
Staged Compilation with Two-Level Type Theory

András Kovács

Eötvös Loránd University

18 January 2022, TKP Workshop

Staged Compilation

Staged compilation is about writing code-generating code with good ergonomics and safety
guarantees.

Examples:

• (Typed) Template Haskell.

• C++ templates.

• Rust traits, macros & generics.

Motivations:

• Low-cost abstraction.

• DSLs.

• Inlining & fusion with strong guarantees.

Staged Compilation

Staged compilation is about writing code-generating code with good ergonomics and safety
guarantees.

Examples:

• (Typed) Template Haskell.

• C++ templates.

• Rust traits, macros & generics.

Motivations:

• Low-cost abstraction.

• DSLs.

• Inlining & fusion with strong guarantees.

Staged Compilation

Staged compilation is about writing code-generating code with good ergonomics and safety
guarantees.

Examples:

• (Typed) Template Haskell.

• C++ templates.

• Rust traits, macros & generics.

Motivations:

• Low-cost abstraction.

• DSLs.

• Inlining & fusion with strong guarantees.

Two-Level Type Theory (2LTT)

Comes from homotopy type theory:

• Voevodsky: A simple type system with two identity types.

• Annekov, Capriotti, Kraus, Sattler: Two-Level Type Theory and Applications.

• Motivation: meta-programming and modular axioms for HoTT.

2LTT is directly applicable to two-stage compilation.

Features:

1 Integrates a compile-time (“meta”) language and a runtime (“object”) language.

2 Guaranteed well-typing of code output, guaranteed well-staging.

3 Supports a wide range of runtime and meta-languages.
• Including dependent types.

4 Supports efficient staging-by-evaluation.

Two-Level Type Theory (2LTT)

Comes from homotopy type theory:

• Voevodsky: A simple type system with two identity types.

• Annekov, Capriotti, Kraus, Sattler: Two-Level Type Theory and Applications.

• Motivation: meta-programming and modular axioms for HoTT.

2LTT is directly applicable to two-stage compilation.

Features:

1 Integrates a compile-time (“meta”) language and a runtime (“object”) language.

2 Guaranteed well-typing of code output, guaranteed well-staging.

3 Supports a wide range of runtime and meta-languages.
• Including dependent types.

4 Supports efficient staging-by-evaluation.

Two-Level Type Theory (2LTT)

Comes from homotopy type theory:

• Voevodsky: A simple type system with two identity types.

• Annekov, Capriotti, Kraus, Sattler: Two-Level Type Theory and Applications.

• Motivation: meta-programming and modular axioms for HoTT.

2LTT is directly applicable to two-stage compilation.

Features:

1 Integrates a compile-time (“meta”) language and a runtime (“object”) language.

2 Guaranteed well-typing of code output, guaranteed well-staging.

3 Supports a wide range of runtime and meta-languages.
• Including dependent types.

4 Supports efficient staging-by-evaluation.

Two-Level Type Theory (2LTT)

Comes from homotopy type theory:

• Voevodsky: A simple type system with two identity types.

• Annekov, Capriotti, Kraus, Sattler: Two-Level Type Theory and Applications.

• Motivation: meta-programming and modular axioms for HoTT.

2LTT is directly applicable to two-stage compilation.

Features:

1 Integrates a compile-time (“meta”) language and a runtime (“object”) language.

2 Guaranteed well-typing of code output, guaranteed well-staging.

3 Supports a wide range of runtime and meta-languages.
• Including dependent types.

4 Supports efficient staging-by-evaluation.

Two-Level Type Theory (2LTT)

Comes from homotopy type theory:

• Voevodsky: A simple type system with two identity types.

• Annekov, Capriotti, Kraus, Sattler: Two-Level Type Theory and Applications.

• Motivation: meta-programming and modular axioms for HoTT.

2LTT is directly applicable to two-stage compilation.

Features:

1 Integrates a compile-time (“meta”) language and a runtime (“object”) language.

2 Guaranteed well-typing of code output, guaranteed well-staging.

3 Supports a wide range of runtime and meta-languages.

• Including dependent types.

4 Supports efficient staging-by-evaluation.

Two-Level Type Theory (2LTT)

Comes from homotopy type theory:

• Voevodsky: A simple type system with two identity types.

• Annekov, Capriotti, Kraus, Sattler: Two-Level Type Theory and Applications.

• Motivation: meta-programming and modular axioms for HoTT.

2LTT is directly applicable to two-stage compilation.

Features:

1 Integrates a compile-time (“meta”) language and a runtime (“object”) language.

2 Guaranteed well-typing of code output, guaranteed well-staging.

3 Supports a wide range of runtime and meta-languages.
• Including dependent types.

4 Supports efficient staging-by-evaluation.

Two-Level Type Theory (2LTT)

Comes from homotopy type theory:

• Voevodsky: A simple type system with two identity types.

• Annekov, Capriotti, Kraus, Sattler: Two-Level Type Theory and Applications.

• Motivation: meta-programming and modular axioms for HoTT.

2LTT is directly applicable to two-stage compilation.

Features:

1 Integrates a compile-time (“meta”) language and a runtime (“object”) language.

2 Guaranteed well-typing of code output, guaranteed well-staging.

3 Supports a wide range of runtime and meta-languages.
• Including dependent types.

4 Supports efficient staging-by-evaluation.

This talk

This talk mostly contains small programming examples.

There is a paper and an implementation:

• Staged Compilation with Two-Level Type Theory, in the proceedings of ICFP 2022.

For a tutorial and larger programming examples, see the implementation.

For formal details, see the paper.

This talk

This talk mostly contains small programming examples.

There is a paper and an implementation:

• Staged Compilation with Two-Level Type Theory, in the proceedings of ICFP 2022.

For a tutorial and larger programming examples, see the implementation.

For formal details, see the paper.

This talk

This talk mostly contains small programming examples.

There is a paper and an implementation:

• Staged Compilation with Two-Level Type Theory, in the proceedings of ICFP 2022.

For a tutorial and larger programming examples, see the implementation.

For formal details, see the paper.

This talk

This talk mostly contains small programming examples.

There is a paper and an implementation:

• Staged Compilation with Two-Level Type Theory, in the proceedings of ICFP 2022.

For a tutorial and larger programming examples, see the implementation.

For formal details, see the paper.

Rules of 2LTT

1 Two universes U0, U1, closed under arbitrary type formers.
• U0 is the universe of runtime (object-level) types.
• U1 is the universe of compile-time (meta-level) types.

2 All type/term formers and eliminators stay within the same universe.

3 Lifting: for A : U0, we have ⇑A : U1.

4 Quoting: for A : U0 and t : A, we have <t> : ⇑A.
5 Splicing: for t : ⇑A, we have ∼t : A.

6 <∼t> ≡ t and ∼<t> ≡ t.

Staging runs all metaprograms in splices and inserts their result in the code output.

Rules of 2LTT

1 Two universes U0, U1, closed under arbitrary type formers.
• U0 is the universe of runtime (object-level) types.
• U1 is the universe of compile-time (meta-level) types.

2 All type/term formers and eliminators stay within the same universe.

3 Lifting: for A : U0, we have ⇑A : U1.

4 Quoting: for A : U0 and t : A, we have <t> : ⇑A.
5 Splicing: for t : ⇑A, we have ∼t : A.

6 <∼t> ≡ t and ∼<t> ≡ t.

Staging runs all metaprograms in splices and inserts their result in the code output.

Rules of 2LTT

1 Two universes U0, U1, closed under arbitrary type formers.
• U0 is the universe of runtime (object-level) types.
• U1 is the universe of compile-time (meta-level) types.

2 All type/term formers and eliminators stay within the same universe.

3 Lifting: for A : U0, we have ⇑A : U1.

4 Quoting: for A : U0 and t : A, we have <t> : ⇑A.
5 Splicing: for t : ⇑A, we have ∼t : A.

6 <∼t> ≡ t and ∼<t> ≡ t.

Staging runs all metaprograms in splices and inserts their result in the code output.

Rules of 2LTT

1 Two universes U0, U1, closed under arbitrary type formers.
• U0 is the universe of runtime (object-level) types.
• U1 is the universe of compile-time (meta-level) types.

2 All type/term formers and eliminators stay within the same universe.

3 Lifting: for A : U0, we have ⇑A : U1.

4 Quoting: for A : U0 and t : A, we have <t> : ⇑A.

5 Splicing: for t : ⇑A, we have ∼t : A.

6 <∼t> ≡ t and ∼<t> ≡ t.

Staging runs all metaprograms in splices and inserts their result in the code output.

Rules of 2LTT

1 Two universes U0, U1, closed under arbitrary type formers.
• U0 is the universe of runtime (object-level) types.
• U1 is the universe of compile-time (meta-level) types.

2 All type/term formers and eliminators stay within the same universe.

3 Lifting: for A : U0, we have ⇑A : U1.

4 Quoting: for A : U0 and t : A, we have <t> : ⇑A.
5 Splicing: for t : ⇑A, we have ∼t : A.

6 <∼t> ≡ t and ∼<t> ≡ t.

Staging runs all metaprograms in splices and inserts their result in the code output.

Rules of 2LTT

1 Two universes U0, U1, closed under arbitrary type formers.
• U0 is the universe of runtime (object-level) types.
• U1 is the universe of compile-time (meta-level) types.

2 All type/term formers and eliminators stay within the same universe.

3 Lifting: for A : U0, we have ⇑A : U1.

4 Quoting: for A : U0 and t : A, we have <t> : ⇑A.
5 Splicing: for t : ⇑A, we have ∼t : A.

6 <∼t> ≡ t and ∼<t> ≡ t.

Staging runs all metaprograms in splices and inserts their result in the code output.

Rules of 2LTT

1 Two universes U0, U1, closed under arbitrary type formers.
• U0 is the universe of runtime (object-level) types.
• U1 is the universe of compile-time (meta-level) types.

2 All type/term formers and eliminators stay within the same universe.

3 Lifting: for A : U0, we have ⇑A : U1.

4 Quoting: for A : U0 and t : A, we have <t> : ⇑A.
5 Splicing: for t : ⇑A, we have ∼t : A.

6 <∼t> ≡ t and ∼<t> ≡ t.

Staging runs all metaprograms in splices and inserts their result in the code output.

Inlined definitions

Staging input:

two : ⇑Nat0
two = <suc0 (suc0 zero0)>

f : Nat0 → Nat0

f = λ x. x +∼two

Output:

f : Nat0 → Nat0

f = λ x. x + suc0 (suc0 zero0)

Inlined definitions

Staging input:

two : ⇑Nat0
two = <suc0 (suc0 zero0)>

f : Nat0 → Nat0

f = λ x. x +∼two

Output:

f : Nat0 → Nat0

f = λ x. x + suc0 (suc0 zero0)

Compile-time identity function

Input:

id : (A : U1) → A → A

id = λAx. x

idBool0 : Bool0 → Bool0

idBool0 = λ x.∼(id (⇑Bool0)<x>)

Output:

idBool0 : Bool0 → Bool0

idBool0 = λ x. x

Compile-time identity function

Input:

id : (A : U1) → A → A

id = λAx. x

idBool0 : Bool0 → Bool0

idBool0 = λ x.∼(id (⇑Bool0)<x>)

Output:

idBool0 : Bool0 → Bool0

idBool0 = λ x. x

An alternative identity function

Input:

id⇑ : (A : ⇑U0) → ⇑∼A → ⇑∼A

id⇑ = λAx. x

idBool0 : Bool0 → Bool0

idBool0 = λ x.∼(id⇑<Bool0><x>)

Note that
A : ⇑U0

∼A : U0

⇑∼A : U1

<x> : ⇑Bool0
<x> : ⇑∼<Bool0>

Output:

idBool0 : Bool0 → Bool0

idBool0 = λ x. x

An alternative identity function

Input:

id⇑ : (A : ⇑U0) → ⇑∼A → ⇑∼A

id⇑ = λAx. x

idBool0 : Bool0 → Bool0

idBool0 = λ x.∼(id⇑<Bool0><x>)

Note that
A : ⇑U0

∼A : U0

⇑∼A : U1

<x> : ⇑Bool0
<x> : ⇑∼<Bool0>

Output:

idBool0 : Bool0 → Bool0

idBool0 = λ x. x

An alternative identity function

Input:

id⇑ : (A : ⇑U0) → ⇑∼A → ⇑∼A

id⇑ = λAx. x

idBool0 : Bool0 → Bool0

idBool0 = λ x.∼(id⇑<Bool0><x>)

Note that
A : ⇑U0

∼A : U0

⇑∼A : U1

<x> : ⇑Bool0
<x> : ⇑∼<Bool0>

Output:

idBool0 : Bool0 → Bool0

idBool0 = λ x. x

map with inlining

Input:

inlMap : {AB : ⇑U0} → (⇑∼A → ⇑∼B) → ⇑(List0∼A) → ⇑(List0∼B)

inlMap = λ f as. <foldr0 (λ a bs. cons0∼(f <a>) bs) nil0∼as>

f : List0Nat0 → List0Nat0

f = λ xs. ∼(inlMap (λ n. <∼n + 2>)<xs>)

Output:

f : List0Nat0 → List0Nat0

f = λ xs. foldr0 (λ a bs. cons0 (a + 2) bs) nil0 xs

map with inlining

Input:

inlMap : {AB : ⇑U0} → (⇑∼A → ⇑∼B) → ⇑(List0∼A) → ⇑(List0∼B)

inlMap = λ f as. <foldr0 (λ a bs. cons0∼(f <a>) bs) nil0∼as>

f : List0Nat0 → List0Nat0

f = λ xs. ∼(inlMap (λ n. <∼n + 2>)<xs>)

Output:

f : List0Nat0 → List0Nat0

f = λ xs. foldr0 (λ a bs. cons0 (a + 2) bs) nil0 xs

Inference for staging operations

Lifting preserves negative types up to definitional isomorphism:

⇑⊤0 ≃ ⊤1

⇑ ((a : A) → Ba) ≃ ((a : ⇑A) → ⇑(B∼a))

⇑ ((a : A)× Ba) ≃ ((a : ⇑A)× ⇑(B∼a))

We can use bidirectional elaboration & coercive subtyping along isos to infer most quotes
and splices.

inlMap : {AB : ⇑U0} → (⇑A → ⇑B) → ⇑(List0 A) → ⇑(List0 B)
inlMap = λ f. foldr0 (λ a bs. cons0 (f a) bs) nil0

f : List0Nat0 → List0Nat0

f = inlMap (λ n. n + 2)

Inference for staging operations

Lifting preserves negative types up to definitional isomorphism:

⇑⊤0 ≃ ⊤1

⇑ ((a : A) → Ba) ≃ ((a : ⇑A) → ⇑(B∼a))

⇑ ((a : A)× Ba) ≃ ((a : ⇑A)× ⇑(B∼a))

We can use bidirectional elaboration & coercive subtyping along isos to infer most quotes
and splices.

inlMap : {AB : ⇑U0} → (⇑A → ⇑B) → ⇑(List0 A) → ⇑(List0 B)
inlMap = λ f. foldr0 (λ a bs. cons0 (f a) bs) nil0

f : List0Nat0 → List0Nat0

f = inlMap (λ n. n + 2)

Staging types

Input:

Vec : Nat1 → ⇑U0 → ⇑U0

Vec zero1 A = <⊤0>

Vec (suc1 n)A = <∼A×∼(Vec nA)>

Tuple3 : U0 → U0

Tuple3A = ∼(Vec 3<A>)

Output:

Tuple3 : U0 → U0

Tuple3A = A× (A× (A×⊤0))

Staging types

Input:

Vec : Nat1 → ⇑U0 → ⇑U0

Vec zero1 A = <⊤0>

Vec (suc1 n)A = <∼A×∼(Vec nA)>

Tuple3 : U0 → U0

Tuple3A = ∼(Vec 3<A>)

Output:

Tuple3 : U0 → U0

Tuple3A = A× (A× (A×⊤0))

map for Vec

Input:

map : {AB : ⇑U0} → (n : Nat1) → (⇑∼A → ⇑∼B)

→ ⇑(Vec nA) → ⇑(Vec nB)
map zero1 f as = <tt0>

map (suc1 n) f as = <(∼(f <fst0∼as>), ∼(map n f <snd0∼as>))>

f : ∼(Vec 2<Nat0>) → ∼(Vec 2<Nat0>)

f xs = ∼(map 2 (λ x. <∼x + 2>)<xs>)

Output:

f : Nat0 × (Nat0 ×⊤0) → Nat0 × (Nat0 ×⊤0)

f xs = (fst0 xs + 2, (fst0 (snd0 xs) + 2, tt0))

map for Vec

Input:

map : {AB : ⇑U0} → (n : Nat1) → (⇑∼A → ⇑∼B)

→ ⇑(Vec nA) → ⇑(Vec nB)
map zero1 f as = <tt0>

map (suc1 n) f as = <(∼(f <fst0∼as>), ∼(map n f <snd0∼as>))>

f : ∼(Vec 2<Nat0>) → ∼(Vec 2<Nat0>)

f xs = ∼(map 2 (λ x. <∼x + 2>)<xs>)

Output:

f : Nat0 × (Nat0 ×⊤0) → Nat0 × (Nat0 ×⊤0)

f xs = (fst0 xs + 2, (fst0 (snd0 xs) + 2, tt0))

More in the paper & implementation:

• Correctness of staging.

• Staged foldr/build fusion.

• Well-typed staged STLC interpreter.

• Monadic let-insertion.

Possible future research:

• Staging to low-level (e.g. first-order) languages.

• Staged fusion.

• Partially static data types.

More in the paper & implementation:

• Correctness of staging.

• Staged foldr/build fusion.

• Well-typed staged STLC interpreter.

• Monadic let-insertion.

Possible future research:

• Staging to low-level (e.g. first-order) languages.

• Staged fusion.

• Partially static data types.

Thank you!

