Staged Compilation with Two-Level Type Theory

Andras Kovacs

Eo6tvos Lorand University

18 January 2022, TKP Workshop

Staged Compilation

Staged compilation is about writing code-generating code with good ergonomics and safety
guarantees.

Staged Compilation

Staged compilation is about writing code-generating code with good ergonomics and safety
guarantees.

Examples:
¢ (Typed) Template Haskell.
® C++ templates.
® Rust traits, macros & generics.

Staged Compilation

Staged compilation is about writing code-generating code with good ergonomics and safety
guarantees.

Examples:

¢ (Typed) Template Haskell.
® C++ templates.

® Rust traits, macros & generics.

Motivations:

® | ow-cost abstraction.
e DSLs.

® Inlining & fusion with strong guarantees.

Two-Level Type Theory (2LTT)

Comes from homotopy type theory:
® Voevodsky: A simple type system with two identity types.
® Annekov, Capriotti, Kraus, Sattler: Two-Level Type Theory and Applications.

® Motivation: meta-programming and modular axioms for HoTT.

Two-Level Type Theory (2LTT)

Comes from homotopy type theory:
® Voevodsky: A simple type system with two identity types.
® Annekov, Capriotti, Kraus, Sattler: Two-Level Type Theory and Applications.

® Motivation: meta-programming and modular axioms for HoTT.

2LTT is directly applicable to two-stage compilation.

Two-Level Type Theory (2LTT)

Comes from homotopy type theory:
® Voevodsky: A simple type system with two identity types.
® Annekov, Capriotti, Kraus, Sattler: Two-Level Type Theory and Applications.

® Motivation: meta-programming and modular axioms for HoTT.

2LTT is directly applicable to two-stage compilation.

Features:

@ Integrates a compile-time (“meta”) language and a runtime (“object”) language.

Two-Level Type Theory (2LTT)

Comes from homotopy type theory:
® Voevodsky: A simple type system with two identity types.
® Annekov, Capriotti, Kraus, Sattler: Two-Level Type Theory and Applications.

® Motivation: meta-programming and modular axioms for HoTT.

2LTT is directly applicable to two-stage compilation.

Features:
@ Integrates a compile-time (“meta”) language and a runtime (“object”) language.

® Guaranteed well-typing of code output, guaranteed well-staging.

Two-Level Type Theory (2LTT)

Comes from homotopy type theory:
® Voevodsky: A simple type system with two identity types.
® Annekov, Capriotti, Kraus, Sattler: Two-Level Type Theory and Applications.

® Motivation: meta-programming and modular axioms for HoTT.

2LTT is directly applicable to two-stage compilation.

Features:
@ Integrates a compile-time (“meta”) language and a runtime (“object”) language.

® Guaranteed well-typing of code output, guaranteed well-staging.
© Supports a wide range of runtime and meta-languages.

Two-Level Type Theory (2LTT)

Comes from homotopy type theory:
® Voevodsky: A simple type system with two identity types.
® Annekov, Capriotti, Kraus, Sattler: Two-Level Type Theory and Applications.

® Motivation: meta-programming and modular axioms for HoTT.

2LTT is directly applicable to two-stage compilation.

Features:
@ Integrates a compile-time (“meta”) language and a runtime (“object”) language.

® Guaranteed well-typing of code output, guaranteed well-staging.
© Supports a wide range of runtime and meta-languages.
® |ncluding dependent types.

Two-Level Type Theory (2LTT)

Comes from homotopy type theory:
® Voevodsky: A simple type system with two identity types.
® Annekov, Capriotti, Kraus, Sattler: Two-Level Type Theory and Applications.

® Motivation: meta-programming and modular axioms for HoTT.

2LTT is directly applicable to two-stage compilation.

Features:
@ Integrates a compile-time (“meta”) language and a runtime (“object”) language.

® Guaranteed well-typing of code output, guaranteed well-staging.
© Supports a wide range of runtime and meta-languages.
® |ncluding dependent types.

O Supports efficient staging-by-evaluation.

This talk

This talk mostly contains small programming examples.

This talk

This talk mostly contains small programming examples.

There is a paper and an implementation:

® Staged Compilation with Two-Level Type Theory, in the proceedings of ICFP 2022.

This talk

This talk mostly contains small programming examples.

There is a paper and an implementation:

® Staged Compilation with Two-Level Type Theory, in the proceedings of ICFP 2022.

For a tutorial and larger programming examples, see the implementation.

This talk

This talk mostly contains small programming examples.

There is a paper and an implementation:

® Staged Compilation with Two-Level Type Theory, in the proceedings of ICFP 2022.

For a tutorial and larger programming examples, see the implementation.

For formal details, see the paper.

Rules of 2LTT

® Two universes Ug, Uz, closed under arbitrary type formers.

® Up is the universe of runtime (object-level) types.
® Uy is the universe of compile-time (meta-level) types.

Rules of 2LTT

® Two universes Ug, Uz, closed under arbitrary type formers.

® Up is the universe of runtime (object-level) types.
® Uy is the universe of compile-time (meta-level) types.

® All type/term formers and eliminators stay within the same universe.

Rules of 2LTT

® Two universes Ug, Uz, closed under arbitrary type formers.

® Up is the universe of runtime (object-level) types.
® Uy is the universe of compile-time (meta-level) types.

® All type/term formers and eliminators stay within the same universe.
© Lifting: for A : Ug, we have A : U;.

Rules of 2LTT

® Two universes Ug, Uz, closed under arbitrary type formers.

® Up is the universe of runtime (object-level) types.
® Uy is the universe of compile-time (meta-level) types.

® All type/term formers and eliminators stay within the same universe.
© Lifting: for A : Ug, we have A : U;.
O Quoting: for A: Ug and t : A, we have <t> : fA.

Rules of 2LTT

® Two universes Ug, Uz, closed under arbitrary type formers.

® Up is the universe of runtime (object-level) types.
® Uy is the universe of compile-time (meta-level) types.

® All type/term formers and eliminators stay within the same universe.
© Lifting: for A : Ug, we have A : U;.

O Quoting: for A: Ug and t : A, we have <t> : fA.

@ Splicing: for t : 1A, we have ~t : A.

Rules of 2LTT

® Two universes Ug, Uz, closed under arbitrary type formers.

® Up is the universe of runtime (object-level) types.
® Uy is the universe of compile-time (meta-level) types.

® All type/term formers and eliminators stay within the same universe.
© Lifting: for A : Ug, we have A : U;.

O Quoting: for A: Ug and t : A, we have <t> : fA.

@ Splicing: for t : 1A, we have ~t : A.

@ <~t>=tand ~<t> =t.

Rules of 2LTT

® Two universes Ug, Uz, closed under arbitrary type formers.

® Up is the universe of runtime (object-level) types.
® Uy is the universe of compile-time (meta-level) types.

® All type/term formers and eliminators stay within the same universe.
© Lifting: for A : Ug, we have A : U;.

O Quoting: for A: Ug and t : A, we have <t> : fA.

@ Splicing: for t : 1A, we have ~t : A.

@ <~t>=tand ~<t> =t.

Staging runs all metaprograms in splices and inserts their result in the code output.

Inlined definitions

Staging input:
two : tNatg

two = <sucg (sucg zerog)>

f : Natg — Natg
f = Ax.x + ~two

Inlined definitions

Staging input:
two : tNatg
two = <sucg (sucg zerog)>
f : Natg — Natg
f = Ax.x+ ~two
Output:

f : Natg — Natg

f = Ax.x + sucq (sucg zerog)

Compile-time identity function

Input:
id:(A:U;)) = A—A
id =X Ax.x

idBoolg : Boolg — Boolg
idBoolg = Ax. ~(id (f1Boolg) <x>)

Compile-time identity function

Input:
id:(A:U;)) = A—A
id=AAx.x
idBoolg : Boolg — Boolg
idBoolg = Ax. ~(id (f1Boolg) <x>)
Output:

idBoolg : Boolg — Boolg
idBoolg = Ax.x

An alternative identity function

Input:
idg : (A:fUg) = T ~A = 1 ~A
idp = AAx.x

idBoolg : Boolg — Boolg
idBoolg = Ax. ~(idy <Boolg> <x>)

An alternative identity function

Input:

idg : (A:fUg) = T ~A = 1 ~A
idp = AAx.x

idBoolg : Boolg — Boolg
idBoolg = Ax. ~(idy <Boolg> <x>)

Note that

~A

<X>
<X>

- fUo
- Ug
T ~A:
: 1Boolg

i ~<Boolg>

U1

An alternative identity function

Input:

Note that

idy s (A:Ug) = 1 ~A = f ~A

idp = AAx.x

idBoolg : Booly — Boolg

idBoolg = Ax. ~(idy <Boolg> <x>)

Output:

idBoolp : Boolyg — Boolg
idBoolg = A x.x

~A

<X>
<X>

- fUo
- Ug
T ~A:
: 1Boolg

i ~<Boolg>

U1

map with inlining

Input:

inlMap : {AB : ftUo} — (1 ~A — ft ~B) — fi(Listo ~A) — f}(Listo ~B)
inlMap = A f as. <foldrg (X a bs. consy ~(f <a>) bs) nilg ~as>

f : Listg Natg — Listg Natg
f = Axs. ~(inlMap (An. <~n + 2>) <xs>)

map with inlining

Input:
inlMap : {AB : ftUo} — (1 ~A — ft ~B) — fi(Listo ~A) — f}(Listo ~B)
inlMap = A f as. <foldrg (X a bs. consy ~(f <a>) bs) nilg ~as>
f : Listg Natg — Listg Natg
f = Axs. ~(inlMap (An. <~n + 2>) <xs>)
Output:

f : Listg Natg — Listg Natg
f = Axs. foldrg (A abs. consg (a + 2) bs) nilg xs

Inference for staging operations

Lifting preserves negative types up to definitional isomorphism:
TTox=Ty

f((a:A) = Ba)~((a: ftA) = (B ~a))
T((a:A) xBa)=((a: ftA) x fi(B~a))

Inference for staging operations

Lifting preserves negative types up to definitional isomorphism:
T To~Ts
f((a:A) = Ba)~((a: ftA) = (B ~a))
1 ((a:A) x Ba) ~((a: ftA) x (B ~a))
We can use bidirectional elaboration & coercive subtyping along isos to infer most quotes
and splices.

inlMap : {AB: U} — (1 A — 1 B) — }(Listo A) — fi(Listo B)
inlMap = Af. foldrg (A abs. consg (f a) bs) nilg

f : Listg Natg — Listg Natg
f =inlMap (An.n +2)

Staging types

Input:

Vec : Nat; — fUg — fUg
Veczerog A=<Tp>
Vec (sucy n) A = <~A x ~(VecnA)>

Tup|e3 :Up — Ug
Tuple3 A = ~(Vec3 <A>)

Staging types

Input:
Vec : Nat; — ftUg — tUp
Veczerog A=<Tp>
Vec (sucy n) A = <~A x ~(VecnA)>
Tup|e3 :Up — Ug
Tuple3 A = ~(Vec3 <A>)
Output:

Tup|e3 :Up — Ug
Tuple3A =A x (A x (A x Tp))

Input:
map : {AB: ffUo} — (n: Naty) = (1 ~A — 1+ ~B)
— f(Vecn A) — fi(Vecn B)

mapzero; fas = <ttp>
map (sucy n) fas = <(~(f <fstg ~as>), ~(mapnf <sndg ~as>))>

f: ~(Vec2 <Natg>) — ~(Vec2 <Natp>)
fxs = ~(map2(Ax. <~x+2>) <xs>)

Input:

Output:

map : {AB: ffUo} — (n: Naty) = (1 ~A — 1+ ~B)
— f(Vecn A) — fi(Vecn B)
mapzero; fas = <ttp>
map (sucy n) fas = <(~(f <fstg ~as>), ~(mapnf <sndg ~as>))>

f: ~(Vec2 <Natg>) — ~(Vec2 <Natp>)

fxs = ~(map2(Ax. <~x+2>) <xs>)

f : Natg x (Nato X To) — Natg x (Nato X To)
fxs = (fstoxs + 2, (fstg (sndg xs) + 2, ttg))

More in the paper & implementation:
® Correctness of staging.
e Staged foldr/build fusion.
e Well-typed staged STLC interpreter.

® Monadic let-insertion.

More in the paper & implementation:

® Correctness of staging.
Staged foldr/build fusion.
Well-typed staged STLC interpreter.

Monadic let-insertion.

Possible future research:
e Staging to low-level (e.g. first-order) languages.
® Staged fusion.
® Partially static data types.

Thank you!

