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1 Introduction

We consider algorithmic aspects of managing large scale distributed networks,
such as wireless ad hoc networks, sensor networks, peer-to-peer (P2P) networks,
and we also address network function deployment and service chain embedding
problems arising in software defined networking (SDN) and network function
virtualization (NFV). The main goal of this work is to solve practical problems
and develop exact theory which is related but not restricted to the solution of
the practical problem.

Wireless ad hoc networks are formed by mobile terminals which use a wireless
communication interface and establish communication between nodes using other
terminals as intermediate relay stations. Control and databases are distributed
over the network; a fixed infrastructure is not needed. Thus, they can be used in
emergency situations when infrastructure is not available or (partly) destroyed,
or the nodes are highly dynamic. In order to effectively operate such networks
it is essential to use efficient localized strategies for topology management and
for routing. A localized strategy means only to use information about nearby
nodes within the communication radius and guarantee global properties of the
network topology. The goal is to construct and maintain networks guaranteeing
short paths, low energy paths between the communicating nodes, low congestion
path systems, and support for efficient routing strategies without using global
knowledge about the network. Fault tolerance, self-(re)construction, and dealing
with mobility are of key importance.

Mobile sensor networks (MSN) consist of nodes, where each node has sens-
ing, computation, and locomotion capabilities. By assuming a large scale sen-
sor network with unpredictable sensor failure, limited sensing and communica-
tion ranges, decentralized and localized sensor self-deployment methods are more
beneficial and scale invariant than centralized solutions. Each sensor/robot is au-
tonomus and makes independent decisions using neighborhood information only.
Self-deployment and pattern formation problems are fundamental problems in
mobile sensor networks and autonomous robots. The sensors must cover a dedi-
cated area, a border, an area around a so called Point of Interest (POI), or form
a given connected pattern.

The simplicity of creating, distributing and communicating content causing
an enormous load on the Internet. Peer-to-peer (P2P) systems provide a very
popular and efficient way of content distribution. They generate a significant part
of the overall Internet traffic. In tracker-based P2P networks, like BitTorrent
(BT), the effectiveness of downloading data largely depends on the neighbors
of the client and on the distribution and selection of the pieces of the file. We
model those systems, derive upper and lower bouns on the distribution time, and
develop efficient methods for the data distribution.

Data compression and decompression are essential tools to decrease bandwith
demand and increase throughput during data transmission. It is of high interest
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for distributing large or real-time data. A particular focus of our research is data
(de-)compression on resource constrained devices, such sensor nodes or embedded
devices. The Burrows-Wheeler transformation is used for effective data compres-
sion, e.g., in the well known program bzip2. We present algorithms that reduce
the memory need without sacrificing speed too much.

Modern computer networks provide a rich set of in-network functions, includ-
ing access control, firewall, intrusion detection, network address translation, traf-
fic shaping and optimization, caching, among many more. While such function-
ality is traditionally implemented in hardware middleboxes, computer networks
become more and more virtualized: Network Function Virtualization (NFV) en-
ables a flexible instantiation of network functions on network nodes, e.g., running
in a virtual machine on a commodity x86 server. Modern computer networks also
offer new flexibilities in terms of how traffic can be routed through such network
functions. In particular, using Software-Defined Networking (SDN) technology,
networks also enables the definition and fast deployment of novel network services
called service chains: sequences of virtualized network functions (e.g., firewalls,
caches, traffic optimizers) Such advanced network services open an interesting
new market for Internet Service Providers, which can become “miniature cloud
providers”, specialized for in-network processing. We present solutions for incre-
mental middlebox deployment and online servive chain embedding.

Outline: In Section 2 we overview our results on wireless ad hoc networks.
In Section 3 we present our work on mobile sensor networks and autonomous
robots. Section 4 summarize our achievments in large scale peer-to-peer content
distribution. In Section 5 we present our results in the area of NFV and SDN.

2 Wireless Ad Hoc Networks

Multihop wireless ad hoc networks received considerable attention recently due to
their potential wide applications in various areas and particularly the ubiquitous
computing and sensor networks as they do not require any fixed infrastructure.
Such networks are self organizing and self administrating.

Wireless ad hoc networks need special treatment because of their own char-
acteristics and some limitations compared with wired networks. For example,
such networks are often powered by batteries and they often have limited storage
capacity. A transmission of a wireless device is often received by many nodes
within its transmission range, which possibly causes signal interferences at these
nodes. One of the most important properties of wireless ad hoc networks is that
the topology may change suddenly and frequently. Due to the above intrinsic
properties, it is more challenging to design a network topology for wireless ad
hoc networks, which is suitable for an efficient routing scheme, saves energy and
storage at the nodes, and keeps the interferences low, than in traditional (wired)
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networks. As overviews on algorithmic aspects of ad hoc networks we refer to
[119, 92, 65].

Applications: Wireless ad hoc networks can be applied as independent com-
munication networks in an area where no infrastructure is available and emer-
gency operations are taking place, for instance, due to a natural disaster.

� Emergency services: In an area, where the infrastructure is damaged by
a disaster, emergency troups can use an ad hoc network during their op-
erations. Beside a communication platform this ad hoc network may also
provide other services. As the importance of the Internet grows continu-
ously, the loss of connectivity during such a natural disaster may cause more
noticable problems in the affected area. Furthermore, network applications
become increasingly important also for emergency services, and thus it will
be necessary to reach these applications even if the infrastrure elments are
destroyed.

� Extension for cellular networks: In the area of telecommunication net-
works ad hoc networks have been also proposed as supplement to existing
cellular radio networks, to provide connectivity in an area without cellular
coverage, such as a road tunnel, an underground tunnel, an area, where
the deployment of base stations is too expensive or not desired, or a re-
gion affected by a natural disaster, where emergency or rescue operations
take place. Allowing the nodes a multihop connection to the base stations
– using intermediate mobile nodes as relay stations – the ubiquity can be
attained.

� Conferencing: Consider the scenario of a mobile conference, in which
mobile computer users meet outside their everyday office space, where the
normal network infrastructure is missing. Even in such situations collabo-
rative computing might be important. The goal of such a meeting might be
to make progress on a certain project. Thus, creating an ad hoc network is
quite helpful. The establishment of an ad hoc network seems to be useful
even if a fixed infrastructure is available in a conference, since routing back
and forth between widely separated office environments may cause a large
overhead.

� Sensor networks: Sensor networks are likely to be widely deployed in
the future because they essentially improve our ability to monitor and con-
trol the physical environment from remote locations and can significantly
improve the accuracy of information obtained via collaboration of sensor
nodes. Some low cost sensors could be rapidly deployed (e.g. by dropping
them from an airplane) in an area. Then they can be used for a surveillance
application, for object tracking; for fire detection in a forest or to analyze
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the motion of a tornado. Sensors are developed which can be used for inven-
tory control, product quality monitoring, establishing smart office spaces,
and for interfaces for disabled. Corresponding to different application ar-
eas we have different constraints on the mobility, the energy, computation
power and memory storage, and communication resources of the sensors.

� Inter-vehicle networks: Sensors can also be attached to taxi cabs or
other vehicles to collect traffic information, such as data on braking sent
from a preceding car, data on the traffic flow on a route, and data about
sites located along a route. This data can be used for avoidance of accidents
and for planning routes more efficiently.

� Rooftop networks: Self-configuring, densely deployed wireless networks,
called rooftop networks, has been proposed in the 90’s in metropolitan area
as an alternative to traditional infrastructure offered by telecommunication
providers. The name refers to an antenna (access point) on each building’s
roof. Such a network also provides an alternate infrastructure, if the con-
ventional network fails, as after a disaster. A further benefit is that the
energy consumption of the nodes can be reduced, since they can use lower
transmission power. The nodes of a rooftop network are not mobile, but a
self-configuring routing system for hundreds of thousands of nodes, which
resists against failure of nodes, represents a great scaling challenge.

2.1 Topology Control and Routing

Wireless ad hoc networks often have limited energy and storage resources. A
transmission of a wireless device is received by many nodes within its transmis-
sion range, which causes interferences at these nodes. In order to save energy
and to keep the interferences at an acceptable level, each node of an ad hoc net-
work can potentially change the network topology by adjusting its transmission
range and/or selecting certain nodes to forward messages, i.e. controlling the set
of its neighbors. The primary goal of topology control is to maintain network
connectivity, optimize network lifetime, interferences, throughput, and to sup-
port (power) efficient routing. As excellent surveys on topology control in ad hoc
networks we refer to [125, 126, 159, 173, 174].

2.1.1 Resource efficient maintenance of wireless network topologies

Multiple hop routing in mobile ad hoc networks can minimize energy consump-
tion and increase data throughput. Yet, the problem of radio interferences re-
main. However if the routes are restricted to a basic network based on local
neighborhoods, these interferences can be reduced such that standard routing
algorithms can be applied. We compare different network topologies for these
basic networks, i.e. the Yao-graph (aka. θ-graph) and some also known related
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models, which will be called the SymmY-graph (aka. YS-graph), the SparsY-
graph (aka. YY-graph) and the BoundY-graph. Further, we present a promising
network topology called the Hieralchical Layer graph (HL-graph). We compare
these topologies regarding degree, spanner-properties, and communication fea-
tures. We investigate how these network topologies bound the number of (uni-
and bidirectional) interferences and whether these basic networks provide energy-
optimal or congestion-minimal routing. Then, we compare the ability of these
topologies to handle dynamic changes of the network when radio stations appear
and disappear. For this we measure the number of involved radio stations and
present distributed algorithms for repairing the network structure.

Model and quality measures: We assume that the nodes V of the network
are given in the two dimensional Euclidean plane R2, and each node has the same
maximum transmission range r. The wireless nodes define the so-called unit disk
graph U(V ), in which two nodes u, v ∈ V are connected by an edge if and only if
they are within the maximum transmission range of each other. The nodes V of
the network are given as points in R2. By scaling, we assume that the maximum
transmission range r is equal to the unit. The edge set of the unit disk graph
is E = {{u, v} : ||u, v||2 ≤ 1}, where ||u, v||2 denotes the Euclidean distance
between u and v.

In network design is is often useful to approximate the unit disk graph by
certain subgraphs. Obviously, a necessary condition for the connectivity of the
ad hoc network is the connectivity of the unit disk graph and of its approximation.
Of course, not every connected subgraph of the unit disk graph plays the same
important role in the network design. In the following we describe several quality
measures for wireless network topologies.

Sparse topologies, low node degree: Maintaining a sparse topology and a
low node degree is an important optimization aspect in mobile wireless networks.
Dense topologies or a high node degree result in high per node storage require-
ment, time-consuming updates if the topology changes frequently, and expensive
packet forwarding schedules.

Short paths – spanner graphs: A very important requirement of topology
control is to construct a subgraph of U(V ), such that for each pair of nodes,
the shortest path in the subgraph is not much longer than the shortest path in
the unit disk graph. This property is captured by the stretch factor of the
subgraph G, which is defined as the maximum ratio between the legth of the
shortest path G and the length of the shortest path in U(V ) over all pairs of
nodes. A graph with stretch factor t ≥ 1 is called a t-spanner. More formally,
let G = (V,E) be a subgraph of U = U(V ). The length of a path P from a
node u to node v in a graph G is the sum of the Euclidean lengths of edges in
P . Let dG(u, v) and dU(u, v) be the length of the shortest path from u to v in
G and U respectively. The stretch factor t of a subgraph G ⊆ U is defined as
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t = max{dG(u,v)
dU (u,v)

: u, v ∈ V }. A subgraph with a constant stretch factor t is called
a t-spanner. A t-spanner is called a sparse t-spanner if the number of links is
linear in |V |.

Paths with low energy consumption – power spanners: Energy con-
sumption is a critical issue in ad hoc networks. Using variable transmission
power reduces the energy consumption, and thus, increases the life time of the
network on the one side; and it decreases the interferences, and thus, increases
the throughput on the other side. Li et al. [123] introduced the notion of t-
power spanners to capture the property of a graph G that between each pair
of nodes it contains a path, which can be established using at most t times more
energy as the minimum energy path between that pair of nodes in U(V ). More
formally, this is the following. Based on a power-attenuation model, where the
power pow(e) needed to support a link e = (u, v) is ||u, v||β2 , where β ≥ 2 (for
the free space propagation model β = 2, for the so-called two ray model, which
also considers multipath fading, β = 4), Li et al. [123] defined the power stretch
factor of a subgraph G = (V,E) ⊆ U(V ) as follows. Let P be a path from u
to v in G. Let pow(P ) =

∑
e∈P pow(e). The distance dG,β(u, v) between a pair

of nodes u, v ∈ V is then defined as min{pow(P ) : P is a path between u and
v in G}. The graph G is called a (t, β)-power spanner, if for each pair of nodes
u, v ∈ V , dG,β(u, v) ≤ t · dU,β(u, v) for a constant t. The constant t is called the
power stretch factor of G.

We proved in [22, 40] a general relation between Euclidean spanners and power
spanners. We have shown that each t-spanner is a (tβ, β) power spanner.

Low congestion path system – weak spanners: A further useful geo-
metric property of graphs is the weak spanner property [19, 22, 40], which is
closely related to the congestion. This means that using a weak spanner as un-
derlying topology allows low congestion routing in the wireless network. A graph
G = (V,E) is called a weak t-spanner if for each pair of nodes u, v ∈ V there is a
path from u to v such that for each node w on the path ||u,w||2 ≤ ||u, v||2 holds.
In [141] it was shown that this property is closely related to the congestion of
paths systems in the network.

Yao graphs: Popular topologies for wireless ad hoc networks is the class of Yao
graphs [178]. These graphs are not necessarily planar but they are very simple to
construct in a distributed manner and they have a couple of other nice properties.
The Yao graph [178] with an angle θ > 0 is defined as follows. We divide the
plane around each point u ∈ V into cones (called sectors), each with an angle at
most θ at the apex u.

For each sector we join u with its closest neighbor – if any – by an edge.
Formally, the Yao graph (aka. Θ-graph) Y aoθ(V ) is defined by the following set
of directed edges: E := {(u, v) | ∀w 6= u : sector(u, v) = sector(u,w) ⇒
||u, v||2 ≤ ||u,w||2}, where sector(u, v) denotes the sector around u containing v

8



In [120, 158] it is shown that the Yao graph is a t-spanner for V with t = 1
1−2 sin(θ/2)

if θ < π/3. The proofs in [120, 158] also construct a t-spanner path which
immediately gives us a so-called position based routing strategy. Li et al. [123]
proved that Y ao(V ) is a (t, β) power spanner with t = 1

1−(2 sin(θ/2))β .

Yao type graphs with bounded degree:

� The Symmetric Yao graph [124] contains an edge (u, v) if and only if both
(u, v) and (v, u) are contained in the Yao graph.

� The Sparsified Yao graph contains an edge (u, v) if and only if (u, v) is
contained in the Yao graph and it is the shortest incoming edge of v in a
sector.

� The Bounded Degree Yao graph results form substituting the set of incoming
edges in a sector by certain tree according to a a general transformation by
Arya et al. [50].

We proved in [22, 40] that the stretch factor of SymmYθ(V ) can be Ω(n) in
the worst-case hence it is not a t-spanner. Table 1 (see [40]) summarizes the
properties of the Yao type topologies.

Energy Congestion
Topology Degree Spanner approx. factor approx. factor

Yao O(n) yes O(1) —

SymmY O(1) no, but connected — —

SparsY O(1) weak and power O(1) O(log n)

BoundY O(1) yes O(1) —

Table 1: Basic properties of the Yao type topologies

Entering or leaving of nodes: If a node enters of leaves the network, a
certain set of other nodes must update their neighborhood. Since the maximum
degree D of a node in the Yao graph is n − 1 in the worst case, the number of
affected nodes is Ω(n) if this node enters or leaves. We defined the edge set of
the SymmY, SparsY, and BoundY graphs with help of the edge set of the Yao
graph. If we store each of the incoming Yao-edges to compute the edges of the
SymmY, SparsY, or BoundY graph, then the number of involved nodes can not
be improved in the worst case. In [40] we have shown how to update the edges
SymmY, SparsY, and BoundY graphs in O(D) time.
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2.1.2 Worst case mobility in ad hoc networks

We consider two models to find a reasonable restriction on the worst-case mo-
bility. In the pedestrian model we assume a maximum speed vmax of the radio
stations, while in the vehicular model we assume a maximum acceleration amax
of the points. Our goal is to maintain persistent routes with nice communication
network properties like hop-distance, energy-consumption, congestion and num-
ber of interferences. A route is persistent, if we can guarantee that all edges of
this route can be uphold for a given time span ∆, which is a parameter denot-
ing the minimum time the mobile networks needs to adopt changes, i.e. update
routing tables, change directory entrees, etc... We present distributed algorithms
based on a grid clustering technique and a high-dimensional representation of the
dynamical start situation. We measure the optimality of the output of our algo-
rithm by comparing it with the optimal choice of persistent routes under the same
circumstances with respect to pedestrian or vehicular worst-case movements.

For the first model we assume a large number of pedestrians using mobile
wireless communication devices in a rather small area. The maximum speed is
bounded by a small constant. The standard approach in a static ad hoc network
scenario is to build up connections between nearest neighbors. If the mobility is
very high, like on a crowded sidewalk, this leads to short communication links,
that survive for only short time periods. Although it is possible to build up
these connections and transmit some data, it is nearly impossible to maintain
packet routes or maintain directories for efficient location of users. Therefore,
we need communication links to sustain for some time span ∆ to enable the
routing layer to keep up with the dynamical changes. We can guarantee that a
communication link between two moving stations sustains for this period if we
adjust the transmission range to a value, which covers all possible distances the
communication partners can reach in time ∆. Since, we know the maximum
speed, this implies that the transmission power must be chosen such that the
transmission range is at least 2∆vmax larger than the distance at the beginning of
the time interval. The task is now to appropriately build up the basic connection
links such that the routing algorithm can choose routes with low energy or low
congestion, while the number of edges and interfering edges is small.

A motivating example for the acceleration bounded model is given by vehicles
of high speed, like cars, trains, or aircrafts. E.g., consider trains where each wagon
carries a mobile radio station. Now consider a scenario, where two such trains
pass each other in opposite directions. If we take a snapshot in this moment
and build a static ad hoc network using the temporary positions, then this static
approach may lead to many links joining nodes in the different trains. But such
connection links can be upheld only for a short time period since the trains move
with high speed. Therefore this static network design is not a good choice.
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Previous research: Many mobility models have been proposed as a basis for
simulation of cellular and ad hoc networks. Most of them use a random process
to vary speed or direction of the moving objects, like the random walk model
and its variants, that describe mobility as a stop-and-go motion between cells.
In the fluid flow model every object moves with a randomly chosen speed and
direction for a predefined time interval. In the Gauss-Markov model [130] speed
and direction are changed with an adjustable amount of randomness, ranging
from completely random to predictable, linear motion. In the random waypoint
model [117] the objects move between randomly chosen positions where they
pause for a certain time interval. Their speed is uniformly distributed between
zero and a maximum. The speed chosen for the next motion period does not
depend on the speed of the previous period. Thus sharp turns and sudden stops
are possible, i.e. the acceleration is not bounded. There are mobility models that
regard mobility of a group of objects, e.g. the reference point group mobility model
[112] that defines for groups of objects a logical center that determines direction,
speed, and acceleration of each object. A survey of the mobility models mentioned
above can be found in [76, 68].

Another way to deal with mobility in ad hoc networks is to consider what
happens to the underlying topology when the nodes are moving. This leads to the
adversarial network model [53] in which all communication links are under control
of an adversary. A worst case for mobility corresponds with the topological
changes the adversary may perform within some predefined restrictions.

In the context of computational geometry Basch et al. introduced the concept
of kinetic data structures (KDS) [66] that describes a framework for analyzing
algorithms on mobile objects. In their model the mobility of objects is described
by pseudo-algebraic functions of time and fully or partially predictable. The
analysis of a KDS is done by counting the combinatorial changes of the geomet-
ric structure that is maintained by the KDS. Another approach that captures
unpredictable mobility is the concept of soft kinetic data structures (SKDS) [85].
These data structures maintain an approximate geometric structure that is up-
dated by property testing and reorganization. The idea of kinetic data structures
is also used in [108] to maintain a clustering of moving objects. This approach is
used in [109] to determine the head of each cluster in a mobile network. In each
cluster the nodes are directly connected to the head.

Own contributions: Assuming that a fixed time interval of length ∆ is given,
in [42] we describe how we construct the mobile ad hoc network for a set of
stations to solve routing problems. Further, we innovate the pedestrian and the
vehicular mobility as two worst-case mobility models. Further, we introduce a
measure called crowdedness that states a lower bound on the number of radio
interferences. We concentrate on the distributed computation of the network at
MAC and physical layer and show the main result that a mobile spanner hosts a
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path system that polylogarithmically approximates the optimal congestion. We
give techniques how to construct such mobile spanners with small congestion,
small interference number, small energy-consumption, and small degree. We
present a Hierarchical Grid based on a grid-cluster technique and prove that its
interference number can be upper bounded by a logarithmic term if we assume
the crowdedness to be logarithmic. One assumption in our approach is that all
positioning information is available to all nodes. We present two solutions: the
first is based on a positioning system and the second uses distances as location
information. This yields to a very dynamic data structure, the so-called Mobile
Hierarchical Layer graph that fulfills all our requirements.

Model: we consider a fixed set S of n mobile stations s1, . . . , sn in the Euclidean
plane. We denote by si(t) the coordinates of a mobile station si at time point t
and by s′i(t) = dsi(t)/dt its speed vector. Furthermore, s′′i (t) = ds′i(t)/dt denotes
the acceleration of si at time t, i.e. the change of the speed.

We allow adjustable transmission power for each connection, which is high
enough such that all mobile stations never leave the maximum transmission range
of a mobile station. The mobile stations use omni-directional radio antennae, i.e.
all mobile stations inside a disk with the sender as center and the transmission
distance as radius can receive the message or will be disturbed while receiving
data on a different connection. We assume bidirectional communication on a
single frequency with time-multiplexing, i.e. using different time slots.

We try to keep all connections alive for at least a fixed time interval of length
∆. It should be chosen sufficiently large to set up the communication links
between neighbors, to update routing tables, and deliver some amount of data.
For the theoretical analysis we assume synchronous round model.

The pedestrian mobility model is a worst case approach relying on all
mobile stations obeying a speed limit of vmax. In this velocity bounded model the
starting position si := si(0) is known and for the speed vector s′i(t) = dsi(t)/dt it
holds |s′i(t)| ≤ vmax. This implies for the relevant time interval ∆ that all mobile
stations remain in a disk with radius vmax ·∆ around the starting position si, i.e.
for t ∈ [0,∆] : |si(t)− si| ≤ vmax ∆.

The vehicular mobility model describes the movement of n stations with
bounded acceleration amax. Let s′′i (t) = ds′i(t)/dt denote the acceleration vector
of a mobile station si, then we assume that for all mobile stations |s′′i (t)| ≤ amax.
Now, the starting speed vector s′i := s′i(0) at the beginning of the time interval
∆ can be arbitrarily large. Yet, we assume that at the beginning of the time
interval [0,∆] we know all locations s1, . . . , sn and all speed vectors s′1, . . . , s

′
n.

Then, we can estimate the position of station i at time point t ∈ [0,∆] by

|si(t)− ts′i − si| ≤
1

2
amaxt

2 ≤ 1

2
amax∆

2 .

As a technical condition we require a polynomial bound on the maximum
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distances and relative speed differences for both models, i.e. for some constant k
we claim |si−sj| = O((vmax∆)k) in the pedestrian model and |si−sj|+ |s′i−s′j| =
O((amax∆)k) in the vehicular model.

We introduce a network independent measure, called crowdedness. In the
velocity bounded model we define Crowdv(u) of a node u by the set of all other
nodes in distance 2vmax∆. Its cardinality defines crowdv(u), the crowdedness
of u.

In the acceleration bounded model we define the crowd of a node u by

Crowda(u) := {w ∈ S \ {u} : |u− w| ≤ 1

2
amax∆

2

and |u′ − w′| ≤ 1

2
amax∆} ,

where u,w denote the starting positions, and u′, w′ the starting vector of mobile
stations for the time interval [0,∆]. The crowdedness crowda(u) is defined by its
cardinality.

In [42] we have presented a distributed algorithm to build a mobile network,
which allows small congestion, few interferences, low energy data routes, small
degree and small diameter. This can be summarized as follows.

There exist distributed algorithms that construct mobile networks for the
velocity bounded and the acceleration bounded mobility model with the following
properties:

� The interference number of the mobile network approximates the optimal
interference number by a factor of O(log n).

� Energy-optimal routes can be approximated by a constant factor.

� The degree is bounded by O(crowdα(S)+log n) and the diameter is at most
O(log n), where α ∈ {v, a}.

� The mobile networks allow data routes on this mobile network inducing a
congestion of at most O(log2 n) times the congestion of the optimal routing.

3 Mobile Sensor Networks, Autonomos Robots

Mobile sensor networks (MSN) are distributed collections of nodes, where each
node has sensing, computation, and locomotion capabilities.

By assuming a large scale sensor network with unpredictable sensor failure,
limited sensing and communication ranges, decentralized or localized sensor self-
deployment methods are more beneficial and scale invariant than centralized so-
lutions. In this context localized means that each sensor makes independent
decisions using neighborhood information only.
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Self-deployment and pattern formation problems are fundamental problems
in mobile sensor networks and autonomous robots. The sensors must cover a
dedicated area, a border, an area around a so called Point of Interest (POI), or
form a given connected pattern.

In the field of mobile sensor networks sensor self-deployment problem has been
an important research topic that deals with autonomous coverage formation.

In the article of Gage et al. [107] three type of formation was introduced.
However it was a military oriented article, from the perspective of the F-coverage
only the blanket formation is relevant. In this formation the nodes form static
connected group in order to maximizes the detection rate of targets appearing
within the coverage area.

The most common sensor self-deployment method is the vector or virtual-
force-based approach. The algorithms which rely on this approach use potential
fields, generated around the sensors which moves the neighbors by attract or re-
pulse them (depending on the distance). The first work which used this approach
was published by Howard et al. [113].

Large amount of research deals with sensor deployment algorithms for cov-
erage formation over a Region of Interest (ROI). An excellent summary can be
found in the works of Nayak et al. [145] and Brass et al. [72].

Cortes et al. [84] proposed Voronoi diagram based sensor self-deployment
method for the coverage of the ROI. The main idea of self-deployment with
Voronoi diagrams is to move sensors to minimize their local uncovered areas
(equivalently speaking, to maximize their sensing-effective areas) by aligning their
sensing range with their Voronoi regions as much as possible.

Li at al. [129], [127], [128] introduced the F-coverage problem. They solved
the problem in a discrete case on an equilateral triangle tessellation. Collision
of sensors during the deployment was allowed, i.e. more than one sensors can
occupy the same triangle vertex at the same time. They presented a proof of the
convergence of their solution within finite time. The convergence time, energy
consumption and number of collisions has been evaluated by simulations.

In the work of Yang et al. [177] a distributed load-balancing sensor self-
deployment algorithm was presented which partitions the plane into a 2D mesh,
and treats nodes as load. By this algorithm, nodes in each cell form a cluster
covering the cell and are managed by an elected cluster head. This approach also
requires dense network coverage and inter-agent communication.

Bartolini et al. [64] have presented a localized algorithm on a hexagonal grid
map in which the entities simultaneously use the snap and the spread activities in
order to cover the given area. The nodes are dispersing from their initial position
while occupying the free hexagons. On each occupied hexagon only the occupier
allowed to stay, which forwards the others towards the borderline of the covered
area.

Cord-Landwehr et al. [82] studied the problem of gathering mobile robots with
an extent at a fixed position as dense as possible to form a disk of minimum radius
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around the gathering point. The authors present an algorithm for the continuous
case and the discrete case, where the robots are moving on a grid. They prove an
O(nR) upper bound for the gatheringg time, where n is the number of robots and
R is the distance of the farthest robot from the gathering point. They empirically
studied the continuous case, where in they report a few deadlock situations in
the simulations.

Cohen and Peleg [80] presented an asynchronous algorithm to gather oblivios
robots at the center of gravity. Their algorithm uses the LCM (Look-Compute-
Move) discrete cycle based model to move their robots. They mathematically
proved upper and lower bounds on the convergence speed of their solution.

Cord-Landwehr et al. [83] described an easy-to-check property of target func-
tions that guarantee convergence and gives upper time bounds. This property
holds for the target function in [80] and improves the upper bound on the speed
of the convergence.

Czyczowicz et al. [87] considered the gathering problem for few fat robots,
where the robots are modeled by unit disks. The goal was to gather the robots,
such that the union of the unit disks is connected at the end. Collisions of the
robots are not allowed during the gathering. A main problem which had to be
solved here is that the line of sight of a robot may be blocked by the extent of
other robots.

For the gathering problem of mobile robots many different variants exist dif-
fering in levels of synchronization, computational power of the robots, memory,
range of visibility, agreement on coordinate system. For a survey we refer to [79].

Another related problem in distributed robotics is the Pattern Formation
problem, where a group of mobile robots have to form a desired geometric pattern.
The pattern can be given as set of points in the plane (by their coordinates) or
as a predicate (e.g. ”form a circle”). A common requirement is that the robots
have distinct initial positions and that the number of points in the pattern and
the number of robots are the same. Suzuki and Yamashita [170, 171] investigated
the question what kinds of patterns can be formed by a group of autonomous,
anonymous and homogenous mobile robots that do not communicate, but they
are able to observe each others movements. In [170, 171] the authors have shown
that without agreeing a common coordinate system, a pattern can be formed if
and only if it is purely symmetrical, i.e., a regular polygon (or a point), or a
set of regular concentric polygons. They also have shown that by agreeing on a
coordinate system, the robots can form any geometric pattern. Flocchini et al.
[105] have shown that if each robot has a compass needle that indicates North
(the compass needles are parallel), then any odd number of robots can form an
arbitrary pattern, but an even number, in the worst case, cannot. If each robot
has two independent compass needles, say North and East, then any set of robots
can form any pattern. Pattern Formation by robots with limited visibility has
been studied in [176].

Another related fundamental problem is the Filling problem (see [61]), in
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which a given region must be covered by robots. In this problem the robots are
initially not in the region, they enter the the space one by one, from a point called
”door”. When a robot enters the door, it must disperse itself in the region. The
goal is to cover the entire region. Barrameda et al. [61] have proven that the
Filling problem can be solved with limited visibility, for any simple orthogonal
space, i.e., a polygonal region without holes with sides either parallel or orthogo-
nal, with a single door, by finite-state robots with a common coordinate system
and common unit of distance in finite time.

For an excellent overview on distributed computing by mobile robots we refer
to the the book by Flocchini et al. [102].

We investigate the self-deployment problems in synchronous Look-Compute-
Move model and provide upper and lower bounds and efficient solutions [37, 4,
6, 5, 3].

3.1 Localized sensor self-deployment for focused coverage

We consider the focused coverage self-deployment problem in mobile sensor net-
works, where an area with maximum radius around a Point of Interest (POI)
must be covered without sensing holes. Li et al. [128, 129] described several
algorithms solving this problem. They showed that their algorithms terminate in
finite time. In [4] we have presented a modified version of the Greedy-Rotation-
Greedy (GRG) algorithm by Li et al., which drive sensors along the equilateral
triangle tessellation (TT) graph to surround a POI. We have proven that our
modified GRG (mGRG) algorithm is collision free and always ends up in a hole-
free network around the POI with maximum radius in O(D) steps, where D is
the sum of the initial distances of the sensors from the POI. This significantly
improves the previous bound on the coverage time. The theoretical results have
been also validated by simulations.

3.1.1 Focused coverage (F-coverage)

We follow the terminology of Li et al. [129]. The coverage region of a sensor
network is the region which is enclosed by the outer boundary of the network. If
the coverage is not complete there will be still sensing (or coverage) holes. Sensing
holes are closed areas inside the coverage region which are not not covered by the
sensing range of the sensors.

The coverage radius (or radius of an F-coverage) is the radius of the maximal
hole-free disc enclosed by sensors and centered as POI. The optimal F-coverage
has maximized coverage radius. If the number of sensors is unlimited and the
sensing radius of the sensors approaching zero then the maximum hole-free disc
has a circular shape. Since the sensing radius of the sensors is finite, we consider
a discrete variant of coverage radius measured by layer distance. Layer distance,
also called convex layers in computational geometry represents the number of
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successive complete convex polygons adjacently surrounding POI. More precisely,
we consider a discrete set of convex polygons Pi, (i = 1, 2, ...) composed of sensors,
centered at POI, and having a diameter of i · d for some constant d. Then
the coverage radius is the maximum value k, such that Pk is completely in the
coverage region.

3.1.2 The equiliteral triangle tessellation

The equiliteral triangle tessellation is a tiling of the plane in equiliteral triangles
with no overlaps and no gaps. The equilateral triangle tessellation (TT) maxi-
mizes the coverage area of a given number of sensors without coverage gap when
sensor separation is equal to rs

√
3, where rs is the sensing radius of the sensors

[57], [134]. If the communication radius rc of the sensors is at least rs
√

3, the de-
ployment of the sensors corresponding to a TT layout guarantees the connectivity
of the network. The convex polygons defining the layers and the layer distance
of the F-coverage are hexagons centered at the POI.

3.1.3 Problem

We are given n mobile sensors with communication radius rc and sensing radius
is rs of each, rc ≥ rs

√
3. We assume that the n mobile sensors are initially placed

at the vertices of the TT, such that each sensor is placed in a different vertex.
This is an unrealistic assumption if the sensors are dropped from a plane. In
that case the sensors can perform the Snap and Spread algorithm by Bartolini
et al. [64] to achieve the above condition. The sensors may be disconnected at
the beginning. All sensors have a common coordinate system and they all know
the location of the POI. Without loss of generality, the POI at the origin of the
coordinate system. Furthermore, the sensors only have information about their
1- and 2-hop neighbors. The sensors are able to move only on the edges of the
TT graph. They all move synchronously with uniform speed, s.t. they travel an
edge of the TT in one time unit.

The sensors operate corresponding to the Look-Compute-Move model. In one
cycle, a sensor takes a snapshot of the current configuration (Look), makes a
decision to stay idle or to move to one of its adjacent nodes (Compute), and in
the latter case makes an instantaneous move to this neighbor (Move).

The motion ends when the sensors uniformly surround the POI by forming
hole-free network with maximized coverage radius. From now on we will use the
terms node and sensor interchangeably.

3.1.4 Our contribution

In [4] we have presented a modified version of the GRG/CV algorithm of Li et al.
[129]. We have proven that our modified GRG (mGRG) algorithm guarantees,
that after O(D) steps each node reaches its final layer, where D is the sum of
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initial hop distances of the nodes from the POI in the TT. The theoretical results
have been also validated with simulations.

An important difference between the requirements of the GRG of Li et al.
[129] and our mGRG algorithm is that the GRG in [129] uses the knowledge
about the 1-hop neighborhood of the sensors, while our mGRG algorithm needs
the knowledge of the 2-hop neighborhood. We give examples, that show that
the knowledge about the 2-hop neighborhood of the sensors is necessary to avoid
collision situations and make the deployment process faster.

3.2 Pattern formation for anonymous, position-aware
robots

We consider various pattern formation problems by n identical autonomous
robots on a 2D grid. They are memoryless (or use only O(1) bits of persistent
memory) and operate without explicit communication. They have computation
and locomotion capabilities and limited visibility range. They are represented
by discs of unit diameter. Each robot r knows its position pr ∈ Z2 but not the
position of the other robots. In addition, each robot knows the connected pattern
F to be formed. F may be given by a set of n points in Z2, or as a predicate,
e.g., ”form a horizontal line segment”, or may be only partially described, e.g.,
by ”form a connected pattern”, or ”build a connected formation with minimum
diameter” (Collisonless Gathering). All robots have a common coordinate sys-
tem. Each robot has a visibility range of 2 units, i.e. it can see the robots within
its local range of 2 units. With other words, the robots only have information
about their 1- and 2-hop grid neighbors. The robots are able to move only on the
edges of the grid. They all move synchronously with unit speed, s.t. they travel
an edge of the grid in one time unit.

The robots operate corresponding to the Look-Compute-Move (LCM) model.
In one cycle, a robot takes a snapshot of its current visibility range (Look), makes
a decision to stay idle or to move to one of the neighboring vertices (Compute),
and in the latter case makes an instantaneous move to this neighbor (Move).
We assume that the LCM cycles are synchronous at each robot. Collisions are
not allowed during the algoritms, i.e. in each time step each vertex of Z2 can
be occupied by at most one robot. The motion ends when the robots form
the connected pattern F . From now on we will use the terms node and robot
interchangeably.

3.2.1 Our contribution

In [37] first we consider a helpful intermediate gathering (or point formation)
problem - we call it the Lemmings problem - where collision at one single point
g, known to all robots, is allowed. The goal is that all robots gather at g. We
consider oblivious robots, i.e. the robots do not remember results from any
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of the previous computations. We present an algorithm solving this problem,
called x-y-routing, where the robots only need local knowledge about their 2-hop
neighborhood in the grid Z2. We show that the x-y-routing method can be used
to guarantee the gathering of all robots at g in 2n + D − 1 time steps, where D
is the maximum initial hop distance of a robot from g. We prove that this time
bound is optimal up to a constant factor.

After this we investigate the gathering problem of n oblivious robots, where
no collision is allowed at g and the robots have to form a connected configuration
containing g. We show that the x-y-routing solves this problem in n+D−1 time
steps. This significantly improves the previous upper bound of O(nD) on this
problem presented in [82].

After this we consider finite state robots, i.e., the robots can use O(1) bits of
persistent memory for the computation. We show, how the set of n robots can be
arranged to form a connected axis parallel line segment containing a given point
g, known to all robots, in 3n+D + 3 steps.

Finally, for finite state robots, we show how an arbitrary connected pattern
F , known to all robots, can be formed in time O(n+D∗), where D∗ denotes the
diameter of the point set consisting of the initial configuration and F . In case
when all robots know n, this solution can also be applied for solving the focused
coverage problem on the 2D grid. This results in O(n+D) covering time. If the
number of robots n is not known for the robots, then best known upper bound
on this problem is O(S), presented in [4], where S is the sum of initial distances
of the mobile sensors from g.

3.3 Uniform Dispersal of Myopic Robots

In swarm robotics, a huge number of simple, tiny robots can perform complex
tasks collectively without central control. Such systems are scalable, reliable,
and can provide a high grade of fault tolerance. Many distributed protocols have
been developed for a wide range of problems, like gathering, flocking, pattern
formation, dispersing, filling, coverage, exploration (e.g., [46, 52, 59, 62, 63, 81,
86, 114]; see [73, 103, 104] for recent surveys).

We consider the problem of filling an unknown area represented by a connected
graph of n vertices by autonomous mobile robots. In this problem, the robots
enter the graph one-by-one through specific vertices, called the doors, and they
have to cover all vertices of the graph while avoiding collisions. The robots
are anonymous and make decisions driven by the same local rule of behavior.
They have limited persistent memory and limited visibility range. We investigate
the Filling problem in the synchronous and asynchronous Look-Compute-Move
(LCM) model.

The Filling (or Uniform Dispersal) problem was introduced by Hsiang et al.
[114] for an orthogonal area, where the area is subdivided into square-shaped
pixels. The robots are placed at the same entry point one-by-one and have to

19



occupy all the pixels. The entry point is called the door. In a step, a robot can
move to a neighboring cell sharing a common side or stay at its current position.
During the algorithm, the collision of the robots must be avoided, i.e., each pixel
can be occupied by at most one robot at any time. In the final configuration,
all pixels must be occupied by exactly one robot. When more than one door is
present in the area, the problem is called multiple door filling or k-door filling.

The main question asked by Barrameda et al. [62, 63] is to determine the
minimum hardware requirement of the robots to solve the Filling problem. They
propose algorithms for orthogonal regions by robots with constant visibility ra-
dius, constant communication range, and a constant number of bits of persistent
memory. In [62], common top-down and left-right directions and externally visi-
ble colors were assumed for the multiple door filling.

Barrameda et al. [63] presented two methods for filling an unknown orthog-
onal area in presence of obstacles (holes) in the asynchronous (ASYNC) model.
Their first method, called TALK, requires a visibility range of 2 hops1 if the
robots have explicit communication. The other method in [63], called MUTE,
does not use explicit communication between the robots, but it requires a visibil-
ity range of 6. Both methods need O(1) bits of persistent memory and terminate
in finite time.

The model of luminous robots was introduced by Peleg [149]. Subsequently,
significant amount of research has been carried for a plenty of problems using this
model (e.g. [47, 69, 71, 98, 106, 118, 132, 147, 165, 164, 166]). Das et al. [88, 89]
considered the model, where the robots can move in the continuous Euclidean
plane, and they proved that the asynchronous model with a constant number
of colors ASYNCO(1) is strictly more powerful than the semi-synchronous model
SSYNC, i.e. ASYNCO(1) > SSYNC. Das et al. [89] also prove that there are prob-
lems that robots cannot solve without lights, even if they are fully synchronous,
but can be solved by asynchronous luminous robots with O(1) colors.

D’Emidio et al. [90] have shown that on graphs one task can be solved in the
fully synchronous model FSYNC but not in the asynchronous lights-enhanced
model, while for other tasks, the converse holds. In this work, we show that the
Filling problem can be solved in both models by robots with 1 hop visibility range
and O(1) bits of persistent memory.

3.3.1 Our contribution

Synchronous model: In [24] and [26] we investigate the Filling problem in
the synchronous model. In [24] we present an algorithm, called SDIR for the
Filling problem in connected orthogonal regions, where the region is subdivided
into square-shaped cells, so-called pixels. The visibility range of the robots is

1In [63] it is assumed that the robot sees all eight sourrounding cells and able to communicate
with robots at that eight cells. Assuming orthogonal movements, a cell sharing only one corner
with the current cell of the robot are reachable in two hops.
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one hop, and they have O(1) bits of persistent memory, which is optimal and
improves previous bounds. The Filling time in the synchronous model is O(n),
where n is the number of cells in the region. First, we present an algorithm for
the single door case, then we extend the solution for multiple doors, where the
robots are entering the area in k different doors. For the k-door case, the visibility
range of the robots is still 1 hop, and the running time is O(n), and the memory
requirement is still O(1).

In [26] we invetigate the general problem where the area is represented by an
arbitrary connected graph. The robots have a visibility range of 1 hop, i.e., the
robots can see adjacent vertices. In one time step, a robot can move to an adjacent
vertex or stay in place while avoiding collisions. In the final configuration, all
vertices of the graph must be occupied by exactly one robot. We present a
method, called the Virtual Chain Method (VCM ), for the single door Filling
problem by a set of autonomous anonymous robots with a visibility range of 1
hop in O(∆ · n) time in the synchronous computational model, where n is the
number of vertices of the graph with a maximum degree of ∆. The robots require
O(∆) bits of persistent memory. Then we consider the multiple door case, when
the robots enter in k > 1 doors, and we generalize the VCM algorithm for solving
this problem. The robots need a visibility range of 1 hop, O(∆ + log k) bits of
persistent memory. The algorithm terminates in O(k ·∆ · n) time.

The algorithms in [26] are optimal in terms of visibility range. This follows
from the fact that with a visibility range of less than 1, the robots cannot even
distinguish between occupied and unoccupied neighbors. For constant k and
constant ∆, our algorithm is asymptotically optimal in the size of the memory.
This follows from the result by Barrameda et al. [62], they proved that oblivious
(memoryless) robots cannot deterministically solve the problem. Moreover, for
constant k and constant ∆, our algorithm is asymptotically optimal in running
time. The asymptotic optimality of the running time O(n) follows from the fact
that we can place one robot per round in the single door case, and n robots must
be placed.

By extending the visibility range of the robots to 2 hops and coloring them
by k different colors the running time can be improved to O(log ∆ · n) rounds.

In [28] we present a modification of the VCM algorithm, which improves the
running time to O(k + ∆) · n)

In [23] we investigate the 3D orthogonal problem. In [27] we study randomized
solutions.

Asynchronous model, luminous robots: In [25] we describe a method,
called PACK, which solves the problem by robots with 1 hop visibility range,
O(log ∆) bits of persistent memory, and ∆ + 4 colors for the single Door case,
including the color when the light is off. We analyze the algorithm in terms of
asynchronous rounds, where a round means the smallest time interval in which
each robot, which has not yet finished the algorithm, has been activated at least
once. We show that this algorithm needs O(n2) asynchronous rounds. Regarding
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asynchronous algorithms for the Filling problem, former works only guarantee
termination within finite time. Our analysis provides the first asymptotic upper
bound on the running time in terms of asynchronous rounds.

We show how the number of colors can be reduced to O(1) at the cost of run-
ning time. The algorithm with 1 hop visibility range, O(log ∆) bits of persistent
memory, and O(1) colors needs O(n2 log ∆) rounds.

We show how the running time can be significantly improved by robots with
a visibility range of 2 hops, with no communication, O(log ∆) bits of persistent
memory, and ∆ + 4 colors, by presenting the algorithm called BLOCK. This
algorithm needs O(n) rounds.

We extend the BLOCK algorithm for solving the k-Door Filling problem,
k ≥ 2, by using O(log ∆) bits of memory and ∆+k+4 colors, including the color
when the light is off. The visibility range of 2 hops is optimal for the k-Door
case.

4 Large Scale Content Distribution

The simplicity of creating, distributing and communicating content causing an
enormous load on the Internet. Peer-to-peer (P2P) systems provide a popular
and efficient way of content distribution. They generate a significant part of the
overall Internet traffic. In tracker-based P2P networks, like BitTorrent (BT),
the effectiveness of downloading data largely depends on the neighbors of the
client and on the distribution and selection of the pieces of the file. We model
BitTorrent-like systems, derive upper and lower bouns on the distribution time,
and develop efficient methods for the data distribution.

Data compression and decompression are essential tools to decrease bandwith
demand and increase throughput during data transmission. It is of high interest
for distributing large or real-time data. A particular focus of our research is data
(de-)compression on resource constrained devices, such sensor nodes or embedded
devices. The goal is to reduce the memory need of the devices without sacrificing
speed too much.

We give a summary of our results on data (de-)compression [34, 32], which
also lead to the international patent [33]. Then we present our results on tracker-
based, BitTorrent-like peer-to-peer (P2P) data distribution [30, 31] and on ap-
plying network coding for more efficient download [29, 1, 35, 2, 17, 14]. Further
results on related topics, especially on content distribution using so called mobile
based social networks appeared in [7, 18, 13, 11, 15, 16, 12, 14, 10, 9, 8]. Results
on I/O efficient algorithms for processing large data that are much larger than the
size of the main memory and require secondary storage (e.g., the data is stored
in in disks, storage networks, or even in multiply data centers) are presented in
[21, 20, 36].
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4.1 Data compression and decompression

The Burrows-Wheeler transformation is used for effective data compression, e.g.,
in the well known program bzip2. We are focusing on resource constrained de-
vices, such sensor nodes or embedded devices.

4.1.1 Space efficient Burrows-Wheeler backtransformation

The Burrows-Wheeler transformation (BWT) [75] is at the heart of modern, very
effective data compression algorithms and programs, e.g., bzip2 [161]. BWT-
based compressors usually work in a block-wise manner, i.e., the input is divided
into blocks and compressed block by block. Larger block sizes tend to result
in better compression results, thus bzip2 uses by default a block size of 900,000
bytes and in its low memory mode still 100,000 bytes. The standard algorithm
for decompression (reverse BWT) needs auxiliary memory of 4 bytes per input
character, assuming 4-byte computer words and thus n < 232. This may pose a
problem in embedded systems (say, a mobile phone receiving a software patch
over the air interface) where RAM is a scarce resource. In such a scenario,
space requirements for compression (8n bytes when a suffix array [135] and the
standard algorithm in [135] or the algorithm in [121] is used)2 is not an issue, as
compression is done on a full fledged host. In the target system, however, cutting
down memory requirements may be essential.

The BWT Backtransformation: We will not go into details of the BW-
transformation here, as it has been described in a number of papers [48, 58,
75, 99, 101, 136] and tutorials [45, 146] nor do we give a proof of the reverse
BWT algorithm. Instead, we give the bare essentials needed to understand the
problem we solve in the following sections. The BWT (conceptually) builds a
matrix whose rows contain n copies of the n character input string, row i rotated
i steps. The n strings are then sorted lexicographically and the last column is
saved as the result, together with the ”primary index”, i.e., the index of the row
that contains - after sorting - the original string. The first column of the sorted
matrix is also needed for the backtransformation, but it needs not to be saved,
as it can be reconstructed by sorting the elements of the last column. (Actually,
as we will see, the first column is also needed only conceptually).Figure 2 shows the first and last columns resulting from the input string ”AL-
IBABA”. The arrow indicates the primary index. Note that we have numbered
the occurrences of each character in both columns, e.g., row 2 contains the occur-
rence 0 of character ”A” in L, row 3 contains occurrence 1, and row 6 contains
occurrence 2. We call these numbers the rank of the character within column L.

2For the construction of the suffix array using less than 8n bytes algorithms are presented
e.g. in [67, 74, 115, 137, 143, 162]. For a comprehensive survey of suffix array constructions, we
refer to [152].
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F L rank base

0 A0 B0 A: 0
1 A1 B1 B: 3

−→ 2 A2 A0 I: 5
3 B0 A1 L: 6
4 B1 I0
5 I0 L0

6 L0 A2

Table 2: Last (L) and first (F ) column for the input string ”ALIBABA”

To reconstruct the input string, we start at the primary index in L and output
the corresponding character, ”A”, whose rank is 0. We look for A0 in column F ,
find it at position 0 and output ”B”. Proceeding in the same way, we get ”A”,
”B”, ”I”, ”L”, and eventually ”A”, i.e., the input string in reverse order. The
position in F for a character/rank pair can easily be found if we store for each
character of the alphabet the position of its first occurrence in F ; these values
are called base.

This gives us a simple algorithm when the vectors rank and base are available:

int h = primary_index;

for (int i = 0; i < n; i++) {

char c = L[h];

output(c);

h = base[c] + rank[h];

}

The base-vector and rank can easily be calculated with one pass over L and
another pass over all characters of the alphabet.

for (int i = 0; i < 256; i++) base[i] = 0;

for (int i = 0; i < n; i++) {

char c = L[i];

rank[i] = base[c];

base[c]++;

}

int total = 0;

for (int i = 0; i < 256; i++) {

int h = base[i];

base[i] = total;
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total += h;

}

These algorithms need O(n) space (n words for the rank-vector) and O(n)
time. Alternatively, we could do without precalculation of rank-values and cal-
culate rank[h] whenever we need it, by scanning L and counting occurrences of
L[h]. This would give us O(1) space and O(n2) time.

The question, now, is: is there a data structure that needs significantly less
than n words without increasing run time excessively?

In this paper we present efficient data structures and algorithms solving fol-
lowing problems:

Rank searching: The input must be preprocessed into a data structure, such
that for a given index i, it supports a query for rank(i). This query is referred
to as rank-query.

Rank-position searching (Select): The input must be preprocessed into a
data structure, such that for a given character c and rank r, it supports a query
select(c, r) for index i, such that L[i] = c and rank(i) = r. This query is referred
to as select-query. (This allows traversing L and F in the direction opposite to
that discussed so far, producing the input string in forward order).

Computation model: As computation model we use a random access machine
(RAM) (see e.g., in [51]). The RAM allows indirect addressing, i.e., accessing
the value at a relative address, given by an integer number, in constant time.
In this model it is also assumed that the length of the input n can be stored in
a computer word. Additionally, we assume that the size |A| of the alphabet A
is a constant, and particularly, |A| − 1 can be stored in a byte. Furthermore,
we assume that a bit shift operation in a computer word, word-wise and and
or operations, converting a bit string stored in a computer word into an integer
number and vice-versa and algebraic operations on integer numbers (’+’, ’-’, ’*’,
’/’, ’mod’, where ’/’ denotes the integer division with remainder) are possible in
constant time.

Previous results: In [163] Seward describes a slightly different method for the
reverse BWT by handling the so-called transformation vector in a more explicit
way. He presents several algorithms and experimental results for the reverse
BWT and answering rank-queries (more precisely, queries ”how many symbols
x occur in column L up to position i?”, without the requirement L[i] = x). A
rigorous analysis of the algorithms is omitted in [163]. The algorithms described
in [163], basis and bw94 need 5n bytes of memory storage and support a constant
query time; algoritm MergedTL needs 4n bytes if n is limited to 224 and supports
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a constant query time. The algorithm indexF needs 2.5n bytes if n < 220 and
O(log |A|) query time. The algorithms tree and treeopt build 256 trees (one
for each symbol) on sections of the vector L. They need 2n and 1.5n bytes,
respectively, if n < 220 and support O(log(n/∆) + cx∆) query time, where ∆ is
a given parameter depending on the allowed storage and cx is a relatively big
multiplicator which can depend on the queried symbol x.

Beside the computation of the reverse BWT, there is a large amount of re-
cent literature on BWT-based compressed full-text indexes, where rank- and
select-queries are used for searching patterns in the compressed file as well as for
retrieving (portions of) the original file. For an extensive survey on compressed
full-text indexes, see [144]. In [100] bucketing schemes are presented for the com-
putation of rank-queries. In this solution the BWT of the string is partitioned into
superbuckets and each superbucket is partitioned into buckets. For each super-
bucket the number of occurences of every character in the previous superbuckets
is stored. The buckets are compressed and stored in a bucket directory. Each
compressed bucket also includes a header containing the number of occurences
of every character since the beginning of the superbucket. The rank-queries are
answered by retrieving and decompressing the appropriate bucket and counting
the number of occurences of the corresponding character from the beginning of
the bucket. For the compression of buckets unary coding, hierarchical 3-level
coding, arithmetic coding, and Huffman coding has been used.

Our contributions: In [34, 32] we present a data structure which supports

answering a rank-query Q(i) in O(1) time using n( `−1
8

+ w|A|
2`

) bytes, where w
denotes the length of a computer word in bytes, and |A| is the size of the alphabet.
If |A| ≤ 256 and w = 4 (32 bit words), by setting ` ∈ {12, 13}, we obtain a data
structure of 13

8
n or 1.625 bytes. For w = 2 we get a data structure of 25

16
n or 1.5625

bytes. Thus, the space requirement is strictly less than that of the trivial data
structure, which stores the rank for each position as an integer in a computer word
and that of the methods in [163] with constant query time. The preprocessing
needs O(n) time and O(|A|) working storage.

We also present data structures of n bytes, where we allow at most L = 29

sequential accesses to a data block of L bytes. Because of caching and hardware
prefetching mechanism of todays processors, with this data structure we obtain
a reasonable query time.

Furthermore, we present a data structure, which supports answering a rank-
query Q(i) in O(t) time using t random accesses and c·t sequential accesses to the
memory storage, where c is a constant, which can be chosen, such that the speed
difference between non-local (random) accesses and sequential accesses is utilized

optimally. The data structure needs n(8+|A| log ct)
8ct

+ n|A|w
ct2

bytes. For t = ω(1), this
results in a sub-linear space data structure, e.g., for t = Θ(n1/d) we obtain a data
structure of 1

d
n1−1/d|A|(1 + o(1)) bytes. The preprocessing needs O(n) time and
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O(|A|) working storage.
After this, we turn to the inverse problem, the problem of answering select-

queries. We present a data structure of n( |A|(`+8w)
2`

+ `) bits, which supports
answering select-queries in O(log(n/2`)) time. The preprocessing needs O(n)
time and O(|A|+ 2`) working storage. For ` = 13, we obtain a data structure of
143

8
· n bits.

In [34, 32] we also present experimental results, that show that our algo-
rithms perform quite well in practice. Thus, they give significant improvement
for decompression in embedded devices for the mentioned scenarios.

4.2 Content distribution in P2P networks

The simplicity of creating, distributing and communicating content causing an
enormous load on the networks. P2P systems provide a very popular and efficient
way of content distribution. In tracker-based P2P networks, like BitTorrent, the
effectiveness of downloading data largely depends on the neighbors of the client
and on the distribution and selection of the pieces of the file. We give an overwiew
of our results on neighbor selection and topology management in BitTorrent-like
networks and on using network coding for more efficient content distribution.

4.2.1 Topology management and data distribution in tracker based
networks

In the past decade, tracker-based peer-to-peer networks like BitTorrent (BT)
[43] and Tribler [44] have emerged as popular solutions in the area of not only
simple file-sharing, but video-on-demand services as well. These applications are
still showing an increasing interest, generating a significant part of the overall
Internet traffic.

The selection of neighbors is an important design decision of peer-to-peer sys-
tems. In tracker-based peer-to-peer networks, each peer that enters the network,
first has to connect to a central component called tracker to obtain a peer set
representing the initial neighborhood of the joining client. The tracker maintains
a list of all nodes in the system, called the swarm, and returns a random subset
of the existing nodes. This random neighbor selection may lead to suboptimal
overlay topologies. In order to optimize the network, various neighbor selection
strategies can be found in the literature that considers different aspects from
locality [172] and load balancing [49, 111] to quality of experience [150].

The performance of BT like peer-to-peer systems has been widely analyzed in
the past few years from theoretical and practical aspects as well. The empirical
results [116, 70] show that the simple routing policy applied by the original BT is
quite effective even in case of a flash crowd setting when a great deal of peers join
the network almost at the same time. Besides empirical evidences, this heavy
loaded case has already been investigated from a theoretical perspective as well.
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In [49], several algorithms are demonstrated that share b data blocks among n
clients in a network of diameter d and degree D in O(D(b + d)) steps with high
probability3, where in one time step, each client can upload one data block to,
and download one block from one of its neighbor. For a network used by BT it
results in a time bound of O(b lnn) time steps. They propose a neighbor selection
strategy which improves this bound to a near-optimal O(b+ (lnn)2) steps.

In [30, 31] we improve the neighbor selection strategy resulting in a time
bound of O(b+ lnn) steps, which is optimal up to a constant factor.

Our method uses the idea of multiple choice [55] and takes into account not
only the actual load of the peers, but the possibility as well that a client will be
selected in the future. This will ensure an overlay network of constant degree and
logarithmic diameter with high probability. The constructed overlay topologies
are examined from both theoretical and practical perspectives as well. We model
these overlay networks as a graph, whose vertices are the peers and neighboring
peers are connected by an edge. We analyze the key graph properties of the
proposed network, showing that the maximum degree in our overlay topology is
O(1), with high probability, while its diameter still remains logarithmic in the
number of peers n. In such a network, the randomized upload policy will share b
data blocks among n clients in O(b+lnn) time steps with high probability, which
is optimal in networks of n vertices, in which the degree of the vertices is bounded
by a constant. Besides the theoretical analysis thorough simulations have been
performed to validate the different properties of the constructed overlay networks.
In addition to the analysis of the degree and diameter distributions, we also show
how our balanced algorithm could work in a tracker-based file sharing system
such as BitTorrent to accelerate the delivery of the data blocks in the whole
network. The theoretical results are backed up by simulations. The show that
our balanced overlay construction could work not only in theory, but in practice
as well.

4.2.2 Network coding for robust data distribution in BitTorrent-like
networks

In the BitTorrent protocol the file is divided into pieces and the clients upload and
download the pieces to each other. The tit-for-tat rule of the protocol enforces the
cooperation between selfish peers. In the original BitTorrent protocol sometimes
the neighbors of a peer have no piece that the peer does not already have, which
inhibits the download. Rare pieces can cause long waiting times. An elegant way
of solve these problems by Locher et al. [131] is the extension of the original
protocol by network coding. This coding method increases the diversity of the
pieces in the network which accelerates tit- for-tat piece exchange and leads to
faster downloads. In [1, 2] we propose a novel deterministic source coding method.

3An event E is said to occur with high probability, if given n > 1, Pr[E] > 1− 1/nc, where
c > 1 is a constant [142].
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The main advantages of our method compared to state of the art random coding
methods are the reduced traffic overhead and the guarantee of decodability of
the original file after downloading d different coded pieces, where d is the number
of pieces of the file. We analyze the deterministic method theoretically. The
theoretical results are backed up by simulations.

In [35] we conduct further simulations for the extension of BitTorrent by
random network coding and the deterministic coding. In [17] we provide a special
version of random coding and present simulation results.

4.2.3 Resource constrained BitTorrent-like networks

In [29] we present a solution that makes BitTorrent content transfer for mobile
device more energy efficient. The main idea is that instead of downloading the
content via BitTorrent directly to the mobile phone, an intermediate proxy is used
which sends the data to the phone in high speed bursts. This results in smaller
energy footprint compared with regular BitTorrent data transfer. Furthermore,
we focus on how the proxy can be hosted on memory limited broadband routers
which are available in almost every home. We define an analytical model which
can be used to analyze the memory allocation strategies of the proxy peers and
predict how proxy peers influence the P2P community performance. We verify
our model via simulations. In [29] we also present measurement results with real
life torrents using our prototype system running on home routers mobile phones.

Main contributions: In [29] our explicit interest is how the system can de-
liver a torrent to a battery powered, wirelessly connected mobile device energy-
efficiently. So far the key performance metric of most BitTorrent research has
been download time.

Then we mathematically model and analye how the limited resources of the
proxy peer influence BitTorrent performance. The ability to store and share
pieces that a peer has already downloaded is one of the key concepts of BitTorrent.
If the storage space of the proxy is limited, downloaded pieces have to be discarded
after they have been transmitted to the mobile, and thus cannot be shared any
longer. However, there is no method in the BitTorrent protocol to announce that
a formerly shared piece has been discarded. We ensure that these solutions are
compatible with the existing BitTorrent clients and that they do not harm the
downloading performance of regular peers.

On the practical side, we have shown that using broadband routers as prox-
ies for BitTorrent downloads is feasible and results in energy savings and user
experience improvements via shorter download times.

On the theoretical side, we have investigated how BitTorrent works on
memory-limited devices. Only a relatively small number of pieces are required
to achieve full upload utilization and reach good download speeds. Most of the
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available memory should be allocated to serving other peers. This memory allo-
cation can be done statically using our analytical formulas or with an adaptive
algorithm. The amount of data that is sent to the mobile device in one pass is
another important parameter influenc- ing the performance. In general a bigger
chunk size can save energy but it may increase the download time.

5 Network Function Virtualisation, Software

Defined Networks

Today’s computer networks provide a rich set of in-network functions, including
access control, firewall, intrusion detection, network address translation, traffic
shaping and optimization, caching, among many more. While such functional-
ity is traditionally implemented in hardware middleboxes, computer networks
become more and more virtualized [93, 160]: Network Function Virtualization
(NFV) enables a flexible instantiation of network functions on network nodes,
e.g., running in a virtual machine on a commodity x86 server.

Modern computer networks also offer new flexibilities in terms of how traffic
can be routed through such network functions. In particular, using Software-
Defined Networking (SDN) [139] technology, traffic can be steered along arbitrary
routes, i.e., along routes which depend on the application [110], and which are
not necessarily shortest paths or destination-based, or not even loop-free [56, 155,
95, 153].

These trends enable the realization of interesting new in-network communi-
cation services called service chains [94, 154, 148, 168]: sequences of network
functions which are allocated and stitched together in a flexible manner. For
example, a service chain ci could define that traffic originating at source si is first
steered through an intrusion detection system for security (1st network function),
next through a traffic optimizer (2nd network function), and only then is routed
towards the destination ti. Such advanced network services open an interesting
new market for Internet Service Providers, which can become “miniature cloud
providers” [169], specialized for in-network processing.

In this section we present our results on incremental middlebox deployment
[38] and online servive chain embedding [41].

5.1 On-line admission control and embedding of service
chains

The virtualization and softwarization of modern computer networks enables the
definition and fast deployment of novel network services called service chains :
sequences of virtualized network functions (e.g., firewalls, caches, traffic optimiz-
ers) through which traffic is routed between source and destination. In [41] we
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attend to the problem of admitting and embedding a maximum number of service
chains, i.e., a maximum number of source-destination pairs which are routed via a
sequence of ` to-be-allocated, capacitated network functions. We consider an On-
line variant of this maximum Service Chain Embedding Problem, short OSCEP,
where requests arrive over time, in a worst-case manner. Our main contribution
is a deterministic O(log `)-competitive online algorithm, under the assumption
that capacities are at least logarithmic in `. We show that this is asymptotically
optimal within the class of deterministic and randomized online algorithms. We
also explore lower bounds for offline approximation algorithms, and prove that
the offline problem is APX-hard for unit capacities and small ` ≥ 3, and even
Poly-APX-hard in general, when there is no bound on `. These approximation
lower bounds may be of independent interest, as they also extend to other prob-
lems such as Virtual Circuit Routing. Finally, we present an exact algorithm
based on 0-1 programming, implying that the general offline SCEP is in NP and,
by the above hardness results, it is NP-complete for constant `.

Scope: In [41], we study the problem of how to optimally admit and embed
service chain requests. Given a redundant distribution of network functions and
a sequence σ = (σ1, σ2, . . . , σk), where each σi = (si, ti) for i ∈ [1, k] defines a
source-destination pair (si, ti) which needs to be routed via a sequence of network
function instances, we ask: Which requests σi to admit and where to allocate
their service chains ci? The service chain embedding should respect capacity
constraints as well as constraints on the length (or stretch) of the route from si
to ti via its service chain ci.

Our objective is to maximize the number of admitted requests. We are par-
ticularly interested in the Online Service Chain Embedding Problem (OSCEP),
where σ is only revealed over time. We assume that a request cannot be de-
layed and once admitted, cannot be preempted again. Sometimes, we are also
interested in the general (offline) problem, henceforth denoted by SCEP.

Our contribution: We formulate the online and offline problems OSCEP and
SCEP, and make the following contributions:

1. We present a deterministic online algorithm ACE4 which, given that node
capacities are at least logarithmic, achieves a competitive ratio O(log `) for
OSCEP. This result is practically interesting, as the number of to be tra-
versed network functions ` is likely to be small in practice. In our analysis,
we adapt a proof strategy known from virtual circuit routing [151]. Note
however that in contrast to virtual circuit routing, where the end nodes
have to be connected by a path in the network, in the SCEP, the path must
traverse a sequence of ` nodes, such that the ith node of this sequence hosts

4Admission control and Chain Embedding.
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network function fi. Furhermore, in the SCEP, the path length must be
bounded by r hops. So far, only heuristic and offline approaches to solve the
service chain embedding problem have been considered [60, 91, 140, 168].

2. We prove that the competetive ratio of our online algorithm is asymp-
totically optimal in the class of both deterministic and randomized online
algorithms, which can be achieved in polynomial time, by adapting a proof
strategy from virtual circuit routing in [54]. Moreover, we initiate the study
of lower bounds for the offline version of our problem, and show that no
good approximation algorithms exist, unless P = NP : for unit capacities
and already small `, the offline problem SCEP is APX-hard. For arbitrary
`, the problem can even become Poly-APX-hard. These results also apply
to the offline version of classic online call control problems, which to the
best of our knowledge have not been studied before.

3. We present a 0-1 program for SCEP, which also shows that SCEP is in
NP for constant ` and, taking into account our hardness result, that SCEP
is NP-complete for constant `. More precisely, if the number of all pos-
sible chains that can be constructed over the network function instances
is polynomial in the network size n, then the number of variables in the
0-1 program is also polynomial, and thus the problem is in NP. If mi is
the number of instances of network function fi in the network, i = 1, ..., `,
and m = maxi{mi}, then the size of the 0-1 program is polynomial for
m` = poly(n). For example, this always holds for constant `. When m is
constant, then it holds for ` = O(log n).

5.2 Middlebox Deployment

Virtualization of network function and softwareization of modern computer
networks offer new opportunities for the simplified management and flexible
placement of middleboxes as e.g. firewalls and proxies. In [38] we initiate
the study of algorithmically exploiting the flexibilities present in virtualized
and software-defined networks. Particularly, we are interested in the initial as
well as the incremental deployment of middleboxes. We present a determinis-
tic O(log(min{n, κ})) approximation algorithm for n-node computer networks,
where κ is the middlebox capacity. The algorithm is based on optimizing over a
submodular function which can be computed efficiently using a fast augmenting
path approach. The derived approximation bound is optimal: the underlying
problem is computationally hard to approximate within sublogarithmic factors,
unless P = NP holds. We additionally present an exact algorithm based on in-
teger programming, and complement our formal analysis with simulations. In
particular, we consider the number of used middleboxes and highlight the ben-
efits of the approximation algorithm in incremental deployments. Our approach
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also finds interesting applications, e.g., in the context of incremental deployment
of software-defined networks.

Scope: Middleboxes are ubiquitous in modern computer networks, which pro-
vide a wide spectrum of in-network functions to ensure security, performance, and
policy compliance. In fact, the number of middleboxes in enterprise networks can
be of the same order of magnitude as the number of routers [167].

While in-network functions were traditionally implemented in specialized
hardware appliances and middleboxes, computer networks in general and middle-
boxes in particular become more and more software-defined and virtualized [93]:
network functions can be implemented in software and deployed fast and flexibly
on the virtualized network nodes. Virtualization is also attractive for its potential
cost savings [157].

Modern computer networks also offer new flexibilities in terms of how traffic
can be routed through middleboxes and virtualized data plane appliances (often
called Virtual Network Functions, short VNFs) [156]. In fact, Openflow, the
standard SDN protocol today, not only introduces a more flexible routing, but
itself allows to implement basic middlebox functionality, on the switches [96]: an
Openflow switch can match, and perform actions upon, not only layer-2, but also
layer-3 and layer-4 header fields.

However, not much is known today about how to exploit these flexibilities
algorithmically. A particularly interesting problem regards the question of where
to deploy a minimal number of middleboxes such that basic routing and capacity
constraints are fulfilled. Intuitively, the smaller the number of deployed network
functions, the longer the routes via these functions, and a good tradeoff between
deployment costs and additional latency must be found. Moreover, ideally, mid-
dleboxes should be incrementally deployable: when additional middleboxes are
deployed, existing placements do not have to be changed. This is desirable espe-
cially in deployment scenarios with budget constraints.

Novelty and Related work: Interestingly, the middlebox deployment prob-
lem has not been studied before in the algorithms literature. As we show, the
problem can be seen as a novel covering problem [78, 97, 175] where: (1) we are
interested in the distance between communicating pairs, via the covering nodes,
and not to the covering nodes; (2) we aim to support incremental deployments:
middlebox locations selected earlier in time as well as the supported communica-
tion pairs should not have to be changed when deploying additional middleboxes;
(3) we consider a capacitated setting where the number of items which can be
assigned to a node is bounded by κ.

Nevertheless, we can adapt algorithmic concepts introduced in prior work.
Our lower bounds build upon hardness results on uncapacitated covering prob-
lems [133], and our upper bound builds upon Wolsey’s study of vertex and set
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covering problems with hard capacities [175]. An elegant alternative proof to
Wolsey’s dual fitting approach, based on combinatorial arguments, is due to
Chuzhoy and Naor [77]. The authors also show that using LP-relaxation ap-
proaches is generally difficult, as the integrality gap of a natural linear program
for the weighted and capacitated vertex and set covering problems is unbounded.

Our contributions: In [38] and [39] we initiate the study of the problem of
placing a minimum number of middleboxes or network functions, such that dis-
tance constraints between communicating node pairs as well as capacity con-
straints on the network nodes are satisfied.

Our main contribution is a deterministic and greedy O(log (min{κ, n}))-
approximation algorithm for the middlebox placement problem in n-node net-
works where capacities are bounded by κ. Our algorithm supports both deploy-
ments from scratch as well as incremental deployments : It does not require any
changes to the locations of existing middleboxes or the preemption of previously
served communication pairs when additional middleboxes are deployed.

The approximation bound is optimal in the sense that, as we show, neither the
capacitated nor the uncapacitated problem admits a sublogarithmic polynomial-
time approximation, unless P = NP holds.

We also present a (non-polynomial) optimal algorithm based on a 0-1 integer
linear program which, together with our hardness result, implies that the problem
is NP-complete: 0-1 programming is one of Karp’s 21 NP-complete problems.

We complement our formal analysis with a simulation study, where we in-
vestigate the tradeoff between routing flexibilities (in terms of path stretch) and
number of required middleboxes, and also highlight the benefit of incremental
deployments.

We believe that our model and approach has ramifications beyond middlebox
deployment. For instance, our algorithm can also be used to solve the problem
of incremental SDN deployment [122, 138].
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[3] László Blázovics and Tamás Lukovszki. Surrounding robots – a localized
solution for the intruder problem. In Proc. 3rd IEEE International Con-
ference on Cognitive Infocommunications (CogInfoCom), 2012.
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[9] Péter Ekler and Tamás Lukovszki. Learning methods for similarity handling
in phonebook-centric social networks. In 10th International Symposium
of Hungarian Researchers on Computational Intelligence and Informatics
(CINTI), 2009.
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ras, Marcus Märtens, Friedhelm Meyer Auf Der Heide, Christoph Rau-
pach, Kamil Swierkot, Daniel Warner, Christoph Weddemann, and Daniel
Wonisch. Collisionless gathering of robots with an extent. In Proceedings of
the 37th International Conference on Current Trends in Theory and Prac-
tice of Computer Science (SOFSEM 2011), pages 178–189. Springer Verlag,
LNCS, 2011.

[83] Andreas Cord-Landwehr, Bastian Degener, Matthias Fischer, Martina
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