

NETWORK QUALITY OF SERVICE ON BIG SCALE

GERGŐ GOMBOS

NATIONAL RESEARCH, DEVELOPMENT AND INNOVATION OFFICE HUNGARY PROGRAM FINANCED FROM THE NRDI FUND

• Accepted Paper

 Gergő Gombos, Dávid Kis, Lilla Tóthmérész, Tamás Király, Szilveszter Nádas, and Sándor Laki: "Flow Fairness with Core-Stateless Resource Sharing in Arbitrary Topology", IEEE/ACM Transactions on Networking, 2022 (Q1)

Presented Demo

• Dávid Kis, Gergő Gombos, Szilveszter Nádas, and Sándor Laki: "Resource Sharing Beyond FQ: 35K Users at 100Gbps", IEEE/ACM SIGCOMM Demo, 2022 (A*)

Ongoing Project

• Network Hierachical Quality of Service

Reminder: Core-Stateless Resource Sharing Control with PPV

- PPV is a Core-Stateless Resource Sharing solution
- Marking at the network edge
 - every flow has an own policy
 - the packet marked based on this policy
- AQM
 - decision based on the packet values only
 - no information about the
 - policies
 - flows
 - fast and easy implementation

Tutorial video @ ppv.elte.hu

Accepted Paper

 Gergő Gombos, Dávid Kis, Lilla Tóthmérész, Tamás Király, Szilveszter Nádas, and Sándor Laki: "Flow Fairness with Core-Stateless Resource Sharing in Arbitrary Topology", IEEE/ACM Transactions on networking, 2022 (Q1)

- topology-zoo.org
 - real network topologies
 - nodes, edges, coordinates
 - it does not have RTTs
- Used topologies:
 - Sprint
 - Deutsche Telekom
 - Geant

TKP Closing Workshop 2.

Sprint

5

- Used protocols:
 - DCTCP
 - works well with small RTTs
 - NewReno
 - half the rate when dropping is
 - UDP
 - flow model simulation, no congestion control
- Simulation:
 - random n²/10 flow (DT, Geant)
 - random n² flow (Sprint)
 - 50% Silver, 50% Gold

NATIONAL RESEARCH, DEVELOPMENT AND INNOVATION OFFICE HUNGARY

- 3 Silver flow on one node
- Blue lower, because it is reduce they rate earlier
- Others use the available bandwith

• Presented Demo

 Dávid Kis, Gergő Gombos, Szilveszter Nádas, and Sándor Laki: "Resource Sharing Beyond FQ: 35K Users at 100Gbps", IEEE/ACM SIGCOMM Demo, 2022 (A*)

PROGRAM PROGRAM FINANCED FROM FINANCED FROM THE NRDI FUND

Packet Marking on P4 Tofino

- We used the built-in rate measurement and convert it to index
- With the index and a randum number we calculate a random rate
- The policy function is quantized logarithmically and we can select the PV based on the random rate
- Data plane only implementation.
 - Policy functions are configured by the control plane
- We run 35000 marker instances in parallel

PROGRAM FINANCED FROM THE NRDI FUND

Ongoing Project

• Network Hierachical Quality of Service

Mobile backhaul

- Traffic aggregates instead of flows
- Resource sharing hierarchy
- Physical network shared among multiple operators

Infrastructure-side expectation

16

Utilizing resources and serving operators' needs

Operator-side expectation

- Delivering traffic between the switch site and the cells where its subscribers are located
- Getting its deserved share according to its SLA/payment

Current approach Link-by-link HQoS

17

Simple topology – downstream

- Two bottleneck links
 - A-B 100Mbps

case

- A-C 100Mbps
- Two operators
 - Both can send towards cell B and C
- HQoS marking at site A
 - Operator 1 and 2 has 1:1 share
 - Users within each operator are equal.

EÖTVÖS LORA TUDOMÁNYEGYE

communication

Link-by-link VS Network-wide HQoS

Case	Traffic				Network-Wide HQoS (NHQoS)									Link-by-link HQoS (LHQoS)										
	01		O2		O1 throughput [Mbps]				O2 throughput [Mbps]				O1 throughput [Mbps]					O2 throughput [Mbps]						
	#users		#users		per user		total			per user		total			per user		total			per user		total		
	AB	AC	AB	AC	AB	AC	AB	AC	total	AB	AC	AB	AC	total	AB	AC	AB	AC	total	AB	AC	AB	AC	total
1	1		4		50		50		50	12.5		50		50	50		50		50	12.5		50		50
2	1	3	3	1	25	25	25	75	100	25	25	75	25	100	50	16.6	50	50	100	16.6	50	50	50	100
3	1	3	1	3	50	16.6	50	50	100	50	16.6	50	50	100	50	16.6	50	50	100	50	16.6	50	50	100
4	1	3	4		20	33.3	20	100	120	20		80		80	50	33.3	50	100	150	12.5		50		50
5	3	1	4		14.3	100	42.9	100	142.9	14.3		57.1		57.1	16.6	100	50	100	150	12.5		50		50
6	1	3	2	2	40	20	40	60	100	30	20	60	40	100	50	16.6	50	50	100	25	25	50	50	100
7	1	3	20	20	40	20	40	60	100	3	2	60	40	100	50	16.6	50	50	100	2.5	2.5	50	50	100

Table 1: Resource sharing examples. The minimum per-user throughput (marked with boldface) and the user fairness within each MNO are improved in most cases.

 \hat{v}

Thank you!

http://ppv.elte.hu

PROGRAM FINANCED FROM THE NRDI FUND