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Staged Compilation

Staged compilation is about writing code-generating code with good ergonomics and safety
guarantees.

Examples:

• (Typed) Template Haskell.

• C++ templates.

• Rust traits, macros & generics.

Motivations:

• Low-cost abstraction.

• DSLs.

• Inlining & fusion with strong guarantees.
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Two-Level Type Theory (2LTT)

Comes from homotopy type theory:

• Voevodsky: A simple type system with two identity types.

• Annekov, Capriotti, Kraus, Sattler: Two-Level Type Theory and Applications.

• Motivation: meta-programming and modular axioms for HoTT.

2LTT is directly applicable to two-stage compilation.

Features:

1 Integrates a compile-time (“meta”) language and a runtime (“object”) language.

2 Guaranteed well-typing of code output, guaranteed well-staging.

3 Supports a wide range of runtime and meta-languages.
• Including dependent types.

4 Supports efficient staging-by-evaluation.
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This talk

This talk mostly contains small programming examples.

There is a paper and an implementation:

• Staged Compilation with Two-Level Type Theory, in the proceedings of ICFP 2022.

For a tutorial and larger programming examples, see the implementation.

For formal details, see the paper.
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Rules of 2LTT

1 Two universes U0, U1, closed under arbitrary type formers.
• U0 is the universe of runtime (object-level) types.
• U1 is the universe of compile-time (meta-level) types.

2 All type/term formers and eliminators stay within the same universe.

3 Lifting: for A : U0, we have ⇑A : U1.

4 Quoting: for A : U0 and t : A, we have <t> : ⇑A.
5 Splicing: for t : ⇑A, we have ∼t : A.

6 <∼t> ≡ t and ∼<t> ≡ t.

Staging runs all metaprograms in splices and inserts their result in the code output.
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Inlined definitions

Staging input:

two : ⇑Nat0
two = <suc0 (suc0 zero0)>

f : Nat0 → Nat0

f = λ x. x +∼two

Output:

f : Nat0 → Nat0

f = λ x. x + suc0 (suc0 zero0)
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map with inlining

Input:

inlMap : {AB : ⇑U0} → (⇑∼A → ⇑∼B) → ⇑(List0∼A) → ⇑(List0∼B)

inlMap = λ f as. <foldr0 (λ a bs. cons0∼(f <a>) bs) nil0∼as>

f : List0Nat0 → List0Nat0

f = λ xs. ∼(inlMap (λ n. <∼n + 2>)<xs>)

Output:

f : List0Nat0 → List0Nat0

f = λ xs. foldr0 (λ a bs. cons0 (a + 2) bs) nil0 xs
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Inference for staging operations

Lifting preserves negative types up to definitional isomorphism:

⇑⊤0 ≃ ⊤1

⇑ ((a : A) → Ba) ≃ ((a : ⇑A) → ⇑(B∼a))

⇑ ((a : A)× Ba) ≃ ((a : ⇑A)× ⇑(B∼a))

We can use bidirectional elaboration & coercive subtyping along isos to infer most quotes
and splices.

inlMap : {AB : ⇑U0} → (⇑A → ⇑B) → ⇑(List0 A) → ⇑(List0 B)
inlMap = λ f. foldr0 (λ a bs. cons0 (f a) bs) nil0

f : List0Nat0 → List0Nat0

f = inlMap (λ n. n + 2)
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Staging types

Input:

Vec : Nat1 → ⇑U0 → ⇑U0

Vec zero1 A = <⊤0>

Vec (suc1 n)A = <∼A×∼(Vec nA)>

Tuple3 : U0 → U0

Tuple3A = ∼(Vec 3<A>)

Output:

Tuple3 : U0 → U0

Tuple3A = A× (A× (A×⊤0))
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More in the paper & implementation:

• Correctness of staging.

• Staged foldr/build fusion.

• Well-typed staged STLC interpreter.

• Monadic let-insertion.

Possible future research:

• Staging to low-level (e.g. first-order) languages.

• Staged fusion.

• Partially static data types.
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Thank you!


