate
x′ (assuming that x′ is a smooth function of x and y):

x′ = a00 + a10x+ a01y + a20x
2 + a11xy + a02y

2 + · · · =
n∑
i=0

n−i∑
j=0

aijx
iyj

Expanding the sums, we see that there are m = (n+ 1)(n+ 2)/2 unknown
coefficients aij , so we need this number of control points. So we can use 6
control points for the second degree, 10 for the third degree and 15 for the
fourth degree approximation. Increasing the number of powers improves
accuracy for a while, but you cannot get blood out of a turnip: very high-
degree polynomials may bend suddenly, and the measurement errors in
our dataset can be magnified to an unintended extent. In general, it makes
sense to go up till the fourth degree, which alone can provide a very good
accuracy of decimetres over a part of a country. The solution for coefficients
aij is provided by a linear system of equations:

1 x1 y1 x21 x1y1 . . . yn1
1 x2 y2 x22 x2y2 . . . yn2
1 x3 y3 x23 x3y3 . . . yn3
1 x4 y4 x24 x4y4 . . . yn4
1 x5 y5 x25 x5y5 . . . yn5···
···
···
···

···
· · ·
···

1 xm ym x2m xmym . . . ynm





a00
a10
a01
a20
a11···
a0n


=



x′1
x′2
x′3
x′4
x′5···
x′m


The other coordinate can be described by a similar formula:

y′ = b00 + b10x+ b01y + b20x
2 + b11xy + b02y

2 + · · · =
n∑
i=0

n−i∑
j=0

bijx
iyj

The coefficients bij can be obtained from the same control points by sub-
stituting bij for aij and y′i for x′i in the system of equations. This procedure
is called the polynomial transformation.

XVIII.3 The method of least squares

It is rare that we have exactly 3, 6, 10, or 15 control points. In such
cases, we can make some sort of selection, for example, we can discard the
most outlying measurements, but we may also try to get an average set of
parameters taking all our points into account. Assume that our points are
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subject to normally distributed errors!* In this case, the maximum likelihood
parameter set aij is provided by the method of least squares. Let x′ be the
actual coordinate x in the new system, x̂′ the estimated one!

We want to obtain the estimated values such that the error of the estimate
for our m number of control points is minimal. We define the error of the
estimate by squaring the difference between the actual coordinate x′k of the
kth control point and the coordinate x̂′k estimated by the transformation
(the absolute value is not apt because it is not differentiable), and then
summing them for each point:

m∑
k=1

(
x̂′k − x

′
k

)2
→min

The above expression is minimal if its derivative with respect to all aij is
zero:

�
∑m
k=1

(
x̂′k − x

′
k

)2
�aij

=
m∑
k=1

2
(
x̂′k − x

′
k

) �x̂′k
�aij

= 0

m∑
k=1

x̂′kx
i
ky
j
k =

m∑
k=1

x′kx
i
ky
j
k

m∑
k=1

(a00 + a10xk + a01yk + . . . )xiky
j
k =

m∑
k=1

x′kx
i
ky
j
k

a00

m∑
k=1

xiky
j
k + a10

m∑
k=1

xi+1k y
j
k + a01

m∑
k=1

xiky
j+1
k + · · · =

m∑
k=1

x′kx
i
ky
j
k

We have a linear system of equations for aij-s, since i and j can take
any value. The system of equations to be solved in the form of a matrix
equation:

m
∑
xk

∑
yk

∑
x2k

∑
xkyk . . .

∑
ynk∑

xk
∑
x2k

∑
xkyk

∑
x
3
k

∑
x2kyk . . .

∑
xky

n
k∑

yk
∑
xkyk

∑
y2k

∑
x2kyk

∑
xky
2
k . . .

∑
yn+1
k∑

x2k
∑
x
3
k

∑
x2kyk

∑
x4k

∑
x
3
kyk . . .

∑
x2ky

n
k∑

xkyk
∑
x2kyk

∑
xky
2
k

∑
x
3
kyk

∑
x2ky

2
k . . .

∑
xky

n+1
k···

···
···

···
···

· · ·
···∑

ynk
∑
xky

n
k

∑
yn+1
k

∑
x2ky

n
k

∑
xky

n+1
k . . .

∑
y2nk





a00
a10
a01
a20
a11···
a0n


=



∑
x′k∑
x′kxk∑
x′kyk∑
x′kx
2
k∑

x′kxkyk···∑
x′ky

n
k


By writing bij instead of aij and y′k instead of x′k, coordinate y can be

estimated in the same way using the expressions x̂′k in terms of bij . This
* The measurement errors are indeed usually approximately normally distributed after

the systematic errors are removed.
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method slightly improves the achievable accuracy, but the accuracy of the
transformation is greatly degraded in the case of outliers with erroneous
values.

Although often more accurate than traditional datum transformations,
GIS systems do not usually support control point transforms between pro-
jections, but only during georeferencing, which is typically implemented
using the least squares method described here, even though higher degree
polynomials would make sense primarily for conversions between different
projections.

In the case of the Helmert transform as described in Sec. XVII.4, the
formulae for x′ and y′ already have common coefficients, so the least squares
minimization for the two coordinates must be done simultaneously. (Note
that we have two equations for each point, so the four unknowns require at
least two control points.)

m∑
k=1

(
x̂′k − x

′
k

)2
+
(
ŷ′k − y

′
k

)2
→min

Where:

x̂′ = px+ qy + a
ŷ′ = −qx+ py + b

Derived with respect to parameter t ∈ {a,b,p,q}:

�
∑m
k=1

(
x̂′k − x

′
k

)2
+
(
ŷ′k − y

′
k

)2
�t

=
m∑
k=1

2
[(
x̂′k − x

′
k

)�x̂′k
�t

+
(
ŷ′k − y

′
k

)�ŷ′k
�t

]
= 0

From this, substituting each of the four parameters for t gives four equa-
tions:

m∑
k=1

(
pxk + qyk + a− x′k

)
1 = 0

m∑
k=1

(
−qxk + pyk + b − y′k

)
1 = 0

m∑
k=1

(
pxk + qyk + a− x′k

)
xk +

(
−qxk + pyk + b − y′k

)
yk = 0

m∑
k=1

(
pxk + qyk + a− x′k

)
yk +

(
−qxk + pyk + b − y′k

)
(−xk) = 0
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XVIII. Transformations between reference systems

Expanding the parentheses and rearranging into a linear system of equa-
tions: 

m 0
∑
xk

∑
yk

0 m
∑
yk

∑
−xk∑

xk
∑
yk

∑
x2k + y2k 0∑

yk
∑
−xk 0

∑
x2k + y2k



a
b
p
q

 =


∑
x′k∑
y′k∑

x′kxk + y′kyk∑
x′kyk − y

′
kxk


The former transformation has the important advantage of being a simil-

arity transform, i.e. it preserves angles, but it is of little use for a conversion
between two different conformal projections because it does not model
the areal distortion that varies from place to place. The polynomial trans-
formation is flexible for our area, but it distorts the angles between the
two systems. The advantages of both methods are combined in the complex
polynomial transformation, which is based on considering the planar co-
ordinates as the real and imaginary parts of a so-called complex number, i.e.
we introduce the notations z = y + ix and z′ = y′ + ix′, where i2 = −1. From
the analysis of complex numbers, it is known that the conformality of the
transformation implies the differentiability of the function z′(z), and, vice
versa, that differentiable complex functions are conformal (Sec. XXIX.1).
Therefore, a relation between two arbitrary conformal projections can be
established by a differentiable function C→C, which can be approximated
to any precision by a polynomial:

ẑ′ = a0 + a1z+ a2z
2 + a3z

3 + · · · =
n∑
i=0

aiz
i

If we require
∑

(ẑ′k − z
′
k)
2 to be minimal for our control points, we ob-

tain the linear system of equations below, which requires at least n + 1
control points for an nth degree approximation. Since both the unknowns
and the coefficients are complex numbers, it is important to implement
the algorithm in an environment that is capable of dealing with complex
numbers, such as the Python programming language.

m
∑
zk

∑
z2k . . .

∑
znk∑

zk
∑
z2k

∑
z
3
k . . .

∑
zn+1
k∑

z2k
∑
z
3
k

∑
z4k . . .

∑
zn+2
k···

···
···
· · ·

···∑
znk

∑
zn+1
k

∑
zn+2
k . . .

∑
z2nk




a0
a1
a2···
an


=



∑
z′k∑
z′kzk∑
z′kz
2
k···∑

z′kz
n
k


In the practice of GIS, coordinates are most often transformed back to

the reference frame, then into 3D Cartesian coordinates, and finally from
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XVIII. Transformations between reference systems

this the 3D Cartesian coordinates are estimated for the other datum. A
major difficulty of this method is that it requires the ellipsoidal height of
the control points. The simplest is the Molodenskiy transform, which is, in
fact, just a translation: x

′

y′

z′

 =

∆x∆y
∆z

+

xy
z


From the equation above, it follows directly that the value of the paramet-

ers ∆x,∆y,∆z for one control point is the difference between the coordinates
of the point in the two systems. By the method of least squares, the average
of these coordinate differences becomes the value of the parameters for
several control points.

The more complex Helmert transform in three dimensions (sometimes
referred to as Burša–Wolf transform) also takes into account three rotation
parameters and one scaling parameter. Since the angles of rotation σx,σy ,σz
are small, we use the approximations sinσ ≈ �σ , cosσ ≈ 1, and σiσj ≈ 0.
Then the product of the rotation matrices is:

1 0 0
0 cosσx sinσx
0 −sinσx cosσx



cosσy 0 −sinσy
0 1 0

sinσy 0 cosσy


 cosσz sinσz 0
−sinσz cosσz 0
0 0 1


≈

1 0 0
0 1 �σx
0 −�σx 1



1 0 −�σy
0 1 0�σy 0 1


 1 �σz 0
−�σz 1 0
0 0 1


≈

1 0 0
0 1 �σx
0 −�σx 1



1 �σz −�σy
−�σz 1 0�σy 0 1

 ≈

1 �σz −�σy
−�σz 1 �σx�σy −�σx 1


The scaling then is a multiplication by a scalar, while the translation

adds the corresponding vector:x
′

y′

z′

 =

∆x∆y
∆z

+ (1+ s)


1 �σz −�σy
−�σz 1 �σx�σy −�σx 1


xy
z


It can be seen that for the determination of the seven unknowns, we have

three equations for each control point, but even for three control points
the system of equations becomes overdetermined, so the calculation of
the parameters is only possible by estimation, e.g. by the method of least
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squares. After substituting a = (1 + s)�σx, b = (1 + s)�σy , c = (1 + s)�σz, and
d = 1+ s and avoiding the very lengthy derivation:

m 0 0 0
∑
−zk

∑
yk

∑
xk

0 m 0
∑
zk 0

∑
−xk

∑
yk

0 0 m
∑
−yk

∑
xk 0

∑
zk

0
∑
zk

∑
−yk

∑
y2k+z2k

∑
−xkyk

∑
−xkzk 0∑

−zk 0
∑
xk

∑
−xkyk

∑
x2k+z2k

∑
−ykzk 0∑

yk
∑
−xk 0

∑
−xkzk

∑
−ykzk

∑
x2k+y2k 0∑

xk
∑
yk

∑
zk 0 0 0

∑
x2k+y2k+z2k





∆x
∆y
∆z
a
b
c
d


=



∑
x′k∑
y′k∑
z′k∑

y′kzk−z
′
kyk∑

z′kxk−x
′
kzk∑

x′kyk−y
′
kxk∑

x′kxk+y′kyk+z′kzk


Tab. XVIII.1 shows the parameter set of transformations in Hungary from

some datums to the WGS84 one. Be careful, because in this lecture notes
the coordinate frame has been rotated, but some GIS software rotate the
position vector of the point instead. In such a case, the signs of the rotations
must be reversed! The inverse transformation can be approximated well by
inverting the sign of each parameter.

Table XVIII.1: Datum parameters for Hungary

Datum ∆x (m) ∆y (m) ∆z (m) σx (′′) σy (′′) σz (′′) s (ppm)

HD72 52·684 −71·194 −13·975 0·3120 0·1063 0·3729 1·0191
S42/83 −5·38 −91·75 −86·23 −0·988 −0·700 0·652 2·273
S42/58 17·20 −84·03 −60·97 −1·085 −0·682 0·473 −3·185
RDN1940 566·54 108·25 487·93 −2·2867 −2·6409 1·5194 −0·7365
HD1863 595·75 121·09 515·50 −8·2260 1·5193 5·0121 −2·6729
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Non-conical map projections
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Lesson nineteen

Theory of non-conical projections

XIX.1 The shape of the graticule

Recall from Sec. VI.6 that conical projections satisfy all the following prop-
erties:

• The mapped meridians are parallel or concurrent straight lines.
• Parallels are mapped to concentric circles, arcs of circles or parallel
straight lines.

• Mapped graticule lines are perpendicular everywhere.
• Meridians divide the mapped parallels evenly.
If at least one of the conditions in the list above is not met, a non-conical

projection is obtained. These projections are divided into subgroups accord-
ing to the mapped image of the graticule. In contrast to conical projections,
in non-conical projections, we do not always require the concentricity of
the mapped parallels. They must only satisfy our general expectation that
map projections are bijective mappings. It only follows that the mapped
parallels must not intersect. For this reason, if our projection still has
concentric parallels, we consider them special, and use the prefix pseudo-
for their families. Mappings with non-concentric circular parallels will be
denoted by the prefix poly- (Fig. XIX.1):

• If the mapped parallels are complete concentric circles, our projection
is pseudoazimuthal. A polyazimuthal mapping is similar but its parallels
are not concentric.

• Among pseudoconic projections, the parallels are mapped into concent-
ric arcs of circles. Projections with non-concentric parallels are called
polyconic, but some of them may also be grouped as pseudopolyconic
(the distinction between these two groups is discussed in Sec. XXVI.1).

• If the mapped parallels are parallel straight lines, then we speak of a
pseudocylindrical mapping.

• Projections that do not belong to any of the above groups are called
miscellaneous projections.
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XIX. Theory of non-conical projections

Parallels Concentric Non-concentric

Circles

Pseudoazimuthal Polyazimuthal

Arcs

Pseudoconic (Pseudo)polyconic

Straight —

Pseudocylindrical

Other

Miscellaneous

Figure XIX.1: Classification of non-conical projections according to the shape of the
graticule

Since the perpendicularity of the mapped graticule is not required among
non-conical projections, mappings with perpendicular graticule are identi-
fied as rectangular. This corresponds to the statement cotϑ = 0 and can be
easily checked using the projection formulae (Sec. VII.2). As an example,
the polyazimuthal projection shown in Fig. XIX.1 is also rectangular. Not
all families of non-conical projections include rectangular mappings.

It is very important to note, in order to avoid ambiguities, that our
classification is strictly for projections in the normal aspect. Let us look at
Fig. XIX.2. Although projections (a) and (c) seem to be non-conical maps,
they are in fact rotated aspects of conical projections (b) and (d).

XIX.2 Seven aspects of a non-conical projection

This brings us to the question of the graticule rotation. Fig. XIX.3 shows
the Mollweide projection using different rotations. The longitude of the
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XIX. Theory of non-conical projections

(a) Is this a pseudocylindrical map? (b) Rather transverse orthographic!

(c) Is this a polyazimuthal map? (d) Rather oblique stereographic!

Figure XIX.2: Conical or non-conical?

metapole λ0 is uniform because it does not affect the image of the graticule.
For conical projections, it is always assumed that the prime metameridian
passes through one of the poles. We could use this simplification because
conical projections are rotationally symmetric, changing the prime meta-
meridian only rotates or shifts the image of the grid. In contrast, non-
conical projections behave quite differently with respect to the rotation of
the graticule. Canadian geodesist Wray published these findings in 1974.*

No special phenomenon is observed in the normal aspect of the projection.
Although the prime metameridian has been changed, the mapped graticule
has not. We would expect to see the same when the metapole is rotated
to the Equator. But the graticule is significantly altered by the different
placement of the prime metameridian. Therefore, in the case ϕ0 = 0°, we

* The areas of more favourable distortion can be rotated to arbitrary areas in this
way, just like with conical projections. Yet in practice, we almost never encounter such
a projection. One reason for this is that non-conical projections give a rather unusual
image when rotated. Unfortunately, another important aspect is that the literature today
still often misinterprets the aspects of projections. Instead of rotating the graticule,
they are typically defined by the placement of a cone or cylinder compared to a sphere,
although this definition is already unintelligible in the context of non-perspective conical
projections. How do we rotate the cylinder in Mercator projection if no cylinder is
used in the derivation? This is precisely why, with this concept, the rotation of non-
conical projections cannot be explained intuitively. Here is another reason why we defined
cylindrical projections not by projecting onto a cylinder, but by the shape of mapped
parallels.
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Figure XIX.3: The Mollweide projection in different aspects
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XIX. Theory of non-conical projections

distinguish between three aspects. In the first transverse one, the one of the
poles is located on the vertical axis of symmetry; in the second transverse
one, the two poles are equally far away from the axis of symmetry. In the
oblique transverse aspect, the projection has no vertical axis of symmetry.

We can describe this formally by subtracting a prime metalongitude
λ′p from the metalongitude λ′ in the projection, and thus our prime meta-
meridian encloses this spherical angle λ′p with the metameridian through
the geographic pole (Fig. XIX.4).* In the first case λ′p = 0°, in the second
case λ′p = ±90°, while in the general case it is any other value.

Equator

90
°−
ϕ 90°−

ϕ
0

Prime metameridian

M
et

ae
qu

at
or

λ′p
λ′

90°−ϕ
′

λ0 −λ

North Pole

P

Metapole

Figure XIX.4: Prime metameridian in plagal aspect

We see similar results when the metapole is placed neither on the Equator
nor at the pole, but somewhere else. In this case, if one of the poles is on
the vertical axis of symmetry, then our aspect is simple oblique (λ′p = 0°),
if λ′p = ±90°, then it is skew (some projections have central symmetry in
this aspect). If neither of these special cases is fulfilled, then we speak of a
plagal aspect based on the Greek word plagios, which means oblique.

Returning to Fig. XIX.2, we find an interesting problem. For example,
if we forget that projection (a) is a transverse orthographic one, we might
easily think that we are dealing with a normal aspect pseudocylindrical
projection. Considering the mapping (a) as a map projection in its own
right, its first transverse aspect would just reproduce the graticule (b). Now
then, can (a) be considered as a normal and (b) as a first transverse aspect

* What we are really saying here is that any arbitrary spatial rotation of any object can
be described by three angles. Here, the spatial rotation of the graticule is given by the
coordinates ϕ0 and λ0 of the metapole and the prime metameridian λ′p
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XIX. Theory of non-conical projections

of a pseudocylindrical map? Not at all, since they are rather the aspects of
an azimuthal map. Wray gave two rules of thumb for such cases:

• The normal aspect of a projection is always the one, in which the
projection formulae can be reduced to a simpler form. The mapping (b)
can be defined by the equation ϱ = Rsinδ, while mapping (a) requires
longer expressions.

• Among the possible aspects of a projection, the one, in which the
mapped graticule has the largest degree of symmetry, is always con-
sidered normal. The graticule (a) is symmetric only about the vertical
and horizontal axes, while projection (b) has complete rotational sym-
metry.

Of course, these rules of thumb do not always give clear results. For
example, none of the normal, first and second transverse aspects of the
Littrow projection (Sec. XXVII.1) have simpler formulae and none of them
exhibit greater symmetry. In such a case, we are forced to consider the first
described form of the projection as the normal aspect.

XIX.3 Map distortions

The distortions of non-conical projections are essentially determined by
whether their graticule is rectangular. Since all conformal projections are
also rectangular, conformal mappings are found only among rectangular
projections. Thus, the equations cotϑ = 0 and h = k must be satisfied sim-
ultaneously to speak of conformal projections. For this reason, for a long
time only a few conformal maps were found among non-conical projec-
tions. However, among miscellaneous projections, a clever modification
of the conformality condition leads to a variety of conformal mappings
(see Sec. XXIX.1). Nevertheless, it is safe to say that conformal non-conical
projections are almost never encountered in practice.

In the case of rectangular projections, sinϑ = 1, so the formula for areal
scale is still p = hk.* However, in other non-conical projections, the graticule
lines are not principal directions of the mapping, so the maximal and
minimal linear scales a and b do not correspond to the linear scale along
the graticule lines. In this case, we have to use the formula p = ab = hk sinϑ.
This is not much more complicated than the one of conical projections, so
it is not difficult to find equal-area projections.

The linear scales of non-conical projections can be computed using the
general formulae of Tissot’s distortion theory. Among aphylactic conical
projections, the mappings equidistant in meridians showed a balance in

* Map projections that are rectangular and equal-area at the same time are called Euler

projections.
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XIX. Theory of non-conical projections

their angular and areal distortions, while among non-conical projections
we find that we can balance the two types of distortion well in mappings
with an equidistant central meridian.

XIX.4 Application of non-conical projections

The oldest known non-conical mapping is the Ptolemy II projection, which
is a pseudoconic projection. He created it to achieve lower distortion than
in his conic one. Since then, many such mappings have been created. Many
of them are more favourable than the conic projections, but only if they are
used wisely.

For areas of extent less than 3500 km, it is easy to find conical projec-
tions, in which distortions are not detectable with the naked eye. In such
cases, there is no point in bothering with the more complex non-conical
projections unless our goal is engineering precision. Since in small-scale
maps of large areas, the ∼ 20 km difference between the sphere and the
ellipsoid of revolution is typically below the cartographic accuracy of the
map, the projections will be derived for a sphere as the reference frame.
Only on old topographic maps should you expect to find a projection with
a reference frame as an ellipsoid.

Note here that in the case where there is no ellipsoidal version of a
mapping, the vast majority of GIS software simply drop the ellipsoidal
coordinates into the spherical formulae; exactly as we have seen with the
Pseudo Mercator. QGIS very often inaccurately handles map projections
also in this respect.

If we had done so now, specific distortions (e.g. conformality or equival-
ency) would have been lost, with noticeable errors at larger scales. On a
world map, of course, this is not a problem. ArcGIS can be made to apply
the correct auxiliary sphere (e.g. the authalic sphere for an equal-area map-
ping) to some projections in hidden, barely understandable menu items,
and this is a fair solution. Using an auxiliary sphere, you can apply a non-
conical projection at a larger scale, although the practical usefulness of this
is questionable, since non-conical projections are rather applied at very
small scales.

The distortions of conical projections are usually unacceptable for areas
larger than a hemisphere. In such cases (unless the theme requires, for
example, the elimination of meridian convergence, or you insist on a rect-
angular map frame), choose a non-conical projection! For a hemisphere
(because of its circular shape), azimuthal projections are the best, and
for continents and oceans, both conical and non-conical projections are
suitable. For smaller areas, experience has shown that many non-conical
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mappings, although much better than traditional conical mappings, do
not provide breakthrough improvements. Take care, as the correct choice
of projections requires a great deal of expertise. It is not difficult to fall
into the mistake of choosing a mapping with a less favourable distortion
pattern than the conical projection recommended for that area.

When choosing a map projection, consider not only the theme of the
map but also the target audience, and this is especially true for non-conical
projections! A reader with better abstraction skills will have no difficulty in
reading a more complex graticule, but printing a plagal aspect non-conical
projection in a school atlas would be a bad prank. For a map intended
for younger readers, or even for purely aesthetic reasons, consider using
rectangular projections, which resemble the spherical graticule with its
right angles. Note that the main advantage of rectangular projections is
lost when the aspect is rotated!

Experience has shown that the interpretation of the pole-line is straight-
forward only for skilled readers. Avoid the use of flat-polar maps on
educational world maps, but even for press maps, think before choosing a
flat-polar projection for your world map! Flat-polar projections with more
favourable distortions are acceptable for geographic atlases or thematic
maps, and also feel free to use them on maps where the pole-line is outside
the map frame.

Never use a flat-polar projection in a rotated aspect if the pole-line
appears within the map frame. And if the pole-line is curved, absolutely
do not! The reader can easily understand the reason for this based on
Fig. XIX.5:

Figure XIX.5: It has favourable distortions at most areas, yet not the best choice

170



Lesson twenty

Earlier pseudocylindrical maps

XX.1 Distortions of pseudocylindricals

The projections, in which the images of the parallels are parallel straight
lines, are called pseudocylindrical projections. In addition, we often expect
the projection to be symmetric about the Equator. This already shows
that this family of projections is used to represent large areas (e.g. the
entire surface of the Earth, the Pacific Ocean) symmetric about the Equator.
Pseudocylindrical projections map the spherical zones of the Earth onto
horizontal bands, making them well suited for representing thematics
depending on latitude (e.g. climate, vegetation cover). Pseudocylindrical
mappings are further divided into the families of pseudocylindricals with
sinusoidal, elliptical, circular, straight and other meridians, based on their
characteristic shape of mapped meridians.

The vertical coordinate does not depend on the longitude and is of the
form y(ϕ), or in other words �y/�λ = 0. Due to symmetry, y is an odd,
strictly increasing function. The horizontal coordinate depends on both
parameters, is in the form of x(ϕ,λ), it is an even function of ϕ and an odd,
strictly increasing function of λ.

Compared to the general formulae, k and cotϑ can be simplified by
substituting �y/�λ = 0.

k =

√(
�x
�λ

)2
+
(
�y
�λ

)2
Rcosϕ

=
1

Rcosϕ
�x

�λ

cotϑ =
�x
�ϕ

�x
�λ + �y

�ϕ
�y
�λ

�y
�ϕ

�x
�λ −

�x
�ϕ

�y
�λ

=
�x

�ϕ

/
dy
dϕ

In rectangular projections, cotϑ = 0, i.e. �x/�ϕ = 0. However, this would
imply that the mapped meridians are vertical lines, so we would get into
the family of cylindrical projections. Finally, we can state that there is no
rectangular pseudocylindrical, and hence conformal ones do not exist either.
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Let us recall the following formula from Sec. VII.3 and substitute �y/�λ =
0 into it!

p =

�y
�ϕ

�x
�λ −

�x
�ϕ

�y
�λ

R2 cosϕ
=

1
R2 cosϕ

dy
dϕ

�x

�λ

We know that p = hk sinϑ. Let us substitute the previously obtained
formulae for k and p into this to express the yet unknown h:

1
R2 cosϕ

dy
dϕ

�x

�λ
= h

1
Rcosϕ

�x

�λ
sinϑ

h =
dy
dϕ

1
Rsinϑ

Is there an equal-area pseudocyindrical mapping? Let us examine the
equation p = 1!

1
R2 cosϕ

dy
dϕ

�x

�λ
= 1

�x

�λ
= R2

cosϕ
dy
dϕ

Since on the right-hand side of the equation there are only functions of
ϕ, it is clear that the derivative in the left-hand side is also independent
of λ. If the derivative of x is constant with respect to λ, then x is a linear
function of λ. To make practical use of it, we may say that there exist equal-
area pseudocylindrical projections, but the parallels of such mappings are always
evenly divided by the mapped meridians (the parallels have constant scale).

XX.2 Globular projections

With the great geographical discoveries, the world opened up and soon
the first world atlases were published. The demand for world maps was
immediate. At that time, contrary to recent negative trends, mapmakers
knew that the Mercator projection was only suitable for navigational maps,
so they sought other projections. The first non-conical projections showed
the Earth divided into two hemispheres side-by-side in two maps. The
hemisphere is circular when viewed from afar, so it is obvious to represent
the map in a circular frame. Non-conical projections that represent the
hemisphere in a circular contour are called globular projections.

The origin of the first globular projections is a matter of debate, but
some sources claim that Arabic scholars had globular projections before
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Europeans as early as around 1000 AD. At the dawn of the modern age,
atlas makers tried to lower distortions with newer and newer graticule
networks, of which there are countless variants. The parallels of some
globular projections are mapped to arcs of circles, so in the modern classi-
fication they are more properly classified as pseudopolyconic projections
(see Sec. XXVII.2). The globular projections have by now been superseded
by transverse azimuthal projections of more favourable distortions pattens
for hemisphere maps.

The two most common globular projections are named after Apian. In
addition to the circular frame, they both have horizontal straight lines for
parallels and equidistant Equator and central meridian. The first projection
is probably the work of Vespucci, who identified America as a continent in
the early 16th century. It uses circular meridians. The exact origin of the
second projection is disputed, but it is likely not the development of Apian.
It maps meridians to semi-ellipses.

The mapped meridians are therefore arcs of circles in the Apian I projec-
tion. Their centres are located on axis x due to symmetry. The equation of
a circle centred at (d,0) (Fig. XX.1) is:

(x − d)2 + y2 = ϱ2

Since the Equator is equidistant, we must have x = R�λ on the horizontal
axis (i.e., substituting y = 0): (

R�λ− d)2 = ϱ2

d = R�λ− ϱ
Because of the equidistant central meridian, the mapped image of the

North Pole is at distance Rπ/2 from the mapped Equator. All arcs pass
through the point of the Pole, so the equations of the circles must hold true
for the substitution x = 0 and y = Rπ/2:

(−d)2 +
(
R
π

2

)2
= ϱ2(

ϱ −R�λ)2 +
(
R
π

2

)2
− ϱ2 = 0

R2�λ2 − 2R�λϱ+R2
(
π

2

)2
= 0

ϱ = R
�λ2 +

(
π
2

)2
2�λ
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From the equidistant central meridian:

y = R�ϕ
Substituting this and the equation d = R�λ− ϱ back into the equation of

the circle: (
x −R�λ+ ϱ

)2
+ (R�ϕ)2 = ϱ2

x −R�λ+ ϱ = ±
√
ϱ2 −R2�ϕ2

x = R�λ− ϱ ±√ϱ2 −R2�ϕ2
The symmetry of the projection is guaranteed if the sign ± is positive

in the Eastern Hemisphere and negative in the Western Hemisphere. By
calculating h, it can be concluded that the scale along parallels is not
constant (Fig. XX.3), so the projection is certainly not equal-area.

x

y

R�λ
R�ϕ

Rπ/2ϱ
−d

(a) Projection I

x

y

Rπ
/2

R�λ
R�ϕ

Rπ/2

χ

(b) Projection II

Figure XX.1: The construction of the Apian projections

The meridians of the Apian II projection are mapped to semi-ellipses,
their semi-axes fall on the axes x and y. The vertical semi-axis of the ellipses
is Rπ/2 due to the equidistant central meridian, and their horizontal semi-
axis is R�λ due to the equidistant Equator. Thus, the equation of the ellipses
is:

x2(
R�λ)2 +

y2(
Rπ
2

)2 = 1

The central meridian is equidistant:

y = R�ϕ
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XX. Earlier pseudocylindrical maps

Substituting this back:

x2

R2�λ2 = 1−
R2�ϕ2
R2

(
π
2

)2
x = R�λ√1− (2�ϕ

π

)2

Let us examine the distortions of the projection.

k =
1

Rcosϕ
�x

�λ
=
1

cosϕ

√
1−

(
2�ϕ
π

)2

The parallels have therefore constant scale. Is the projection equal-area?

h =
dy
dϕ

1
Rsinϑ

=
1

sinϑ

cotϑ =
�x

�ϕ

/
dy
dϕ

=
−4�λ�ϕ

π2
√
1−

(2�ϕ
π

)2
p = hk sinϑ , 1, so the projection is aphylactic. As can be seen in

Fig. XX.2, the projection is pointed-polar, but its pole does not have that
cusped shape common to conical projections, but meridians have a more
aesthetically pleasing smooth shape.

Globular projections are no longer used in modern cartography, but there
are many derivatives of the Apian II projection, which are still popular
today. These all have elliptic meridians, and we will get to know them
during the module. For easier calculation of these derivative projections,
we use a parameter χ instead of the latitude ϕ, which is defined by the
equation sinχ = 2�ϕ/π as shown in Fig. XX.1. The projection formulae then
take the following simpler form:

x = R�λ√1− sin2χ = R�λcosχ

y = R
π

2
sinχ
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XX. Earlier pseudocylindrical maps

Figure XX.2: Apian II projection (globular projection is in red)

XX.3 Extended globular projections

Of course, there was also a demand for a continuous representation of
the entire surface of the globe in early world atlases. Although the Apian

II projection is designed to represent only the hemisphere, the formulae
of the projection can be extended to the entire surface of the sphere in
unchanged form. Thus we obtain a projection representing the Earth in
an elliptical frame, with the hemisphere in the middle being the original
globular projection (Fig. XX.2).

The formulae of the Apian I projection could also be applied to the full
globe, but the resulting projection would be unreasonably distorted. The
16th century Italian cartographer Agnese therefore extended the projection
to longitudes |λ| > 90° with circles of radius Rπ/2 , which is the same size
as the original circular frame. The Equator is still equidistant. The formulae
of the projection are the same as for the Apian I projection, except that for
|λ| > 90°, ϱ = ±Rπ/2 is substituted.

This projection can be identified if we observe that, although it is flat-
polar, the hemisphere in the centre of the map (which is in fact in the
Apian I projection) is still pointed-polar (Fig. XX.3). This projection was
erroneously attributed to Ortelius, who applied it in his world atlas.

XX.4 Sinusoidal projection

Create a pseudocylindrical projection that is equidistant in central meridian
and in all parallels. From the equidistant central meridian, it follows that:

y = R�ϕ
On the other hand, k = 1:

1
Rcosϕ

�x

�λ
= 1
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XX. Earlier pseudocylindrical maps

Figure XX.3: Ortelius projection (Apian I projection is in red)

U
dx = R

U
cosϕdλ

x = R�λcosϕ + f (ϕ)

The symmetry about the central meridian can only be satisfied if the
constant of integration f (ϕ) is 0, so we can safely omit it. How do the
distortions evolve?

h =
dy
dϕ

1
Rsinϑ

=
1

sinϑ

cotϑ =
�x

�ϕ

/
dy
dϕ

= −�λsinϕ

Our mapping is equal-area, because hk sinϑ = 1. The distortions are
favourable at the Equator and at the central meridian (h = k = 1 and cotϑ =
0). Farther away from them, cotϑ starts to increase very rapidly, causing
catastrophic angular distortions (Fig. XX.4). The lesson is that if we try
to completely eliminate too many distortions at once, one of the ignored
distortion features will always increase significantly.

This mapping was devised by the French cartographer Cossin at the end
of the 16th century, but it is sometimes called as Mercator–Sanson or
Sanson–Flamsteed projection.* Since its meridians are affine images of a
sine wave, its most frequently used name is the sinusoidal projection.

Because of its locally favourable distortions, it is rarely used to represent
continents at low latitudes in an equal-area form. Its isocols are remin-
iscent of hyperbolae, so it would be good for cross-shaped areas, but in

*
Mercator, by the way, has nothing to do with this projection; it is attributed to him

because Hondius depicted the Earth in this projection in the world atlas he bought from
Mercator and continued to sell as the Mercator Atlas.
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XX. Earlier pseudocylindrical maps

Figure XX.4: Sinusoidal projection

practice few such areas occur. Its practical significance is that it will be the
base of modern sinusoidal projections, which will have a similar shape of
meridians.

Since this projection has also been used for regional maps, an ellipsoidal
variant also exists. It is defined under the same conditions as the spherical
one. From the equidistant central meridian:

y =

ΦU
0

M(Φ)dΦ

From the equidistant parallels:

x =N (Φ)�ΛcosΦ

The ellipsoidal variant also turns out to be equal-area.
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Lesson twenty-one

Aphylactic pseudocylindrical

projections

XXI.1 Loximuthal projection

Sometimes the map’s theme requires interesting distortion patterns. In
1935, the German cartographer Siemon found a solution to the problem of
showing the length and direction of shipping routes from a particular port.
If the ships had travelled along orthodromes, the azimuthal equidistant
projection would have been correct in oblique aspect. Siemon was looking
for a projection with similar properties, but for loxodromes. Azimuthal
projections are called so because the orthodromes (metameridians) starting
from the metapole enclose their true angles on the map. Since this projec-
tion is azimuthal with respect to the loxodromes starting from the origin,
the American cartographer Tobler called it the loximutal projection.

The port must be located on the meridian λs = 0°. This is not a constraint,
because the central meridian of a mapping can always be changed arbitrar-
ily. The latitude of the starting point is ϕs. The azimuth α and the length s
of rhumb lines are taken from Sec. III.3:

tanα =
�λ− �λs

lntan
(
45° + ϕ

2

)
− lntan

(
45° + ϕs

2

)
s = R

�ϕ − �ϕs
cosα

This gives the projection formulae in polar coordinates. Converted to
Cartesian coordinates:

y = scosα = R
�ϕ − �ϕs
cosα

cosα = R(�ϕ − �ϕs)
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XXI. Aphylactic pseudocylindrical projections

From this, it can be seen that the resulting projection belongs to the
family of pseudocylindrical mappings. The other coordinate:

x = s sinα = R
�ϕ − �ϕs
cosα

sinα = R(�ϕ − �ϕs) tanα

= R
�λ(�ϕ − �ϕs)

lntan
(
45° + ϕ

2

)
− lntan

(
45° + ϕs

2

)
This formula leads to a division by zero if ϕ = ϕs. In this case, however,

the loxodrome connecting the two points is a parallel of azimuth 90° and
length x = R�λcosϕs. The projection leads to a division by infinity at the
two poles, so x→ 0, i.e. the projection is pointed-polar even though it does
not appear to be.

The horizontal coordinate is a linear function of λ, so the parallels of the
projection have constant scale. The central meridian and the latitude ϕs
are loxodromes passing through the origin, so they are also equidistant. If
ϕs , 0, the projection image is asymmetric about the Equator (Fig. XXI.1).
This projection is aphylactic because hk sinϑ , 1.

Figure XXI.1: Loximuthal projection for Lisbon

XXI.2 Blended projections

We have learned through our explorations in the field of map projections
that every mapping has its weak points. The sinusoidal projection, for
example, gives a very good representation of the equatorial region, but
higher latitudes suffer from very severe angular distortion. This area is
stretched in the north-south direction. On the other hand, the Plate Carrée
projection is also favourable around the Equator, and at high latitudes it
dilates the map content in the east-west direction. If we could somehow
combine the advantages of these two projections, we would expect that at

180



XXI. Aphylactic pseudocylindrical projections

high latitudes the distortions of the two projections would nicely cancel
each other out.

A blended projection of mappings A and B is a mapping developed by the
average of the two projections and a rescaling c:

x = c
xA + xB
2

y = c
yA + yB
2

Blended projections may retain many properties of the original projec-
tions. The mapped graticule resembles both initial projections. If the two
projections had a common equidistant line, it will have a constant scale in
the new projection (equidistant if c = 1). The blended projection, however,
does not preserve the conformal or equal-area property of the initial pro-
jections, so blended projections will be aphylactic by themselves. An equal-
area blended projection may be produced using the method described in
Sec. XXII.1. The idea of the blended projections is attributed to Eckert,
who produced six projections by this method in 1906.

Let us blend the sinusoidal and the Plate Carrée projection.

x = c
R�λcosϕ +R�λ

2
= cR

�λ
2

(1+ cosϕ)

y = c
R�ϕ +R�ϕ
2

= cR�ϕ
By substituting λ = ±180° into the formula for x, we see that the length

of the pole-line (cRπ) is half the length of the Equator (2cRπ). Substituting
ϕ = ±90° into the equation for y shows that the length of the central
meridian (cRπ) is also half the length of the Equator.

Choose the constant c such that the total area of the projection equals
the surface of the sphere. Such mappings are not equal-area, but they
are expected to reduce areal distortions. The area of the map may be
decomposed into a square of side cRπ and two sinusoids of base cRπ and
height cRπ/2. The area of a sinusoid of height H and base B:

BU
0

H sin
πx
B

dx = −HB
π

cos
πB
B

+
HB
π

cos
0π
B

=
2HB
π

So the area of the square is c2R2π2, the area of the sinusoids is c2R2π.
Since the sum of the three areas is equal to the surface area 4R2π of the
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XXI. Aphylactic pseudocylindrical projections

sphere:

c2R2π2 + 2c2R2π = 4R2π

c =
2

√
π+ 2

(a) Eckert V projection

(b) Winkel I projection

Figure XXI.2: Blended projections with sinusoidal meridians

The distortions are:

h =
dy
dϕ

1
Rsinϑ

=
c

sinϑ

k =
1

Rcosϕ
�x

�λ
=
c
2
1+ cosϕ

cosϕ

cotϑ =
�x

�ϕ

/
dy
dϕ

= −
�λ
2

sinϕ

This mapping is called the Eckert V projection, it is aphylactic
(Fig. XXI.2). In German speaking lands, it is sometimes used as a projection
on world maps.
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XXI. Aphylactic pseudocylindrical projections

The equal total area of the blended projection and the surface of the
sphere can be ensured not only by rescaling. If both original mappings
have correct total area, their blended map will also have this total area, so
we do not have to lose the equidistancy of the central meridian because of
the rescaling. This is the basic idea behind the Winkel I projection. The
sinusoidal projection is equal-area, so its total area is guaranteed to be cor-
rect. Instead of a Plate Carrée projection, let us choose an equirectangular
mapping that has correct total area.

The frame of the equirectangular projection is a rectangle of height Rπ
and width 2Rπcosϕs. Its total area is equal to the surface of the sphere if:

2R2π2 cosϕs = 4R2π

cosϕs =
2
π

ϕs ≈ ±50°27′35′′

Thus, the projection formulae are obtained as the average of the sinusoidal
and the equirectangular (with standard parallels ±ϕs. The length of the
pole-line is ca. one third (exactly 1/π times) the length of the Equator.

The Eckert III projection is obtained by blending the Apian II and the
Plate Carrée projection, then rescaled in the usual way to make its total
area correct:

x = c
R�λcosχ+R�λ

2
= cR

�λ
2

(1+ cosχ)

y = c
R�ϕ +R�ϕ
2

= cR�ϕ = cR
π

2
sinχ

The length of both the central meridian and the pole-line (cRπ) is half
the length of the Equator. The mapped bounding meridians are semicircles
(Fig. XXI.3). The area of the map can thus be divided into a square of side
cRπ and two semicircles of radius cRπ/2. Their summed area is 4R2π for
the purpose of correct total area:

c2R2π2 +
c2R2π2

4
π = 4R2π

c =

√
4

π+ π2

4

=
4√
4π+π2
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XXI. Aphylactic pseudocylindrical projections

(a) Eckert III projection

(b) Winkel II projection

Figure XXI.3: Blended projections with elliptical meridians

The distortions of the projection

h =
dy
dϕ

1
Rsinϑ

=
c

sinϑ

k =
1

Rcosϕ
�x

�λ
=
c
2
1+ cosχ

cosϕ

cotϑ =
�x

�ϕ

/
dy
dϕ

=
−c�λ2 sinχ dχ

dϕ

cπ2 cosχ dχ
dϕ

= −
�λ
π

tanχ

On world maps created in Europe, we may see this aphylactic projection.
Since in the Northern Hemisphere χ ≤ ϕ, the linear scales are slightly more
favourable compared to the Eckert V projection. however, at the pole, the
angular distortions increase unbounded, as can be seen from the limits
k→∞ and cotϑ→∞. Because of its pleasing shape, it is recommended if
high latitudes are less important for the map’s theme.
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XXI. Aphylactic pseudocylindrical projections

Again, the Winkel II projection blends the Apian II projection and the
previously calculated equirectangular mapping of correct total area, so its
pole-line is shorter. It is not known because of its complexity, although it
has more favourable angular distortions than the Eckert III projection.

XXI.3 Polyhedric projection

Divide the ellipsoid into 1° wide geographic quadrangles, then map each
geographic quadrangle into planar trapezia using a pseudocylindrical
mapping whose two bounding parallel circles and central meridian are
equidistant, and maps all meridians to straight lines. Similar pseudocyl-
indrical projections with straight meridians were popular at the dawn of
the modern era (for a broader view see App. J). The resulting sections have
different sizes in each spherical zone, so they cannot be mosaicked together
in the plane, but the sheets can be folded into a polyhedron resembling a
disco ball, hence this projection is called the polyhedric projection.

x

y
Φ2
Λ1 Λ2

Φ1

Λ0

Φ

Λ

q1

q

q2

y2

y

Figure XXI.4: Construction of the polyhedric projection

From the equidistant central meridian:

y =

ΦU
Φ1

M(Φ)dΦ

From the equidistant bounding parallels, the half bases of the trapezium:

q1,2 =N
(
Φ1,2

)
cosΦ1,2

�Λ2 −�Λ1
2
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XXI. Aphylactic pseudocylindrical projections

From the legs of the two similar right triangles, as shown in Fig. XXI.4:

y2
q1 − q2

=
y

q1 − q

q =
q2y + q1(y2 − y)

y2

Finally, the meridians divide the mapped parallel of length q proportion-
ally:

x = q
�Λ−�Λ0�Λ2−�Λ1
2

=
(�Λ−�Λ0)N (Φ2)cosΦ2

TΦ
Φ1
M(Φ)dΦ +N (Φ1)cosΦ1

TΦ2
Φ
M(Φ)dΦTΦ2

Φ1
M(Φ)dΦ

This projection, suggested by the Prussian military officer Lichtenstern,
was used in many European countries (e.g. Germany, Austro-Hungarian
Empire, Russia) for military topographic maps before World War I. In
Hungary, we find it on the maps of the third military survey. It is also
called the Müffling projection. The projection is aphylactic, but the areal
distortion is very small (the bounding parallels are locally equal-area).

This projection is not supported by modern GIS technology, so we need
to approximate the nature of the projection while georeferencing. The
ellipsoidal version of the sinusoidal projection is equidistant not only in
the two bounding parallels, but in all parallels. Its meridians are not
straight, but sinusoidal, however, their curvature can be neglected within
such a small area. Thus, this projection approximates the polyhedric
projection well with an error of 20m at most, so the inaccuracy is below
the cartographic accuracy of the sections.
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Lesson twenty-two

Auxiliary angles in equal-area

mappings

XXII.1 Eckert’s equal-area mappings

The projections discussed so far have all been aphylactic, with one excep-
tion. We would therefore need a method that somehow produces an equal-
area projection from our aphylactic mapping. This is the purpose of the
method of auxiliary angles, whose result is:

• The map frame and mapped meridians remain unchanged.
• From an aphylactic projection, an equal-area projection is obtained.
• Among the basic properties of the graticule, only the placement of the

parallels is changed and therefore, among other things, the pole-line
or the pole-point is preserved.

We already know from Sec. XX.1 that the parallels of equal-area pseudo-
cylindricals have constant scale. Therefore, the present method works only
for such pseudocylindrical projections, whose parallels have constant scale.
Another condition is that the total area of the initial mapping is correct,
otherwise it would not be possible to construct an equal-area mapping in
the given map frame. The latter is not a problem, since any the total area
of the projection can be made correct by a scaling.*

Since we do not want to change the mapped meridians, it follows that
we will only modify the latitudes with an odd, differentiable function ψ(ϕ).
We want to preserve the frame of the projection, hence ψ(90°) = 90°. We
also expect the function to be strictly increasing so that the map does not

* Nothing illustrates the generality of the method better than the fact that in the mid-
20th century, many people produced equal-area pseudocylindrical projections using it.
Due to the labour-intensive nature of the task, only the three most important ones are
listed here, but there are also equal-area mappings with parabolic meridians (Craster

projection), various pointed-polar and flat-polar projections with meridians as conic
sections (Putnin, š projections) and mappings with a remarkably short pole-line (McBryde–

Thomas projections). These are typically used in western cartography. The paradigm of
the era was that a good map was equal-area, and therefore aphylactic projections were
hardly ever produced during this period.
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XXII. Auxiliary angles in equal-area mappings

bend under itself. We then substitute the auxiliary angle ψ for ϕ in the
formulae of the original projection. This method can be considered as a
special case of the graticule renumbering transformation described in the
next lesson. The general formulae are somewhat complicated, so it is more
comprehensible to demonstrate the method on a certain map projection.
The Eckert V projection comes to mind, which has correct total area, its
parallels have constant scale, but is not equal-area. Let us substitute ψ for
ϕ in the original formulae.

x = cR
�λ
2

(1+ cosψ)

y = cR�ψ
c =

2
√
π+ 2

In Fig. XXII.1, we can see that the mapped spherical zone of latitude
ψ can be decomposed into a blue rectangle and two red areas under a
cosine wave. The area of the rectangle is not a problem, because its width
is cRπ and its height is y, i.e. cR�ψ, and the area is the product of these two
values. The area under the cosine wave is more exciting because we have
to integrate. In addition, the height of the cosine wave is not unity, but
cRπ/2, so we have to multiply the integral by that. Since in the vertical
direction, the cosine wave reaches zero not at π/2 but at cRπ/2, we multiply
the integral by cR to take this into account:

cR

ψU
0°

cRπ
2

cosψdψ =
c2R2π
2

sinψ − 0

The surface area of a spherical zone is 2R2π(sinϕ2 − sinϕ1), the formula
known from Sec. II.2 simplifies to 2R2π sinϕ between the Equator and
latitude ϕ. If the projection is equal-area, then the summed areas of the
blue rectangle and the two red areas under the cosine waves should give
just the same:

c2R2
(
π�ψ + 2

π

2
sinψ

)
= 2R2π sinϕ

4
π+ 2

(�ψ + sinψ
)

= 2sinϕ

Substituting c back, we can check that the equation is fulfilled for ψ =
ϕ = 90°, so the function satisfies our expectations. Since ψ cannot be

188



XXII. Auxiliary angles in equal-area mappings

expressed from the equation, it is an implicit function. It can be solved
by numerical methods. To compute the distortions, we form the implicit
derivative according to ϕ!

c2(1+ cosψ)
dψ
dϕ

= 2cosϕ

dψ
dϕ

=
2
c2

cosϕ
1+ cosψ

It can be seen that ψ is indeed strictly increasing as expected, because its
derivative is positive. Using the chain rule:

h =
dy
dψ

dψ
dϕ

1
Rsinϑ

= c
2
c2

cosϕ
1+ cosψ

1
sinϑ

k =
1

Rcosϕ
�x

�λ
=
c
2
1+ cosψ

cosϕ

cotϑ =
�x
�ψ

dψ
dϕ

dy
dψ

dψ
dϕ

=
�x

�ψ

/
dy
dψ

= −
�λ
2

sinψ

We can check that indeed hk sinϑ = 1, so the Eckert VI projection ob-
tained in this way is equal-area. The formula of k has become quite com-
plicated, so the equidistancy of the central meridian is lost. Moreover, at
the pole h = 0, i.e. in the direction of meridians, it compresses the map
content unacceptably. This is compensated for by k→∞ to maintain equi-
valency, so the angular distortions at high latitudes are not too favourable
(Fig. XXII.2). It is often found on European world maps, and is more
popular than aphylactic blended projections.

Let us make an equal-area mapping from the Eckert III projection. To
make the calculation easier, we start from the simpler formulae containing
χ, substituting the auxiliary angle ψ for χ:

x = cR
�λ
2

(1+ cosψ)

y = cR
π

2
sinψ

c =
4√
4π+π2

This time, in Fig. XXII.1, we decompose the mapped spherical zone into
three different shapes. The area of the green rectangle is easy to determine,
the height is now y = cRπ/2sinψ. The radii of the two blue circular sectors
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cRπ cRπ
2

cR�ψc2R2π�ψ
c2R2π
2 sinψ

(a) For the Eckert VI projection

cRπ cRπ
2

cRπ
2 cosψ

cRπ
2 sinψ

c2R2π2

2 sinψ c2R2π2

4
�ψ/2

c2R2π2

8 sinψ cosψ

ψ

(b) For the Eckert IV projection

cRπ

cRπcosψ

cRπ
2 sinψ

c2R2π2

4
�ψc2R2π2

4 sinψ cosψ

(c) For the Mollweide projection

Figure XXII.1: Calculation of the auxiliary angle

(a) Eckert VI projection

(b) Eckert IV projection

Figure XXII.2: Equal-area blended projections
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XXII. Auxiliary angles in equal-area mappings

are cRπ/2. Their heights are cRπ/2sinψ, so using the definition of sine,
we find that ψ is the subtended angle of the arc. The area of the circle (i.e.
the circular sector of angle 2π) is r2π, which gives us that the area of the
circular sector is proportionally r2�ψ/2. Only the two red right triangles
remain. We know the vertical leg and the hypotenuse (the latter is the
radius of the circular sector), so we can calculate the horizontal leg using
the Pythagorean theorem. To do this, we use that sin2ψ + cos2ψ = 1. The
area of a right triangle is half the product of the two legs. The projection
will be equal-area if the area of the mapped spherical zone, i.e. the green
rectangle, the two blue circular sectors and the two red right triangles, is
exactly the surface 2R2π sinϕ of the spherical zone:

c2R2
(
π2

2
sinψ + 2

π2

8
�ψ + 2

π2

8
sinψ cosψ

)
= 2R2π sinϕ

16
4π+π2

[
π

2
sinψ +

π

4
�ψ +

π

8
sin(2ψ)

]
= 2sinϕ

4sinψ + 2�ψ + sin(2ψ) = (4+π) sinϕ

Again, we have an implicit function, the equation is satisfied at the pole,
so far good. Check the monotonicity using the implicit derivative of the
first equation:

c2R2
[
π2

2
cosψ +

π2

4
(1+ cos2ψ − sin2ψ)

]
dψ
dϕ

= 2R2πcosϕ

c2π
2

(
cosψ +

2cos2ψ
2

)
dψ
dϕ

= 2cosϕ

dψ
dϕ

=
4
c2π

cosϕ
cos2ψ + cosψ

This is indeed a positive number. The distortions:

h =
dy
dψ

dψ
dϕ

1
Rsinϑ

= c
π

2
cosψ

4
c2π

cosϕ
cos2ψ + cosψ

1
sinϑ

=
2
c

cosϕ
1+ cosψ

1
sinϑ

k =
1

Rcosϕ
�x

�λ
=
c
2
1+ cosψ

cosϕ

cotϑ =
�x

�ψ

/
dy
dψ

=
−cR�λ

2 sinψ
cRπ
2 cosψ

= −
�λ
π

tanψ

Although the formulae only prove equivalency (hk sinϑ = 1) at a glance,
the Eckert IV projection is one of the most favourable equal-area pseudo-
cylindrical mapping commonly available in GIS (Fig. XXII.2), and is the
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most widely used among Eckert’s projections. For map themes requiring
equivalency, it is highly recommended for world maps. The mapped me-
ridians are semi-ellipses. The only drawback of the mapping is the pole-
line and the angular distortion that increases unbounded at high latitudes
(h = 0, k→∞, and cotϑ→∞). Eckert’s equal-area projections were also
published in 1906.

XXII.2 Mollweide projection

The Apian II projection cannot be converted directly into an equal-area
projection, because the method only works for projections of correct total
area. However, if the projection is slightly reduced by a constant c, its total
area can be made correct. The frame of the Apian II projection is an ellipse
of semi-major axis Rπ and semi-minor axis Rπ/2. After reduction, both
semi-axes are multiplied by c. The area of the ellipse is the product of the
two semi-axes and π, which is equal to the surface 4R2π of the sphere:

c2R2π3

2
= 4R2π

c =
2
√
2

π

By multiplying the formulae with this constant, the method of auxili-
ary angles can be performed. Again, we substitute ψ into the formulae
containing χ:

x = cR�λcosψ

y = cR
π

2
sinψ

This time, we are already familiar with finding the auxiliary angle.
Fig. XXII.1 shows that the mapped spherical zone can be decomposed
into two red right triangles and two blue shapes. The legs of the red right
triangle are given by the projection formulae x and y, the former with the
substitution λ = 180°. We notice immediately that the dimensions of the
blue and red figures differ from that of the Eckert IV projection only in
that everything is now doubled in the horizontal direction, so their areas
are therefore doubled. The sum of the areas is again 2R2π sinϕ:

c2R2
(
2
π2

4
�ψ + 2

π2

4
sinψ cosψ

)
= 2R2π sinϕ

8
π2

[
π

2
�ψ +

π

4
sin(2ψ)

]
= 2sinϕ

2�ψ + sin(2ψ) = π sinϕ
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XXII. Auxiliary angles in equal-area mappings

By substituting 90°, the equation is fulfilled. The derivative of the impli-
cit function is calculated from the first equation of the previous derivation:

c2R2
π2

2
(1+ cos2ψ − sin2ψ)

dψ
dϕ

= 2R2πcosϕ

c2π
2
2cos2ψ

dψ
dϕ

= 2cosϕ

dψ
dϕ

=
2
c2π

cosϕ
cos2ψ

The derivative is positive.

h =
dy
dψ

dψ
dϕ

1
Rsinϑ

= c
π

2
cosψ
sinϑ

2
c2π

cosϕ
cos2ψ

=
cosϕ
ccosψ

1
sinϑ

k =
1

Rcosϕ
�x

�λ
= c

cosψ
cosϕ

cotϑ =
�x

�ψ

/
dy
dψ

=
−cR�λsinψ
cRπ
2 cosψ

= −2
�λ
π

tanψ

From the formulae, it can be seen that the projection is equal-area. At
the Equator, k ≈ 0·9003, from there on, k increases, reaching the value
1 (equidistant along the parallel) at latitude ϕ ≈ ±40·7367°. Its angular
distortions are very large (Fig. XXII.3).

This mapping was created by the German Mollweide in 1805, but only
became widespread when the French Babinet began to popularize it as the
homolographic projection. It used to be popular, but is now less often used
because of its unfavourable distortions.* The projection is pointed-polar, its
meridians are smooth at the pole, which makes it particularly suitable for
graticule rotation.† The Atlantis projection published in 1948, in the atlases
of the Scottish cartographer Bartholomew, is in fact this mapping in an
oblique transverse aspect (ϕ0 = 0°, λ0 = 60°, λ′p = −135°).

* Rarely, this projection is transformed by stretching (with a factor d in the horizontal
direction and 1/d in the vertical direction to preserve areas), for example, to have a circular
outline (Tobler projection) or to have an equidistant Equator (Bromley projection).

† It is hard work for anyone who tries to do a graticule rotation in GIS software! In
general, ArcGIS does not know rotated non-conical projections, it mostly supports this
only among conical projections. In theory, QGIS can rotate any known projection if
+proj=ob_tran +o_proj=code is substituted for +proj=code in the projection definition.
However, it is no good doing this, because practically our lines turn jumbled in vector
layers, rasters are drawn with no-data stripes.
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(a) Normal aspect

(b) Atlantis projection (oblique transverse, for the Atlantic Ocean)

Figure XXII.3: Mollweide projection
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Lesson twenty-three

Renumbering the graticule

XXIII.1 The method ‘Umbeziffern’
Both the sinusoidal and Apian II projections have favourable distortions
near the centre of the map, while near the map frame they are rather
unfavourable. Wagner and Siemon came up with the idea in the 1930s:
they used only the favourable parts of the projections and represented
the whole Earth in it. Their method has no accepted term in English, it is
usually referred to as Umbeziffern (German word for renumbering).

The idea is to substitute the renumbered latitude ψ for ϕ and the re-
numbered latitude ζ for λ in the projection formulae. Since we want to
preserve the characteristics of the original graticule, it is important that
parallels remain parallels and meridians remain meridians. This can be
achieved by making ψ a function of ϕ only, and ζ a function of λ only. Of
course, the functions are strictly increasing and differentiable.

Consider the simplest renumbering:

ψ =mϕ
ζ = nλ

Ifm,n < 1, then the above transformation will result in using only a small
fraction of the original projection. Since this will also reduce the total area
of our map, we will restore the original scale by a factor of 1/

√
mn. Wagner

did not use the parameters n and m directly, but instead used the ratio
between the length of the central meridian and that of the Equator (p) and
the ratio between the length of the pole-line and that of the Equator (q).
These are derived from the bounding latitude �ψB = mπ/2 and longitude�ζB = nπ, since the Pole and the 180° meridian will be mapped to these
values. For two projections, we show how m and n can be obtained given p
and q:
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For the sinusoidal projection:

p =
y(ψB)
x(0,ζB)

=
R�ψB
R�ζB =

mπ
2

nπ
=
m
2n

q =
x(ψB,ζB)
x(0,ζB)

=
R�ζB cosψB

R�ζB = cos
(
m
π

2

)
m =

2
π

arccosq

n =
arccosq

πp

For the Apian II projection:

p =
y(ψB)
x(0,ζB)

=
R�ψB
R�ζB =

mπ
2

nπ
=
m
2n

q =
x(ψB,ζB)
x(0,ζB)

=
R�ζB√1− (2�ψBπ )2

R�ζB =
√
1−m2

m =
√
1− q2

n =

√
1− q2

2p

The Wagner III projection is a renumbered sinusoidal projection with the
choice p = q = 1/2 (i.e., m = n = 2/3), while the Wagner VI projection is a
renumbered Apian II projection by choosing p = q = 1/2 (i.e., m = n =

√
3/2).

These aphylactic mappings and Eckert’s projections are like peas in a pod,
but the formers retain the equidistant central meridian.* An important
difference is that the meridians of the renumbered graticules consist only
of the middle sections of the sinusoidal or elliptic arcs, and are therefore
less curved than in the blended projections (Fig. XXIII.1). These projections
are almost never encountered, but their principle helps to understand a
popular Russian projection.

* To distribute the distortions more favourably, the projection may be subjected to
a stretching of factor d in the direction of the Equator. This will still preserve the
equidistancy of the central meridian, but another latitude will be equidistant instead
of the Equator.
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XXIII. Renumbering the graticule

(a) Wagner III projection

(b) Wagner VI projection

Figure XXIII.1: Projections modified by the Umbeziffern

XXIII.2 Kavrayskiy VII projection

If you are looking for an aphylactic pseudocylindrical projection, and noth-
ing matters except the balance of distortions, choose the Kavrayskiy VII
projection: It is the least distorted of all the well-known pseudocylindrical
mappings. The projection is defined by four conditions:

• The mapped parallels are divided by meridians proportionally.
• Meridians are arcs of ellipses, but the mapped meridians ±120° are

arcs of circles.
• Its pole-line is half as long as the Equator.
• It is equidistant in the central meridian.
From the first two conditions, we can see that we have to cut the cor-

responding piece from the Apian II projection using the Umbeziffern. In
this projection, the meridians ±90° are mapped to arcs of circles. To trans-
form longitude ±120° here, we renumber meridians by n = 90°/120° = 3/4.
By the third condition, q = 1/2, i.e., by using the formulae of Wagner,
m =

√
1− q2 =

√
3/2. Because of the fourth condition, Wagner’s proposed
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scaling by 1/
√
mn will not be correct. Instead, we seek a scaling factor that

restores the vertical axis. Since the latitudes have been shrunk by a factor
of m, the length of the central meridian is restored by a scaling factor of
1/m = 2/

√
3. The formulae of the projection are therefore:

x =
R
m

�ζ
√
1−

(
2�ψ
π

)2
=
R
m
n�λ√1− (2m�ϕ

π

)2
= R

6
4
√
3
�λ√1− (2√3�ϕ

2π

)2
= R
√
3
2

�λ√1− (√3�ϕ
π

)2
y =

R
m

�ψ =
R
m
m�ϕ = R�ϕ

Calculate the distortions as well.

h =
dy
dϕ

1
Rsinϑ

=
1

sinϑ

k =
1

Rcosϕ
�x

�λ
=
√
3
2

√
1−

(√
3�ϕ
π

)2
cosϕ

cotϑ =
�x

�ϕ

/
dy
dϕ

=
√
3
2

�λ −3�ϕ
π2√

1−
(√
3�ϕ
π

)2
Aside from the inconvenience of k → ∞ in the pole-line, we have a

very favourable projection.* Its only flaw is that Kavrayskiy published it
in Russian in 1939, so it could not be widespread in most of the world
due to language barriers, and can be found mostly in atlases of Eastern
Europe and the former Soviet states. The original derivation did not use
the Umbeziffern, but was described independently. It is very suitable as a
world map (Fig. XXIII.2), if you want to represent geographical zones in
horizontal stripes (e.g. climate zones).

* Of the well-known pseudocylindrical projections, this projection is among the least
distorted ones. But how does the least possible distorted pseudocylindrical mapping look
like? We do not know much about this, only that Györffy realized that the best pseudo-
cylindrical is equidistant in the central meridian. Well, that is not much information,
considering that the unfavourable sinusoidal projection also has an equidistant central
meridian. . .
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XXIII. Renumbering the graticule

Figure XXIII.2: Kavrayskiy VII projection

XXIII.3 The Wagner transform

We already have a renumbering that preserves the equidistant central
meridian and uses only the favourable parts of the projection. There is also
one that creates an equal-area map but fills the entire map frame. Could we
develop such an Umbeziffern transformation that uses only the favourable,
central parts of an equal-area projection, and the result is still equal-area?
Since a pseudocylindrical mapping can only be equal-area if its parallels
have constant scale, we must preserve this. The new longitude is therefore
a linear function of the old one:

ζ = nλ

The projection can only remain equal-area if the mapped surface of any
spherical zone is in direct proportion to the old one after renumbering.
Reduce each spherical zone by a factor m. The new surface of the spherical
zone (2R2π sinψ) must be equal to m times the old surface (2R2π sinϕ):

2R2π sinψ =m2R2π sinϕ
ψ = arcsin(msinϕ)

This idea was developed by Siemon, and then Wagner used it to form
equal-area projections, hence the Umbeziffern that preserves equivalency is
also called the Wagner transform.* If m,n < 1, we will use again the middle

*
Wagner also created maps with small (p < 1·2) areal distortion up to latitudes of 60°.

This was achieved by using the Umbeziffern ψ = arcsin[m1 sin(m2ϕ)] and ζ = nλ. These
are the Wagner II and V projections. It can be seen that the more m2 deviates from 1, the
more the projection deviates from equivalency, so the areal distortions can be controlled.
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XXIII. Renumbering the graticule

part cut from the projection (Fig. XXIII.3). The projection is not equal-area
yet, because the areas have been reduced by a factor of nwhile renumbering
the longitudes, and by a factor of m while renumbering the latitudes. The
areas have thus been rescaled by a factor of mn, so we need to magnify
them back by the factor 1/mn. The areas are proportional to the square of
the scaling factor, so a scaling factor of 1/

√
mn restores the area.*

Renumbering

Rescaling

Figure XXIII.3: The substance of the Umbeziffern

Again, Wagner gave the ratio between the length of the central meridian
and that of the Equator (p) and the ratio between the length of the pole-
line and that of the Equator (q) as parameters. Let us see again for two
projections how they are obtained from the latitude �ψB = arcsinm and the
longitude �ζB = nπ!

For the sinusoidal projection:

p =
y(ψB)
x(0,ζB)

=
R�ψB
R�ζB =

arcsinm
nπ

q =
x(ψB,ζB)
x(0,ζB)

=
R�ζB cosψB

R�ζB = cosarcsinm =
√
1−m2

m =
√
1− q2

n =
arcsin

√
1− q2

πp

For the Mollweide projection, you have to do some tricks because it
already has a renumbered latitude. Therefore, ψB is expressed in terms of
q and then m is obtained from the implicit function:

q =
x(ψB,ζB)
x(0,ζB)

=
cR�ζB cosψB

cR�ζB = cosψB

p =
y(ψB)
x(0,ζB)

=
cRπ
2 sinψB
cR�ζB =

π
2

√
1− q2

nπ
=

√
1− q2

2n

* Naturally, the area is preserved if we then stretch the projection by a factor d in the
horizontal direction and a factor 1/d in the vertical direction, which is another way to fine-
tune the distortions.
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(a) Kavrayskiy VI projection (Wagner I projection)

(b) Wagner IV projection

Figure XXIII.4: Equal-area projections using the Umbeziffern

2�ψB + sin(2ψB) =mπ sin90°

m =
2arccosq+ sin(2arccosq)

π

n =

√
1− q2

2p

Because of its complexity, the Wagner transformed Mollweide projec-
tion is not used, although it gives a surprisingly pleasing picture despite
being equal-area. The choice p = q = 1/2 is the Wagner IV projection,
which has very favourable distortions as shown in Fig. XXIII.4; the other
choices were called Mollweide series by Wagner.

The Mercator series, i.e. the Wagner transformed sinusoidal (or Mer-

actor–Sanson) projection is more important from a practical point of view.
From the condition p = q = 1/2, we get m =

√
3/2, n = 2/3, and 1/

√
mn = 4

√
3,

i.e. the projection formulae:
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x =
R�ζ
√
mn

cosψ =
Rn�λ
√
mn

√
1− sin2ψ

=
Rn�λ
√
mn

√
1−m2 sin2ϕ = R

2 4
√
3
3

�λ√1− 3
4

sin2ϕ

y =
R�ψ
√
mn

=
Rarcsinsinψ
√
mn

=
Rarcsin(msinϕ)

√
mn

= R 4
√
3arcsin

(√
3
2

sinϕ
)

Kavrayskiy discovered this projection in 1936, while Wagner discovered
it in 1932, so it is called both the Kavrayskiy VI and the Wagner I projection.
It is very often found as equal-area world maps in the former Eastern Bloc
countries. The projection should not be confused with the Eckert VI
projection, whose meridians are complete sinusoids, not just two-thirds
from their middle. In the Kavrayskiy VI projection, the meridians are
therefore less curved. Following Urmayev’s suggestion, members of the
Mercator series also appear on Soviet ocean maps with a different choice
of m and n.

XXIII.4 Composite projections

Some projections show more favourable distortions around the Equator,
while others show more favourable distortions at higher latitudes. For
example, the sinusoidal projection maps the Equator distortion-free, but
is less applicable at high latitudes, where other projections are preferable.
Could not a projection be created that shows each area separately in its
corresponding projection and then the parts are stitched together? If a
projection has piecewise projection formulae for different parts of the Earth,
the mapping is called a composite projection.

The American cartographer Goode published his idea of the homolosine
projection in 1923: let us plot the low latitudes in the sinusoidal projection,
and the high latitudes in the Mollweide (homolographic) projection for
both hemispheres! Of course, the expectation is that the two projections
should fit on the bounding latitude. We know that the sinusoidal projection
is equidistant in all parallels, but in the Mollweide projection is equidistant
only at latitudes ϕB ≈ ±40·7367°. It already follows that the two projections
can only fit at these two latitudes. Thus, in the Goode projection, we
use the sinusoidal projection at latitudes −40·7367° < ϕ < 40·7367°, and
Mollweide projection at latitudes higher than this.

In order to align the parts, the Mollweide projection must be shifted
slightly vertically towards the Equator. In the sinusoidal projection, the
bounding latitude is mapped to yS = R�ϕB, while the Mollweide projection
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maps it to yM =
√
2RsinψB, where the auxiliary angle ψB is given by the

implicit function (Sec. XXII.2) as 32·6893°. From this, the shift is ∆y =
yS − yM ≈ −0·05280R.

Goode also suggested that since the projection is only favourable in the
neighbourhood of the central meridian, each continent should be mapped
using its own central meridian. As shown in Fig. XXIII.5, the different
meridians result in that the parts are connected to each other only along
the Equator and that there are discontinuities in the oceans. Mappings
using different central meridians for different longitudes are known as
interrupted projections.

Figure XXIII.5: Goode projection

In the Goode projection, the middle parts of the mapped meridians are
sinusoids, the outside parts are arcs of ellipses. At the bounding parallels,
the meridians are cusped, which is not aesthetic to say the least. The projec-
tion is made up of equal-area projections, and is therefore also equivalent.
The distortions of interrupted projections are generally significantly better
than those of usual projections, but the increased number of cuts makes it
difficult to perceive the contiguity of adjacent areas.* They are unsuitable
for maps of global relationships or geopolitical conditions. Discontinuities
should always be placed so as to have the least possible impact on the map’s
theme. Accordingly, Goode has created an oceanic version, with the central
meridians in the middle of the oceans and the cuts running mostly across
continents.

As the Goode projection is still unfavourable in its uninterrupted form,
Hungarian cartographer Érdi-Krausz improved the idea in 1968. He
widened the area of the central zone to the bounding latitude ϕB = ±60°
or ±70°. In this zone, he applied the a Wagner transformed sinusoidal

* Of course, any other projection can be used as an interrupted projection instead of
the Goode projection. A common example is the Boggs projection, a blended projection
of the sinusoidal and Mollweide projections modified with auxiliary angles to make it
equal-area.
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projection found in Sec. XXIII.3. Érdi-Krausz chose the values p = 0·4 and
q = 0·6. This gives m = 0·8 and n = arcsin(0·8)/(0·4π).

In the Mollweide projection, the length of the bounding parallel is
shorter than in the Wagner transformed sinusoidal projection. To fit the
parts, the Mollweide projection needs to be enlarged. The scaling factor is
given by the original lengths of the corresponding parallels: c ≈ 1·188719
for ϕB = 60° and c ≈ 1·387333 for ϕB = 70°. The Mollweide projection
must be shifted in the vertical direction also in this projection to align them
together. If ϕB = 60°, 0·285475R must be subtracted from the y coordinate,
and 0·583282R if ϕB = 70°.

The Érdi-Krausz projection does not ensure the smooth join of meridians,
but this is less obvious than in the Goode projection (Fig. XXIII.6). Former
cartographers used to blot out the cusp with loose strokes.* The mapping
is composed of equal-area projections, but the parts using the Mollweide

projection had to be enlarged to fit. Since the final projection would then
no longer be equal-area, two nominal scales and scalebars were added to
the maps: one for low latitudes and one for high latitudes.

Figure XXIII.6: Érdi-Krausz projection

This projection is common in Hungarian world atlases, but is barely
known abroad. It can be recommended for pointed-polar world maps of
economic or other map themes requiring equivalency. This mapping is not
typically supported by GIS software.

* In 2002, Juhász showed that with a slight modification of the projection formulae, this
cusp can be eliminated mathematically, and his solution also eliminates the different scale,
so it can be considered as equal-area in a strict sense. In 2004, Gede further developed the
solution by discovering a set of projections and selecting the one with the most favourable
distortion, which, despite being equal-area, exhibits relatively low angular distortion.
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Modern pseudocylindrical maps

XXIV.1 The Baranyi projections

In the middle of the 20th century, equal-area world maps were all the
rage. During this period, newer and newer equal-area projections were
developed, and not equivalent world maps were considered outdated. This
was crowned by Peters’s map projection that ignored angular distortions.
This became a hot potato in the cartographic community, so they began
to construct aphylactic mappings that favourably represented the shape
of the continents. These graticules were drawn by people less skilled in
mathematics, so they were typically published in the form of constructions
describing the map. In other cases, the graph paper positions of the inter-
section points of graticule lines were given in tabular form. This was not
a problem at the time, as the cartographic content of each geographical
quadrangle was plotted manually anyway. Digital cartography, however, re-
quires exact formulae for mapping; so these must be subsequently provided
as an approximation if such a mapping is applied.

Among the developers of such maps, Baranyi deserves special mention,
who published a number of projections in 1968. These all aimed to rep-
resent the shape of the continents faithfully. His maps have also received
some international attention for their favourable distortions. He published
his graticules in the form of constructions.

The frame of the Baranyi II projection consists of arcs smoothly con-
nected at ϕB = 70°. The Equator is equidistant, the length of the central
meridian is 0·7 times that of the Equator. On the central meridian, dis-
tances of parallels increase as an arithmetic progression so that latitude 70°
divides the central meridian in the ratio 13 : 5. All parallels have constant
scale. Based on this description, Karsay and Györffy gave an approximate
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formula:*

x =
�λ
π
×

(Rπ − r1 + r1 cosχ) if |ϕ| ≤ ϕB
r2 sinζ if |ϕ| > ϕB

y = R
(
0·95|�ϕ|+ 0·005180

π
�ϕ2)signϕ

The radius of the lateral arcs is r1 ≈ 1·84466R, that of the lower and
upper arcs is r2 ≈ 4·39461R. χ and ζ can be calculated from these relations
(derivation in App. K):

r1 sinχ = y
r2 cosζ = r2 − 0·7Rπ+ y

In the Baranyi projections, the meridians pass through the pointed pole
without break. The mapping is aphylactic, the angular distortions are
severe near the map frame, just as the areal distortions around the poles
(Fig. XXIV.1). It is therefore recommended for thematics concentrating
on lower latitudes. It has been used mainly for world maps in Hungarian
historical atlases.

Figure XXIV.1: Baranyi II projection

The description of the Baranyi IV projection does not give any guidance
on how the distances on the reference frame relate to the map scale units.

* The Baranyi projections are not supported by ArcGIS, and older open source programs
used Voxland’s approximation formulae, which differ slightly from those known in the
Hungarian literature. The Baranyi projections have disappeared from QGIS into thin air.
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Therefore, we will start from the assumption that there is no distortion at
the intersection of the Equator and the central meridian.

The map frame is formed by four arcs of circles, just as in projection II.
The radius of the lateral arcs is r1 = 100 units. The length of the central
meridian is 222 units and that of the Equator is 368 units. By geometric
considerations, the radius of the lower and upper arcs r2 ≈ 426·23 can be
calculated from the smooth connection of the arcs. Baranyi has divided the
central meridian unevenly. The middle latitudes (30°–60°) are magnified,
here the distance between the round (10°) parallels is 13 units, at lower and
higher latitudes it is only 12 units. Györffy fitted a polynomial of degree
nine to the values, which proved effective. The round (10°) meridians cross
the Equator at 2×12, 4×11, 8×10, and finally 4×9 units, respectively; the
other parallels are divided in the same proportion. Györffy approximated
the nature of this decrease by a logarithm.

The framing arcs join at about 96·63 units from the horizontal axis,
which, when compared with the positioning of the parallels, gives ϕB ≈
±78·07°. Since the radii of the arcs are different, a different function will
give the length of the parallels on either side of the bounding parallel. The
approximate formulae are given by Györffy:

y = R(�ϕ + 0·073880�ϕ3 − 0·0538964�ϕ5 + 0·01560242�ϕ7 − 0·001639406�ϕ9)
x =

ln
(
1+ 0·11679

∣∣∣�λ∣∣∣)
0·31255

signλ

×


(
1·22172R+

√
2·115393R2 − y2

)
if |ϕ| ≤ ϕB√

38·4308R2 −
(
4·58448R+

∣∣∣y∣∣∣)2 if |ϕ| > ϕB

Baranyi intended his projection for economic maps by enlarging the
middle latitudes, since most of the map symbols are placed in this zone.
The areas beyond the polar circles and in the Pacific Ocean are severely
distorted, but the lands are shown with very faithful shapes and favourable
distortions (Fig. XXIV.2). For this reason, it was popular in the Hungarian
atlas cartography for a long time. Because it is pointed-polar, it was often
used as world maps of school atlases. If equivalency is not a requirement, it
can be used as a world map. Since it is not supported by the vast majority
of GIS packages, it has recently disappeared undeservedly, replaced by less
favourable flat-polar projections.

Baranyi did not develop an interrupted projection in the fashion of that
time. At Márton’s request, however, he allowed to produce an interrupted
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Figure XXIV.2: Baranyi IV projection

version of his projection IV. The purpose of the interrupted Baranyi projec-
tion is to show the world ocean, i.e., unlike the original Baranyi projections,
lower distortions are placed in the oceans rather than on land. The projec-
tion was designed by Márton, with approximate formulae subsequently
provided by Györffy. The projection was finalized in 2004.

The projection is composed of two Baranyi IV projections. The left part
of the map retains the original central meridian at 10° E. This section shows
the Atlantic and Indian Oceans (between 100° W and 100° E). The right
part of the map shows the Pacific Ocean (between 140° W and 60° W) with
a central meridian of 160° W. For the right side, 3·036131R must be added
to the coordinate x to connect them. As shown in Fig. XXIV.3, the Americas
(between 100° W and 60° W) are shown in both parts.

Figure XXIV.3: Interrupted Baranyi projection (by Márton)

Between the two parts, there is a 40° wide transition zone, which is
connected to the right side in the Northern Hemisphere and to the left side
in the Southern Hemisphere. The area around Tasmania (south of 35° S and
west of 150° E) is repeated* in the transition zone. In the transition zone, y

* Although the interrupted Baranyi projection is not the only one that represents
certain parts of the area more than once, GIS packages are unable to use such projections.
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XXIV. Modern pseudocylindrical maps

is equal to that of the Baranyi IV projection, x is formulated as follows (xl
is the bounding x coordinate of the left projection substituting ∆λ = 90°, xr
is the boundary of the right projection substituting ∆λ = −60°):

x =



xr +
[
0·332949

(�λ+ π
3

)
+ 0·0123215

(�λ+ π
3

)2]
×
(
1·22172R+

√
2·115393R2 − y2

) if 0 ≤ ϕ ≤ ϕB

xr +
[
0·332949

(�λ+ π
3

)
+ 0·0123215

(�λ+ π
3

)2]
×
√
38·4308R2 −

(
4·58448R+

∣∣∣y∣∣∣)2
if ϕ > ϕB

xl +
[
0·315744

(�λ− π
2

)
+ 0·0123215

(�λ− π
2

)2]
×
(
1·22172R+

√
2·115393R2 − y2

) if −ϕB ≤ ϕ < 0

xl +
[
0·315744

(�λ− π
2

)
+ 0·0123215

(�λ− π
2

)2]
×
√
38·4308R2 −

(
4·58448R+

∣∣∣y∣∣∣)2
if ϕ < −ϕB

The Arctic Ocean is depicted on an inset map in the azimuthal
equidistant projection. The mapped North Pole is translated to
x = 1·379854R, y = 1·055924R. The frame of the inset is a circle of
radius 32°, or r = 0·558505R, centred at 81° N, 90° W (i.e. x = 1·240775R,
y = 1·055924R).

This aphylactic projection is mainly found in oceanography textbooks
and theses on oceans prepared at Eötvös Loránd University.

XXIV.2 Projections given by tables

At the same time as Baranyi, Robinson, who was employed at the Rand
McNally company, developed his graticule following exactly the same prin-
ciples. He reported the map (also known as the orthophanic projection) in a
tabular form, so most software use some form of interpolation. Beineke’s

There is no way to program multiple representation. That is why such projections are only
viable in Corel, their future is questionable.
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approximate formula is much simpler and satisfactory for small-scale map-
ping purposes:

x = R
(
2·6666− 0·3670�ϕ2 − 0·1500�ϕ4 + 0·0379�ϕ6)�λ

π

y = R
(
0·96047�ϕ − 0·00857|�ϕ|6·4100 signϕ

)
The projection in Fig. XXIV.4, is aphylactic, reminiscent of the Baranyi

IV projection.* Its major drawback is that it achieves similar distortion
characteristics by using a flat-polar map. It is still very popular in the
US, and for many years, National Geographic maps were produced in this
projection.

Figure XXIV.4: Robinson projection

The idea of Robinson and Baranyi was that the perception of projec-
tion distortion is subjective, and therefore subjective methods are needed
to achieve favourable distortions. Although a number of studies since
then have shown that the shape accuracy of continents is mathematically
well-defined, it is still popular today to create projections by bypassing
mathematics. The advent of the application Flex Projector has contributed
significantly to the proliferation of new projections.

It is an interactive application where you can control the map with
sliders. In addition to the image of the projection, the display also shows
its distortions. In this way, countless interested people have been able to
create (and name after themselves) new graticules. Some of them are now

* There was certainly a big quarrel when the publications appeared! Although Baranyi

had published his projections as early as 1968, Robinson did not do so until 1974, and
did not even mention Baranyi. Baranyi accused Robinson of plagiarism, but he claimed
that he had already created his projection in 1963, and maps had been published in that
projection; he therefore claimed the first place, and accused Baranyi of plagiarism. In
the absence of evidence, it was never clarified who had created the first hand-drawn
projection.
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XXIV. Modern pseudocylindrical maps

supported by ArcGIS and QGIS. Most of the new projections are cylindricals
or pseudocylindricals, but miscellaneous projections have also been created
with this program. Although it is possible to create a pointed-polar map in
it, the trendy mappings are all flat-polar. An example is Patterson’s Natural
Earth projection from 2007, for which Šavrič provided an approximate
formula.

Even an equal-area projection was created in Flex Projector by Patterson,
Jenny and Šavrič in 2018 called Equal Earth, which tries to mimic the Robin-

son projection (Fig. XXIV.5).* An approximate mathematical description is
known for it, ensuring the equivalency of the mapping.

(a) Natural Earth

(b) Equal Earth

Figure XXIV.5: Maps designed in Flex Projector

Compared to the previous ones, the method of Urmayev is closer to maths.
He arbitrarily prescribed distortions at certain points on the map. From
this, he obtained a system of non-linear second-order differential equations,
which he solved approximately: he plotted the estimated graticule on graph
paper and manually adjusted the drawing until the distortions returned by

*
Patterson’s intention even a few years ago was to offer a better equal-area projection

than the Gall–Peters projection. Because, yes, there are still people promoting this
mapping today.
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XXIV. Modern pseudocylindrical maps

cartometry were close to the expected ones. The method was widely used
in the Soviet Union, most notably by Ginzburg’s maps.

The Ginzburg VIII projection, created in 1949, is a pseudocylindrical
mapping in which the Soviet Union is expected to have low distortion
(Fig. XXIV.6). There is no angular distortion and 50% areal exaggeration
at 50° N, 80° E. At latitude 28°, we expect no areal distortion, and at the
intersection of the Equator and the bounding meridian, we prescribe 25%
decrease. Ginzburg approximated this with the following formulae:*

x = R
(
1−

�ϕ2
6·16

)0·87�λ−
∣∣∣�λ∣∣∣4 signλ

1049·95


y = R(�ϕ + �ϕ3/12)

Figure XXIV.6: Ginzburg VIII projection

The mapping is aphylactic, its meridians are dense near the map frame.
It was favoured by Russian cartography. Due to the cut of America, the
map was continued beyond the bounding meridian, but the poles were
truncated.

* The formulae used in QGIS are incorrect!
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Lesson twenty-five

Pseudoconic & pseudoazimuthal

mappings

XXV.1 Map projections with circular parallels

Parallels in pseudoazimuthal, pseudoconic, and polyconic mappings are
mapped to circles or arcs of circles. We also expect reflection symmetry
about axis y, so the centres of these circles fall on axis y. These projections
are described using the polar coordinate system usual in conic projections,
but note two differences! First, the centres of the mapped parallels are
not fixed, their distance from the axis x is described by a function c(ϕ),
so the origin of the polar coordinates moves depending on the latitude.
Second, since the meridians are neither necessarily straight nor necessarily
evenly spaced, the polar angle can be an arbitrary function ε(ϕ,λ) (due
to symmetry, odd and strictly increasing in λ). The radii of parallels are
still given by the radius function ϱ(ϕ). Fig. XXV.1 shows that the general
mapping formulae are:

x = ϱ sinε
y = c − ϱcosε

Let us examine the distortions of such projections.

k =

√(
�x
�λ

)2
+
(
�y
�λ

)2
Rcosϕ

=

√
ϱ2 cos2 ε

(
�ε
�λ

)2
+ ϱ2 sin2 ε

(
�ε
�λ

)2
Rcosϕ

=
ϱ

Rcosϕ
�ε

�λ

cotϑ =
�x
�ϕ

�x
�λ + �y

�ϕ
�y
�λ

�y
�ϕ

�x
�λ −

�x
�ϕ

�y
�λ

=

( dϱ
dϕ sinε+ ϱcosε �ε�ϕ

)
ϱcosε �ε�λ +

(
dc
dϕ −

dϱ
dϕ cosε+ ϱ sinε �ε�ϕ

)
ϱ sinε �ε�λ(

dc
dϕ −

dϱ
dϕ cosε+ ϱ sinε �ε�ϕ

)
ϱcosε �ε�λ −

( dϱ
dϕ sinε+ ϱcosε �ε�ϕ

)
ϱ sinε �ε�λ
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x

y

Parallel

M
eridianϱ

ϱ sinε
c

ϱ
cosε

ε

ϑ

Figure XXV.1: Polar coordinates in pseudoconics and polyconics

=
ϱ �ε�λ

(
ϱ �ε�ϕ cos2 ε+ dc

dϕ sinε+ ϱ �ε�ϕ sin2 ε
)

ϱ �ε�λ
(

dc
dϕ cosε − dϱ

dϕ cos2 ε − dϱ
dϕ sin2 ε

) =
ϱ �ε�ϕ + dc

dϕ sinε

dc
dϕ cosε − dϱ

dϕ

The linear scale in the direction of meridians can be calculated by the
general formula h =

√
(�x/�ϕ)2 + (�y/�ϕ)2/R, but after performing the de-

rivations we obtain unmanageably long formulae. Therefore, we resort to a
trick. First, we express the areal scale p. Notice that the numerator of p is
the same as the denominator of cotϑ, so we do not need to re-derive it, we
can substitute the denominator we just transformed!

p =

�y
�ϕ

�x
�λ −

�x
�ϕ

�y
�λ

R2 cosϕ
=
ϱ �ε�λ

(
dc
dϕ cosε − dϱ

dϕ cos2 ε − dϱ
dϕ sin2 ε

)
R2 cosϕ

=
ϱ

R2 cosϕ
�ε

�λ

(
dc
dϕ

cosε −
dϱ
dϕ

)
But p = hk sinϑ:

ϱ

R2 cosϕ
�ε

�λ

(
dc
dϕ

cosε −
dϱ
dϕ

)
= h

ϱ

Rcosϕ
�ε

�λ
sinϑ

h =
1

Rsinϑ

(
dc
dϕ

cosε −
dϱ
dϕ

)

XXV.2 Pseudoconic projections

If all the parallels are concentric arcs of circles, then the non-conical map-
ping is classified as a pseudoconic projection. In these projections, c is
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XXV. Pseudoconic & pseudoazimuthal mappings

constant, so we can omit the term containing the derivative of c in the
formula for cotϑ:

cotϑ = −ϱ �ε
�ϕ

/
dϱ
dϕ

In a rectangular projection, either ϱ or �ε/�ϕ must be zero. In the former
case the map would collapse to a single point, in the latter case the me-
ridians would be straight, which would lead to a conic projection. Thus,
there is no rectangular, and hence no conformal mapping among pseudoconics.
Furthermore, h is also simplified:

h = −
dϱ
dϕ

1
Rsinϑ

From this:

p = hk sinϑ = −
dϱ
dϕ

1
sinϑ

ϱ

cosϕ
�ε

�λ

sinϑ
RR

= −
ϱ

R2 cosϕ
�ε

�λ

dϱ
dϕ

In equal-area projections, p = 1, so:

−
ϱ

R2 cosϕ
�ε

�λ

dϱ
dϕ

= 1

�ε

�λ
= −R2

cosϕ

ϱ dϱ
dϕ

On the right-hand side, there are functions of ϕ only, i.e. the partial
derivative of ε is independent of λ. This implies that ε is a linear function
of λ, and in equal-area pseudoconic mappings, the parallels are evenly divided
by the meridians (parallels have constant scale).

Find a pseudoconic mapping that is equidistant in the central meridian
and in all parallels! From the equidistant central meridian, −dϱ/dϕ = R:

ϱ = R(−�ϕ + d) = R(d − �ϕ)

k = 1, so:

ϱ

Rcosϕ
�ε

�λ
= 1U

dε =
U

cosϕ
d − �ϕ dλ

�ε =
cosϕ
d − �ϕ�λ+ f (ϕ)

The symmetry about the central meridian is satisfied if f (ϕ) = 0, so
the constant of integration can be ignored. Substituting ϕ = ±90° we get
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ε = 0, i.e. the projection is pointed-polar. Let us examine the distortions,
remembering that k = 1:

h = −
dϱ
dϕ

1
Rsinϑ

=
1

sinϑ

cotϑ = −ϱ �ε
�ϕ

/
dϱ
dϕ

=
R(d − �ϕ)

R

−sinϕ(−�ϕ + d) + cosϕ
(d − �ϕ)2

�λ
=
−sinϕ(d − �ϕ) + cosϕ

d − �ϕ �λ
Our first observation is that hk sinϑ = 1, so we have an equal-area projec-

tion. We can also see that the central meridian is true-scale (h = k = 1 and
cotϑ = 0), but as we depart, angular distortion increases rapidly. Could
we expect a standard parallel ϕs to be true-scale? To do so, it is sufficient
to solve the equation cotϑ = 0 at ϕ = ϕs, since then sinϑ = 1, i.e. it is
guaranteed that h = k = 1:

−sinϕs(−�ϕs + d) + cosϕs
−�ϕs + d

�λ = 0

cosϕs = sinϕs(−�ϕs + d)
d = cotϕs + �ϕs

In other words, the projection has a standard parallel, the position of
which can be controlled by choosing the constant of integration d. If
ϕs = 90°, i.e. d = π/2, the mapping is called the Werner or Stab projection
(Fig. XXV.2). Its exact authorship is unknown, its eponyms applied it in the
early 1500s. A feature of the projection is that the Earth is represented in a
shape of a heart. For ϕs = 0°, d→∞, ϱ→∞, i.e. the parallels are straight,
and the sinusoidal projection is obtained.

By choosing ϕs differently, we are talking about the Bonne projection.
It was developed gradually from the Ptolemy II projection making more
parallels equidistant in the 1400s, so it is the oldest equal-area mapping.
Although it is favourable in the cross-shaped area defined by the central
meridian and the standard parallel, further away the angular distortions
are very unfavourable, even worse than the equal-area conic projection.
Nevertheless, this mapping is overused for continental maps. The French
even used it on topographic maps before the Second World War, although
it is not quite conformal. They suffered with it. Due to its topographic use,
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(a) ϕs = 90° (Werner projection)

(b) ϕs = 45°

Figure XXV.2: Bonne projection
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ellipsoidal formulae are also known, which are similarly derived from the
equidistant central meridian and parallels:

ϱ =N (Φs)cotΦs −
ΦU
Φs

M(Φ)dΦ

�ε =
N (Φ)cosΦ

ϱ
�Λ

Other pseudoconics have also been developed, which are also mostly
equal-area, but almost no one knows them. These flat-polar mappings,
which are not used at all, are recommended for areas of large east-west
extent at middle latitudes. Some of them are also suitable for represent-
ing the whole Earth.* Unlike the Bonne projection, these have very low
distortion.

XXV.3 Pseudoazimuthal projections

If the mapped parallels are complete concentric circles, then we are talking
about a pseudoazimuthal projection. Since every parallel is mapped to a
circle, the infinitesimal circle centred at the pole is also mapped to a circle.
This implies that the pseudoazimuthal mappings are locally conformal at
the pole. An advantage is that the representation is interrupted at only one
point. In contrast to azimuthal projections, isocols have an oval shape, and
are therefore chosen for areas of this shape. The projection is favourable
near the pole, so we use the colatitude δ = 90°−ϕ instead of the latitude in
the formulae.

Because parallels are closed in pseudoazimuthals, it is true for any λ
that ε(δ,λ) = ε(δ,λ+360°)−360° (i.e., by moving the longitude by one turn
around the parallel, ε also changes one turn). Therefore, a projection can
be pseudoazimuthal if angle ε −λ is a periodic function of λ with period
360°.

Due to the concentricity of mapped parallels, we can use the simpler
distortion formulae we have seen for pseudoconic projections. From these
formulae, we have already established that, if an rectangular graticule is
desired, the meridians would be straight, so no conformal mapping is found
among pseudoazimuthals, too. From the equation for equivalency, we have
found that the necessary condition for an equal-area map is that ε is a
linear function of λ. However, ε − λ can only be periodic at the same

* For example, the Hill projection, a generalization of the Eckert IV projection, is one
of the best projections for the equal-area representation of the Earth.
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time if ε −λ is constant (or to be more precise, it is a function of δ only).
Since ε − λ is an odd function due to the requirement of symmetry, the
only possible constant is ε − λ = 0. This leads to ε = λ, i.e. we found an
azimuthal mapping. Because of the contradiction, there is no equal-area
pseudoazimuthal projection.*

Note that, in most cases, we expect reflection symmetry not only about
the vertical axis but also about the horizontal axis among pseudoazimuthal
mappings. Omitting derivation, we find that in this case, angle ε−λ can be
chosen as an odd function with period 180°.

The Ginzburg III projection is a pseudoazimuthal mapping, which uses
radius function of Ginzburg’s azimuthal projection (Sec. XI.3):

ϱ = 3Rsin
δ
3

Since ε −λ is a periodic odd function, Ginzburg proposed the formula�ε −�λ = f (δ)sin(κλ). If κ = 1, the period is 360° and the projection has a
single symmetry; in the case of κ = 2, the period is 180°, so it is symmetrical
about the horizontal axis. Substituting Ginzburg’s proposal for f (δ):

�ε = �λ− d( δ
δB

)q
sin(κλ)

Here, q is 1 or 2, controlling the change in the curvature of meridians,
0·002 ≤ d ≤ 0·2 is the magnitude of the curvature of meridians, and δB is
the bounding colatitude.

The projection was published in 1952, its isocols are oval, recommended
for areas of this shape. Since it shows the vicinity of the metapole favour-
ably, it is not commonly used in normal aspect. It is used in first trans-
verse and simple oblique aspect on Russian maps of the Atlantic Ocean
(Fig. XXV.3). On maps of the European part of Russia, we find the version
equidistant in the central meridian (ϱ = R�δ) in simple oblique aspect. It has
also been used for world maps (without Antarctica) in skew aspect. Due to
language barriers and complexity, it could not be widespread outside the
former Eastern Bloc countries.

* If we release our expectation of symmetry, it is possible to construct an equal-area
pseudoazimuthal. For example, the Wiechel projection is both equal-area and equidistant
in meridians, but has no cartographic value because of its significant angular distortions
and lack of symmetry.
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(a) Normal

(b) Simple oblique (Atlantic Ocean)

Figure XXV.3: Ginzburg III projection
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Lesson twenty-six

Polyconic projections

XXVI.1 Properties of polyconic projections

We know that the environment of a parallel can be favourably represented
in conic projections. Let us map the small environment of each parallel
with a tangent perspective conic projection. By refining the infinitesimal
partitions, the gaps between the conic projections become infinitely small,
yielding a polyconic projection as a limit (Fig. XXVI.1).

Refinement

Taking limit

Figure XXVI.1: Origin of polyconic projections

Let us examine the resulting projection. Each parallel is mapped in
its corresponding tangent perspective conic projection. In Sec. XV.2, we
calculated that these mappings map the tangent parallel to an arc of radius
ϱ = Rcotϕ, so our projection has circular parallels. In order to stitch the
maps, the mapped spherical zones had to be translated vertically, so the
mapped parallels are not concentric, so it is not a pseudoconic projection.
On the other hand, linear scale in the direction of the meridians is unit on
the tangent parallels of the perspective conic projections, so the seamlessly
fitting central meridian is certainly equidistant.

Although it would follow from the derivation that the parallels are
equidistant, this is not always required in practice. Similarly, the radius
function can be multiplied by a constant Sn and the linear scale along the
central meridian by a constant Sm to fine-tune the distortions, although
these are usually chosen to be 1. Accordingly, we call polyconic projections
those mappings in which the parallels are arcs of circles, their radii are
proportional to the cotangent of the latitude, and they divide the central
meridian evenly.
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XXVI. Polyconic projections

Expressing the same mathematically using the polar coordinates of
Sec. XXV.1:

ϱ = SnRcotϕ
c = SmR�ϕ + ϱ

If the above condition is not satisfied by a projection that maps parallels
to eccentric arcs, the mapping is classified as a pseudopolyconic projection.
The distortions of both polyconic and pseudopolyconic projections can be
computed from the general formulae for projections with circular paral-
lels. The polyconic projections are suitable for areas extending along a
meridian. Although transverse cylindrical projections are also appropriate
for this purpose, it was easier to construct the circular parallels of polyconic
projections with a pair of compasses.

As polyconic projections are more commonly used on regional maps,
they are rather used with an ellipsoid as the reference frame. The definition
of polyconic projections is then slightly modified:

ϱ = SnN (Φ)cotΦ

c = ϱ+ Sm

ΦU
0

M(Φ)dΦ

XXVI.2 American polyconic

Specifically, for the mapping known as the simple, the ordinary, or the Amer-
ican polyconic projection, we expect the previously mentioned equidistancy
of parallels (k = 1):

ϱ

Rcosϕ
�ε

�λ
= 1U

dε =
U

cosϕ
Sn cotϕ

dλ

�ε =
�λsinϕ
Sn

+ f (ϕ)

Due to the symmetry about the central meridian, the constant of in-
tegration f (ϕ) is zero. The projection formulae are indeterminate at the
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Equator, but here, y = 0 and the from the equidistant parallels (and hence
equidistant Equator), x = R�λ. Distortions of the projection:

h =
1

Rsinϑ

(
dc
dϕ

cosε −
dϱ
dϕ

)
=

(
Sm −

Sn
sin2ϕ

)
cosε+ Sn

sin2ϕ

sinϑ

cotϑ =
ϱ �ε�ϕ + dc

dϕ sinε

dc
dϕ cosε − dϱ

dϕ

=
�λcotϕ cosϕ +

(
Sm −

Sn
sin2ϕ

)
sinε(

Sm −
Sn

sin2ϕ

)
cosε+ Sn

sin2ϕ

Since hk sinϑ , 1 and cotϑ , 0, the projection is aphylactic. The formulae
and Fig. XXVI.2 show that the distortions worsen rapidly away from the
central meridian.

The formula for the ellipsoidal version is given by the equidistant paral-
lels:

�ε =
�ΛsinΦ
Sn

The idea of the polyconic projection was introduced in 1825 by Hassler,
a Swiss geodesist who had migrated to America. The projection quickly
caught on in the USA, continental maps were produced in it, and between
the two world wars it was even used for topographic maps. At Deetz’s
suggestion, it appears also in oblique transverse aspect, suitable for areas
of large east-west extent.

The American polyconic is similar to the modified polyconic projection of
the French geodesist Lallemand, which was used for the International Map
of the World with Clarke 1880 ellipsoid as the reference frame between
1911 and 1962. Each section is mapped in its own mapping like the
polyhedric projection.

For ease of construction, only the round 4° parallels bounding the sec-
tions are expected to be equidistant, with meridians running straight
between them. The central meridian, unlike the polyconic projections,
is not equidistant, instead the formula for c is determined by the condition
that the meridians at two thirds of the bounding meridian (±2° in the spher-
ical zone up to ±60°, ±4° up to ±76°, and ±8° up to ±84°) are equidistant.
The hard-to-compute mathematical description of the mapping originally
described as a construction is given in App. L.
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(a) Normal

(b) Oblique transverse (Northern Pacific Ocean)

Figure XXVI.2: Ordinary (American) polyconic
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XXVI.3 Rectangular polyconic

Our goal now is the perpendicular graticule (cotϑ = 0):

ϱ �ε�ϕ + dc
dϕ sinε

dc
dϕ cosε − dϱ

dϕ

= 0

SnRcotϕ
�ε

�ϕ
= −

(
SmR−

SnR

sin2ϕ

)
sinεU

1
sinε

dε =
U
Sm
Sn

−sinϕ
cosϕ

− −1
sin2ϕ cotϕ

dϕ

lntan
ε
2

=
Sm
Sn

lncosϕ − lncotϕ + lnf (λ)

tan
ε
2

= f (λ)cos
Sm
Sn ϕ tanϕ

Here, the constant of integration f (λ) is arbitrary. For example, let
latitude ϕs be equidistant!

ϱ

Rcosϕs

�ε

�λ
= 1U

dε =
U

cosϕs
Sn cotϕs

dλ

�ε =
sinϕs
Sn

�λ
tan

ε
2

= tan
λsinϕs
2Sn

f (λ)cos
Sm
Sn ϕs tanϕs = tan

λsinϕs
2Sn

f (λ) =
tan λsinϕs

2Sn

cos
Sm
Sn ϕs tanϕs

The equations are indeterminate at the Equator, but here y = 0 and
x = 2SnRf (λ). From this, we get that the Equator is equidistant if:

f (λ) =
�λ
2Sn
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If the projection is rectangular, could not we choose an f (λ) that makes
the projection conformal? Unfortunately, substitution into the equation
h = k does not give a solution,* there is no conformal polyconic projection.†

This projection was used rather in its ellipsoidal form:

tan
ε
2

= f (Λ) sinΦ
[
N (Φ)cosΦ

a

] Sm
Sn
−1

Where the mapping obtained by choosing Sm = Sn = 1 and f (Λ) = �Λ/2
(the latter provides the equidistant Equator) is known as the War Office
projection. This projection is also aphylactic, with a true-scale central
meridian (Fig. XXVI.3).

Figure XXVI.3: War Office projection

The War Office projection was first mentioned in the USA in 1853 as an
improvement on the ordinary polyconic projection. Nevertheless, it was
popularized by British military topography, hence its name. Its graticule is
very easy to construct with a pair of compasses.

Canadian cartographers mapped their country in Lambert conformal
conic projection with Φ1 = 49°, Φ2 = 77°. As is well known, this projec-
tion is not conformal at the pole, and at high latitudes its areal distortion
approaches infinity. Therefore, another projection had to be chosen to
represent the northern part of Canada (Φ > 80°). Bousfield selected the

* However, a chosen parallel ϕs can be made conformal by this method. This idea
comes from the British geodesist McCaw.

† Unfortunately, the transverse stereographic projection is also called the conformal
polyconic projection. However, besides being an azimuthal mapping, it cannot be called
polyconic simply because, although ϱ = cotϕ is satisfied, its central meridian is not
equidistant.
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rectangular polyconic projection. In order to fit the map to the adjacent
parts using the conic projection, Sn ≈ 1·1164 and Sm ≈ 1·0211 were given,
and a function f (Λ) had to be picked that would provide the same constant
linear scale k(Φ = 80°) ≈ 1·0211 along the boundary as the conic projec-
tion. The projection formulae of the graticule originally described as a
construction were given by Haines.

XXVI.4 Equal-area polyconic

It occurred to the German cartographer Maurer in 1935, while he was
working on the taxonomy of map projections, that no equal-area polyconic
projection was known. He created this mapping to solve this problem.

We assume that p = 1:

ϱ

R2 cosϕ
�ε

�λ

(
dc
dϕ

cosε −
dϱ
dϕ

)
= 1U

SnRcotϕ
R2 cosϕ

[(
SmR−

SnR

sin2ϕ

)
cosε+

SnR

sin2ϕ

]
dε =

U
dλ(

SmSn
sinϕ

− S2n
sin3ϕ

)
sinε+

S2n
sin3ϕ

�ε = �λ+ f (ϕ)

ε cannot be expressed from the equation above, we have an implicit
function. The constant of integration f (ϕ) is zero, otherwise the symmetry
of the projection would not be guaranteed.

The projection shown in Fig. XXVI.4 is not only rather difficult to com-
pute, it is among the worst possible choices for a world map, but it is
surprisingly favourable for representing narrow areas extending along a
meridian. It is interesting that along the Equator, expression of coordinate
x requires the solution of a cubic equation (x3/6SnR

2 + Smx −R�λ = 0).
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XXVI. Polyconic projections

Figure XXVI.4: Equal-area polyconic
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Lesson twenty-seven

Pseudopolyconic projections

XXVII.1 Lagrange projection

Let us start with the Mercator projection equidistant along the Equator!
Reduce the map by a scale factor κ, then project it back to the sphere
using the inverse Mercator projection. On the new sphere, the latitude is
denoted by ψ and the longitude by ζ:

lntan
(
45° +

ψ

2

)
= κ lntan

(
45° +

ϕ

2

)
ζ = κλ

It can be seen that the parallels are mapped to parallels on the new
sphere, while meridians are also mapped to meridians. If κ < 1, then the
map will not fill the entire surface of the new sphere. Nevertheless, the
mapping is conformal, since both the Mercator projection, its inverse, and
the scaling are conformal.* From the formula above, ψ can be expressed,
but in practice the following equivalent formula is used instead:

ψ = arcsin
(1+ sinϕ)κ − (1− sinϕ)κ

(1+ sinϕ)κ + (1− sinϕ)κ

One can consider this transformation as a conformal variant of the Um-
beziffern on the sphere. That is, if we substitute the renumbered coordin-
ates ψ and ζ for ϕ and λ in a conformal projection, the mapping remains

* According to an anecdote, Gilbert created a conformal globe that used κ = 1/2 to
represent the surface of the globe on a hemisphere so that each continent was represented
twice on the entire globe. It is said that he regularly teased colleagues who came to see
him to check if they noticed anything unusual about the globe, but almost no one noticed
anything despite the large areal distortions of the transformation.
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XXVII. Pseudopolyconic projections

conformal. As an example, let us choose the transverse stereographic pro-
jection. Substitute ϕ0 = 0° in the formula from Sec. X.5 and then renumber
the graticule:

x =
2R
κ

sinζ cosψ
1+ cosψ cosζ

y =
2R
κ

sinψ
1+ cosψ cosζ

Here, the division by κ is not necessary, only the reduction in areas due
to the scaling of the Mercator projection was compensated by scaling it
back. Since the stereographic projection preserves circles, the renumbered
graticule lines (which do not wrap around the entire sphere due to the
renumbering) are mapped to arcs of circles. The set of projections that map
all the graticule lines to arcs of circles is called the Lagrange projection
family. They were significant because it was easy to construct them with a
pair of compasses. Since the mapped parallels are usually not concentric
in such projections, and their radius function is not proportional to the
cotangent of the latitude, they belong to the pseudopolyconic projections.

The particular mapping just derived is called the Lagrange projection.
Its significance is that it is the only existing conformal pseudopolyconic

(a) κ = 1/2

Figure XXVII.1: Lagrange projection
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(b) κ = 3/4

(c) κ = 2, second transverse (Littrow projection)

Figure XXVII.1: (contd.)
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XXVII. Pseudopolyconic projections

projection.* The projection is not conformal at the poles, the mapped angle
formed by the meridians starting here is κ times the original difference
in longitude; the linear scale here is infinite for κ < 1 and zero for κ > 1.
For κ = 1, the renumbering does not change anything, so the projection
remains transverse stereographic. The choice κ = 1/2 represents the Earth
in a circle (Fig. XXVII.1). The projection was derived by Lambert in 1772
and generalized for the ellipsoid by the French mathematician Lagrange

in 1779. The ellipsoidal version of the projection is easily obtained by
choosing the ellipsoidal Mercator projection instead of the spherical one,
but after rescaling, projecting back to a sphere by using the spherical in-
verse. The version κ = 2 in second transverse aspect (mapped parallels are
confocal ellipses, mapped meridians are hyperbolae) is called the Littrow

projection† after the Austrian astronomer who created it, and has been
known since 1833.

XXVII.2 Maps with circular graticule

Let us examine the general formulae of the Lagrange projection family. The
mapped parallels are eccentric circles, their radius is ϱ, and their centre is
on the positive half of the axis y at a distance c. The radius of the mapped
meridians is r, their centre is on the axis x at coordinate d. In Fig. XXVII.3,
for the right triangle bounded by the two axes and the section s:

s =
√
c2 + d2

tanσ =
−d
c

To calculate σ , the function atan2 is recommended. In the red triangle,
all three sides are known, so the law of cosines can be written for the angles

* This claim has been proved by Adams, and is omitted because of the complexity of
the derivation. In fact, if we allow a vertical translation in the Mercator projection before
projecting back, the mapping can be further generalized: the conformality and the circular
shape of the graticule lines are preserved, but the another parallel is mapped to a straight
line instead of the Equator.

† The Littrow projection is a real curiosity. Although we have derived it as the second
transverse aspect of another projection, its formulae (x = Rsinλ/cosϕ, y = Rcosλ tanϕ)
are no more complicated than that of the normal aspect. So which aspect is normal?
Since Littrow first derived the one shown in the figure, we can legitimately consider it as
normal and the Lagrange projection of choice κ = 2 as the first transverse of the Littrow

projection. But then we can no longer classify it as a pseudopolyconic projection, because
in normal aspect, its graticule lines are ellipses and hyperbolae!
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XXVII. Pseudopolyconic projections

σ + ε and µ. Since µ = 90°− (σ + ζ), we can write sin(σ + ζ) instead of cosµ.
From these, we can easily express the unknown angles ε and ζ:

r2 = s2 + ϱ2 − 2sϱcos(σ + ε)

ε = ±arccos
s2 + ϱ2 − r2

2sϱ
− σ

ϱ2 = s2 + r2 − 2sr sin(σ + ζ)

ζ = ±arcsin
s2 + r2 − ϱ2

2sr
− σ

From the figure, x and y can be calculated:

x = ϱ sinε
y = r sinζ

The earlier such projections belonged to the globular projections known
from Sec. XX.2, i.e. they mapped the hemisphere into a circular frame. For
example, the Nicolosi projection is an improvement of the Apian I projec-
tion, in which he replaced straight parallels by arcs of circles that intersect
not only the meridian but also the circumference evenly. When applied
to a hemisphere, the projection has favourable distortions, approaching
the transverse azimuthal equidistant, and was therefore often used before
the advent of computers. When extended to a full sphere, it represents the
Earth in an apple-shaped frame (Fig. XXVII.2).

Figure XXVII.2: Nicolosi projection (globular projection is in red)

Based on the globular projections, German cartographer van der Grin-

ten, living in the USA, created two pseudopolyconic projections for the
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r

ϱ

s
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ϱ

−d
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εσ
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µ

(a) Geometry of circular graticules
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y

r
−d

R�λRπ

(b) Meridians
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y

Rπ
Rπ

t
q q2R�ϕ

Rπ+
√

(Rπ)2 − (2R�ϕ)2
2Rπ − 2R|�ϕ|2R|�ϕ| χ

(c) Parallels

Figure XXVII.3: Construction of the Van der Grinten I projection
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XXVII. Pseudopolyconic projections

publisher Rand McNally.* Of these, only projection I, created in 1898, has
been widely disseminated. This projection shows the entire surface of the
sphere in a circular outline. Although the areal distortion of the aphylactic
projection is very significant, even National Geographic used this mapping
before the Robinson projection. Because of the large areal distortion, the
map is difficult to fit on a sheet of A/4 paper, so high latitudes are often cut
off, losing the only advantage, the circular frame of the projection. It is a
curiosity of map projections that the rectangular map frame is often filled
with repeated areas beyond longitude 180°, thus completely eliminating
the only possible sense of projection.

Mapped meridians are arcs of circles centred at (d,0):

(x − d)2 + y2 = r2

The frame of the projection is a circle of radius Rπ, the Equator is
equidistant. Hence, d = R�λ− r. Furthermore, the meridians pass through
the point (0,Rπ): (

0+ r −R�λ)2 + (Rπ)2 = r2

r = R
�λ2 +π2

2�λ
The parallels are mapped to arcs of circles centred at (0, c):

x2 + (y − c)2 = ϱ2

The parallels intersect axis y at the point y = t, the construction of
which is shown by a red dashed line in the figure. Since the framing circle
has radius Rπ, the point 2R�ϕ from axis x is

√
(Rπ)2 − (2R�ϕ)2 from axis y.

Expressing the ratio between the legs of the two similar right triangles with
red dashed hypotenuses, then expanding the fraction by π −

√
π2 − (2�ϕ)2:

t
Rπ

=
2R�ϕ

Rπ+
√

(Rπ)2 − (2R�ϕ)2

t = Rπ
2�ϕ[

π −
√
π2 − (2�ϕ)2

]
π2 −π2 + (2�ϕ)2

= Rπ
π −

√
π2 − (2�ϕ)2

2�ϕ
* Four projections are mentioned in the literature, but the van der Grinten II and III

projections were in fact created by Bludau, modifying projection I. Projection IV, like the
Nicolosi projection, maps the hemisphere into a circular frame.
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XXVII. Pseudopolyconic projections

From the arrangement, c = t + ϱ. The sine of the angle χ is q/Rπ, while
this is also the ratio between the two legs of the smaller right triangle with
a continuous green hypotenuse. Then from the two similar triangles:

sinχ =
q

Rπ
=

2R�ϕ
2Rπ − 2R|�ϕ| = �ϕ

π − |�ϕ|
The parallels intersect the framing circle at (Rπcosχ,Rπ sinχ). From

this, ϱ can be expressed:

R2π2 cos2χ+ (Rπ sinχ − t − ϱ)2 = ϱ2

ϱ =
t2 − 2Rπt sinχ+R2π2

2Rπ sinχ − 2t

Note that the inversion of the previous formula for t yields �ϕ = π2Rt/(t2+
R2π2), which may be substituted through sinχ to simplify the formula for
ϱ:

ϱ =
R3π3 − |t3|
2t2

sign t

Once all data for the circles (c, ϱ, d, r) are known, the general formulae
can be used to compute the projection, which is depicted in Fig. XXVII.4.

Figure XXVII.4: Van der Grinten I projection
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XXVII.3 Further pseudopolyconics

Soviet cartography used pseudopolyconic projections to represent both the
Soviet Union and the entire Earth. The Ginzburg IV–VII and IX projections
stand out because they were widespread. These mappings were hand-
drawn as described in Sec. XXIV.2, with the distortions prescribed at certain
points. The projections were given in a tabular form, the approximate
formulae used today were supplied by Turkish cartographers İpbüker and
Bi̇ldi̇ri̇ci̇ based on the calculations of the American Voxland.

For a better representation of the Soviet Union, the central meridian was
shifted eastwards and the points of favourable distortions were defined at
high latitudes (around 48-52°, depending on the version). These projections
are among the most favourable ones for world maps. Their disadvantage
is the unusual map frame seen in Fig. XXVII.5, which was addressed by
cropping a little from the top and bottom of the map at the poles and
continuing the representation beyond the bounding meridian, completely
filling the rectangular map frame. They were used in encyclopaedias and
school atlases in the countries of the Eastern Bloc, and have been swept
away by modern GIS.

Pseudopolyconic projections also include rectangular mappings (not
necessarily conformal) and equal-area projections. Their applications for
regional maps of middle latitudes were investigated by Györffy and for
world maps by Kerkovits. Research has shown that this projection family
is very flexible for the area to be mapped, and that their potential is still
unexploited.

XXVII.4 Polyazimuthal projections

In addition to the pseudoazimuthal projections, there are also projections
where the mapped parallels are full circles, but not concentric. Such projec-
tions are called polyazimuthal. For these projections, the general properties
described in Sec. XXV.3 also hold, i.e. the conformality at the pole and
the periodicity of the function ε −λ. In contrast to pseudoazimuthal map-
pings, there is no polyazimuthal projection which is symmetric about the
horizontal axis: this would imply the concentricity of parallels. Among
polyazimuthal mappings, there are equal-area and rectangular graticules,
but there is no conformal one.* The definition of polyazimuthal projections
was established in 1989 by the Russian cartographer Tolstova, but few

* Solving the equation of conformality among polyazimuthal projections, we obtain the
oblique stereographic projection, but in a complicated way. That is rather like a conical
projection.
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XXVII. Pseudopolyconic projections

(a) Projection V

(b) Projection VI

Figure XXVII.5: Examples of pseudopolyconics by Ginzburg

other people than the author have explored them. They can be recom-
mended for highly asymmetrical areas at high latitudes (Fig. XXVII.6).

238



XXVII. Pseudopolyconic projections

Figure XXVII.6: Rectangular polyazimuthal projection of Kerkovits for the Northern
Atlantic Ocean
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Lesson twenty-eight

Modified azimuthal projections

XXVIII.1 Aitoff & Hammer projections

At this point, we leave the set of projections that can be grouped according
to the shape of the graticule. Mappings that do not fit into the previously
established categories are simply categorized as miscellaneous projections.
Since these projections do not have any common properties, their distor-
tions can only be calculated using the general formulae learned in Sec. VII.1–
VIII.4. The most commonly used of such projections can all be derived from
azimuthals by some previously known method (e.g., Umbeziffern, blended
projection).

It is well known that the azimuthal equidistant has very favourable
distortions for the aphylactic representation of a circular area, including
the hemisphere. However, the same mapping is obviously not used to
represent the whole Earth. Since the favourable part of the transverse
azimuthal equidistant is the hemisphere at the centre of the projection, the
projection cries out for an Umbeziffern. The derivation and the formulae of
the transverse azimuthal equidistant can be found in Sec. XI.1:

x = Rarccos(cosϕ cosλ)
sinλcosϕ√
1− cos2ϕ cos2λ

y = Rarccos(cosϕ cosλ)
sinϕ√

1− cos2ϕ cos2λ

We want to map the longitude range ±180° of the entire sphere into the
range ±90° of the hemisphere. This implies that instead of λ, we need to
use the renumbered longitude ζ = λ/2. At the same time, the Equator,
which was originally equidistant, is now half its original length. To make
the Equator longer, coordinate x is multiplied back by 2:

x = 2Rarccos
(
cosϕ cos

λ
2

) sin λ
2 cosϕ√

1− cos2ϕ cos2 λ2
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y = Rarccos
(
cosϕ cos

λ
2

) sinϕ√
1− cos2ϕ cos2 λ2

This mapping was created in 1889 by the Russian cartographer Aitov,
who lived in France. His name spread with an incorrect transliteration, so it
is known as the Aitoff projection. Since the original mapping represented
the hemisphere in a circle, after renumbering and horizontal stretching, it
is transformed into an elliptical frame (Fig. XXVIII.1). The central meridian
was equidistant in the azimuthal equidistant, which was not changed by the
transformations because the latitudes were not renumbered. The starting
point was an aphylactic projection, which was not changed by the renum-
bering of the graticule, and so is the present mapping. The distortions of
the projection are more favourable for a world map than the similar Apian

II projection, but this mapping is not a pseudocylindrical mapping.

Figure XXVIII.1: Aitoff projection

Following Aitov, the German geodesist Hammer suggested in 1892 that
the transverse Lambert azimuthal equal-area should be treated in the same
way. Once again, the formulae are taken from Sec. XI.2:

x = R
√
2sinλcosϕ√
1+ cosϕ cosλ

y = R
√
2sinϕ√

1+ cosϕ cosλ

We would like to preserve the equivalency, of course. It is clear that if
we use the renumbering ζ = λ/2, all areas will be reduced to their half. It
follows that stretching the area of the map in either (but not both) direc-
tions by a factor of two will restore equivalency. Since the longitudes are
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renumbered by compressing the map in the horizontal direction, it follows
that it makes sense to stretch in the x direction.

x = 2R

√
2sin λ

2 cosϕ√
1+ cosϕ cos λ2

y = R
√
2sinϕ√

1+ cosϕ cos λ2

The combination of the renumbering and the stretching preserves areas,
the Hammer projection is equal-area. The projection is very popular, and
despite being equal-area and pointed-polar, it does not have annoying
levels of angular distortion. The Earth is shown in an elliptical frame
similar to that of the Mollweide projection (Fig. XXVIII.2).

Although the bimeridians run through the pole with a cusp, and this
causes a minor aesthetic problem when rotating the graticule, it is common
to use this projection in simple oblique aspect. The first such application
was made in 1926 by the Hungarian geographer Pécsi, who rotated the
centre of projection to latitude 25° N so the favourable distortions fell on
the grain-producing countries. The projection appeared as agricultural
maps of Hungarian school atlases between the two world wars and can be
considered the first oblique non-conical projection in the world. Among
the international examples, we may mention the Nordic projection of the
Scottish cartographer Bartholomew, centred at 45° N, 0° E. The Briese-

meister projection differs from this only in that the centre is at 10° E and,
in order to obtain better angular distortions, the projection is reduced by a
factor of

√
7/8 in the x direction, and stretched by the reciprocal in the y

direction to preserve areas.

XXVIII.2 Winkel III projection

The Aitoff projection already shows the Earth in a quite favourable way,
but at higher latitudes the angular distortion is still too large. We are
reminded of how much the unfavourable sinusoidal projection could be im-
proved by simply blending with another map. Could this also do some good
with our mapping? The Winkel III (also known as the Tripel) projection is
the blend of the Aitoff projection and the equirectangular projection:

x =
R
2

�λcosϕs + 2arccos
(
cosϕ cos

λ
2

) sin λ
2 cosϕ√

1− cos2ϕ cos2 λ2
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(a) Normal

(b) Simple oblique (Pécsi projection)

(c) Simple oblique, rescaled (Briesemeister projection)

Figure XXVIII.2: Hammer projection
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y =
R
2

�ϕ + arccos
(
cosϕ cos

λ
2

) sinϕ√
1− cos2ϕ cos2 λ2


The standard parallel ϕs of the cylindrical was proposed by Winkel to be
∼ 50°27′35′′, like his other projections, but in practice, the choice ϕs = 40°
was adopted at Bartholomew’s suggestion.

Figure XXVIII.3: Winkel III projection (ϕs = 40°)

This aphylactic projection dates from 1921. Applied to a world map,
it is the least distorted of the common projections (Fig. XXVIII.3), and is
very favourable, especially for geographic maps.* This mapping started to
spread rapidly first in Central Europe, and is now among the most pop-
ular projections worldwide. More recently it has displaced the Robinson

projection on National Geographic maps. Its only drawback is being flat-
polar.

XXVIII.3 Wagner’s modified azimuthals

The derivation showed that the Hammer projection can be understood as
an Umbeziffern version of the transverse Lambert azimuthal equal-area. In
Sec. XXIII.3, it was deduced that the equal-area Wagner transform can be
expressed in general by the functions ψ = arcsin(msinϕ) and ζ = nλ. The
Hammer projection can then be obtained by choosing m = 1 and n = 1/2.
Of course, other values for n can be chosen to obtain additional equal-area

* The fact that a projection has low distortion does not mean that it should be applied
everywhere. Unfortunately, this mapping is also found in time zone maps (where meridian
convergence is confusing), thematic maps of global relations (where you cannot properly
connect America to Asia) and school atlases (where you should not apply a flat-polar
projection). That being said, rather this otherwise favourable mapping should be used
beyond its merits than, for example, the van der Grinten I projection. . .
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projections. If we do not insist on pointed poles, we can choose a number
less than 1 for m.

The Wagner VII projection shown in Fig. XXVIII.4 is an equal-area
mapping with very favourable distortions. Wagner’s goal was to make
the length of the pole line approximately half that of the Equator, so he
renumbered the latitudes so that the Pole was mapped to latitude 65°.
Hence,m = arcsin(65°). Furthermore, Wagner multiplied the longitudes by
n = 1/3. He restored equivalency as usual by multiplying both coordinates
with 1/

√
mn. The projection is one of the best among equal-area world maps,

but its strong disadvantage is the concave, curved pole-line. Although it
was created in the early 20th century, its popularity only started to grow in
the 21st century.

(a) Projection VII

(b) Projection IX

Figure XXVIII.4: Wagner’s Umbeziffern transverse azimuthal projections

Similarly, for the transverse azimuthal equidistant, the Aitoff projection
is not the only possibility, but here we would like to preserve the equidistant
central meridian. Therefore, we use the simpler function ψ = mϕ to re-
number the latitudes. In the Wagner IX projection, the goal is to achieve
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a similar appearance to the Winkel III projection, which was popular at
that time. This can be achieved by choosing m = 7/9 and n = 5/18. The
stretching in the y direction is constrained by the equidistant central me-
ridian (1/m), but in the x direction we choose only 0·88/n. The projection
has favourable distortions but has an unusual frame. It has a very low
popularity.

XXVIII.4 Retroazimuthal mappings

The Littrow projection discussed in Sec. XXVII.1 has already been of much
interest from a theoretical point of view, and we now highlight its practical
usefulness. In this projection, if a point is connected to any point of the
central meridian then the inclination of the section is equal to the azimuth
of the orthodrome connecting the two points. While azimuthal projections
preserve the azimuth of the orthodromes starting from the centre of pro-
jection, mappings which show the azimuth of the orthodromes going back
to the centre are called retroazimuthal projections. Such projections are
suitable for navigational (which way to turn the ship to return to the centre
of projection) or telecommunicational (which way to turn the antenna to
see the tower at the origin) purposes.

We see an interesting application of retroazimuthal projections in Muslim
culture, where it is important to read the direction to Mecca correctly. Here
again, the back azimuth of the orthodrome is sought. The problem has
given rise to several projections. In the Craig projection, the meridians
are equal-spaced vertical lines, so the azimuth to Mecca can be read with
respect to any meridian (Fig. XXVIII.5). The Hammer retroazimuthal
projection is equidistant in orthodromes starting from the origin. Known
retroazimuthal projections have significant distortions and, because of
overlapping, generally cannot represent a large area, and are therefore only
recommended for special map themes. Retroazimuthal projections can be
replaced by the more favourable oblique stereographic projection, but in
the latter case the back azimuth to the metapole is measured relative to the
curved meridians and not to the vertical direction.

XXVIII.5 Projections of Raisz
The flat map sheet not only distorts the surface of the Earth, but also gives
the reader the false impression that the continents on the spherical surface
are actually flat. However, some projections, including the orthographic
one, are particularly well suited to show the three-dimensional sphere.
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Figure XXVIII.5: Craig projection centred on Mecca

Raisz, a Hungarian cartographer living in America, believed that the ortho-
graphic projection could be considered distortion-free, since one sees the
mapped image spatially, as if looking at a globe.

A major disadvantage of orthographic projection is that it cannot repres-
ent an area larger than a hemisphere. Raisz has resorted to a trick. He first
mapped the sphere onto a variety of surfaces (e.g., very flattened ellipsoid
or bean-shaped manifold). These projections had moderate distortions
due to the curvature of the surface being close to that of the sphere. In a
second step, the spherical surface mapped onto the manifold was presented
in an oblique orthographic projection. The Armadillo projection became
Raisz’s most popular mapping, which maps the sphere onto the surface of
a degenerate torus (doughnut-shaped solid) as an intermediate surface. In
the projection shown in Fig. XXVIII.6, Antarctica and New Zealand cannot
be represented, all graticule lines are mapped to arcs of ellipses.

XXVIII.6 Star projections

Normal aspect azimuthals are suitable for the Northern Hemisphere, but
their distortion is unacceptable in the Southern Hemisphere. Therefore, it
was recommended to map parts of the Southern Hemisphere in their own
projection with a different central meridian, as in the Goode projection. The
projections thus formed will have a characteristic shape of a star or a flower
(Fig. XXVIII.7). In order to preserve the concentricity of the parallels, the
‘petals’ of the map are chosen to be a pseudoconic projection (e.g. Bonne

projection). The boundary between the azimuthal and the pseudoconic
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Figure XXVIII.6: Armadillo projection

mappings is not necessarily the Equator, and the pseudoconic projection
must be modified so that the meridians are continuous at the bounding
latitude.

Such projections are suitable for world maps according to their distor-
tions, but there is a high price to pay for favourable distortions: discontinu-
ities appear everywhere throughout the projection, and adjacent areas are
moved away from each other. In general, the more discontinuities there are
in a map, the more the distortions can be reduced. An important rule is
to place discontinuities away from areas of interest (e.g. in the middle of
oceans for an economic map). Such maps can be used with their unusual
frames for decorative and eye-catching purposes, e.g. on atlas covers, wall
maps, emblems, etc. Examples include the Berghaus, Bartholomew, and
William-Olsson projections.

Figure XXVIII.7: William-Olsson projection (equal-area)
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Exotic map projections

XXIX.1 Conformal projections

So far, we have seen notably few conformal projections. Could not
we discover new conformal mappings by transforming our existing
conformal maps using a differentiable function R

2 → R
2 written in the

form u(x,y),v(x,y)?
It is known from Tissot’s theory (Sec. VIII.1) that such mappings are

composed of affine transformations of infinitesimal areas, i.e. if the point
(x0, y0) is mapped to (u0,v0), then the image of the point (x0 +∆x,y0 +∆y)
very close to it can be written by a local linear approximation of the function.
This approximation can be decomposed into the product of the small vector
(∆x,∆y) and a matrix, and a translation of the resulting vector:(

u
v

)
≈

u0 + �u
�x∆x+ �u

�y∆y

v0 + �v
�x∆x+ �v

�y∆y

 =
(
u0
v0

)
+

�u�x �u
�y

�v
�x

�v
�y

(∆x∆y
)

This mapping is conformal if and only if the matrix rotates all possible
arms by the same angle δ (local similarity transform). That is, the matrix
can be decomposed into a magnification and a rotation. It follows that the
matrix must be equal to the product of a scalar and the rotation matrix of
angle δ: (

scosδ s sinδ
−s sinδ scosδ

)
=

�u�x �u
�y

�v
�x

�v
�y


It is clear that the equation above can only be satisfied if the main diag-

onal of the right matrix has identical values, while the elements of the anti-
diagonal are opposite:

�u

�x
=
�v

�y
and

�u

�y
= −�v

�x

This is known as the Cauchy–Riemann differential equation, a necessary
condition for conformal mappings. The only problem is if all four partial
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derivatives are zero: although the differential equation is satisfied, the
original equation can not be solved for the angle of rotation.

Planar coordinates x,y can be considered as the real and imaginary parts
of a complex number known from higher mathematics, i.e. the original
coordinates can be described by the complex number z = y + ix, while the
new ones by w = v + iu, where i is the imaginary unit, i2 = −1. Then w(z) is
a complex function C→ C. Assuming that w(z) is differentiable, applying
the chain rule, the formula for the derivative of sums, and (−i)× i = −i2 =
−(−1) = 1:

�v

�y
+ i
�u

�y
=
�w

�y
=

dw
dz

�z

�y
=

dw
dz
× 1

�u

�x
− i
�v

�x
= −i

(
�v

�x
+ i
�u

�x

)
= −i

�w

�x
= −i

dw
dz

�z

�x
= −i

dw
dz
× i

That is:
�v

�y
+ i
�u

�y
=
�u

�x
− i
�v

�x

The Cauchy–Riemann differential equation follows from the equality
of the real and imaginary parts. Each conformal mapping can be generated
from another conformal projection by a function that is differentiable and has
a non-zero derivative on an open subset of the complex plane. Astonishingly,
any (non-constant) differentiable function can be used to transform an
existing conformal projection, and the result is also conformal; indeed, all
conformal mappings can be obtained from any conformal projection by
using the corresponding differentiable function!*

Any smooth function can be approximated to any precision by its Taylor

polynomial, i.e. any conformal projection can be approximated by complex
polynomials.† We can approximate, for example, the projection with the
lowest possible distortion, the isocols of which, following Chebyshev, is
known to follow the boundary of the area. In this case, it is useful to
start with a well-chosen transverse or oblique stereographic map. For
example, the Miller modified stereographic projection achieves with a
cubic polynomial that the isocols are oval instead of circular, and can

* Real functions that are differentiable are not necessarily differentiable as complex
functions, but common ones (polynomials, trigonometric, exponential and logarithmic
functions) are complex-differentiable.

† This means that for a polynomial transformation (Sec. XVIII.3) between two con-
formal maps, it is preferable to use complex polynomials rather than real ones, because in
this way angles are not distorted.
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therefore be applied to such areas (e.g. Africa and Europe, Pacific Ocean).
In the topographic projection of Madagascar, this method is also used to
ensure that the isocols of the Gauss–Schreiber projection are not vertical
but follow the oblique placement of the island. Although the method
has been known for a long time and provides much better projections for
geodetic purposes than currently known, it is mostly rejected.*

Another application is on world maps. It is known that the sphere is
mapped onto a disk by the Lagrange projection, and the hemisphere by
the stereographic projection. German mathematician Schwarz introduced

* For Hungary, Juhász derived the best conformal map in this way.

(a) Miller modified stereographic projection

(b) Lee world in ellipse projection

Figure XXIX.1: Some conformal non-conical projections
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(c) Peirce projection

(d) Spilhaus projection (plagal aspect)

Figure XXIX.1: (contd.)
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the possibility of mapping the disk onto any polygon by means of certain
differentiable (i.e. conformal) complex functions. Although these func-
tions are all brain-racking elliptic integrals, in the early 20th century, the
American mathematician Adams and in the 1970s, the New Zealander geo-
desist Lee conformally mapped the sphere or the hemisphere into countless
shapes (e.g. rectangle, ellipse, triangle, rhombus). Fig. XXIX.1 shows the
oldest such projection by Peirce in 1879, with the Northern Hemisphere
represented as a square. The Southern Hemisphere is mapped using the
same projection, but is divided into four congruent parts attached to the
sides of the Northern Hemisphere. Similar mappings are useful when it is
important that our map fills a certain frame.

The only thing more complicated than the foregoing is to use such pro-
jections in plagal aspect. Spilhaus created his projection to represent the
world ocean in 1979. This is the Adams world in square projection rotated.

XXIX.2 Polyhedral projections

In the vast majority of cases, our projections map onto a plane, with a few
very rare perspective projections that may map to a cylinder or a cone.
However, these surfaces do not effectively approximate the shape of a
sphere. Solids bounded by flat polygonal faces, also known as polyhedra,
can be unfolded to the plane. Because of the perfect symmetry of the
sphere, regular polyhedra, whose faces are all congruent regular polygons,
are the most important for mapping applications.

In contrast to regular polygons, there are only five regular polyhedra
(Fig. XXIX.2): the tetrahedron, consisting of four triangles; the hexahedron
(cube), bounded by six squares; the octahedron, containing eight triangles;
the dodecahedron, consisting of twelve pentagons; and the icosahedron, con-
sisting of twenty triangles.

Figure XXIX.2: Regular polyhedra

Projections mapping onto a polyhedron are called polyhedral projections,
but the term polyhedric projection is used to describe a pseudocylindrical
mapping (Sec. XXI.3). Their idea comes from Dürer. In addition to their
more favourable distortions than usual mappings, they are also advant-
ageous for making polyhedron models to replace globes. They have the
disadvantage, however, that discontinuities are created when certain edges
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are cut while sheets are unfolded. For polyhedral projections, we expect
that the representation will not break along the edges of the polyhedron:

• The inverse images of each polyhedron face, i.e. the spherical polygons
corresponding to tiling of the polyhedron, must be mapped completely
filling the polyhedron face, so the bounding orthodromes are mapped
to straight lines.

• The lines crossing the edges shall continue at the corresponding point
on the adjacent polyhedron face.

A trivial solution to these complex conditions is the gnomonic projection,
which maps all orthodromes, including the inverse images of the polyhed-
ron edges, to straight lines. The distortions will then be significant at the
polyhedron vertices. Of course, other complicated mappings can be used,
such as the equal-area polyhedral projection. The previously studied com-
plex elliptic integrals can form not only circles but also regular spherical
polygons into planar polygons conformally, so Adams and Lee have also
applied their conformal mappings to polyhedra.

The significance of the tetrahedron is that it can be formed into a rect-
angle by unfolding its sheets, cutting one sheet into halves and rearranging,
making it convenient for printed maps, but it does not effectively approx-
imate the sphere. The cube would be better, but its sheets are difficult to
unfold favourably from a cartographic point of view. The octahedron is
considered suitable because its edges lie on the Equator and on every 90°
meridians. When the central meridian is chosen wisely, the polyhedron
is unfolded with cuts only slightly affecting lands. This results in special
butterfly-shaped maps. The idea originated from the American architect
Cahill, who produced an almost equal-area, a gnomonic, and a conformal
version in 1909 (Fig. XXIX.3). The idea was later developed further by
Keyes and then Waterman with their composite aphylactic projections.*

The much more spherical dodecahedron can be unfolded with more
cuts, and this is even more significant for the icosahedron. Still, since the
icosahedron has the most faces, Fuller’s Dymaxion projection (Fig. XXIX.4)
from 1954 uses it in plagal† aspect. The mapping is not gnomonic, but is
equidistant along the edges of the polyhedron, though due to the small

* From time to time, the spectacularly favourable distortions of polyhedral projections
are rediscovered and all sorts of tabloid articles are written about them. Their authors are
typically not cartographers. The media are keen to pick up on these unusual maps as if
they were some sort of ground-breaking novelty and the most accurate maps possible; but
the concept is nearly 500 years old, and it is important to be aware of their drawbacks (e.g.
discontinuities).

† Even for polyhedral projections, the aspect with the simplest description is considered
normal. In general, regular polyhedra are normal if the pole falls on the midpoint of
any edge. Exceptions are the cube, where in the normal aspect, the pole is at the centre
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Figure XXIX.3: Cahill conformal projection

area of the icosahedron faces, this has little effect on the map. There are no
discontinuities in the continents, but this requires cutting some sheets in
halves and rearranging them.

Figure XXIX.4: Dymaxion projection

XXIX.3 Projection analysis

To georeference a map, we need to know the projection of the map with
all its parameters. While this information is available in the case of to-
pographic maps, such information is shallow, if it is available at all, in

of a face, and the octahedron, where pole is mapped to a vertex in normal aspect. The
transverse aspect is not defined for polyhedral projections, but aspects where the the pole
is mapped to a vertex or the midpoint of a face, on an edge or an angular bisector are
highlighted. The name for the general aspect remains plagal.

255



XXIX. Exotic map projections

the map surround of general maps. Determining the otherwise unknown
projection of a map is called projection analysis.

On large- and medium-scale maps, the suitable mappings differ only
slightly, so it is less important to accurately determine the projection. The
application detectproj was developed for such cases, which uses control
points to adjust the parameters of several possible projections until the
projection fits the given points as best as possible. The application then
plots the projections it considers most likely on the screen. Before making a
final decision, it is worth taking into account the age of the map: some pro-
jections were only popular in certain eras, while others have only recently
been discovered.

On small-scale maps, rare projections may occur, but the characteristics
of the graticule are more visible. The Hungarian Érdi-Krausz has grouped
the most common types so that the projection of the map can be manually
determined with a few measurements. The groups are shown here with
Györffy’s modifications:
1. Parallels are parallel straight lines, meridians are parallel straight

lines.
(a) Equidistant meridians: If the geographical quadrangles are squares:

Plate Carrée. If rectangles: equirectangular.
(b) The parallels are dense near the map frame: likely equal-area cyl-

indrical, the standard parallel may be determined by measurements.
(c) The parallels are sparse near the map frame: rather Mercator, but

it may also be one of the many similar perspective mappings.
2. Parallels are parallel straight lines, meridians are curved.

(a) The meridians are arcs of circles: If a hemisphere is in a circle: Apian
I, or extended to the sphere, Ortelius. The full globe is in a circle:
van der Grinten III .

(b) The meridians are arcs of ellipses, pointed-polar: equidistant central
meridian: Apian II. Dense parallels near the poles: Mollweide or
for a hemisphere, transverse ortographic.

(c) The meridians are arcs of ellipses, flat-polar: meridians reach the
pole with an acute angle: Kavrayskiy VII. Meridians reach the pole
smooth: equidistant central meridian: Eckert III. Dense parallels
near the poles: Eckert IV

(d) The meridians consist of multiple arcs of ellipses: equally-spaced
meridians: Baranyi II. Meridians are dense near the map frame:
Baranyi IV.

(e) The meridians are sinusoids: Pointed-polar: sinusoidal. Flat-polar:
Equidistant central meridian: Eckert V. Dense parallels near the
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poles: Eckert VI or Kavrayskiy VI (or any other member of the
Mercator series).

(f) The meridians consists of sinusoids and arcs of ellipses: Goode or
Érdi-Krausz.

(g) The meridians are straight: Can be trapezoidal, Collignon or if flat-
polar then Eckert I or II. On old maps, it may also be the polyhedric
projection.

(h) Does not fit into any of the previous subgroups: loximuthal, Robin-
son, pseudocylindrical projections given in tabular forms, various
rare equal-area pseudocylindricals (e.g. Kavrayskiy V , Craster,
Putnin, š).

3. Parallels are full circles, meridians are concurrent straight lines.
(a) Equidistant meridians: azimuthal equidistant.
(b) The parallels are dense near the map frame: likely Lambert, might

also be Ginzburg’s azimuthal. If they become dense very fast: vertical
perspective, likely orthographic.

(c) The parallels are sparse near the map frame: stereographic. If they
become sparse very fast: gnomonic.

4. Parallels are full circles, meridians are curved: pseudoazimuthal or
polyazimuthal, extremely rare.

5. Parallels are arcs of circles, meridians are concurrent straight lines.
In this group, the equidistant parallels can be determined only by
measuring the radius function and the cone constant.

(a) Equidistant meridians: equidistant conic.
(b) The parallels are dense near the map frame: Pointed-polar: Lambert

equal-area conic. Flat-polar: Albers.
(c) The parallels are sparse near the map frame, pointed-polar: almost

surely Lambert conformal conic, extremely rarely it can also be some
perspective conic.

6. Parallels are arcs of circles, meridians are curved.
(a) Parallels are concentric: Almost surely Bonne or Werner, but if flat-

polar, it can be some rare pseudoconic.
(b) The radii of parallels are proportional to the cotangent of the latit-

ude: Equidistant parallels: ordinary polyconic. Rectangular graticule:
likely War Office. Straight meridians: modified polyconic. Parallels
are sparse near the pole: transverse stereographic.

(c) Does not fit into the previous ones, but equidistant Equator: The
full globe is in a circle: van der Grinten I. (in the rare projection
II, the graticule is rectangular). A hemisphere is in a circle, the full
sphere is apple-shaped: Nicolosi or van der Grinten IV. Flat-polar:
Ginzburg’s pseudopolyconics.
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(d) The Equator is not equidistant, but straight: Lagrange. The Equator
is a circle: oblique sterographic.

7. Parallels are hyperbolae, meridians are parallel straight lines: transverse
gnomonic.

8. Parallels are conic sections, meridians are concurrent straight lines:
oblique gnomonic.

9. Parallels are arcs of ellipses, meridians are arcs of ellipses: oblique
ortographic or one of Raisz’s projections.

10. Parallels are ellipses, meridians are hyperbolae: von der Mühl projec-
tions, most likely Littrow.

11. Other projections
(a) Equator and the central meridian are straight lines, the full globe

is in an ellipse: Equidistant central meridian: Aitoff. Parallels are
dense near the poles: Hammer.

(b) Equator and the central meridian are straight lines, a hemisphere
is in an circle: Equidistant central meridian: transverse azimuthal
equidistant. Parallels are dense near the poles: transverse Lambert
azimuthal equidistant.

(c) Equator and the central meridian are straight lines, the latter is also
equidistant, pointed-polar: likely transverse cylindrical.

(d) Equator and the central meridian are straight lines, the poles are
straight: Winkel III.

(e) Equator and the central meridian are straight lines, the poles are
curved: Wagner-transformed azimuthals.

(f) Only the central meridian is straight: Some oblique projection.
(g) Only the Equator is straight: Transverse conic.
(h) No axis of symmetry: Some exotic projection, most often the Cham-

berlin.
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Lesson thirty

Selecting a map projection

XXX.1 Traditional methods

After learning about so many projections, how do we choose the right one?
To decide, we need to consider the theme of the map, its purpose (e.g. wall
map, atlas sheet, field use) and the knowledge of the expected audience.

Territorial statistical data, let it be agricultural, demographic or veget-
ation, should always be presented in an equal-area projection! Similarly,
thematic maps about geoscience, on which professionals are expected to
measure areas, in particular geological, soil, and climatic maps also re-
quire an equal-area representation. The correct presentation of the extent
of countries is important on political and historical maps, but excessive
angular distortion should also be avoided on such maps intended for a
general audience, and therefore no equivalency is required if large areas
are displayed.

Maps intended for field use (tourist, navigation, topographic, etc.) should
always be conformal! To ensure measurability, we should also make partic-
ular efforts to minimize distortion of the real distances. It is also common
to make measurements of directions on geophysical (geomagnetism, tec-
tonics) and meteorological (currents, air pressure) maps, and even at the
cost of large areal distortions, we should insist on conformality!

However, in the examples not mentioned above, especially for geographic
maps, neither equivalency nor conformality is recommended. A well-
chosen aphylactic projection is always significantly more favourable than
the equal-area or conformal counterpart. Among conical projections, it is
difficult to find a better one than the equidistant mappings in meridians;
among the non-conical projections, there is no rule of thumb, but with
due care, a very favourable mapping can be found. For atlas maps, we
may deviate from the above rules, because within an atlas it is desirable to
show the same areas in the same projection regardless of the theme, and to
choose similarly distorted mappings for different areas.
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Always try to rotate the areas of favourable distortion of the projection
to the most important places for the theme! For example, when present-
ing a long railway line or a migration, the metaequator or metaparallels
should follow the path of the route. To represent effects starting from
a single point (e.g. earthquake, broadcast range of a tower), the oblique
azimuthal equidistant projection is suitable. For special purposes, we
may need a mapping with special distortions (e.g. orthodromes appear as
straight lines in the gnomonic projection, circles are mapped to circles in
the stereographic projection). For time-zone maps, meridians are always
needed to be mapped to parallel straight lines, and for the representation
of geographical zones (agriculture, vegetation, climate) straight parallels
are necessary.

The literacy of the audience is a decisive factor in deciding whether a flat-
polar projection with a more favourable distortion can be used even if areas
near the pole appear in the map. A lower level of education or aesthetic
consideration may also be the reason for a rectangular projection. Regional
maps are usually represented in a rectangular frame, but for a projection
representing a hemisphere or sphere, we are forced to use the frame of
the mapping. In this case, the shape of the map frame may be considered.
Hemispheres are represented in a circle by azimuthal projections. The
globe can also be represented in a circle (e.g. van der Grinten I), an ellipse
(e.g. Mollweide, Aitoff, Hammer), or a square (e.g. Peirce). However, map
frames of unusual shapes (e.g. Ginzburg’s projections) should be hidden by
cutting off the pole-line and repeating areas beyond the bounding meridian.

As a general rule of thumb, any conical projection is suitable for a small
area if the undistorted lines pass at least partially through the area being
plotted and the isocols are nearly parallel to the boundary of the area. In
the case of two standard parallels, it is advisable to place them between the
centre and the boundary of the area to be represented, such that they are
closer to the edge.

The complex process of map projection selection is supported by manu-
als. Ginzburg’s atlas of projection selection recommends mappings with a
favourable distortion for the typical atlas maps of Russian world atlases.
The distortions can be checked on the map sketches in the proposed pro-
jections using isocols. Its western counterpart is Snyder’s album, which
presents the projections sequentially, with ellipses of distortion and de-
tailed textual descriptions giving advice on their application. Based on
Snyder’s guidance, Šavrič wrote the application Projection Wizard, which
recommends appropriate mappings for an arbitrary geographical quad-
rangle. However, the latter only selects the best-known projections based
on the rules of thumb described above.

260



XXX. Selecting a map projection

XXX.2 The local distortion value

Once we have defined our requirements for the mapping, we want to choose
the one with the lowest possible distortion among the candidate projections.
For this purpose, it is necessary to characterize the deviation from the
distortion-free state at a point of the map by some measure (hereafter
referred to as local distortion value).

The foundations of this method were laid by the British astronomer Airy

in 1861, when he defined the areal distortion value, i.e. the deviation of p
from 1, by the formula ε2p = (p − 1)2 = (ab − 1)2. Taking squares is necessary
to eliminate negative numbers, and differentiability will be important for
the calculations, so the absolute value function would not be suitable. The
quotient b/a to characterize the angular distortion is bounded (because if
one arm of the angle falls in the 1st principal direction then i = b/a ≤ 1).
Therefore, Airy substituted its reciprocal into the formula for angular
distortion value: ε2i = (a/b − 1)2. The missing linear distortion depends
not only on the location but also on the direction,* and Jordan suggested
averaging its deviation from 1 in each direction µ: ε2l = 1/(2π)

∮
(l − 1)2dµ.

In the map, we want to minimize not only one kind of distortion but
all distortions simultaneously, so to characterize this we need to introduce
the concept of total distortion value. Airy simply measured this by taking
the arithmetic mean of the angular and areal distortion values, i.e. ε2 =
(ε2p+ε2i )/2 = [(ab−1)2+(a/b−1)2]/2. Notice that the linear distortion value is
not included in the formula for the total distortion. The reason is that linear
scale is algebraically related to angular and areal distortions, so they do not
provide any additional information in the evaluation of map distortions.
Note that while taking the average, it is not necessary to give equal weight
to angular and areal distortions if their undesirability is not equal for
the theme. Different weighting was suggested by Klingatsch. The term
leading to the complicated calculations was only used by Airy to evaluate
existing projections, choosing the simpler form ε2A = [(a−1)2 + (b−1)2]/2 to
find the projection with the lowest distortion.

Although Airy’s theory still defines the evaluation of map distortion
today, it has three serious shortcomings: Kavrayskiy complained that the
formulae do not give equal weight to increases and decreases in area. For
example, among the equally distorted p = 2 and p = 1/2, the former has a

* In fact, the angular distortion would also depend on the direction of the angle arms
if we did not require that one of the angle arms be the 1st principal direction of the
projection.
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distortion value of 1, the latter only 1/4. Bayeva has shown that the for-
mulae do not measure areal and angular distortion on a comparable scale
and therefore give misleading results, especially for weighted averaging.
Györffy showed that Airy’s simpler total distortion actually tests com-
pletely different properties of the projection than the original version of the
measure. All three shortcomings only occur in the case of large distortions,
so Airy’s formulae can be recommended for small areas.

To solve these problems, Kavrayskiy proposed the logarithm function
for the deviation from 1, which overcomes all three shortcomings. Thus,
the recommended formulae for areal, angular, linear and total distortion
values are respectively:

ε2p = ln2p = ln2(ab)

ε2i = ln2 i = ln2
b
a

= ln2
a
b

ε2l =
1
2π

∮
ln2 ldµ =

1
2π

∮
ln2

√
a2 cos2µ+ b2 sin2µdµ

ε2 =
1
2

[
ln2(ab) + ln2

a
b

]
= ln2 a+ ln2 b

The weighted average of the angular and areal distortions can be calcu-
lated also in this case.

XXX.3 The global distortion value

Unlike local distortion value, the global distortion value expresses the distor-
tions of a projection over an entire area. Of course, such calculations are
only worthwhile if the distortions are already visible to the naked eye due
to the large extent of the area represented, or if geodetic measurements
are to be made on the map. However, these two applications have quite
different requirements. Geodesists want their map measurements to be free
of distortion at any point, so the goodness of a projection is characterized
by the extrema of local distortion values in the area. In contrast, for small-
scale maps, locally outlying distortions (e.g. pole-line) are acceptable, but
the average of the distortions should be minimized. The two principles were
systematized by Meshcheryakov. Following him, the former principle is
known as the minimax, the latter one as the variational.

Distortion values of minimax type are useful in geodesy, and are thus ap-
plied primarily to conformal projections. In this case, the global distortion
is the quotient of the minimal and maximal values of the linear scale. The
existence of the conformal projection with minimum distortion of minimax
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type is stated by Chebyshev’s theorem: For any continuous region of a sphere
bounded by a twice differentiable curve, there exists a conformal projection for
which the ratio of the supremum and infimum of the linear scale is minimal.
The distortion of this projection is constant at the boundary of the domain. In
layman’s terms, the isocols of the best conformal projection run parallel to
the boundary of the domain to be plotted. Although such projections are
more commonly used for topographic purposes, it is interesting to note that
Fig. XXX.1 shows the least distorted conformal projection of minimax type
for the entire sphere. For areas of complicated shape (e.g. countries), the
best mapping for topographic purposes is approximated by transforming
the stereographic projection using complex polynomials (cf. Sec. XXIX.1).

Figure XXX.1: Eisenlohr projection

The global distortion value of variational type is the average, i.e. the
integral mean, of the local distortions over an area S:*

E2 =
1
S

W
S

ε2dS

In this formula, any local distortion value can be substituted for ε. In
particular, if we substitute Kavrayskiy’s total distortion value, we call the
global distortion value the Airy–Kavrayskiy criterion. Using the Airy–

Kavrayskiy criterion to classify the existing established projections, the
most favourable mappings for world maps include the Winkel III, Baranyi

* Some researchers believe that the distortions experienced by the map reader are not
only the result of local infinitesimal distortions, but that distortions measured on finite
shapes should be considered. However, algebraic relations and statistical tests show that
this method does not yield a fundamentally different measure from the ones of variational
type.
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IV, Kavrayskiy VII and Ginzburg’s pseudopolyconic projections, while
the worst mappings include the polyconic projections, van der Grinten’s
projections and the Bonne projection. If equal-area mappings are required,
Wagner-transformed projections and the Eckert IV projection can be
recommended for world mapping, while among the pointed-polar maps,
the Kavrayskiy V and Hammer projections are relatively preferable, but
the distortion value of equal-area maps is usually higher than that of the
aphylactic ones.

The projection with the lowest global distortion value of variational type
for a certain area S is called the ideal projection. No one has yet succeeded in
solving the second-order Euler–Lagrange differential equation required
to find the ideal projection. This does not mean that the ideal projection
cannot be approximated by a power series. Thus, it is only necessary to
determine the unknown coefficients of a polynomial such that the global
distortion value is minimal. This can be easily found by numerical methods.
An ideal projection can be interpreted not only for the whole Earth, but
also for regions, in which case the distortion of the projection is minimal
only for the selected area, outside which arbitrary distortions can occur.

Figure XXX.2: Approximation of the ideal projection

As shown in Fig. XXX.2, the ideal projection of the whole Earth is not
ideal for cartographic purposes. Indeed, the distortions are surprisingly
good, but the map frame and the mapped graticule are very disturbing,
while they can be important considerations when selecting the projection.
Following Meshcheryakov, the best projection is the mapping with the
lowest global distortion value for the represented area within a set of pro-
jections defined by a prescription. The best projection according to the
Airy–Kavrayskiy criterion is known only among cylindrical projections
(this is the equirectangular one), but according to Airy’s original, simpler
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criterion, the best projection is also known among azimuthal and conic
mappings (these are very complex, while for areas smaller than a hemi-
sphere, they are hardly distinguishable from the equidistant counterparts).

Among non-conical projections, the formulae of the best projection can
only be approximated numerically by polynomials. These projections
(when the unusual frame is discarded or clipped) provide unbeatable dis-
tortions for displaying the area. For example, the projection in Fig. XXVII.6
is the best rectangular polyazimuthal projection for representing the North-
ern Atlantic and Arctic Oceans together; Fig. XXX.3 shows the best equal-
area pseudopolyconic projection for the Indian Ocean. It may be observed
that the favourable parts of such projections can be concentrated in a
selected area, but apart from this area distortions start to increase rapidly.

Figure XXX.3: Kerkovits flat-polar equal-area pseudopolyconic projection for the
Indian Ocean

XXX.4 Final thoughts

To select the projection correctly, the cartographer applies all his/her know-
ledge about the theory of map projection simultaneously. As you can see,
there is no single recipe for finding the most appropriate mapping. Chan-
ging the projection is done with a few clicks in the appropriate program (if
the desired projection is supported by the GIS), so it is worth taking the
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XXX. Selecting a map projection

opportunity. Particularly for younger audience, the responsibility is great
because they do not have the knowledge to correct for distortions; but a
poorly chosen projection can make the interpretation of a thematic map
difficult even for the best professionals.
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Appendix A

Basic mathematical relations

Below are some formulae that can be used for the derivations in the lecture
notes. The identities given here are not exhaustive, the main focus is on
the identities that are important for cartographers.

Trigonometric identities

sin(−α) = −sinα
cos(−α) = cosα

sin(90°−α) = cosα
cos(90°−α) = sinα
sin(180°−α) = sinα
cos(360°−α) = cosα

tanα =
sinα
cosα

tan(180° +α) = tanα

cotα =
1

tanα
=

cosα
sinα

tan(90°−α) = cotα
sin2α + cos2α = 1

tan2α + 1 =
1

cos2α

1+ cot2α =
1

sin2α
sin(α ± β) = sinα cosβ ± cosα sinβ

sinα = sin
(α
2

+
α
2

)
= 2sin

α
2

cos
α
2

cos(α ± β) = cosα cosβ ∓ sinα sinβ

cosα = cos
(α
2

+
α
2

)
= cos2

α
2
− sin2

α
2

1+ cosα = 2cos2
α
2
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1− cosα = 2sin2
α
2

sinα =

(
2sin α

2 cos α2
)/

cos2 α2(
cos2 α2 + sin2 α2

)/
cos2 α2

=
2 tan α

2
1+ tan2 α2

cosα =

(
cos2 α2 − sin2 α2

)/
cos2 α2(

cos2 α2 + sin2 α2
)/

cos2 α2
=
1− tan2 α2
1+ tan2 α2

Logarithmic identities

elna = a

− lna = ln
1
a

lna+ lnb = ln(ab)

lna− lnb = ln
a
b

c lna = lnac

1
c

lna = ln c
√
a

artanhx =
1
2

ln
1+ x
1− x

artanhsinα = lntan
(
45° +

α
2

)
−artanhcosα = lntan

α
2

Derivative and antiderivative functions
The table below should be used so that the function on the right is the

derivative of the left one, and the left function is the antiderivative of right
one with respect to variable x. After integration, a constant must be added
to the result!

d
dx
→ ←

U
dx

c 0
x 1
cx c

xα αxα−1

xα+1

α + 1
xα

√
x

1
2
√
x
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ex ex

lnx
1
x

sinx cosx
cosx − sinx

tanx
1

cos2x

cotx − 1
sin2x

lntan
x
2

1
sinx

lntan
(
45° +

x
2

) 1
cosx

arcsinx
1

√
1− x2

arccosx − 1
√
1− x2

arctanx
1
1+ x2

arsinhx
1

√
1+ x2

arcoshx
1

√
x2 − 1

artanhx
1
1− x2

Derivative of compound functions
d

dx
(f + c) =

df
dx

d
dx
cf = c

df
dx

d
dx

(f ± g) =
df
dx
±

dg
dx

d
dx
f g =

df
dx
g + f

dg
dx

d
dx
f

g
=

df
dx g − f

dg
dx

g2

d
dx
f [g(x)] =

df
dg

[g(x)]×
dg
dx

(x)

df
dx

=
df
dy

dy
dx
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d
dx
f −1 =

1
df
dx [f −1(x)]

=
dx
df

Antiderivative of compound functions
In the following formulae, F is the antiderivative of f :U

cf dx = c
U
f dxU

f ± g dx =
U
f dx ±

U
g dxU

f (ax+ b)dx =
1
a
F(ax+ b) + cU

f α
df
dx

dx =
f α+1

α + 1
+ cU df

dx

f
dx = lnf + cU df

dx

1+ f 2
dx = arctanf + cU df

dx

1− f 2
dx = artanhf + cU

f [g(x)]
dg
dx

dx = F[g(x)] + cU
df
dx
g dx = f g −

U
f

dg
dx

dx

Solving a separable differential equation
If:

g(f )h(x)
df
dx

= 1

Then: U
g(f )df =

U
1
h(x)

dx+ c
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Appendix B

Rare formulae in spherical

trigonometry

In this appendix, a possible derivation for theorems in spherical trigono-
metry that were stated without proof in Sec. III.1 is given for the interested
reader. They are not discussed in the main text because they are rarely
needed, but their derivation contributes to a deeper understanding of
spherical geometry.

Denote the vectors from the centre of the sphere to the vertices of the
triangle ABC by A⃗, B⃗, C⃗! Let A⃗′ be the unit vector pointing in the direction
of the cross product B⃗× C⃗; i.e., draw a line through the centre of the sphere
perpendicular to the plane containing side a of the spherical triangle and
let the pointA′ be that point of intersection between the line and the sphere,
which is closer to A. Use a similar construction to define points B′ and C′!
The spherical triangle A′B′C′ is called the polar triangle of triangle ABC
(Fig. B.1).

a′

a′

A′

b′

b′

γ ′

α′

c′

c′

β′

c

c

b

b

a

a

β
γ

α

C′B′

A

B

C

Figure B.1: Polar triangle
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By definition, B⃗′ is perpendicular to the plane of side b, i.e., to both
vectors A⃗ and C⃗, and C⃗′ is perpendicular to the plane of side c, i.e., to both
vectors A⃗ and B⃗. It follows that A⃗ is perpendicular to both B⃗′ and C⃗′, i.e.
A⃗ is perpendicular to the plane containing side a′ subtended by the latter
two. Similarly, the perpendicularity of B⃗ and b′ as well as C⃗ and c′ can be
shown. We have now seen that the polar triangle of triangle A′B′C′ is the
original triangle ABC.

a′
C

A

b

Bc

B′

C′

α

A′

Figure B.2: The polar of angle α

In Fig. B.2, we have rotated the sphere so that the vertex A is exactly
in the front. Since A⃗ is perpendicular to the plane of side a′, from our
perspective, side a′ appears just on the perimeter of the mapped sphere. In
the figure, the blue angle between the plane of side b and B⃗′ and the green
angle between the plane of side c and C⃗′ are by definition right angles,
but they overlap each other at angle α between the planes of the two sides.
It follows that the subtended angle of a′ is less than the two right angles
(180°) by α. This gives α + a′ = 180°. By similar reasoning, β + b′ and γ + c′

are also 180°. Since the polar of the polar triangle is the original triangle,
α′ + a, β′ + b, and γ ′ + c also add up to 180°.

Formulate the spherical rule of cosines proved in Sec. III.1 for the polar
triangle.

cosc′ = cosa′ cosb′ + sina′ sinb′ cosγ ′

The corresponding sides and angles of the original and the polar triangle
add up to 180°, i.e. a′ = 180°−α, α′ = 180°−a, b′ = 180°−β etc. Substituting
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B. Rare formulae in spherical trigonometry

this:

cos(180°−γ) = cos(180°−α)cos(180°− β)
+ sin(180°−α) sin(180°− β)cos(180°− c)

It is known that sin(180° − δ) = sinδ and cos(180° − δ) = −cosδ. From
this:

−cosγ = (−cosα)(−cosβ) + sinα sinβ(−cosc)
cosγ = −cosα cosβ + sinα sinβ cosc

That is, we have proven the validity of second spherical rule of cosines.
From the spherical rule of sines presented in Sec. III.1:

sinc
sinγ

=
sina
sinα

sinc =
sinasinγ

sinα

The spherical rule of cosines applied to both sides c and a:

cosc = cosacosb+ sinasinbcosγ
cosa = cosbcosc+ sinb sinccosα

Applying the above rules of sines and cosines to the coloured trigono-
metric functions:

cosa = cosb(cosacosb+ sinasinbcosγ) +
sinb sinasinγ cosα

sinα

The third side is cancelled from the equation. The terms containing cosa
are collected on the left-hand side and then divided by sinasinb:

cosa = cosacos2 b+ sinasinb
(
cosbcosγ + sinγ

cosα
sinα

)
cosa(1− cos2 b) = sinasinb(cosbcosγ + sinγ cotα)

cosasin2 b
sinasinb

= cosbcosγ + sinγ cotα

cotasinb = cosbcosγ + sinγ cotα

This gives the cotangent four-part formula we have been looking for, which
creates a relationship between two sides and two angles.
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B. Rare formulae in spherical trigonometry

Note that, by choosing the two sides of the triangle differently or by
swapping their order on the left-hand side and rewriting the expression
on the right-hand side accordingly, there are six different forms of this
equation.

Only side a and angle α can be expressed directly from the equation. If
we need side b or angle γ , using relations sinδ = 2 tan(δ/2)/[1+ tan2(δ/2)]
and cosδ = [1 − tan2(δ/2)]/[1+ tan2(δ/2)] (by substituting side b or angle
γ for δ) and after rearranging, we obtain a quadratic equation in tan(b/2)
or tan(γ/2), respectively. This typically has two solutions, but sometimes
it gives only one solution or no solution. In the latter case, no spherical
triangle exists with the given sides and angles.
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Appendix C

Borkowski’s formula for the

latitude

In Sec. IV.3, it was shown that:

z =

√x2 + y2

cosΦ
− e2N (Φ)

sinΦ

From this, we want to express the latitude. First note that:

1
cos2Φ

=
sin2Φ + cos2Φ

cos2Φ
=

sin2Φ
cos2Φ

+
cos2Φ
cos2Φ

= tan2Φ + 1

Substitute the formula for the prime-vertical radius of curvature into
the original equation, and then start rearranging! For simplicity, let us use
the notation r =

√
x2 + y2! The point of the transformation is to remove the

root sign by moving it alone to the left-hand side, then squaring both sides;
remove the fractions by multiplying with the denominators, finally divide
by cos4Φ to transform everything to tangents.

z
sinΦ

=
r

cosΦ
− ae2
√
1− e2 sin2Φ

a2e4

1− e2 sin2Φ
=

r2

cos2Φ
− 2 rz

cosΦ sinΦ
+

z2

sin2Φ
a2e4 cos2Φ sin2Φ = r2 sin2Φ − r2e2 sin4Φ − 2rzcosΦ sinΦ

+ 2rze2 sin3Φ cosΦ + z2 cos2Φ − z2e2 sin2Φ cos2Φ

a2e4
sin2Φ
cos2Φ

= r2
sin2Φ
cos4Φ

− r2e2 sin4Φ
cos4Φ

− 2rz sinΦ
cos3Φ

+ 2rze2
sin3Φ
cos3Φ

+
z2

cos2Φ
− z2e2 sin2Φ

cos2Φ
a2e4 tan2Φ = r2 tan2Φ(1+ tan2Φ)− r2e2 tan4Φ − 2rz tanΦ(1+ tan2Φ)

+ 2rze2 tan3Φ + z2(1+ tan2Φ)− z2e2 tan2Φ
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C. Borkowski’s formula for the latitude

[(1− e2)r2] tan4Φ + [(e2 − 1)2rz] tan3Φ
+ [r2 + z2(1− e2)− a2e4] tan2Φ + [−2rz] tanΦ + z2 = 0

If we introduce variable t = tanΦ , we obtain the following quartic equa-
tion for the unknown t by denoting the terms in the square brackets of the
above equation by capital letters:

At4 +Bt3 +Ct2 +Dt +E = 0

The solution to this quartic equation is called the Ferrari method. First,
introduce a new variable u = t +B/4A by substituting t = u −B/4A. After
substitution, the equation is divided by A, the parentheses are expanded
and the terms of equal degree in u are collected, and the third-degree term
is eliminated:

u4 +
(
−3B2

8A2
+
C
A

)
u2 +

(
B3

8A3
− BC
2A2

+
D
A

)
u +

(
−3B4

256A4
+
B2C
16A3

− BD
4A2

+
E
A

)
= 0

The coefficients in parentheses are denoted by Greek letters:

u4 +αu2 + βu +γ = 0

For any v, it is true that:(
u2 +

α
2

+ v
)2

= 2vu2 − βu + v2 +αv +
α2

4
−γ

This can be checked by expanding the parentheses and arranging terms
on the left-hand side. In this way, v is cancelled, and the previous equation
is obtained. Transforming the right-hand side further:(

u2 +
α
2

+ v
)2

=
(√
2vu −

β

2
√
2v

)2
−
β2

8v
+ v2 +αv +

α2

4
−γ

Since the above equation is true for any v, let us pick that v for which
the green term is exactly zero. Then, denoting the red term by U and the
blue term by V , U2 = V 2, i.e. U2 −V 2 = 0, so (U +V )(U −V ) = 0, i.e. the
next product is zero:(

u2 +
α
2

+ v +
√
2vu −

β

2
√
2v

)(
u2 +

α
2

+ v −
√
2vu +

β

2
√
2v

)
= 0

However, the product can only be zero if at least one of its factors is zero.
From this we obtain two quadratic equations of u, whose two solutions
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will be the four solutions of the incomplete quadratic equation. Then, by
definition, the four roots of u also give four solutions to t, so the quadratic
equation is solved. In fact, we would have solved it if we knew what value
we had chosen for v. The condition was that the green term above should
be zero. Then the green term multiplied by v is also zero:

v3 +αv2 +
(
α2

4
−γ

)
v −

β2

8
= 0

We have a cubic equation, which we must solve using the Cardano

formula. Let us introduce the auxiliary variable w = v − (α2/4+ γ)/3, i.e.
substitute this: v = w+ (α2/4+γ)/3. Then, by expanding the parentheses
and collecting terms of the same degree in w, the second-degree term is
cancelled:

w3 +
[
α2

4
−γ − α

2

3

]
w+

−β28 − α
(
α2

4 −γ
)

3
+
2α3

27

 = 0

In other words, denoting the constant coefficients by letters:

w3 + Pw+Q = 0

Let w =W +Z! Then, by expanding the parentheses:

W 3 +Z3 + (3WZ + P )(W +Z) +Q = 0

Since we can freely choose one of W and Z, let 3WZ + P = 0! Then,
from the equation above and our condition (all terms cubed), we get two
equations:

W 3 +Z3 = −Q
W 3Z3 = −P 3/27

From the above equations, it follows from Vieta’s formulae that W 3 and
Z3 are two solutions of the following quadratic equation of s:

s2 +Qs − P
3

27
= 0

Solving the quadratic equation:

s1,2 =W 3,Z3 = −Q
2
±

√
Q2

4
+
P 3

27
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That is, since w = W + Z, we obtain one root of the incomplete cubic
equation:

w =
3

√√√
−Q
2

+

√
Q2

4
+
P 3

27
+
3

√√√
−Q
2
−

√
Q2

4
+
P 3

27

Our linear substitution thus returns the solution v for the original cubic
equation, from which we now know v in the two quadratic equations
derived from the incomplete quartic equation. Thus, we now have four
solutions u to the quartic equation, from which we also have solutions for t
of the original quartic equation. This is the tangent of the latitude, which
we can use even to get back the height above the ellipsoid by substituting
it back into the formulae in Sec. IV.3. Let us think about the fact that this
huge amount of computing is going on every second in that little GPS chip
in the phone!

In fact, Borkowski did not derive the quartic equation exactly in the way
outlined above. The question is still an active area of research today, how
to obtain a quartic equation that leads to numerically stable formulae.
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Appendix D

Vertical datums

3D spatial data are becoming increasingly important in GIS computing.
Therefore, it is no longer generally satisfactory to fit data only horizontally.
Thus, although altimetry and vertical coordinate systems are outside the
scope of map projection theory, the definition of the reference frame of
elevation data is becoming essential in addition to the projection and
geodetic datum. This appendix is intended to help in understanding this.

When measuring altitude, the shape of the Earth is considered to be an
ellipsoid usually only in the case of satellite navigation. This is because,
on the one hand, it is difficult to measure altitude above an ellipsoid using
field measurements and, on the other hand, it is not very useful, since the
terrestrial ellipsoid can deviate up to 100 metres from the sea level. For
this reason, the use of elevations above the ellipsoid can lead to erroneous
conclusions, for example, in flood protection applications. It is therefore
preferable to measure altitude relative to sea level.

Sea level is measured by tide gauges on the coast. Sea levels are recorded
over a number of years to eliminate the effects of weather and tide. The
average of the measured data on the tidal gauge is the mean sea level.

The sea level at rest is everywhere perpendicular to the local gravity, and
the potential energy along the water level is constant. Surfaces along which
the potential energy does not vary and is everywhere perpendicular to the
force field are called equipotential surfaces or level surfaces. Level surfaces
never cross each other, but their distance is not constant: since the gravity
is greater at the poles than at the Equator (due to the effect of centrifugal
force), the same amount of work (gaining the same amount of potential
energy) will result in a smaller difference in height at the poles than at the
Equator. This shows that the level surfaces are denser near the poles. The
level surface that lies on the mean sea level measured on the tidal gauge
is known as the geoid and is considered to be the shape of the Earth when
measuring altitude (Fig. D.1) A curve whose tangent at each point is in the
direction of gravity is called a plumb line.

Sea levels are affected by water temperature, salinity and currents. There-
fore, the geoid fixed to a particular tidal gauge follows the mean sea level
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Level surfaces
Geoid

Plumb line (direction of gravity)

Ellipsoid

Figure D.1: The shape and the gravity field of the Earth

only loosely elsewhere in the ocean. Therefore, the level surfaces fixed
to the different tidal gauges do not coincide, but the difference in height
between them does not exceed one metre. In Hungary, until the 1960s, the
Trieste (Adriatic height) and since then the Kronstadt (Baltic height) tidal
gauges have been used as the reference. In the EU, the Amsterdam height
is used when a uniform system between states is needed. Adriatic heights
are 67.5 cm and Amsterdam heights are 14 cm higher than Baltic heights.

The distance along the plumb line between the geoid and our point is the
height above sea level, denoted by H . The distance between the geoid and
the ellipsoid along the normal of the ellipsoid is the geoid undulation n. The
geoid undulation is positive if the geoid is above the ellipsoid (as it does in
most parts of Europe) and negative if it runs below it (as in Fig. D.2), its
value is usually between ±100m. The height above the ellipsoid (h) is also
measured along the normal of the ellipsoid. The angle between the normal
of the ellipsoid and the plumb line passing through our point is called the
vertical deflection.*

* Vertical deflection is also important in horizontal systems. The astronomical latitude
is the angle between the local horizontal and the Earth’s axis of rotation (the North Star),
while the geographic latitude is the angle between the normal of the ellipsoid and the plane
of the Equator. The two latitudes are not the same because, although the Equatorial plane
is perpendicular to the axis of rotation, the local horizontal and the normal of the ellipsoid
are not exactly perpendicular just because of the vertical deflection. The difference is thus
precisely the north-south component of the vertical deflection. Similarly, since we can
determine the astronomical longitude with respect to the local horizontal, its deviation
from the geographic longitude is the east-west component of the vertical deflection. It can
be seen why the regional datums used for horizontal measurements in Sec. VI.4 were
fitted to the geoid by minimizing the vertical deflection and not the geoid undulation.
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Surface of Earth

EllipsoidGeoid

Height above sea level (H)

Geoid undulation (−n)

Height above ellipsoid (h)

Vertical deflection

Mean sea level

We are here

Figure D.2: Heights above sea level and above ellipsoid

The figure shows that, given the geoid undulation, the height above sea
level can be estimated from the height above ellipsoid calculated in satellite
navigation (Sec. IV.3):

H ≈ h−n
There is no exact equality because of the vertical deflection, but the

deviation is usually less than or equal to one millimetre, so in practice
we do not need to take this into account (since geoid undulation is rarely
known with such precision).

If you go around a closed curve and add up the differences in altitude,
you would expect to get 0, since you have returned to the same point. So
it would be intuitive if

∮
dH = 0 along any closed curve. This statement

would imply (as common sense would expect) that the sum of the measured
height differences between two given points is independent of the path.
The reality is much more complicated.

Try to determine the height HC at the peak of the island marked by C in
Fig. D.3. Because of the size of the hill, we cannot do this in one step, and it
is obvious that we will not dig along the plumb line to the geoid for the sake
of measurement. The group with blue rods will go straight up from point A
to point C, while the group with green rods will first walk around the coast
to point B (not noticing any difference in elevation, so taking the elevation
of B as zero), and then level up to point C. The figure shows that the green
group has measured higher altitude up to point C, and (even if neither
group had made measurement errors) none of the height differences add
up to the height of point C! Of course, this phenomenon is only significant
at very long distances (for national surveys), but it is difficult to measure
the heights of points precisely based on levelling along different routes.
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HC

Level surface of the geoid
(sea level)

C

A B

How high is this island?

E
D

Level surface

Level surface

Level surface

Level surface

Level surface

Measured height
differences

Figure D.3: Surprising properties of height measurements

Nevertheless, we can see that the points D and E are on the same level
surface. This means that these two points could be on the shore of the
same lake, since they are horizontal to each other. Yet the elevation of point
E is higher than that of point D, i.e. water can flow up from point D to
point E! This is caused by the uneven gravitational field of the Earth: at
point E, the level surfaces are spaced less sparsely. The height difference
between different points of the water level in a mountain lake the size of
Lake Geneva can be up to half metre! This can cause unpleasant surprises
in case of flooding!

Therefore, for large-scale (national) surveys, it is better to measure the
difference in the potential energy per unit mass (geopotential). The po-
tential K is indeed independent of the measurement path, but the local
gravitational acceleration gi should always be measured in addition to the
difference in height ∆Hi .

K =
∑
i

gi∆Hi

The measured potential is thus used to obtain the height:

H =
K
ḡ

ḡ is the average gravitational acceleration along the plumb line, but
again we will not dig down into the mountain to measure this. In the case
of the traditional geometric definition of height (orthometric height in the
literature), we attempt to model this (often used abroad), while for normal
height we simplify the estimation of ḡ by assuming the Earth to have an
ellipsoidal shape and uniform mass distribution. Dynamic height assigns
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the same height to points on the same level surface, and thus has a physical
meaning. Then the value ḡ is chosen to be uniform regardless of location.
The resulting differences are of the order of decimetres, and confusion
is only problematic if engineering precision is required. However, geoid
undulation can be up to 100m, so heights above the ellipsoid should never
be confused with heights above sea level!

So when entering elevation coordinates into GIS software, pay attention
to their type (above ellipsoid or sea level, in the latter case, which type)
and their reference frame (which ellipsoid, which sea level)! The vertical
base points for Hungary are fixed to normal heights from the Kronstadt
tidal gauge. The network of vertical base points is called the vertical datum.
The conversion between the vertical datums of two countries can be done
by a simple offset if centimetre accuracy is required. However, we must
bear in mind that plate tectonics cause base points to shift over time, so
even between vertical datums of countries using the same sea level, there
may be a difference of a few centimetres over decades. To convert between
elevations above ellipsoid and sea level, our software also needs a geoid
model to calculate the geoid undulation.
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Alternative derivation of Tissot’s
theory

In contrast to the geometric proof presented in the note, I give an algebraic
proof, because this point of view fits better to the modern approach of
differential geometry. This time, Tissot’s theory is proved only for a surface
of revolution as the reference frame and a planar image.* First, consider
a coordinate system ∆n,∆m at an arbitrary point on the tangent plane of
the surface of revolution with the axes in the direction of the parallels and
meridians of the surface of revolution. Since we are considering only the
infinitely small neighbourhood of the point, we can neglect the difference
between the surface of revolution and its tangent plane. The coordinates of
a very close point are (∆n,∆m). This can be estimated from the coordinates
on the surface of revolution (due to the infinitely small distances and the
differentiability of the parametric form, we can use a linear approximation):

∆n =
dn
dλ

∆λ

∆m =
dm
dϕ

∆ϕ

From this:

∆λ =
∆n
dn
dλ

∆ϕ =
∆m
dm
dϕ

Fig. VII.1 shows that in the plane of projection, ∆x = ∆m′x + ∆n′x and
∆y = ∆m′y +∆n′y , i.e., substituting the linear approximations obtained for

* The general proof for surfaces not of revolution is possible by examining the multi-
plication of so-called metric tensors.
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E. Alternative derivation of Tissot’s theory

them (assuming the differentiability of the map projection as indicated in
Sec. VI.2):

∆x =
�x

�ϕ
∆ϕ +

�x

�λ
∆λ

∆y =
�y

�ϕ
∆ϕ +

�y

�λ
∆λ

That is:

∆x =
�x
�ϕ

dm
dϕ

∆m+
�x
�λ
dn
dλ

∆n

∆y =

�y
�ϕ

dm
dϕ

∆m+
�y
�λ
dn
dλ

∆n

Thus, the transformation between the coordinate systems ∆n,∆m on the
surface of revolution and ∆x,∆y in the plane can be described perfectly by
the matrix form of the two equations:

(
∆x
∆y

)
=


�x
�λ

/
dn
dλ

�x
�ϕ

/
dm
dϕ

�y
�λ

/
dn
dλ

�y
�ϕ

/
dm
dϕ


(
∆n
∆m

)

Suppose that the transformation above can be decomposed into a com-
position of a rotation by angle υ, a stretching of factor a in the horizontal
and factor b in the vertical direction, and then another rotation by angle
ν. The three successive transformations are formulated as a product of
matrices: (

cosν sinν
−sinν cosν

)(
a 0
0 b

)(
cosυ sinυ
−sinυ cosυ

)
The product of the previous transformation matrices:

(
acosυcosν − b sinυ sinν asinυcosν + bcosυ sinν
−acosυ sinν − b sinυcosν −asinυ sinν + bcosυcosν

)
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E. Alternative derivation of Tissot’s theory

The matrix above is assumed to describe the same transformation as the
original matrix, i.e. all four elements are the same:

acosυcosν − b sinυ sinν =
�x

�λ

/
dn
dλ

asinυcosν + bcosυ sinν =
�x

�ϕ

/
dm
dϕ

−acosυ sinν − b sinυcosν =
�y

�λ

/
dn
dλ

−asinυ sinν + bcosυcosν =
�y

�ϕ

/
dm
dϕ

We obtain a non-linear system of four equations and four unknowns
(a,b,υ,ν). Note that the above system of equations shows (if we find at least
one real solution) that every differentiable projection in the infinitesimally
small neighbourhood of an arbitrary point can be conceived of as a local
affine transformation, i.e., the existence of a real solution would prove
Tissot’s theory.

Interestingly, in general, any matrix can be decomposed into a product
of a rotation matrix, a diagonal matrix and another rotation matrix; this
is called the singular value decomposition of the matrix. The elements
of the diagonal matrix (i.e., in our particular example, the minimum and
maximum linear scales a and b) are called the singular values of the trans-
formation matrix.

Each of the four equations is squared and added together. The square
sum of the left-hand sides:

a2 cos2υcos2ν + b2 sin2υ sin2ν − 2abcosυcosν sinυ sinν
+ a2 sin2υcos2ν + b2 cos2υ sin2ν + 2ab sinυcosν cosυ sinν
+ a2 cos2υ sin2ν + b2 sin2υcos2ν + 2abcosυ sinν sinυcosν

+ a2 sin2υ sin2ν + b2 cos2υcos2ν − 2ab sinυ sinν cosυcosν

Terms in red cancel each other. Factoring the remaining terms, the
expression is simplified as follows:

(a2 + b2)(sin2ν + cos2ν)(sin2υ+ cos2υ) = a2 + b2

So the number of unknowns is reduced to two:

a2 + b2 =
(
�x

�λ

/
dn
dλ

)2
+
(
�x

�ϕ

/
dm
dϕ

)2
+
(
�y

�λ

/
dn
dλ

)2
+
(
�y

�ϕ

/
dm
dϕ

)2
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E. Alternative derivation of Tissot’s theory

Notice that this equation is equivalent to a2+b2 = h2+k2 of the geometric
derivation, since the blue and green terms are just the formulae for the
distortions along graticule lines.

Now take the original system of four unknown equations and subtract
the product of the second and third equations from the product of the first
and fourth equations, i.e. calculate the determinant of the transformation
matrix. Again, we first deal only with the left-hand sides.

− a2 cosυcosν sinυ sinν − b2 sinυ sinν cosυcosν + ab sin2υ sin2ν
+ abcos2υcos2ν + a2 sinυcosν sinυcosν + b2 cosυ sinν cosυ sinν

+ ab sin2υcos2ν + abcos2υ sin2ν

The red terms are again cancelled, the remaining terms are factored:

ab(sin2ν + cos2ν)(sin2υ+ cos2υ) = ab

So the determinant of the left-hand matrix is equal to the determinant of
the right-hand matrix:

ab =
�x

�λ

/
dn
dλ
×
�y

�ϕ

/
dm
dϕ
−
�y

�λ

/
dn
dλ
× �x
�ϕ

/
dm
dϕ

This equation is equivalent to equation ab = p = hk sinϑ of the geometric
derivation, because the right-hand side is equivalent to one of the formulae
obtained for p. This means that the areal scale of a mapping is equal to the
determinant of the matrix describing it.

We now have two equations and two unknowns left, namely a2 + b2 =
h2 + k2 and ab = 2hk sinϑ, which we solved earlier in Sec. VIII.3. Thus, the
algebraic derivation gave the same result as the geometric one. However,
from the algebraic derivation we also found that:

• Every projection can be locally described by a 2× 2matrix.
• The areal scale of the projection is the determinant of the matrix de-

scribing the transformation.
• The extremal values of the linear scales in the projection are the singu-

lar values of the matrix.
Recent research in map projections often treats distortions in this way,

because this approach sometimes gives more useful formulae for complex
reference frames.

Substituting the solutions obtained for a and b back into the original
system of equations, υ and ν can be expressed, which have an important
geometric meaning: υ, the angle of the first rotation, indicates the angle on
the reference frame between parallels and the first principal direction of
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E. Alternative derivation of Tissot’s theory

the projection. ν, the second rotation indicates the angle between the first
principal direction of the projection and the horizontal coordinate axis on
the map, i.e. it is used to construct the ellipse of distortion in the correct
direction on the map.
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Appendix F

Old projection systems in

Hungary

The stereographic projection (Sec. X.5) was used in Hungary from 1857
until the 1970s. Since this projection gives a favourable representation of
the polar region, it is advisable to use a metagraticule (Sec. V.3). However,
this is much more difficult to define on an ellipsoid than on a sphere.
Therefore, a double mapping (Sec. XI.4) was used: from the datum HD1863
based on the Bessel ellipsoid, the first projection mapped onto the old
Gaussian conformal sphere (Sec. IX.3) where the spherical latitude of the
equidistant parallel is ϕs = 46°30′, the other values are given in Tab. F.1.

We rotate the graticule. The metapole is taken at the origin (Gellérthegy).
Since the area of Hungary was much larger than the area within which the
distortions of the stereographic projection can be neglected, a metapole
was established in Transylvania on Kesztej Hill near Marosvásárhely (Târgu
Mures, ) (Tab. F.2).

Finally, the formulae of the tangent stereographic projection are applied.
Since both the auxiliary sphere and the stereographic projection are con-
formal, the result of the double mapping is also conformal. The coordinate
axes are oriented to the South and to the West (Fig. F.1). The Hungarian
stereographic projection is the oldest conformal double mapping used in
the world.

xBp

yBp

Budapest system

l = 1·0001

xMvh

yMvh

Marosvásárhely system

l = 1·0001

Figure F.1: Hungarian stereographic projections
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Table F.1: Coefficients of the conformal sphere

Notation Old auxiliary sphere New auxiliary sphere

Reference frame — Bessel ellipsoid IUGG1967 ellipsoid
Major semi-axis a 6 377 397·155m 6 378 160m
Minor semi-axis b 6 356 078·963m 6 356 774·516m
First numeric eccentricity e 0·081 696 683 121 57 0·081 820 567 940 7
Radius of the Gaussian sphere R 6 378 512·966m 6 379 743·001m

κ 1·003 016 135 133 1·003 110 007 693
n 1·000 751 489 594 1·000 719 704 936

Equidistant parallel Φs 46°32′43·410 41′′ 47°10′

Equidistant parallel ϕs 46°30′ 47°7′20·057 80′′
Prime meridian from Ferro Λ0 36°42′53·5733′′ —
Prime meridian from Greenwich Λ0 19°3′7·5533′′ 19°2′54·8584′′
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Table F.2: Central point of the metagraticule

Notation Budapest Marosvh. HÉR HKR HDR EOV

Ellipsoidal latitude Φ0 / Φc 47°29′

9·6380′′
46°33′

6·4273′′
48°42′

56·3180′′
47°8′

46·7267′′
45°34′

36·5869′′
47°8′

39·8147′′
Ellipsoidal longitude
(from Ferro, but from
Greenwich for the EOV)

Λ0 / Λc 36°42′

53·5733′′
42°3′

20·9550′′
36°42′

53·5733′′
36°42′

53·5733′′
36°42′

53·5733′′
19°2′

54·8584′′

Spherical latitude ϕ0 / ϕc 47°26′

21·1372′′
46°30’
22·9804′′

48°40′2” 47°6′ 45°31′59′′ 47°6′

Spherical longitude
(from Gellérthegy)

λ0 / λc 0° +5°20′

41·8290′′
0° 0° 0° 0°
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F. Old projection systems in Hungary

From 1936 onwards, the former ‘Civil’ coordinates were translated and
the axes of the new ‘Military’ coordinates were oriented to the North and
to the East in order to eliminate negative coordinates. The value of the
translation was 500 km for Budapest and 600 km for Marosvásárhely
(Fig. F.2; Tab. F.3). In the case of the Ivanić system found in the former
Croatia-Slavonia, the ‘Civil’ (and hence the ‘Military’) coordinates do not
have a specific projection, but can be estimated using the Cassini–Soldner

projection (Sec. XIV.2).

yBp

xBp

yMil

xMil
500 km

500
km

Figure F.2: ‘Civil’ and ‘Military’ coordinates

Because of its advantageous properties, the Mercator projection
(Sec. XIII.2) is the projection of modern Hungarian civilian topographic
maps, but it is used in oblique aspect. Its introduction in 1908 is attributed
to Fasching Antal. He rotated the points of the previous stereographic sys-
tem by 6·44′′ clockwise around Gellérthegy, so the ellipsoidal coordinates
were changed, although the Bessel ellipsoid remained the reference frame.
The new datum is HD1909.

Fasching’s cylindric system is also a double mapping: first projects onto
the old Gaussian sphere, then rotate the graticule so that the metaequator
passes through the territory of Hungary. Three origins are designated for
the territory of the country on the Gellérthegy meridian (Fig. F.3; Tab. F.2):
at spherical latitudes 45°31′59′′, 47°6′ and 48°40′2′′. Finally, the Mercator

projection was calculated. The coordinate axes here are also oriented to the
South and to the West.

The three cylindric systems are named HÉR, HKR and HDR, i.e. North,
Central, and South cylindric system. The boundaries of the three systems
followed the boundaries of the villages so that a single system was used
within each village. This projection was used exclusively for cadastral
purposes, with the civil topography using the stereographic projection
simultaneously.

In the 1970s, the need arose to use a single projection for topography and
cadastre. As the existing systems were still designed for the old Hungary, it
was felt necessary to create a new projection system adapted to the present
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x
yHDR

South cylindric zone

yHKR

Central cylindric zone

yHÉR

North cylindric zone

Figure F.3: Zonal cylindric projections

area of the country. This resulted in the introduction of the EOV, which
was described in detail in Sec. XIV.6. We must pay attention, because the
EOV uses a different reference frame, and a new Gaussian sphere (Tab. F.1).

Table F.3: False easting and false northing of ‘Military’ coordinates

Budapest Marosvásárhely Ivanić

500 000m 600 000m 400 000m

Table F.4: Constants of the cylindrical projections

Notation HÉR / HKR / HDR EOV

c −1 0·999 93
X0 0m 200 000m
Y0 0m 650 000m
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Appendix G

Projection systems in Europe

Tab. G.1 shows how some countries have tackled the issue of mapping. The
South European and Scandinavian countries not listed here generally use
the UTM projection, while in the successor states of the Soviet Union, we
still find the Gauss–Krüger coordinates with reference frame S42. Of par-
ticular interest is Germany, where no uniform system has been developed:
in the former East Germany, the 1942 system is used, while in the former
West Germany, the federal states have developed their own systems, typ-
ically with a reference frame of Bessel ellipsoid and 3° wide zones. The
purpose of the table is to illustrate the diversity, what to look out for when
using a topographic map of a foreign country, what differences there may
be from Hungarian solutions.

Two countries (Switzerland and the Netherlands) are particularly import-
ant, because while the Hungarian projections are poorly supported by GIS,
the projections of these two countries are very similar to the Hungarian
ones. The former is not a coincidence: Fasching Antal, the developer of
the zonal cylindric systems, worked in Switzerland before coming to Hun-
gary, and returned from there bringing the state-of-the-art mapping of the
era. The different standard parallel of the Gaussian sphere was a decision
taken for the Austro-Hungarian Empire: the auxiliary sphere was to be
determined once for the whole Empire, and its central latitude was chosen
to be distortion-free.
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Table G.1: Projection systems of European countries

Country Reference Projection Notes

Czechia
Slovakia

S-JSTK
(Bessel)

Křovák

(Fig. XVI.3)
Double mapping: Gaussian sphere (Φs = 49°30′,Λ0 = 24°50′), fol-
lowed by a reduced Lambert conformal conic projection in oblique
aspect. Metapole ϕ0 = 59°45′27′′, standard parallel ϕ′s = 78°30′;
reduction d = 0·9999. Axis X points to the North, Y to the West.

Romania S42
(Krasovskiy)

Stereo70
(Roussilhe

projection)

This is an oblique, non-perspective, conformal projection similar
to the UPS directly from ellipsoid to plane. Contrary to its name,
it is not stereographic, just very similar to it. The formulae used in
practice are derived from a complex series. Origin of the projection:
Φ0 = 46°,Λ0 = 25°, reduction: 0·99975, translation: 500 km

Austria MGI
(Bessel)

Gauss–
Krüger

Uses 3° zones and the prime meridian of Ferro, central meridians
28°, 31°, 34° (from Greenwich 10°20′, 13°20′, 16°20′)

Former
Yugoslavia

MGI
(Bessel)

Reduced
Gauss–
Krüger

3° zones, reduction 0·9999, central meridians 15°, 18°, 21°, 24°. In
Croatia, only one zone is used with a central meridian of 16°30′, here
and in Slovenia coordinates are now referenced to WGS84.

Ukraine S42
(Krasovskiy)

Gauss–
Krüger

3° zones

Poland
(before
2009)

S42
(Krasovskiy)

UKŁAD
(Roussilhe

projection)

A projection similar to that of Romania was used, dividing the coun-
try into four zones along the borders of the voivodeships with dis-
tinct projection origins. For some reason, the Gauss–Krüger was
used in Upper Silesia.

Poland
(after
2009)

WGS84 Gauss–
Krüger

3° zones reduced by a factor of 0·99923.
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Table G.1: (contd.)

Country Reference Projection Notes

Bulgaria
(after
2010)

BGS2005
(GRS80)

Lambert

conformal
conic and
UTM

The former top-secret (still unknown) projection has been replaced
for cadastral and topographic purposes by two different systems: the
former uses the UTM projection with a Bulgarian reference frame,
the latter uses an ellipsoidal conic projection with central meridian
25°30′ divided into two zones. The northern zone has a standard
parallel at 43°20′ and the southern zone at 42°.

Switzerland CH1903
(Bessel)

Oblique
conformal
cylindrical

This double mapping inspired the Hungarian cylindric projections.
Its origin is the Bern Observatory (Φ = 46°57′8·66′′,Λ = 7°26′22·5′′),
here is the intersection of the metaequator and the prime me-
ridian and its latitude is also the standard latitude of the Gaussian
sphere. to avoid swapping signs and coordinates, a translation of
Y0 = 600 km, X0 = 200 km was applied. From a Hungarian point
of view, this is very significant, because the principle of the EOV
differs only in that the standard latitude of the Gaussian sphere is
not at the projection origin (causing a few cm deviation), so if any
GIS software does not know the formulae of the EOV (which is un-
fortunately 99% of the software available), it usually recommends a
reparametrization of the Swiss projection.
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Table G.1: (contd.)

Country Reference Projection Notes

Netherlands Amersfoort
(Bessel)

Oblique
secant ste-
reographic

Also a double mapping, the origin this time is the fortress Amers-
foort (Φ = 52°9′22·18′′,Λ = 5°23′15·5′′). The auxiliary sphere is,
like the Swiss example, true-scale along the latitude of the projec-
tion origin. The reduction compared to the tangent stereographic
projection is 0·9999079, the axes are translated by 155 km to the
East and 463 km to the North, so x < 280 km and y > 300 km. The
projection is significant from a Hungarian point of view: it is the
most similar projection to the Budapest stereographic system, and
can be approximated to centimetre accuracy by reparametrization
(i.e. the deviation is negligible compared to the error of the datum
transformation).

France
(before
2001)

NTF
(Clarke)

Lambert

conformal
conic

Everything is French in this projection. Prime meridian at Paris,
everything is in gradians. The country is divided into three conic
projections along parallels, the standard parallels are 55g,52g, and
49g; in Corsica, 46g85c.

France
(after
2001)

RGF93
(WGS84)

Lambert

conformal
conic

Now, in line with the international trend, the French also measure
in degrees from Greenwich. The country was divided into 3° zones
along parallels and each band is represented by a separate ellipsoidal
conformal conic projection. The true-scale parallels are located
45′ north and south from the mid-latitude of the band, the central
meridian is at 3°.
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Table G.1: (contd.)

Country Reference Projection Notes

Belgium WGS84 Lambert

conformal
conic

The Belgians have recently switched from datum BD72 based
on the Hayford ellipsoid to WGS84, but the projection is un-
changed. The prime meridian passes through the Brussels Obser-
vatory (4°21′33·18′′), the conformal conic projection is true-scale at
latitudes 49°50′ and 51°10′.

United
Kingdom

OSGB1936
(Airy)

Reduced
Gauss–
Krüger

The whole country is a single zone, the central meridian is 2° W, the
reduction is about 0·9996 (not exactly due to the conversion between
metres and feet). The vertical axis is translated 400 km east of the
central meridian, the horizontal axis is placed 100 km north from
the intersection of the central meridian and latitude 49°

Ireland IRENET95
(GRS80)

Reduced
Gauss–
Krüger

The principle of the mapping is very similar to the British one, the
central meridian is 8° W, the intersection of this with latitude 53°30′

is at 600 km on the horizontal axis and 750 km on the vertical axis,
the reduction factor is 0·99982.
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Appendix H

Inverse formulae of oblique

projections

For GIS applications, it is often necessary to calculate inverse projection
formulae. Usually, functions for projections in the normal aspect are easy to
invert, but it is difficult to invert projections in oblique aspects. Therefore, I
will now demonstrate the necessary concepts on two examples, the inverses
of the oblique stereographic and Mercator projections.

The square of the radius function in the tangentstereographic projection:

x2 + y2 = ϱ2 = 4R2 tan2
β′

2
= 4R2

2sin2 β
′

2

2cos2 β
′

2

= 4R2
1−

(
1− 2sin2 β

′

2

)
1+

(
2cos2 β

′

2 − 1
)

= 4R2
1−

(
cos2 β

′

2 − sin2 β
′

2

)
1+

(
cos2 β

′

2 − sin2 β
′

2

) = 4R2
1− cosβ′

1+ cosβ′
= 4R2

1− sinϕ′

1+ sinϕ′

Introduce the auxiliary variable t.

t =
x2 + y2

4R2

Then substitute the corresponding oblique formulae from Sec. V.3 for
sinϕ′ into the previous equation.

t =
1− sinϕ sinϕ0 − cosϕ cosϕ0 cos(λ−λ0)
1+ sinϕ sinϕ0 + cosϕ cosϕ0 cos(λ−λ0)

t + t sinϕ sinϕ0 + t cosϕ cosϕ0 cos(λ−λ0)
= 1− sinϕ sinϕ0 − cosϕ cosϕ0 cos(λ−λ0)

cosϕ cos(λ−λ0)(t cosϕ0 + cosϕ0) = 1− sinϕ sinϕ0 − t − t sinϕ sinϕ0

cosϕ cos(λ−λ0) =
1− t − (1+ t) sinϕ sinϕ0

(1+ t)cosϕ0
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H. Inverse formulae of oblique projections

This is written into the formula for y calculated in Sec. X.5 so that λ is
fortunately cancelled.

y = −2R
sinϕ cosϕ0 − sinϕ0

1−t−(1+t) sinϕ sinϕ0
(1+t)cosϕ0

1+ sinϕ sinϕ0 + cosϕ0
1−t−(1+t) sinϕ sinϕ0

(1+t)cosϕ0

= −2R
(1+t) sinϕ cos2ϕ0−(1−t) sinϕ0+(1+t) sinϕ sin2ϕ0

(1+t)cosϕ0
(1+t)+(1+t) sinϕ0 sinϕ+(1−t)−(1+t) sinϕ sinϕ0

(1+t)

= −2R
(1+ t) sinϕ − (1− t) sinϕ0

2cosϕ0

From this, ϕ can be expressed simply:

y cosϕ0 = −R(1+ t) sinϕ +R(1− t) sinϕ0
R(1+ t) sinϕ = R(1− t) sinϕ0 − y cosϕ0

ϕ = arcsin
R(1− t) sinϕ0 − y cosϕ0

R(1+ t)

The numerator of the projection formula for x is sin∆λ, so the formula for
cosϕ cos∆λ can only be replaced by applying the transformation sin∆λ =
tan∆λcos∆λ. After that, tan∆λ remains in the numerator, and we are
trying to express it.

x = −2R
tan(λ−λ0)

1−t−(1+t) sinϕ sinϕ0
(1+t)cosϕ0

1+ sinϕ sinϕ0 + cosϕ0
1−t−(1+t) sinϕ sinϕ0

(1+t)cosϕ0

= −2R
tan(λ−λ0)[(1−t)−(1+t) sinϕ sinϕ0]

(1+t)cosϕ0
(1+t)+(1+t) sinϕ0 sinϕ+(1−t)−(1+t) sinϕ sinϕ0

(1+t)

= −2R
tan(λ−λ0)[(1− t)− (1+ t) sinϕ sinϕ0]

2cosϕ0

Let us rearrange!

xcosϕ0 = − tan(λ−λ0)[R(1− t)−R(1+ t) sinϕ sinϕ0]

tan(λ−λ0) =
−xcosϕ0

R(1− t)−R(1+ t) sinϕ sinϕ0
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H. Inverse formulae of oblique projections

We have a formula for the red expression at the top of the column, on
the second line! If I substitute this, sinϕ is cancelled and λ can finally be
expressed unambiguously:

tan(λ−λ0) =
−xcosϕ0

R(1− t)−R(1− t) sin2ϕ0 + y cosϕ0 sinϕ0

λ−λ0 = arctan
−xcosϕ0

R(1− t)(1− sin2ϕ0) + y cosϕ0 sinϕ0

λ = arctan
−x

R(1− t)cosϕ0 + y sinϕ0
+λ0

Now it is time to calculate the inverse of the Mercator projection!
The formulae for the oblique Mercator projection given in Sec. XIII.2 are
rearranged here.

tan
x
cR

=
sinλ

tanϕ sinϕc − cosλcosϕc

e
2y
cR =

1+ sinϕ cosϕc − cosϕ sinϕc cosλ
1− sinϕ cosϕc + cosϕ sinϕc cosλ

Let t and z be the following auxiliary variables:

t = e
2y
cR

z = tan
x
cR

Then the lower equation rearranged:

t − t sinϕ cosϕc + t cosϕ sinϕc cosλ = 1+ sinϕ cosϕc − cosϕ sinϕc cosλ
cosϕ cosλ(t sinϕc + sinϕc) = 1+ sinϕ cosϕc − t + t sinϕ cosϕc

cosλ =
1− t + (1+ t) sinϕ cosϕc

(1+ t) sinϕc cosϕ

Substitute this back into the other equation.

sinλ

tanϕ sinϕc − cosϕc
1−t+(1+t) sinϕ cosϕc

(1+t)cosϕ sinϕc

= z

sinλ = z (1+t) sinϕ sin2ϕc+(1−t)cosϕc+(1+t) sinϕ cos2ϕc
(1+t) sinϕc cosϕ

= z
(1+ t) sinϕ + (1− t)cosϕc

(1+ t) sinϕc cosϕ

We know that sin2λ+ cos2λ = 1, i.e:[
z (1+t) sinϕ+(1−t)cosϕc

(1+t) sinϕc cosϕ

]2
+
[1−t+(1+t) sinϕ cosϕc

(1+t) sinϕc cosϕ

]2
= 1
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H. Inverse formulae of oblique projections

(1+ t)2 sin2ϕ(z2 + cos2ϕc) + (1− t)2(z2 cos2ϕc + 1)
+ 2(1− t)(1+ t) sinϕ cosϕc(z

2 + 1) = (1+ t)2 sin2ϕc cos2ϕ

(1+ t)2 sin2ϕ(z2 + cos2ϕc + sin2ϕc) + 2(1− t)(1+ t) sinϕ cosϕc(z
2 + 1)

+ (1− t)2(z2 cos2ϕc + 1)− (1+ t)2 sin2ϕc = 0

This is a quadratic equation in sinϕ. We divide by the leading coefficient
to prevent getting mile-long formulae.

sin2ϕ + 2
1− t
1+ t

cosϕc sinϕ +
(1− t)2(z2 cos2ϕc + 1)− (1+ t)2 sin2ϕc

(1+ t)2(1+ z2)
= 0

And then the solver formula for the quadratic equation:

sinϕ = −1− t
1+ t

cosϕc

±

√(1− t
1+ t

)2
cos2ϕc −

(1− t)2(z2 cos2ϕc + 1)− (1+ t)2 sin2ϕc
(1+ t)2(1+ z2)

= (t−1)cosϕc
1+t ±

√
(1−t)2(cos2ϕc+z

2 cos2ϕc−z2 cos2ϕc−1)+(1+t)2 sin2ϕc
(1+t)2(1+z2)

=
(t − 1)cosϕc
1+ t

±

√[
−(1− t)2 + (1+ t)2

]
sin2ϕc

(1+ t)2(1+ z2)

=
(t − 1)cosϕc
1+ t

±
sinϕc
1+ t

√
4t
1+ z2

Experience has shown that the sign ± becomes + if |x/cR| < π/2, i.e., on
the hemisphere centred on the origin, − for points further away. So the
result is:

ϕ = arcsin

(t − 1)cosϕc
t + 1

±
2sinϕc
1+ t

√
t

1+ z2
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H. Inverse formulae of oblique projections

Now that we know the latitude, let us look at the longitude! We know
that tanλ = sinλ/cosλ:

tanλ =
z(1+ t) sinϕ + z(1− t)cosϕc
1− t + (1+ t) sinϕ cosϕc

=
z(t − 1)cosϕc ± 2z sinϕc

√
t
1+z2 + z(1− t)cosϕc

1− t + (t − 1)cos2ϕc ± 2sinϕc
√

t
1+z2 cosϕc

=
±2z sinϕc

√
t
1+z2

(1− t)(1− cos2ϕc)± 2sinϕc cosϕc
√

t
1+z2

That is, the final result:

λ = arctan
±2z

√
t
1+z2

(1− t) sinϕc ± 2cosϕc
√

t
1+z2

Thus, the inverse projection is obtained. ± remains + up to a distance of
90° from the origin, and − further away.
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Appendix J

Pseudocylindricals with straight

meridians

There is a group of pseudocylindrical projections, in which not only the
parallels but also the meridians are mapped to straight lines, but the latter
do not cross parallels at a right angle. These projections were sometimes
used in the past because of their ease of construction, but they have now
been superseded. A major drawback is that the mapped meridians are
broken at the Equator.

The author of the oldest such mapping, the trapezoidal projection, is
unknown and may date from the 15th century. It is sometimes referred to
as the Donis projection. In it, the central meridian and the Equator are
equidistant, straight meridians connect the Equator and the pointed poles.
This gives the projection formulae:

x =
2
π
R�λ(π
2
− |�ϕ|)

y = R�ϕ
The projection in Fig. J.1 is aphylactic. The projection has been used

primarily for regional maps. In such cases, often the bounding parallels
were made equidistant instead of the Equator. The projection formulae then
correspond to the polyhedric projection described in Sec. XXI.3, with the
radius of curvature obviously replaced by the radius of the sphere.

Let us form an equal-area projection! To do this, first try to achieve a
correct total area by rescaling! The area of the rhombus is Rπ × 2Rπ/2 =
R2π2, which we want to scale by a factor c in both directions to obtain
4R2π:

c2R2π2 = 4R2π

c =
2
√
π

After the scaling, we apply the method of auxiliary angles, denoting
the auxiliary angle by ψ. The spherical zone is mapped to a trapezium,
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J. Pseudocylindricals with straight meridians

Figure J.1: Trapezoidal projection

its base, the Equator, is cR2π long, its height is cR�ψ, and its upper base
is 4cR(π/2 − |�ψ|). The area of the trapezium, i.e. the average of the two
bases multiplied by the height, is equal to the surface area 2π sinϕ of the
spherical zone:

2cRπ+ 4cR
(
π
2 −

∣∣∣�ψ∣∣∣)
2

cR�ψ = 2R2π sinϕ

2π�ψ − 2�ψ2 signψ =
2π sinϕ
c2

2�ψ2 signψ − 2π�ψ +
π2

2
sinϕ = 0

�ψ =
2π ±

√
4π2 − 4π2 sinϕ signψ
4signψ

=
π
(
1±

√
1− sin|ϕ|

)
2signϕ

Since �ψ < π/2, from the two solutions, we can only consider the one with
the negative sign, and the signs of ϕ and ψ are the same. Furthermore:

1− sinϕ = 1− cos(90°−ϕ)

= sin2
90°−ϕ
2

+ cos2
90°−ϕ
2

−
(
cos2

90°−ϕ
2

− sin2
90°−ϕ
2

)
= 2sin2

90°−ϕ
2

From this:

�ψ =
π

2

(
1−
√
2sin

90°− |ϕ|
2

)
signϕ
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J. Pseudocylindricals with straight meridians

Substituting this into the formulae of the trapezoidal projection, we ob-
tain the equal-area projection of the French Collignon from 1865 (Fig. J.2):

x = c
2
π
R�λ(π
2
−
∣∣∣�ψ∣∣∣) =

2
√
2

√
π
R�λsin

90°− |ϕ|
2

y = cR�ψ =
√
πR

(
1−
√
2sin

90°− |ϕ|
2

)
signϕ

Figure J.2: Collignon projection

Let us construct a blended projection of the trapezoidal and the Plate
Carrée projections.

x = c
2
π
R�λ(π2 − |�ϕ|)+R�λ

2
= cR�λ(1− |�ϕ|

π

)
y = c

R�ϕ +R�ϕ
2

= cR�ϕ
This is the Eckert I projection (Fig. J.3). Eckert did not define the

relationship between the graticule and the map scale for the mapping
given only by construction instructions, so the constant c cannot be defined.
However, we can assume that Eckert may have intended it to have correct
total area, just like his other maps. The projection consists of a square
with an area of c2R2π2, and two isosceles triangles with an area of (cRπ ×
cRπ/2)/2, while the total area should be 4R2π:

c2R2π2 + 2
c2R2π2

4
= 4R2π

3c2

2
π = 4

c = 2
√
2
3π
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J. Pseudocylindricals with straight meridians

Figure J.3: Eckert I projection

The Eckert II projection has a similar appearance (Fig. J.4), but is equal-
area. Let us introduce the auxiliary angle ψ again. This time, the mapped
spherical zone is almost the same trapezium as in the Collignon projection,
but the length of the upper base is now 2cR(π − |�ψ|).

2cRπ+ 2cR
(
π −

∣∣∣�ψ∣∣∣)
2

cR�ψ = 2R2π sinϕ

2π�ψ − �ψ2 signψ =
2π sinϕ
c2�ψ2 signψ − 2π�ψ +

3π2

4
sinϕ = 0

�ψ =
2π ±

√
4π2 − 3π2 sinϕ signψ
2signψ

=
π
(
2±

√
4− 3sin|ϕ|

)
2signϕ

Again, only the root with a negative sign is accepted as the solution,
because ψ < 90°. Finally:

x = cR�λ1−
∣∣∣�ψ∣∣∣
π

 =
√
2
3π
R�λ√4− 3sin|ϕ|

y = cR�ψ =
√
2π
3
R
(
2−

√
4− 3sin|ϕ|

)
signϕ

This projection, unlike the others, can occur extremely rarely on less old
maps. The use of pseudocylindricals with straight meridians in modern
GIS occurs only when georeferencing old maps.
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J. Pseudocylindricals with straight meridians

Figure J.4: Eckert II projection
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Appendix K

Approximate formulae of Baranyi’s
maps

Here you can read the mathematical description of the Baranyi projections
given without derivation in Sec. XXIV.1.

In the Baranyi II projection, the Equator is equidistant, i.e. 2Rπ long.
The length 2ymax of the central meridian is 7/10 times the length of the
Equator, i.e. ymax = y(90°) = 7Rπ/10 (Fig. K.1). Latitude ϕB = 70° divides
the central meridian in the ratio 13 : 5, so y(70°) = 13ymax/18 = 91Rπ/180.
The distance between the parallels increases in proportion to the distance
from the Equator, i.e. y (in the Northern Hemisphere) is a quadratic func-
tion, formulated as p�ϕ+q�ϕ2. Substituting 90° and then 70° for ϕ gives two
equations:

π

2
p+

π2

4
q =
7Rπ
10

7π
18
p+
49π2

324
q =
91Rπ
180

Solving the system of equations with e.g. Cramer’s rule, we get p =
19R/20 and q = 9R/(10π). From this (already taking into account the
Southern Hemisphere) we obtain the following projection formula:

y = R
(19
20
|�ϕ|+ 9

10π
�ϕ2)signϕ

Converting the ordinary fractions to decimal fractions, we obtain the
usual form of y.

The centre of the red arc is Rπ − r1 far away from the central meridian.
At the same time, the half-length d of the parallel ϕB is longer by r1 cosδ:

d = Rπ − r1 + r1 cosδ

Next, we define the angle δ, which is the angle between the intersection
of the frame arcs and the Equator. On the one hand, from the red arc of
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K. Approximate formulae of Baranyi’s maps

ϕB = 70°

r1
r2

Rπ

d
13
18ymax

5
18ymax

δ

η

η/2

χ

ζ

Figure K.1: Baranyi II projection

radius r1:

sinδ =
13
18ymax

r1
=
91
180Rπ

r1
On the other hand, it can be seen from the figure that, because of the

smooth connection of the arcs, the complementary angle of δ is η. From
the inscribed angle theorem, it follows that the green angle subtended by
the same chord is η/2. However, the tangent of this can be easily read off:

tan
η

2
= tan

90°− δ
2

=
5
18ymax

d
=

35
180Rπ

Rπ − r1 + r1 cosδ

From both previous equations, δ can be expressed. The two expressions
are necessarily equal:

arcsin
91
180Rπ

r1
= 90°− 2arctan

35
180Rπ

Rπ − r1 + r1 cosδ

In the denominator of the right-hand side, cosδ =
√
1− sin2δ, the pre-

viously obtained formula for sinδ can be substituted, leaving only r1 as
unknown. After a sufficient amount of trigonometric transformation, the
equation can be solved:

r1 =
Rπ
1450

(
1003− 3

√
5107
2

)
≈ 1·84466R

Substituting back into the previously derived equations, δ ≈ 59·42867°
and d ≈ 2·23514R. Since sinη = cosδ = d/r2, r2 ≈ 4·39461R can also be
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K. Approximate formulae of Baranyi’s maps

calculated. The latter is slightly smaller than the length of the central
meridian.

Let the angle between the radius to the endpoint of the parallel −70°≤
ϕ ≤ 70° and the Equator be χ! Then, from the figure:

sinχ =
y(ϕ)
r1

Furthermore, the centre of the red circle is at a distance Rπ − r1 from
axis y and the coordinate x of the endpoint of the parallel is r1 cosχ greater
than this. Since parallels are evenly divided by meridians:

x = (Rπ − r1 + r1 cosχ)
�λ
π

For latitudes |ϕ| > 70°, the mapped parallel is r2 − ymax + y far away from
the centre of the blue circle. Thus, the angle ζ to the endpoint of the
parallel is obtained:

cosζ =
r2 −

7
10Rπ+ y(ϕ)

r2
The coordinate x of the endpoint of the parallel is r2 sinζ, so:

x = r2 sinζ
�λ
π

This completes the description of projection II. Let us move on to the
discussion of projection IV. Here Baranyi did not give the relationship
between the units he used and the real distances. If we consider the origin
of the projection to be distortion-free, then, knowing that the side length
of the 10° degree quadrangles here is 12 units, it follows that one unit is
10Rπ/(180× 12) = Rπ/216 ≈ 0·0145444R. In this projection, the radius of
the red arc is r1 = 100 units. The length of the Equator is 368 units and the
length of the central meridian is 222 units. This implies that the centre of
the red circle is 84 units far away from axis y, i.e., x0 ≈ 1·22172R (Fig. K.2).

The centres of the blue and red arcs are r2 − r1 apart due to the smooth
connection. Plotting this distance on axis y from the centre of the blue arc
brings us to a distance of 111 − r1 = 11 units from the Equator (here we
have used the fact that half of the meridian is 111 units). Let us denote the
angle between the two equal sections by η!

Then the angle in the upper right corner is η/2 according to the inscribed
angle theorem, and the angle in the upper left corner is also η/2 due to
symmetry. The centres of the blue and red circles and the previously
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K. Approximate formulae of Baranyi’s maps

ϕB

r2

r1

x0

r2 − r1

yB

y0

r1

δ

η

η/2η/2

η/2

Figure K.2: Baranyi IV projection

marked point on the central meridian define isosceles triangles of leg r2−r1,
which is similar to one defined by centre of the blue circle, the North Pole
and the point where the two circles join. Because of this, the angles in the
top left corner and at the centre of the red arc are equal, so the latter is also
η/2. Its tangent (legs measured in units) is:

tan
η

2
=
111− r1
x0

=
11
84

That is, η ≈ 14·92°. This gives δ = 90° − η ≈ 75·08°. Since yB = r1 sinδ,
yB ≈ 96·63 units. Furthermore:

tanη =
84

r2 − 111
Thus, r2 ≈ 426·23 units, y0 = r2 − 111 ≈ 315·23 units.
The coordinate y is approximated by a 9 degree odd polynomial for

symmetry, where the first-degree coefficient is one (the derivative of y at
ϕ = 0 is R):

y = R(�ϕ + a�ϕ3 + b�ϕ5 + c�ϕ7 + d�ϕ9)
The coefficients are chosen to follow Baranyi’s construction instructions

given in Sec. XXIV.1. That is, at the Pole, y = 111 units, converted to
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K. Approximate formulae of Baranyi’s maps

37Rπ/72. The distance between parallels near the Pole is at the same as
near the Equator, so the derivative of y here is alsoR. At the Pole and around
latitude 45°, the parallels are evenly spaced, i.e. the second derivative of y
is zero at these two locations. From this, we obtain four equations:

R

(
π

2
+ a

π3

8
+ b

π5

32
+ c

π7

128
+ d

π9

512

)
=
37Rπ
72

R

(
1+ a

3π2

4
+ b
5π4

16
+ c
7π6

64
+ d
9π8

256

)
= R

R

(
a
6π
2

+ b
20π3

8
+ c
42π5

32
+ d
72π7

128

)
= 0

R

(
a
6π
4

+ b
20π3

64
+ c
42π5

1024
+ d
72π7

16384

)
= 0

The solution of the linear system of equations gives the coefficients
a,b,c,d. Substituting these back into the original polynomial, we can find
by solving a non-linear equation that y = yB is reached by the polynomial at
latitude ϕB ≈ 78·07°. This is important for determining the projection for-
mulae for x, because the equations for the red and blue circles are different.
They are:

xr = x0 +
√
r21 − y2

xb =
√
r22 −

(∣∣∣y∣∣∣+ y0
)2

The slower and slower descending divisions along the parallels are ap-
proximated by a logarithm:

f (λ) =
ln

(
1+A

∣∣∣�λ∣∣∣)
AB

signλ

In the choice of coefficients, we aim for f (180°) = 1. For the origin to
be distortion-free, we should obtain R by multiplying half-length of the
Equator and the derivative of f at 0. From the latter condition, B = 23π/27,
while substituting it back into the former condition, we obtain a non-
linear equation from which the approximate value of A can be calculated.
Finally, the map coordinate x is obtained as the product of f (λ) and xr or
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K. Approximate formulae of Baranyi’s maps

xb, calculated from the equation of the circle at the given latitude. The final
result is:

y = R(�ϕ + 0·073880�ϕ3 − 0·0538964�ϕ5 + 0·01560242�ϕ7 − 0·001639406�ϕ9)
x =

ln
(
1+ 0·11679

∣∣∣�λ∣∣∣)
0·31255

signλ

×


(
1·22172R+

√
2·115393R2 − y2

)
if |ϕ| ≤ ϕB√

38·4308R2 −
(
4·58448R+

∣∣∣y∣∣∣)2 if |ϕ| > ϕB
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Appendix L

Modified polyconic projection

In the modified polyconic projection described in Sec. XXVI.2, the ellips-
oidal reference frame is divided into geographical quadrangles, extending
4° in latitude and 6° in longitude up to ±60°, 12° to ±76°, and finally 24° to
±84°. Each quadrangle is mapped onto a separate plane, and each mapped
quadrangle is a distinct map sheet with its own planar coordinate system.
Adjacent sheets can be aligned along either the bounding parallels or the
bounding meridians, but the corners of the sheets are not right angles, so it
is impossible to fit four adjacent sheets without a gap.

Let Λ1,2 be the longitude of the boundaries, Φ1,2 the latitude of the
boundaries (also equidistant), in addition, Λ0 = (Λ1 +Λ2)/2 is the central
meridian andΛ3 =Λ0+2(Λ2−Λ0)/3 is one of the equidistant meridians. The
mapped meridians are straight, the radii of the circular mapped parallels
are given by the formula ϱ = N (Φ)cotΦ , which is usual for polyconic
projections. The intersection point of the parallel and the y axis is at a
distance t from the origin, t1 = 0 as shown in Fig. L.1. Find the coordinates
x,y of the point P . The coordinates of points P1,2 can be obtained from the
radius function and the equidistancy of the bounding parallels:

x1,2 =N
(
Φ1,2

)
cotΦ1,2 sin

[(
Λ3 −Λ0

)
sinΦ1,2

]
y1,2 = t1,2 +N

(
Φ1,2

)
cotΦ1,2

(
1− cos

[(
Λ3 −Λ0

)
sinΦ1,2

])
From the equations above, t2 is unknown (since, exceptionally, we have

not prescribed the equidistancy of the central meridian), so y2 is unknown.
However, the distance P1 and P2 is the same as the ellipsoidal distance:

√
(x2 − x1)2 + (y2 − y1)2 =

Φ2U
Φ1

M(Φ)dΦ

Of this, only y2 is unknown, and by expressing it and then substituting
t2 into the equation above, y2 can be calculated. Let the point P3 be the
intersection of the parallel through point P with meridian Λ3. Then, on
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L. Modified polyconic projection

x

y

Λ0

Φ1

Φ2

Φ

Λ3

P1

P2

Λ1 Λ2
Λ

P4

P5

P3

x3

ϱ

Px

ϱ

ty3

t2

Figure L.1: Modified polyconic projection (red lines are equidistant)

the one hand, from the fact that point P3 is located on the line passing
through points P1 and P2, and on the other hand, from the equidistancy of
the meridian Λ3:

x3 − x1
x2 − x1

=
y3 − y1
y2 − y1√(

x3 − x1
)2

+
(
y3 − y1

)2
=

ΦU
Φ1

M(Φ)dΦ

The system of two unknown equations can be solved by expressing x3−x1
from the lower equation and substituting it into the upper one to obtain y3.
Substituting it into the upper equation also gives x3. The green dashed line
and the radius of the parallel pointing to point P3 define a right triangle.
Its vertical leg is shorter than the radius by y3 − t. From the Pythagorean
theorem:

ϱ2 = x23 +
[
ϱ −

(
y3 − t

)]2
Since ϱ = N (Φ)cotΦ , only t is unknown, so it can be expressed after a

rearrangement.
Again, points P4 and P5 can be obtained from the equidistancy of the

bounding parallels, t2 is already known:

x4,5 =N
(
Φ1,2

)
cotΦ1,2 sin

[
(Λ−Λ0) sinΦ1,2

]
y4,5 = t1,2 +N

(
Φ1,2

)
cotΦ1,2

(
1− cos

[
(Λ−Λ0) sinΦ1,2

])
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L. Modified polyconic projection

Point P is located on the line through points P4 and P5:

x − x4
x5 − x4

=
y − y4
y5 − y4

On the other hand, the Pythagorean theorem just applied is also true
for the black dashed right triangle of hypotenuse ϱ:

ϱ2 = x2 + [ϱ − (y − t)]2

The last two equations give a quadratic system of equations with two
unknowns for the coordinates x,y, which can be solved, for example, by
substituting into each other and then utilizing the solver of quadratic
equations.

This aphylactic projection was applied to the International Map of the
World (Internetionale Weltkarte) at a scale of 1 :1000 000. The idea for
the map was conceived in 1891 and the choice of projection was decided
in 1909. Lallemand developed the construction instructions in 1911, but
Snyder published the analytical formulae only in 1982. Since 1962, the
map series has been drawn in the Lambert conformal conic projection.
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Appendix M

Index

A
Adams, Oscar Shermann (1874–

1962), American mathem-
atician, 253, 254

Agnese, Battista (1500?–1564),
Italian cartographer, 176

Airy, Sir George Biddell (1801–
1892), English astronomer,
261, 264, 299

Airy–Kavrayskiy criterion, 263,
264

Aitoff proj., 241, 242, 245, 260
Aitov, David Aleksandrovich

(1854–1933), Russian car-
tographer, 241

Albers, Heinrich Christian

(1773–1833), German car-
tographer, 135

Albers equal-area conic, 134–138,
150, 216

American (ordinary) polyconic,
222, 223

aphylactic proj., 59
Apian I proj., 173, 176, 233
Apian II proj., 174–176, 183, 185,

192, 195–197, 241
Armadillo proj., 247
aspect of proj., see metacoordin-

ates
Atlantis proj., 193, see also Moll-

weide proj.

auxiliary sphere, 78–80, 97, 98,
116, 117, 122, 123, 142,
169, 290, 293, 295–298

azimuthal equidistant, 91–93, 95,
133, 150, 179, 209, 233,
240, 241, 245, 260

azimuthal proj., 58, 82

B
Baranyi János (1932–1990), Hun-

garian cartographer, 205,
207, 209, 210

Baranyi II proj., 205, 310–312
Baranyi IV proj., 206, 210, 264,

312, 313
interrupted, 208

Bartholomew, John Christopher

(1923–2008), Scottish car-
tographer, 193, 242, 244,
248

Behrmann, Walter Emmerich

(1882–1955), German geo-
grapher, 106

Behrmann proj., 106
Bessel, Friedrich Wilhelm

(1784–1846), German geo-
desist, 49, 54, 98, 119, 142,
150, 290, 293, 295–298

blended proj., 181, 183, 185, 189,
196, 203, 240, 242, 307

Bludau, Alois (1861–1913), Ger-
man cartographer, 235
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Bonne, Rigobert (1727–1794),
French cartographer, 216

Bonne proj., 216, 218, 247, 264
Borkowski, Kazimierz M., Polish

astronomer, 39, 279
Bowring, Bernard Russell

(1925–2006), English geo-
desist, 39

Braun, Carl, SJ (1831–1907), Ger-
man astronomer, 103, 113

Braun proj., 103, see also quasi-
perspective proj.

Briesemeister proj., 242, see also
Hammer proj.

Burša–Wolf transform, see
Helmert transform

C
Cahill, Bernard Joseph Stani-

slaus (1866–1944), Amer-
ican architect, 254

cardioid proj., see Werner proj.
Cassini de Thury, César-

François (1714–1784),
French geodesist, 109

Cassini proj. (Cassini–Soldner

proj.), 109, 116, 293
Cauchy–Riemann differential

equation, 249
central cylindrical proj., 101
central meridian, 77
central parallel, 125
Chamberlin proj., 258
Chebyshev, Pafnutiy Lvovich

(1821–1894), Russian
mathematician, 74, 89,
112, 250, 263

Clairaut’s relation, 47
Clarke, Alexander Ross (1828–

1914), British geodesist,
54, 223, 298

colatitude, 82, 83, 125, 218, 219
Collignon proj., 307, 308
complex number, 99, 141, 159,

250
composite proj., 202–204, 208,

247, 254
cone constant, 125
conformal proj., 59, 70, 72, 250
conic proj., 58, 125
Craig proj., 246
Craster proj., 257
cylindrical proj., 58, 100
cylindrical stereographic, see

Braun proj.; Gall proj.

D
datum, see geodetic datum
datum transform
3 parameter, see Molodenskiy

transform
7 parameter, see Helmert

transform
grid shift, 56, 150, 155

de L’Isle, Joseph-Nicolas (1688–
1768), French carto-
grapher, 131

Deetz, Charles Henry (1864–
1946), American carto-
grapher, 223

detectproj, 256
distorted cartogram, 145
distortion value

global, 262–264
local, 261, 262

Donis proj., see trapezoidal proj.
double mapping, see auxiliary

sphere
Dürer, Albrecht (1471–1528),

German painter, 253
Dymaxion proj., 254
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E
Eckert-Greifendorff, Max

(1868–1938), German geo-
grapher, 181, 196

Eckert I proj., 307
Eckert II proj., 308
Eckert III proj., 183, 185, 189
Eckert IV proj., 191, 192, 218,

264
Eckert V proj., 182, 184, 188
Eckert VI proj., 189, 202
Eisenlohr proj., 263
EOV, 123, 124, 148, 292, 294, 297
EPSG number, 148
Equal Earth proj., 211
equal-area polyconic, 227
equal-area (equivalent) proj., 59,

66, 70
equidistant conic, 131, 150
equidistant line, 59
equirectangular proj., 108, 183,

185, 242, 264
equivalent proj., see equal-area

proj.
Érdi-Krausz György (1899–

1972), Hungarian carto-
grapher, 203, 256

Etzlaub, Erhard (1460?–1532),
German cartographer, 110

Euler–Lagrange differential
equation, 264

F
Fasching Antal (1879–1931),

Hungarian geodesist, 293,
295

first eccentricity, 15, 51, 53, 291
flattening, 15, 54, 55
Flex Projector, 211
Fuller, Richard Buckminster

(1895–1983), American

architect, see Dymaxion
proj.

G
Gall, James (1808–1895), Scottish

cartographer, 103, 106
Gall proj., 103
Gall–Peters proj., 106, 205, 211
Gauss, Carl Friedrich (1777–

1855), German mathem-
atician, 34, 49, 52, 62, 118,
139

Gaussian sphere, see osculating
sphere

Gauss–Krüger proj., 118–121,
141, 150, 153, 295, 296,
299, see also UTM

Gauss–Schreiber proj., 113, 251,
see also Gauss–Krüger

proj.
geodesic (geodesic line, ortho-

drome), 13, 19, 27, 28, 47–
50, 77, 80, 85, 116, 122,
124, 142, 179, 246, 254

geodetic datum
horizontal, 54–56, 98, 118,
123, 142, 148–150, 153–
161, 290, 293

vertical, 280–284
geographical quadrangle, 20, 39,

40, 61, 65, 185, 205, 256,
260, 312, 316

geoid, 53–55, 280–282, 284
geoid undulation, 39, 55, 282, 284
Gilbert, Edgar Nelson (1923–

2013), American mathem-
atician, 229

Ginzburg, Georgiy Aleksandrovich,
Soviet cartographer, 95,
212, 219, 237, 260

Ginzburg III proj., 219
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Ginzburg VIII proj., 212
Ginzburg’s azimuthal proj., 96,

219
Ginzburg’s pseudopolyconic

projs., 237, 260, 264
gnomonic proj., 85, 95, 254, 260
Goode, John Paul (1862–1932),

American cartographer,
202

Goode proj., 202–204, 247

H
Hammer, Ernst Hermann Hein-

rich von (1858–1925),
German geodesist, 241,
246

Hammer proj., 241, 242, 244, 260,
264

Hassler, Ferdinand Rudolph

(1770–1843), Swiss geo-
desist, 223

Helmert transform, 56, 148, 150,
151, 153, 158, 160

homolographic proj., see Moll-

weide proj.
homolosine proj., see Goode proj.
Hotine proj., 124, 149
hyperboloid proj., 146

I
IMW polyconic, see modified poly-

conic
interrupted proj., 203, 207, 247
isocol, 74, 75, 89, 91, 94, 108, 112,

131, 142, 177, 218, 219,
250, 260, 263

K
Karney, Charles F. F., English

geodesist, 49
Kavrayskiy, Vladimir Vladi-

mirovich (1884–1954),

Soviet cartographer, 198,
202, 261, 262

Kavrayskiy V proj., 257, 264
Kavrayskiy VI proj., 202
Kavrayskiy VII proj., 197, 264
Krasovskiy, Feodosiy Nikolayevich

(1878–1948), Soviet geo-
desist, 54, 119, 296

Křovák proj., 142, 296
Krüger, Johann Heinrich Louis

(1857–1923), German geo-
desist, 118

L
Lagrange, Joseph-Louis (1736–

1813), French mathem-
atician, 232, 264

Lagrange proj., 230, 251
Lallemand, Charles Jean-Pierre

(1857–1938), French geo-
desist, 223, 318

Lambert, Johann Heinrich

(1728–1777), Swiss math-
ematician, 94, 105, 113,
138, 139, 232

Lambert azimuthal equal-area, 75,
94, 95, 138, 150, 241, 244

Lambert conformal conic, 139–
142, 150, 226, 296–299,
318

Lambert equal-area conic, 138
Lambert equal-area cylindrical,

105
Lambert–Gauss proj., see Lambert

conformal conic
latitude

astronomical, 281
geocentric, 16
geographic, 16, 37–39
parametric, 16, 39
spherical, 13
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Lee, Lawrence P., New Zealander
geodesist, 118, 253, 254

Legendre, Adrien-Marie (1752–
1833), French mathem-
atician, 49

Lichtenstern proj., see polyhedric
proj.

Littrow, Joseph Johann von

(1781–1840), Austrian as-
tronomer, 232

Littrow proj., 168, 232, 246, see
also Lagrange proj.

longitude, 13, 37–39
loximutal proj., 179
loxodrome, see rhumb line
lune, 21, 110, 118

M
Maurer, Hans (1868–1945), Ger-

man cartographer, 227
McCaw, George Tyrrell (1870–

1942), British geodesist,
226

mean sea level, 280
Mendeleyev proj., 131
Mercator, Gerardus (1512–

1594), Dutch carto-
grapher, 110, 114, 177

Mercator proj., 77, 106, 110–
114, 116, 117, 122, 165,
172, 229, 293, 302, see also
Pseudo Mercator

Mercator–Sanson proj., see sinus-
oidal proj.

meridian convergence, 75, 77, 103,
169, 244

Meshcheryakov, German Alekse-

yevich (1924–1992), So-
viet geodesist, 262, 264

metacoordinates, 43–46, 60, 91,
97–99, 110, 112, 116, 117,

122–124, 142, 165–167,
219, 246, 254, 260, 290–
293, 296, 297

MGRS, 121
Miller, Osborn Maitland (1897–

1979), Scottish carto-
grapher, 114, 250

miscellaneous proj., 163
modified (IMW) polyconic, 223,

316–318
Mollweide, Carl Brandan

(1774–1825), German
mathematician, 193

Mollweide proj., 164, 193, 200–
204, 242, 260

Molodenskiy transform, 56, 148,
149, 153, 160

Müffling proj., see polyhedric
proj.

N
Natural Earth proj., 211
Nicolosi proj., 233
Nordic proj., 242, see also Hammer

proj.
normal aspect, see metacoordin-

ates

O
oblique aspect, see metacoordin-

ates
ordinary polyconic, see American

polyconic
Ortelius proj., 176
orthoapsidal proj., see Armadillo

proj.
orthodrome, see geodesic
orthographic proj., 86, 95, 105,

127, 167, 246
orthophanic proj., see Robinson

proj.
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osculating sphere (Gaussian
sphere), 57, 80, 98, 99,
122–124, 142, 290, 291,
293–297

P
Pécsi Albert (1882–1971), Hun-

garian geographer, 242
Pécsi proj., 242, see also Hammer

proj.
Peirce, Charles Sanders (1839–

1914), American mathem-
atician, 253

Peirce proj., 253, 260
perspective conic proj., 126–129,

221
perspective proj., 58, see also ver-

tical perspective proj.;
central cylindrical proj.;
quasi-perspective proj.;
perspective conic proj.

Peters, Arno (1916–2002), Ger-
man historian, see Gall–

Peters proj.
Plate Carrée proj., 108, 116, 180,

183, 307
plumb line, 280–283
polyazimuthal proj., 163, 237
polyconic proj., 127, 163, 221,

see also pseudopolyconic
proj.; American polyconic

polyhedral proj., 253, 254
polyhedric proj., 185, 223, 253,

305
Postel, Guillaume (1510–1581),

French astronomer, 91
Prime meridian, 15, 77
PROJ.4, 149
Projection Wizard, 260
Pseudo Mercator (Web Mercator),

116, 148, 150, 169

pseudoazimuthal proj., 163, 218
pseudoconic proj., 163, 214
pseudocylindrical proj., 163, 171
pseudopolyconic proj., 222, 230
Ptolemy I proj., 133
Ptolemy II proj., 169, 216, see also

Bonne proj.
Putnin, š projs., 257

Q
quasi-perspective proj., 103, 113,

127

R
radius function, 82, 95, 125, 213,

219, 221, 230, 300, 316
radius of curvature

Gaussian, 51–53, 57, 124, see
also osculating sphere

meridional, 34, 35, 51
prime-vertical, 36, 51, 276

Raisz Ervin (1893–1968), Hun-
garian cartographer, 247,
see also Armadillo proj.

rectangular polyconic (War Office
proj.), 226, 227

rectangular proj., 65, 72, 164
retroazimuthal proj., 246
rhumb line (loxodrome), 28–32,

111, 179, 180
Robinson, Arthur Howard

(1915–2004), American
cartographer, 209

Robinson proj., 209–211, 235, 244
Rosenmund proj., 122, 124, 150
Roussilhe proj., 98, 296

S
ScapeToad, 146
Schwarz, Karl Hermann Aman-

dus (1843–1921), German
mathematician, 251
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Siemon, Karl, German carto-
grapher, 179, 195, 199

Siklósi Miklós, Hungarian carto-
grapher, 147

simple polyconic, see American
polyconic

sinusoidal proj. (Mercator–San-

son proj.), 177, 180, 181,
183, 186, 195, 196, 198,
200–203, 216, 242

Snyder, John Parr (1926–1997),
American cartographer,
260, 318

Soldner, Johann Georg von

(1776–1833), German
mathematician, 116

spherical
lune, see lune
triangle, 22–27, 44–46, 272–
275

zone, 21, 171, 185, 188, 189,
192, 199, 221, 223, 305,
308

Spilhaus proj., 253
Stab proj., see Werner proj.
standard line, 60, 106
stereographic proj., 46, 75, 87–90,

95, 98, 103, 127, 141, 143,
150, 226, 230, 232, 237,
246, 250, 251, 260, 263,
290, 296, 298, 300

T
Tissot, Nicolas-Auguste (1824–

1907), French geodesist,
67–71, 75, 77, 168, 249,
285

Tissot’s indicatrix, 70, 74
Tobler, Waldo Rudolph (1930–

2018), american carto-
grapher, 179, 193

transverse aspect, see metaco-
ordinates

trapezoidal (Donis) proj., 305,
307, see also polyhedric
proj.

trapezoidal projection, 307
true-scale line, see standard line

U
Umbeziffern, 195, 197–199, 229,

240, 244, see also Wagner

transform
UPS, 97, 121, 153
Urmayev, Nikolay Andreyevich

(1895–1959), Soviet geo-
desist, 202, 211

UTM, 97, 121, 122, 148, 153, 295,
297

V
van der Grinten, Alphons Jo-

hann (1852–1921), Ger-
man cartographer, 233

van der Grinten I proj., 235, 236,
244, 260, 264

van der Grinten II proj., 257, see
also Bludau

van der Grinten III proj., 256, see
also Bludau

van der Grinten IV proj., 235
vertical deflection, 15, 55, 281,

282
vertical perspective proj., 83
Vespucci, Amerigo (1451–1512),

Italian explorer, 173

W
WAC, 142
Wagner, Karlheinz (1906–1985),

German cartographer,
195, 197, 199–201, 245
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Wagner I proj., see Kavrayskiy VI
proj.

Wagner III proj., 196
Wagner IV proj., 201
Wagner VI proj., 196
Wagner VII proj., 245
Wagner IX proj., 245
Wagner transform, 199, 201, 203,

244, 264
War Office proj., see rectangular

polyconic
Waterman proj., 254
Web Mercator, see Pseudo Mer-

cator

Werner (Stab) proj., 216
WGS84, 54, 55, 57, 97, 121, 142,

148, 149, 161, 296, 298,
299

Wiechel proj., 75, 219
William-Olsson proj., 248
Winkel, Oswald (1874–1953),

German cartographer, 244
Winkel I proj., 183
Winkel II proj., 185
Winkel III (Tripel) proj., 242, 246,

263
WKT, 148
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