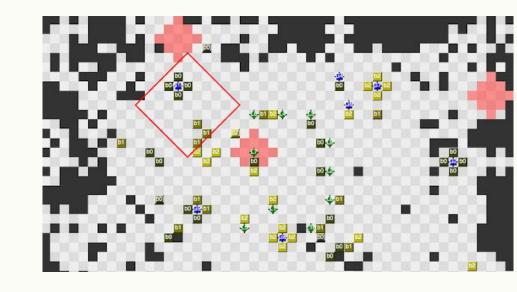
# DESIGN AND SECURITY OF DISTRIBUTED AUTONOMOUS SYSTEMS

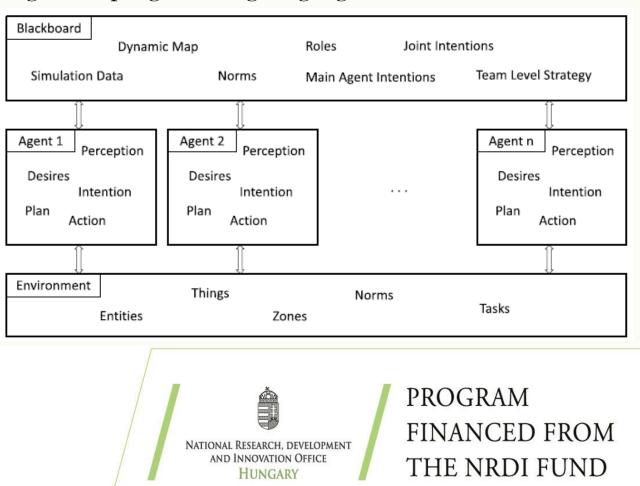



#### Overview

- Final publication of the warehouse routing and scheduling optimization method
  - Ács, Botond ; Dóra, László ; Jakab, Olivér ; Jüttner, Alpár ; Madarasi, Péter ; Varga, László Z.
    "Optimizations of a Multi-Agent System for a Real-World Warehouse Problem" SN Computer Science 3 : 6 Paper: 431 (2022)
- Multi-Agent Programming Contest
  - First prize
  - Miklós Miskolczi ; László Z. Varga "MMD: The Simple Block Building Agent Team with Explainable Intentions" Lect. Notes Computer Challenges (LNCS)
- Submitted EU project proposal
  - AdversarySense HORIZON-WIDERA-2022-ACCESS-07-01, Hop On Facility
- EuroKnows robot laboratory



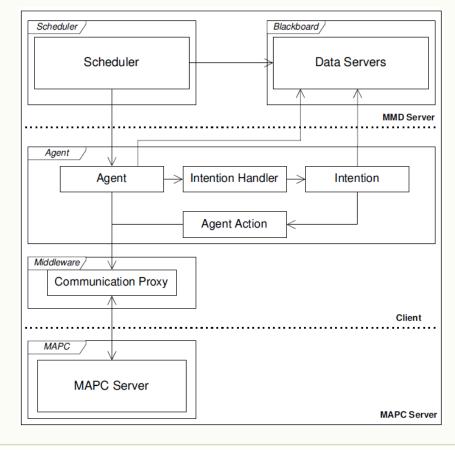
# Multi-Agent Programming Contest


- Problem domain
  - Grid world, unknown planet , discrete steps, agent teams
  - Limited vision range, unknown team members,
  - Roles with a set of allowed actions,
  - Obstacles, explosions, block dispensers,
  - Block assembly and submission at goal zones, role zones, norms
  - Goal: collect points given for submitting block structures
- Challenges in the implementation
  - Discovery, pathfinding,
  - Coordination of the team, assembling blocks by a group of agents,
  - Managing norms on the team level
  - Speed of the implementation, real-time response





Multi-Agent Programming Contest - implementation


- Agent-oriented programming language vs. general programming language
- Multi-agent concepts
  - Cooperative distributed problem solving
  - Practical reasoning agent architecture
  - Blackboard architecture
- Agent team architecture



Multi-Agent Programming Contest - implementation

### • Software architecture

- Python
- Implementation of typical structures
- No generic planner
- Specific path planner
- Behavior logic coded
- Competitive or even better than AOSE





Multi-Agent Programming Contest – explainable intentions

- Debugging is difficult
  - Dynamic and random environment
  - Impossible to recreate situations
  - Complex data structures
- Explainable intentions

#### 

NATIONAL RESEARCH, DEVELOPMENT AND INNOVATION OFFICE

HUNGARY

FINANCED FROM

THE NRDI FUND



## Multi-Agent Programming Contest

Start MAPC 2022 Publications MASSim in Teaching History O У

|               |      | LI(A)RA | GOALdigger | MMD   | FIT BUT | GOAL-DTU | Paula |
|---------------|------|---------|------------|-------|---------|----------|-------|
| LI(A)RA       | Sim1 |         | 350        | 760   | 60      | 120      | 600   |
|               | Sim2 |         | 410        | 750   | 540     | 160      | 120   |
|               | Sim3 |         | 310        | 1600  | 780     | 0        | 1000  |
| GOALdigger    | Sim1 | 130     |            | 500   | 220     | 0        | 160   |
|               | Sim2 | 0       |            | 200   | 320     | 0        | 220   |
|               | Sim3 | 80      |            | 840   | 490     | 520      | 1270  |
| MMD           | Sim1 | 120     | 370        |       | 80      | 480      | 770   |
|               | Sim2 | 10      | 300        |       | 760     | 150      | 500   |
|               | Sim3 | 150     | 720        |       | 170     | 0        | 450   |
| FIT BUT       | Sim1 | 220     | 120        | 770   |         | 230      | 480   |
|               | Sim2 | 60      | 320        | 680   |         | 630      | 360   |
|               | Sim3 | 120     | 520        | 1140  |         | 0        | 250   |
| GOAL-DTU      | Sim1 | 310     | 180        | 910   | 0       |          | 710   |
|               | Sim2 | 80      | 370        | 780   | 670     |          | 610   |
|               | Sim3 | 270     | 410        | 1520  | 1640    |          | 570   |
| Paula         | Sim1 | 110     | 330        | 580   | 0       | 320      |       |
|               | Sim2 | 60      | 700        | 790   | 330     | 280      |       |
|               | Sim3 | 90      | 320        | 1690  | 60      | 0        |       |
| Total points: |      | 1810    | 5730       | 13510 | 6120    | 2610     | 8070  |
| Total score   |      | 9       | 22         | 30    | 19      | 9        | N/A   |
| Placement     |      | 4       | 2          | 1     | 3       | 4        | N/A   |

#### Participants

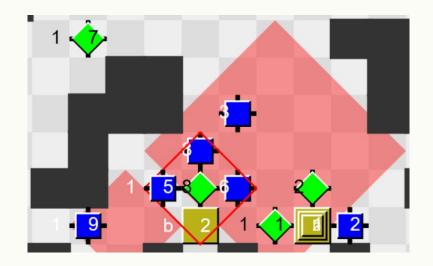
In order of registration:

| Team                 | Affiliation                   | Members | Using  | Status              |  |
|----------------------|-------------------------------|---------|--------|---------------------|--|
| LI(A)RA              | UFSC (Brazil)                 | 5       | Jason  | Q. Passed 22.8.2022 |  |
| GOALdigger-AIG-Hagen | University of Hagen (Germany) | 4       | GOAL   | Q. Passed 16.8.2022 |  |
| MMD                  | ELTE (Hungary)                | 2       | Python | Q. Passed 19.8.2022 |  |
| FIT BUT              | BUT (Czech Republic)          | 3       | Java   | Q. Passed 22.8.2022 |  |
| GOAL-DTU             | DTU (Denmark)                 | 3       | GOAL   | Q. Passed 8.8.2022  |  |

#### Contest

#### Results

| Placement | Team       | Total Score | Sources                   |  |  |
|-----------|------------|-------------|---------------------------|--|--|
| 1         | MMD        | 30          | 🖺 Zip <b>O</b> Git mirror |  |  |
| 2         | GOALdigger | 22          | <b>O</b> Git              |  |  |
| 3         | FIT BUT    | 19          | <b>O</b> Git              |  |  |
| 4         | GOAL-DTU   | 9           | 🖺 Zip 🔿 Git mirror        |  |  |
|           | LI(A)RA    | 9           | <b>O</b> Git              |  |  |




# Multi-Agent Programming Contest

• Unexpected adversary behavior

• Saboteur agents

|               |      | LI(A)RA | GOALdigger | MMD   | FIT BUT | GOAL-DTU | Paula |
|---------------|------|---------|------------|-------|---------|----------|-------|
| LI(A)RA       | Sim1 |         | 350        | 760   | 60      | 120      | 600   |
|               | Sim2 |         | 410        | 750   | 540     | 160      | 120   |
|               | Sim3 |         | 310        | 1600  | 780     | 0        | 1000  |
| GOALdigger    | Sim1 | 130     |            | 500   | 220     | 0        | 160   |
|               | Sim2 | 0       |            | 200   | 320     | 0        | 220   |
|               | Sim3 | 80      |            | 840   | 490     | 520      | 1270  |
| MMD           | Sim1 | 120     | 370        |       | 80      | 480      | 770   |
|               | Sim2 | 10      | 300        |       | 760     | 150      | 500   |
|               | Sim3 | 150     | 720        |       | 170     | 0        | 450   |
| FIT BUT       | Sim1 | 220     | 120        | 770   |         | 230      | 480   |
|               | Sim2 | 60      | 320        | 680   |         | 630      | 360   |
|               | Sim3 | 120     | 520        | 1140  |         | 0        | 250   |
| GOAL-DTU      | Sim1 | 310     | 180        | 910   | 0       |          | 710   |
|               | Sim2 | 80      | 370        | 780   | 670     |          | 610   |
|               | Sim3 | 270     | 410        | 1520  | 1640    |          | 570   |
| Paula         | Sim1 | 110     | 330        | 580   | 0       | 320      |       |
|               | Sim2 | 60      | 700        | 790   | 330     | 280      |       |
|               | Sim3 | 90      | 320        | 1690  | 60      | 0        |       |
| Total points: |      | 1810    | 5730       | 13510 | 6120    | 2610     | 8070  |
| Total score   |      | 9       | 22         | 30    | 19      | 9        | N/A   |
| Placement     |      | 4       | 2          | 1     | 3       | 4        | N/A   |





CoreSense: A Hybrid Cognitive Architecture for Deep Understanding

- robots suffering from a lack of understanding of what is going on and a lack of awareness of their role in it
- a problem that artificial intelligence approaches based on machine learning are not addressing well
- solution to this need in the form of
  - 1) a theory of understanding,
  - 2) a theory of awareness,
  - 3) reusable software assets to apply these theories in real robots, and
  - 4) three demonstrations of its capability to
    - a) augment resilience of drone teams,
    - b) augment flexibility of manufacturing robots, and
    - c) augment human alignment of social robots









# CoreSense: A Hybrid Cognitive Architecture for Deep Understanding

- Universidad Politécnica de Madrid ES Coordinator
- Delft University of Technology NL
- Fraunhofer IPA DE
- Universidad Rey Juan Carlos ES
- PAL Robotics ES
- Irish Manufacturing Research IR
- Timespan: 2022-2026









# AdversarySense – Hop On

- multi-agent systems design and geometry-based vision perception
- adversary modelling to make the operation of autonomous robots safer
  - For example, autonomous vehicles cannot differentiate between normal or adversarial environment. Currently humans find this behaviour irritating, and they often try to exploit the excessive cautiousness of autonomous vehicles.
- the new widening partner will bring its multi-agent system development knowledge into the project in order to extend the project's current knowledge in this field
- novel geometric 3D image recognition methodology which is a geometry-based computer vision method instead of the currently popular machine learning methods, and hence this will add to the autonomous robots capabilities of understanding and building a geometric model of their environment



# AdversarySense – Hop On

### • demonstrated through two scenarios:

- a simulated scenario
  - MMD system with adversary understanding is measured against the GOALdigger multi-agent system which includes autonomous agents with adversary behaviour
- a real-world scenario
  - build on the data collected by the ELTECar and ELTEKart systems
  - evaluated within the collaboration with industrial partner Robert Bosch GmbH
  - drone-technology will also be used as bird eye's view is better to overview the traffic situations
- maximising impact:
  - introducing the project results in the MSc courses of the Intelligent Field Robotic Systems (IFRoS) ERASMUS Mundus joint master's degree
    - "Security of Autonomous Systems", or "Methods and tools for AI Applications" and advising MSc thesis









### EuroKnows robot laboratory

### • Competency assessment in a demo application

- European Knowledge Centre Ltd.,
- Artificial intelligence,
- Intelligent Field Robotic Systems
- Multi-agent systems
- Geometry-based computer vision method
- Demo application
  - Construction field
  - Robots with sensors
  - Collective construction
- Software technology course practice classes: virtual demo



#### Results

- Published publication
  - [1] Ács, Botond ; Dóra, László ; Jakab, Olivér ; Jüttner, Alpár ; Madarasi, Péter ; Varga, László Z. "Optimizations of a Multi-Agent System for a Real-World Warehouse Problem" SN Computer Science 3 : 6 Paper: 431 (2022)
- Submitted publication
  - [2] Miklós Miskolczi ; László Z. Varga "MMD: The Simple Block Building Agent Team with Explainable Intentions" Lect. Notes Computer Challenges (LNCS)
- Submitted EU project proposal
  - AdversarySense HORIZON-WIDERA-2022-ACCESS-07-01, Hop On Facility

