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Introduction - Course details

Course details

I Csaba Bálint csabix@inf.elte.hu (me). Room: 2-706.
I Lecture: Wednesday, 16:00-17:30

I Exam: Explain 2 topics. You chose one, and I choose one.
I Points from practice can help your course (but do not count on it).

I Practice: Wednesday, 17:45-19:15 and 19:30-21:00
I Small assignment (≈30 points) and large assignment (100+ points)
I Work during practice (≈15 points)
I Scores above 100 points will count towards the lecture exam

I In both
I Grade boundaries: 40, 55, 70, 85.
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Introduction - Course details

About this course

I This course was originally based on the Hungarian
master course Advanced Computer Graphics

I The difficulty was lowered, now it consists of

ARI CG =
1

2
· BSc CG +

3

5
·MSc CG

I Prerequisites:
I Linear algebra (the more the merrier)
I Calculus (differentiation and integration)
I Geometry (good understanding is beneficial)

I This course is still hard. To pass:
I Do not miss Practices! It is really hard to catch up.
I Maximize points. Ask questions.
I Follow the Lectures.
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Introduction - Course details

Further reading

1. Edward Angel, Dave Shreiner : Interactive Computer Graphics: A Top-Down Approach
with Shader-Based OpenGL (6th Edition)

2. Andrew Glassner : Principles of digital image synthesis
3. Pharr, Humphreys, Hanrahan: Physically Based Rendering (From Theory to

Implementation)
4. Akenine-Möller, Haines, Hoffman: Real-Time Rendering (4th edition)
5. Tekla Tóth, Iván Eichhardt, Gábor Valasek: BSc Computer Graphics Lecture slides

Csaba Bálint (ELTE IK) CG Crash Course Computer Graphics Lecture 5 / 168

http://www.realtimerendering.com/Principles_of_Digital_Image_Synthesis_v1.0.1.pdf
https://www.pbrt.org/
https://www.pbrt.org/
https://www.realtimerendering.com/
http://cg.elte.hu/~tekla/old/2019_20_1/graphics_lecture.html


Introduction - Motivation

Introduction

I Computer graphics deals with the synthesis,
analysis, and manipulation of visual content

I Our focus is on the basics of
I modeling, i.e. how can we describe (and more

importantly: store in a computer-decipherable way)
our virtual worlds

I algorithms which allow us to make pictures of our
virtual world

I devices on which we can display the results of our
visualisations
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Introduction - Motivation

Modeling

I Geometric modeling
I Optical models
I Textures
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Introduction - Motivation

Algorithms

Approaches
I Ray tracing
I Incremental image synthesis

Light
I Reflections and refractions
I Shadows
I Global illumination
I Volumetric lighting Henrik, Wikipedia
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Introduction - Motivation

Algorithms
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I Ray tracing
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I Reflections and refractions
I Shadows
I Global illumination
I Volumetric lighting

Gilles Tran, Oyonale.com
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Introduction - Motivation

Algorithms
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I Ray tracing
I Incremental image synthesis

Light
I Reflections and refractions
I Shadows
I Global illumination
I Volumetric lighting

CryEngine2
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Introduction - Motivation

Algorithms

Approaches
I Ray tracing
I Incremental image synthesis

Light
I Reflections and refractions
I Shadows
I Global illumination
I Volumetric lighting

BlendELF.com
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Introduction - Motivation
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Coordinate systems - Vector operations

Points and vectors

I A point is an entity that has a location in space (or plane), but it has no extent
I A vector is an element of a vector space. Geometrically, a vector has a direction and a

magnitude. All the usual operations are defined on them: vector addition, subtraction,
multiplication by scalar, dot product, and cross product

I The following operations can be carried out that bridge the realm of points and vectors:
I Difference of points yields a vector A−B = v that translates B to A.
I A point plus a vector translates the point B + v = A to another one
I Barycentric combination of points

∑
i λiPi where

∑
i λi = 1 (more details later)

I Barycentric combination of vectors
∑
i λivi where

∑
i λi = 0

I In the following we presume that n points/lines/planes will be n distinct
points/lines/planes.
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Coordinate systems - Vector operations

Vector addition and substraction
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Coordinate systems - Vector operations

Vector dot product

The dot product of vectors a = [ax, ay, az] and b = [bx, by, bz] is denoted by 〈a, b〉 and can be
computed using their coordinates as

〈a, b〉 = axbx + ayby + azbz.

This is equivalent to
〈a, b〉 = |a| · |b| · cos(α),

where α denotes the angle between vectors a and b.
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Coordinate systems - Vector operations

Vector cross product
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Coordinate systems - Vector operations

Vector cross product

You can use determinants to compute the cross product:axay
az

×
bxby
bz

 =

∣∣∣∣∣∣∣
i j k
ax ay az
bx by bz

∣∣∣∣∣∣∣
= i ·

∣∣∣∣∣ ay az
by bz

∣∣∣∣∣− j ·

∣∣∣∣∣ ax az
bx bz

∣∣∣∣∣+ k ·

∣∣∣∣∣ ax ay
bx by

∣∣∣∣∣
=

 aybz − azby
−axbz + azbx
axby − aybx


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Coordinate systems - Vector operations

Notation

I Points: a ∈ E2, b ∈ E3

I Vectors: v ∈ Rn, n = 2, 3, ...
I Special notation: v ∈ Rn is the direction of vector v, i.e. |v| = ||v||2 = 1.

I Lines: e, f, g, ...
I Planes: S, ...
I Matrices: M,M ∈ Rn×m
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Coordinate systems - Vector operations

Coordinate systems

I Coordinate systems allow us to uniquely represent points of the space with n-tuples (of
numbers)

I E.g. p =

 x
y
z

 ∈ E3

I It allows us to use algebraic and analytic tools in geometric problems
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Coordinate systems - Cartesian coordinate system

Cartesian coordinate system

I The Cartesian coordinate system uniquely assigns a pair [triple] of numbers to each finite
point of the Euclidean plane [space]

I A Cartesian coordinate system is defined by a point in the space, in other words the origin
o, and an orthonormal system of three vectors, i, j, and k

I Then the x, y, z coordinates of a point p are the (signed) orthogonal projections of the
vector p− o to the orthonormal basis vectors i, j,k

I Reminder: the (signed) orthogonal projection of vector a to unit vector [b]0 is
〈a, [b]0〉 = |a| cos∠(a, [b]0)
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Coordinate systems - Cartesian coordinate system

Signed orthogonal projection
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Coordinate systems - Cartesian coordinate system

Geometric interpretation

I In other words: p(x, y, z) denotes the point of the space which we get by starting from
the origin o and going x units in the direction of i, y units in the direction of j, and z
units in the direction of k
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Coordinate systems - Cartesian coordinate system

Geometric interpretation

I That is, given the orthonormal basis vectors i, j, k, the Cartesian coordinates [x, y, z]T

denote the following point of the Euclidean space:

p = o + xi + yj + zk

= o + x

 1
0
0

+ y

 0
1
0

+ z

 0
0
1


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Coordinate systems - Cartesian coordinate system

Right-handed coordinate systems
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Coordinate systems - Cartesian coordinate system

Left-handed coordinate systems
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Coordinate systems - Polar coordinates

Polar coordinates

I Each point of the plane is determined by a distance from a fixed point o (reference
point) and an angle from a fixed (reference) direction (polar axis)

I The polar coordinates of p are (r, φ):
I r ≥ 0: r = |p− o|
I φ ∈ [0, 2π): the angle between the line through o and p and the reference direction
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Coordinate systems - Polar coordinates

Polar coordinates: Conversions

I Polar → Cartesian: (r, ϕ)→ (x, y)
I (x, y) = r · (cosφ, sinφ)

I Cartesian → polar: (x, y)→ (r, ϕ)

I r =
√
x2 + y2

I

φ = atan2(y, x) =


atan( yx ), x > 0 ∧ y ≥ 0
atan( yx ) + 2π, x > 0 ∧ y < 0
atan( yx ) + π, x < 0
π
2 , x = 0 ∧ y > 0
3π
2 , x = 0 ∧ y < 0

I Origin of the Cartesian system = polar reference point
I x Cartesian axis = polar axis
I What happens at x = 0, y = 0? When r = 0, any angle will result in [0, 0]
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Coordinate systems - Spherical coordinates

Spherical coordinates
I A planar polar coordinate system plus an additional axis (Z-axis, zenith), perpendicular to

the polar plane
I The spherical coordinates (r, ϕ, θ) of p denote:

I ϕ: the polar angle of p’s projection onto the polar plane
I θ ∈ [0, π]: the angle between the line through o and p and the Z-axis
I r: r = |p− o|
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Coordinate systems - Spherical coordinates

Spherical coordinates: Conversions

I Spherical → Cartesian: (r, ϕ, θ)→ (x, y, z)

x = r cosϕ sin θ, y = r sinϕ sin θ, z = r cos θ

I Cartesian → spherical: (x, y, z)→ (r, ϕ, θ)

r =
√
x2 + y2 + z2

ϕ = atan2(y, x)

θ = arccos
z

r
, r 6= 0
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Coordinate systems - Barycentric coordinate system

Barycentric coordinates

I August Ferdinand Möbius [1827]
I Motivation: a more balanced representation of the region of interest
I The term is derived from barycenter, meaning center of gravity.

What u, v > 0 weights should we put at the ends of the rod if we want the rod to stay in
balance when elevated at the point denoted by the triangle?
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Coordinate systems - Barycentric coordinate system

Motivation

What u, v > 0 weights should we put at the ends of the rod if we want the rod to stay in
balance when elevated at the point denoted by the triangle?

I Let x be the position of the triangle
I The rod will be balanced if (x− a)v = (b− x)u

I The above only determines the ratio of u and v!
I Using a normalisation condition of u+ v = 1

u =
x− a
b− a

, v =
b− x
b− a
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Coordinate systems - Barycentric coordinate system

Barycentric coordinate system

I Let a0, ...,an be n+ 1 affinely independent points in En

I Then every x point of En can be expressed as a barycentric combination of basis points
a0, ...,an, i.e. there exists λi ∈ R, i = 0, ..., n, such that

x =

n∑
i=0

λiai where
n∑
i=0

λi = 1.

I We need 3 points in the plane, and 4 in space to cover all dimensions
I The case of ∀ i : λi ≥ 0 is called convex combination
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Coordinate systems - Barycentric coordinate system

Planar barycentric coordinate system
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Coordinate systems - Barycentric coordinate system

Barycentric → Cartesian conversion

I Let (u, v, w) be the barycentric coordinates wrt.
p1 = (x1, y1),p2 = (x2, y2),p3 = (x3, y3) ∈ E2 ((xi, yi) given in Cartesian coordinates)

I Then the Cartesian coordinates of the point represented by the barycentric coordinates
(u, v, w) can be computed as x = up1 + vp2 + wp3, i.e.

x = ux1 + vx2 + wx3

y = uy1 + vy2 + wy3
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Coordinate systems - Barycentric coordinate system

Cartesian → barycentric conversion

I Let ∆(a, b, c) :=

∣∣∣∣∣∣∣
1 1 1
ax bx cx
ay by cy

∣∣∣∣∣∣∣, a, b, c ∈ E2

I Remark: ∆(a, b, c) equals to twice the signed area of the triangle spanned by a, b, c (the
signed area is positive if the 3 vertices come in a counter-clockwise direction, otherwise it
is negative)

I Remark: in space ∆(a, b, c) = 〈(b− a)× (c− a),n〉, where n is the normal of the 3
points’ plane
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Coordinate systems - Barycentric coordinate system

Cartesian → barycentric conversion

Let x ∈ E2 be a point. Then its barycentric coordinates wrt.
p1 = (x1, y1),p2 = (x2, y2),p3 = (x3, y3) ∈ E2 affinely independent points are:

u =
∆(x,p2,p3)

∆(p1,p2,p3)

v =
∆(p1,x,p3)

∆(p1,p2,p3)

w =
∆(p1,p2,x)

∆(p1,p2,p3)

Such that

x = up1 + vp2 + wp3

.
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Coordinate systems - Homogeneous coordinates

Motivation

I D′ is not on the Euclidean plane, since the projection line is parallel with the x axis
I Let us consider the same orientation of the lines (their direction) as a point!
I This way all parallel lines will have a common point at infinity
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Coordinate systems - Homogeneous coordinates

Definition

I Each line has an additional point, an ideal point on it, such that
I The ideal points of parallel lines are the same
I The ideal points of all the lines of the plane form an ideal line
I The ideal lines of parallel planes coincide
I All the ideal points of the space form the ideal plane
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Coordinate systems - Homogeneous coordinates

Properties

I Projective plane: the projective closure of E2, that is all the points of E2 and its ideal line
I Two points always determine a line in the projective plane (remark: remember, by two points

we mean two different points!)
I Two lines always determine a point in the projective plane!
I ...

I Projective space: the projective closure of E3, that is E3 plus its ideal plane
I Three points always determine a plane (unless they are colinear).
I Three distinct planes (not all three having the same orientation) always determine a point
I ...

Csaba Bálint (ELTE IK) CG Crash Course Computer Graphics Lecture 37 / 168



Coordinate systems - Homogeneous coordinates

Embedding the Euclidean plane
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Coordinate systems - Homogeneous coordinates

Embedding the Euclidean plane
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Coordinate systems - Homogeneous coordinates

Embedding the Euclidean plane
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Coordinate systems - Homogeneous coordinates

Cartesian → homogeneous conversion

I For each p(x, y, z) ∈ E3 point, let its homogeneous coordinates be:
p(x, y, z) → [x, y, z, 1]

≈ h[x, y, z, 1]
= [hx, hy, hz, h], h 6= 0

I For each v = [x, y, z]T ∈ R3 vector :
[x, y, z] → [x, y, z, 0]

≈ h[x, y, z, 0]
= [hx, hy, hz, 0], h 6= 0
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Coordinate systems - Homogeneous coordinates

Homogeneous → Cartesian conversion
I What does [x1, x2, x3, x4] denote in the Euclidean space?

I x4 6= 0: it’s the following point of the Euclidean space:

[x1, x2, x3, x4] ≈
[
x1
x4
,
x2
x4
,
x3
x4
, 1

]
= p

(
x1
x4
,
x2
x4
,
x3
x4

)
I x4 = 0 and x21 + x22 + x23 6= 0: it is an ideal point, i.e. a vector!
I xi = 0, i = 1, 2, 3, 4: cannot happen.
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Coordinate systems - Homogeneous coordinates

Homogeneous coordinates
I Let c 6= 0 then:

I [0, 0, 0, c] origin
I [c, 0, 0, 0] ideal point of the x axis
I [0, c, 0, 0] ideal point of the y axis
I [0, 0, c, 0] ideal point of the z axis
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Coordinate systems - Homogeneous coordinates

Homogeneous coordinate properties
I In the projective plane the point and the line, in the projective space the point and plane

are dual entities
I Be careful, not everything is valid in the projective space that was valid in the Euclidean!

I One point does not split a line into two! But two points do!
I One line does not split the plane into two! But two different lines do!
I The line segment between two points is not unique!
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Curves and surfaces - Table of contents
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Curves and surfaces - Motivation

Curves and surfaces

I Motivation
I We can now represent the points of the plane or space by numbers (their coordinates)
I How can we represent nice sets of points, e.g. a line in the plane or a plane in space?
I We seek the answer to this in the Cartesian coordinate system

I Informally, the curves and surfaces are special subsets of space - i.e. they are sets of points
I How can we define these - usually infinite – sets?

I explicit: y = f(x) → what happens when the curve folds onto itself?

I parametric: p(t) =

[
x(t)
y(t)

]
, t ∈ R

I implicit: f(x, y) = 0, for example: x2 + y2 − 9 = 0
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Curves and surfaces - Lines

Implicit equation of line with a point and normal
I High school: y = mx+ b. Problem: vertical lines!
I Let p(px, py) be a point on the line and n = [nx, ny]

T 6= 0 a vector, a normal
perpendicular to the line.

I All x(x, y) points of the plane that satisfy the following are exactly the points of the line:

〈x− p,n〉 = 0 =⇒ (x− px)nx + (y − py)ny = 0

I Two half-planes: 〈x− p,n〉 < 0 and 〈x− p,n〉 > 0
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Curves and surfaces - Lines

The homogeneous implicit equation of the line on the plane

I The equation ax+ by + c = 0 is the implicit equation of the line on the plane
I In the previous representation, choosing a = nx, b = ny and c = −(pxnx + pyny),
a2 + b2 6= 0 we get the implicit equation of the line going through p, with normal n

I If a2 + b2 = 1 then this is the Hesse normal form
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Curves and surfaces - Lines

Homogeneous implicit equation with determinant
I Let p(px, py) and q(qx, qy) be two distinct points on the line. A point x(x, y) belongs to

the line if: ∣∣∣∣∣∣∣
x y 1
px py 1
qx qy 1

∣∣∣∣∣∣∣ = 0

I This determinant is twice the signed area of the triangle spanned by x, p, q which
vanishes whenever they are collinear.
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Curves and surfaces - Lines

Parametric equation of lines

I Let p(px, py, pz) be a point on the line and v = [vx, vy, vz]
T 6= 0 a direction vector of

the line (a vector parallel to the line):

x(t) = p + tv =

x(t)
y(t)
z(t)

 =

px + tvx
py + tvy
pz + tvz

 (t ∈ R)

I Let p and q be two points of the line. The previous form can be attained by setting
v = q − p:

x(t) = p + t(q − p) =

(1− t)px + tqx
(1− t)py + tqy
(1− t)pz + tqz

 (t ∈ R)

I Note that the above is linear interpolation or the barycentric interpolation of two points.
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Curves and surfaces - Lines

Lines

I A line can be represented in the projective plane by the line-coordinate triplet
e = [e1, e2, e3]. A point x = [x1, x2, x3]

T belongs to the line iff
〈e,x〉 = e1x1 + e2x2 + e3x3 = 0

I This goes for the ideal line of the projective plane: [0, 0, 1] are the line-coordinates of the
ideal line, since all points of the form [x1, x2, 0] will satisfy 〈e,x〉 = 0
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Curves and surfaces - Planes

Implicit equation of the plane using a point and normal

I Let p(px, py, pz) be a point on the plane and n = [nx, ny, nz]
T be a vector perpendicular

to the plane. Then x is a point on the plane iff:

〈x− p,n〉 = 0

I Half-spaces: 〈x− p,n〉 < 0, 〈x− p,n〉 > 0
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Curves and surfaces - Planes

Homogeneous implicit equation of the plane

I The implicit equation of the plane is in the form ax+ by + cz + d = 0

I From the previous slide choosing a = nx, b = ny, c = nz and d = −nxpx − nypy − nzpz
determines the plane going trough p, with n perpendicular to it

I Hesse normal-form: a2 + b2 + c2 = 1
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Curves and surfaces - Planes

Homogeneous implicit equation with determinant
I Let p(px, py, pz), q(qx, qy, qz), r(rx, ry, rz) be three, affinely independent points. Then x

lies on the plane spanned by p, q, r iff∣∣∣∣∣∣∣∣∣
x y z 1
px py pz 1
qx qy qz 1
rx ry rz 1

∣∣∣∣∣∣∣∣∣ = 0

This determinant is the signed volume of a paralelepipedon with sides p− x, q − x, r − x.
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Curves and surfaces - Planes

Parametric equation of the plane – using three points
I Let p, q, r be three affinely independent points. Then all points x belonging to the plane

spanned by p, q, r can be expressed in the form
x(s, t) = p + s(q − p) + t(r − p)

where s, t ∈ R.
I This is a barycentric form, just like in the case of the parametric line through two points

x(s, t) = (1− s− t)p + sq + tr

since (1− s− t) + s+ t = 1
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Curves and surfaces - Planes

Parametric equation of the plane – using a point and spanning vectors

I Let p be a point of the plane and u,v two, linearly independent vectors in the plane
x(s, t) = p + su + tv

I We can get this from the previous one by setting u = q − p, v = r − p
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Curves and surfaces - Planes

Homogeneous form of a plane

I The plane coordinates are analogous to the definition of the line-coordinates. In the
projective space the 4-tupple s = [s1, s2, s3, s4] defines a plane. All points
x = [x1, x2, x3, x4]

T belong to the plane iff
〈s,x〉 = s1x1 + s2x2 + s3x3 + s4x4 = 0

I Some example planes in homogeneous form:
I [0, 0, 0, c] ideal plane
I [c, 0, 0, 0] the YZ plane
I [0, c, 0, 0] the XZ plane
I [0, 0, c, 0] the XY plane
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Curves and surfaces - Curves

Parabola
I The parabola of focus point (0, p) about the Y axis can be written

I implicitly as x2 = 4py,
I explicitly as y = x2

4p , x ∈ R, and
I parametrically as p(t) = [t, t

2

4p ]T , t ∈ R.
I How can we translate this, such that its focus point becomes (0, p) + c?
I In implicit and explicit formulation one has to work the coordinates of the translation

(cx, cy) into the formulation (e.g. (x− cx)2 = 4p(y − cy) in implicit)
I In parametric form it is simply p(t) + c
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Curves and surfaces - Curves

Circle
I Let us consider the circle of origin c ∈ E2 and radius r > 0.

I Implicit: (x− cx)2 + (y − cy)2 = r2

I Explicit: impossible to express the entire circle! However, a semi-circle is doable:
c = 0, r = 1, where y = ±

√
1− x2, x ∈ [−1, 1]

I Parametric: p(t) = r[cos t, sin t]T + c, where t ∈ [0, 2π)
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Curves and surfaces - Curves

Ellipse
I The ellipse of center point c ∈ E2 having the X and Y axes as its major and minor axes,

with major and minor radii a > 0, b > 0, respectively, can be written as
I Implicit: (x−cx)2

a2 +
(y−cy)2

b2 = 1
I Explicit: same deal as with the circle...
I Parametric: p(t) = [a cos t, b sin t]T + c, where t ∈ [0, 2π)
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Curves and surfaces - Curves

Ellipse
I How about having major and minor axes different from the axes of the coordinate system?

I Implicit: seems kind of elaborate... (we will re-visit this during ray-surface intersections)
I Parametric: a mere change of basis – let the directions of the new major and minor axes be

denoted by k, l unit vectors. Then

p(t) = a cos tk + b sin tl + c , t ∈ [0, 2π)
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Curves and surfaces - Curves

Line segment

I The line connecting the two points a, b ∈ E3 can be written parametrically as

p(t) = (1− t)a + tb, (t ∈ R)

I If t ∈ [0, 1], then the above gives the line segment connecting a, b.
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Curves and surfaces - Surfaces

Representation of Surfaces

I Explicit: z = f(x, y)

I Implicit: f(x, y, z) = 0

I Parametric: p(u, v) =

x(u, v)
y(u, v)
z(u, v)

,
(u, v) ∈ [a, b]× [c, d]
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Curves and surfaces - Surfaces

Surface normal

I Parametric surfaces:

n(u, v) = ∂up(u, v)× ∂vp(u, v)

I Implicit surfaces: n(x, y, z) = ∇f , that is, the
gradient

∇f = [fx, fy, fz]
T .
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Curves and surfaces - Surfaces

Sphere

The sphere of center c(cx, cy, cz) and radius r > 0
can be written
I implicitly as f(x, y, z) =

(x− cx)2 + (y − cy)2 + (z − cz)2 − r2 = 0

I parametrically as

p(u, v) = r

cosu sin v
sinu sin v

cos v

+ c

where (u, v) ∈ [0, 2π)× [0, π].
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Curves and surfaces - Surfaces

Sphere

Surface normal:

I Implicit: ∇f(x, y, z) = 2

x− cxy − cy
z − cz

 (needs to

be normalized)

I Parametric: n(u, v) =

cosu sin v
sinu sin v

cos v


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Curves and surfaces - Surfaces

Ellipsoid

I Implicit: (x−cx)2
a2

+
(y−cy)2

b2
+ (z−cz)2

c2
= 1

I Parametric: p(u, v) =

a cosu sin v
b sinu sin v
c cos v

+ c (u, v) ∈ [0, 2π)× [0, π]
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Curves and surfaces - Surfaces

Ellipsoid
Surface normal:

I implicit: ∇f = 2 ·

x−cxa2
y−cy
b2
z−cz
c2

 (needs to be normalized)

I parametric: n = − sin v ·

bc cosu sin v
ac sinu sin v
ab cos v

 (needs to be normalized)
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Curves and surfaces - Surfaces

Simple paraboloid

I Explicit: z = ax2 + by2

I Implicit: ax2 + by2 − z = 0

I Parametric (derived from explicit):

p(u, v) =

 u
v

au2 + bv2

+ c (u, v) ∈ R2

Csaba Bálint (ELTE IK) CG Crash Course Computer Graphics Lecture 70 / 168



Curves and surfaces - Surfaces

Simple paraboloid

Surface normal:

I Implicit: ∇f(x, y, z) =

2ax
2by
−1

 (needs to be

normalized)

I Parametric: n(u, v) =

−2au
−2bv

1

 (needs to be

normalized)
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Curves and surfaces - Surfaces

A word of caution

I Most mathematical formulae treat axis z as the up direction
I This holds for the equations shown previously
I However, in computer graphics up is many times axis y.
I So swap the appropriate coordinates!
I Note that, this changes the right handedness of the coordinate system (to left handed).
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Transformations - Motivation

Motivation

I A transformation maps a point in one coordinate system to another point in another
coordinate system

I We will need different coordinate systems more often than one would think! (E.g. object,
world, eye, screen)

I The complex geometric entities of our scenes are made of smaller, simpler elements
I These elements need to be brought together → transformations
I The entities of our scenes can move around → transformations
I Our scene has to be rendered into a 2D image → transformations
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Transformations - General properties

Transformations

I Our expectations
I defined for all points
I map a point to a point, a line to a line, a plane to a plane
I preserve coincidence relation
I The image should be unique and reversible (provided the dimensions of the domain and the

range are the same)

Remark
I Remember: our points are stored using their coordinates in an appropriate coordinate

system
I Transformations work on these points, i.e. on the coordinates
I From now on, let us associate the points of the Euclidean space E3 (or plane E2) with the

vectors of R3 (or R2) by setting an origin o ∈ E3, and to p ∈ E3 let p = p− o be its
vector
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Transformations - General properties

Linear mappings

I The mapping φ : R3 → R3 is linear, iff for ∀a,b ∈ R3 and λ ∈ R
I φ(a + b) = φ(a) + φ(b) (additivity)
I φ(λa) = λφ(a) (homogeneity)

I Reminder: a linear mapping f : Rn → Rm can be represented with an A ∈ Rm×n matrix:
f(x) = Ax, x ∈ Rn.
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Transformations - General properties

Projective and affine transformations

I Transformations of the projective space/plane that map lines to lines are the projective
transformations

I A transformation that preserves lines and parallelism (maps parallel lines to parallel lines)
is an affine transformation

I Remark: affine transformations cannot map points at infinity to finite points and vice
versa. Projective transformation, on the other hand, can.
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Transformations - General properties

Properties

I The projective and affine transformations form an algebraic group with the operation of
concatenation, i.e.
I the group is closed under concatenation
I concatenation is associative
I there exists an identity element (identity transformation)
I each transform has an inverse (provided they preserve the dimension)

I Attention: this group is not commutative!
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Transformations - General properties

Affine transformations

I Every affine transformation can be written as a linear transformation followed by a
translation

I That is, they can be represented by a A ∈ R3×3 matrix and b ∈ R3 vector:

ϕ(x) = Ax + b

I Using homogeneous coordinates, we can use a single 4× 4 matrix (actually a 3× 4 is
enough) to represent the transformation ϕ(x) = Ax + b:

[
A b

[0, 0, 0] 1

]
∈ R4×4
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Transformations - General properties

Affine transformations

Barycentric coordinates are invariant under affine transformations.

Proof: let αi be the barycentric coordinates of x wrt. xi, then

ϕ(x) = ϕ(

n∑
i=0

αixi)

=

n∑
i=0

ϕ(αixi)

=
n∑
i=0

αiϕ(xi)
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Affine transformations - Translation

Translation

I Translate all points with the vector d:
x′ = x + d

I We denote the matrix by T(dx, dy, dz). Using homogeneous coordinates:

T(dx, dy, dz) =


1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1


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Affine transformations - Translation

Translation

I Since 
1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

 ·

x
y
z
1

 =


1 · x+ 0 · y + 0 · z + 1 · dx
0 · x+ 1 · y + 0 · z + 1 · dy
0 · x+ 0 · y + 1 · z + 1 · dz

1

 =


x+ dx
y + dy
z + dz

1


I A commutative sub-group of the group of affine transformations
I The inverse of T(a, b, c) is T−1(a, b, c) = T(−a,−b,−c)
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Affine transformations - Rotation

Rotation

I Rotation in the XY plane by θ:

x′ = x cos θ − y sin θ

y′ = x sin θ + y cos θ.

I In matrix form: [
x′

y′

]
= x

[
cos θ
sin θ

]
+ y

[
− sin θ
cos θ

]
=

[
cos θ − sin θ
sin θ cos θ

][
x
y

]

I Similar in the XZ and YZ planes so...
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Affine transformations - Rotation

Rotations about cardinal axis

Z axis

RZ(θ) =


c −s 0 0
s c 0 0
0 0 1 0
0 0 0 1

 ,
Y axis

RY (θ) =


c 0 s 0
0 1 0 0
−s 0 c 0
0 0 0 1

 ,
X axis

RX(θ) =


1 0 0 0
0 c −s 0
0 s c 0
0 0 0 1

 ,
where c = cos θ and s = sin θ.
I The rotations along the same axis form a commutative sub-group
I They are linear transformations, 3× 3 matrices suffice to represent them
I The inverse of rotation RX(θ) is RX(−θ)
I Since RX(θ) ·RX(ϕ) = RX(θ + ϕ)
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Affine transformations - Rotation

Yaw, pitch, roll

An arbitrary orientation can be attained by doing 3 rotations sequentially:

R(α, β, γ) =

cosα − sinα 0
sinα cosα 0

0 0 1

 ·
cosβ 0 − sinβ

0 1 0
sinβ 0 cosβ

 ·
1 0 0

0 cos γ − sin γ
0 sin γ cos γ


I Store the rotations about the three axes: Y (yaw), X (pitch), and Z (roll)
I Common in flight dynamics and robotics
I Same as the three matrices multiplied seen earlier
I Most of the graphics APIs have support for this
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Affine transformations - Rotation

Rigid body transformations

I The translations and rotations are rigid body transformations
I They preserve distances and angles
I Their determinant is 1
I Important in physics simulations
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Affine transformations - Scaling

Scaling

I Shrink and expand the object independently along the x, y, z axes
I Matrix:

S(sx, sy, sz) =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1


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Affine transformations - Scaling

Special case: Mirroring

I If at least one of sx, sy, sz < 0
I if exactly 1 is negative: mirror the point to the plane spanned by the axes of the

non-negative coefficients
I if exactly 2 are negative: mirror to the third axis
I if all 3 are negative: mirror to the origin

I Attention: if sxsysz < 0, the winding (handedness) of our coordinate system changes!

Winding
I Using the basis vectors i, j,k of the canonic base

ϕ(p) = ϕ(xi + yj + zk) = xϕ(i) + yϕ(j) + zϕ(k)

I If the determinant of a transformation matrix is negative, then it changes the winding of
the coordinate system (left handed → right handed, and vice versa)
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Affine transformations - Scaling

Special case: Orthographic projection

I If one of sx, sy, sz is zero:
I 1 zero: orthogonal projection to the plane spanned by the other two axes
I 2 zeros: project onto the non-zero axis
I all 3 are zeros: project to the ’origin’...

I Remark: the determinant is zero! ⇒ there is no inverse!
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Affine transformations - Shearing

Shear

Example
Consider a deck of cards:
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Affine transformations - Shearing

Shear

Shear of the x, y coordinates proportional to the z coordinates:

N =


1 0 a 0
0 1 b 0
0 0 1 0
0 0 0 1


In general:

N =


1 a b 0
0 1 c 0
0 0 1 0
0 0 0 1


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Affine transformations - Change of basis

Change of basis

I Let i, j,k be the canonical orthonormal base, and u,v,w the new orthonormal basis
vectors (wrt. i, j,k)

I What will be the new x′ = [x′, y′, z′]T coordinates (in the new base) of the point
x = [x, y, z]T (in the old base)?

x = [uT ,vT ,wT ]x′ = Bx′ =⇒ x′ = B−1x = BTx

I Since the bases are orthonormal M = B−1 is the following: M =


ux uy uz 0
vx vy vz 0
wx wy wz 0
0 0 0 1


I If the origin has changed to c, then the matrix of the change of basis is
M = B−1T (−cx,−cy,−cz)
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Affine transformations - Additional notes

Commutativity counterexample
Matrix multiplication (and concatenation of transformations) is not commutative, i.e.

ABv 6= BAv

Rotation followed by translation Translation followed by rotation
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Affine transformations - Additional notes

Transformation of normal vectors

I Consider the following example:
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Affine transformations - Additional notes

Transformation of normal vectors

I Consider the following example:
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Affine transformations - Transforming surface normals

I Let us consider the implicit equation of the tangent plane:

〈x− p,n〉 = 0

I Then for an arbitrary, invertible A matrix:

〈A−1A(x− p),n〉 = 0(
A−1A(x− p)

)T
· n = 0

(A(x− p))T (A−1)Tn = 0

I Using the properties of the dot product and matrix multiplication

〈A(x− p),
(
A−1

)T
n〉 = 0

I Thus, transform the normal vectors by the inverse transpose of A (eg.: A−T )!
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Projective transformations - Overview

General case

If the last row of the transformation matrix is not [0, 0, 0, 1], then it is a linear homogeneous
transformation (a transformation that is linear in the homogeneous space, but not necessarily
linear in the Euclidean) This is what we need for perspective projections!

Perspective transform
I Projection from a point onto a plane (central projection)
I Let that point be the origin, and the plane by parallel to the XY plane at z = d

I Viewing frustum

Csaba Bálint (ELTE IK) CG Crash Course Computer Graphics Lecture 96 / 168



Projective transformations - Overview

Perspective transform
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Projective transformations - Overview

Homogeneous division

I If M is a real projective transformation, its last row is not [0, 0, 0, 1]T , i.e. after

[x, y, z, w] = Mv =⇒ w 6= 1

I We need to divide all the coordinates by the last coordinate w (provided w 6= 0) – this is
the homogeneous division
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Projective transformations - Overview

Central projection

x′ =
x

z
d, y′ =

y

z
d, z′ =

z

z
d = d
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Projective transformations - Overview

Central projection

I Let the origin be the point of projection, the plane onto which we project is the z = d
plane. Then the matrix is: 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1

d 0


I We get the same formulas as before after we apply the homogeneous division with z

d
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Projective transformations - Overview

Transformation matrices

In summary, transformations will be 4× 4 matrices:

Attention: points and vectors are column vectors, therefore the vectors are on the right side
of matrices during this course.
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Graphics Pipeline - Table of contents
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Graphics Pipeline - Overview

Raytracing vs incremental image synthesis

Raycasting
For every pixel on the screen:

For every object (geometry) in the scene:
Does the ray of the pixel intersects the object?

Incremental image synthesis
For every object (geometry) in the scene:

For every pixel on the screen:
Does the projection of the object contain the pixel?
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Graphics Pipeline - Overview

Raytracing vs incremental image synthesis

I Advantages of raytracing:
I Wide range of geometries (almost the only restriction: carry out ray-surface intersection

efficiently)
I Easy to implement using recursion
I It handles light as particles – effects related to the particle nature of light are simple to

implement
I Disadvantages of raytracing:

I Computationally expensive (intersection test with all objects, for every pixel!)
I Global algorithm: in order to compute the color of a single pixel, you need access to the

description of the entire scene
I It is harder to simulate the wave properties of light
I Slow for real-time applications
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Graphics Pipeline - Overview

Graphics pipeline – Motivation

I Speed up image synthesis by changing the loop ordering in the raycast/raytrace
pseudo-code

I In the new loop order the efficiency of the algorithms greatly depends on how easy it is to
determine whether a pixel is inside the projection of a geometry or not

I Thus the range of appropriate geometries is much more narrow ⇒ in practice, this means
linear geometries (e.g. lines, triangles), so called primitives

I Nonlinear geometries have to be approximated (tessellated) by linear elements
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Graphics Pipeline - Overview

Real-time graphics

I Avoid unnecessary computations: pre-filter the geometries so that we cull (throw away)
every geometry that is guaranteed to not end up on the screen (because e.g. they are
behind us, etc.)

I Let us carry out every operation in a coordinate system that is a best fit to the problem
I Use the results of the previous computations to speed up things
I Coherence: instead of pixels, base computations on bigger elements – primitives
I Use object space precision (instead of pixel precision)
I Clipping: cull every part of the primitives that lie outside the screen
I Incremental synthesis: use the information computed for the bigger elements to resolve

the shading and occlusion problem (e.g. the slope of the primitives w.r.t. the x and y)
coordinates
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Graphics Pipeline - Overview

Graphics Pipeline

1. Transform every single vertex into the Normalized Device Coordinates (NDC)
2. Assemble every primitive from the transformed coordinates
3. Clip every primitive to the viewport window
4. Rasterize all the primitives creating fragments
5. Interpolate the vertex attributes for every single fragment
6. Colorize every single fragment using textures and a shading model
7. Decide for each fragment whether it is visible and how, and blend the value accordingly
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Graphics Pipeline - Overview

Graphics Pipeline – How do we optimize?

1. Transform every single vertex into the Normalized Device Coordinates (NDC)
2. Assemble every primitive from the transformed coordinates
3. Clip every primitive to the viewport window
4. Rasterize all the primitives creating fragments
5. Interpolate the vertex attributes for every single fragment
6. Colorize every single fragment using textures and a shading model
7. Decide for each fragment whether it is visible and how, and blend the value accordingly
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Graphics Pipeline - Overview

Graphics Pipeline – parallelization

1. Transform every single vertex into the Normalized Device Coordinates (NDC)
2. Assemble every primitive from the transformed coordinates
3. Clip every primitive to the viewport window
4. Rasterize all the primitives creating fragments
5. Interpolate the vertex attributes for every single fragment
6. Colorize every single fragment using textures and a shading model
7. Decide for each fragment whether it is visible and how, and blend the value accordingly
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Graphics Pipeline - Overview

Graphics Pipeline – parallelization stages

1. Transform every single vertex into the Normalized Device Coordinates (NDC)
2. Assemble every primitive from the transformed coordinates
3. Clip every primitive to the viewport window
4. Rasterize all the primitives creating fragments
5. Interpolate the vertex attributes for every single fragment
6. Colorize every single fragment using textures and a shading model
7. Decide for each fragment whether it is visible and how, and blend the value accordingly
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Graphics Pipeline - Overview

Comparison

Ray-tracing
I performed per pixel
I anything can be a geometry as long as

it can be intersected by a ray
I reflection, refraction, shadows are

inherently part of the computation
I occlusion resolution is trivial
I many rays per pixel: expensive

Incremental image synthesis
I performed per primitive
I anything that is not a primitive has to

be approximated
I individual algorithms for each effect
I several algorithms for occlusion tests
I orders of magnitude less computation
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Graphics Pipeline - Overview

Graphics pipeline

I A pipeline is a chain of data processing elements, arranged such that the input of stage si
is the output of the previous stage si−1, and the output of si is the input of si+1

I If one can decompose a problem into an n-stage pipeline (each stage taking roughly the
same time), n elements can be processed per unit time – after the initial startup and final
pass-through

I The graphics pipline is a set of operations that we have to carry out on primitives in order
to render them to the screen

I This is accompanied by several change of basis transformations so that every operations is
carried out as efficiently, as possible
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Graphics Pipeline - Overview

Graphics pipeline

I General overview of steps:
I Transformations
I Clipping
I Homogeneous division
I Rasterization and interpolation
I Shading
I Display

I The output of the graphics pipeline is a picture: a 2D array consisting of colors
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Graphics Pipeline - Overview

Graphics pipeline inputs

I The geometric model of the scene (=list of primitives to be drawn)
I Optical model of the scene geometries
I The attributes of the virtual camera (point of view and viewing frustum)
I Screen boundaries
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Graphics Pipeline - Transformations

Transformations

I Transformations operate on the vertices of the primitives

1. Model coordinate system
=⇒ transformations: move, rotate, ect. =⇒

2. World coordinate system
=⇒ ’lookAt’ =⇒

3. Camera coordinate system
=⇒ projective transformation =⇒

4. Normalized device coordinate system
=⇒ orthographic projection =⇒

5. Screen coordinate system
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Graphics Pipeline - Transformations

Coordinate systems

I Model CS: The own, individual coordinate system of each object.
I World CS: The actual CS of the world (scene), where every object has its own position.

In general, we think in terms of the world CS.
I Camera CS: A CS with origin at the camera position and axes aligned to the camera

attributes.
I Normalized device CS: The GPU’s internal CS, [−1, 1]× [−1, 1]× [−1, 1] or

[−1, 1]× [−1, 1]× [0, 1].
I Screen CS: A left-handed CS, conforming to the current display properties. Units along

the axes are pixels. The origin is at the top-left corner.
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Graphics Pipeline - Transformations

Model (world) transformation

I It should transform the object from its own CS into the common, world CS
I Generally, it’s unique for every object
I Almost always a sequence of affine transformations, represented by a single 4× 4 matrix
I We call these world or model in our code
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Graphics Pipeline - Transformations

View (camera) transformation

I Aligns the world CS with the camera
I This is translation followed by a change-of-basis transformation, represented by a single

4× 4 matrix
I In our code: this is the view or camera matrix
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Graphics Pipeline - Transformations

View (camera) transformation
I It can be specified similarly to the ray-casting case:

eye, center,up
I The camera CS X,Y, Z axes are then:

w =
eye− center

|eye− center|

u =
up×w

|up×w|
v =w × u
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Graphics Pipeline - Transformations

View (camera) transformation
I Let the origin be at eye, with axes u,v,w:

TV iew =


ux uy uz 0
vx vy vz 0
wx wy wz 0
0 0 0 1

 ·


1 0 0 −eyex
0 1 0 −eyey
0 0 1 −eyez
0 0 0 1


Sidenote: Orthographic projection
A simple orthogonal projection to the XY plane would be

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


Instead, however, let’s talk about perspective projection
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Graphics Pipeline - Transformations

Projection – perspective

I Actually, this is more than just a simple central projection
I First, we need the camera projection properties:

I horizontal and vertical field-of-view (fovx, fovy) or either of them and the aspect ratio of
the width and height of the display

I distance of near and far planes

TProjection =


1/ tan fovx

2 0 0 0

0 1/ tan fovy
2 0 0

0 0 −far+near
far−near −2·near·far

far−near
0 0 −1 0


How do we get such a transformation?
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Graphics Pipeline - Transformations

Projection – perspective
1. Transform the space such that the projection defined by (fovx, fovy) turns into (π2 ,

π
2 )

(this is a simple scale)
2. Carry out the central projection (this is the actual projective transformation)
3. Map the near and far planes to z = −1 and z = 1, respectively

Reminder: at this stage the origin is the camera position!
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Graphics Pipeline - Transformations

Projection step 1: normalize frustum

TProjection1 =


1/ tan fovx

2 0 0 0

0 1/ tan fovy
2 0 0

0 0 1 0
0 0 0 1


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Graphics Pipeline - Transformations

Projection step 2: make lines of central projection parallel

TProjection2 =


1 0 0 0
0 1 0 0

0 0 −far+near
far−near −2·near·far

far−near
0 0 −1 0


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Graphics Pipeline - Transformations

Central projection through the origin

I Central projection along the Z axis, onto a plane parallel to XY , at distance d from the
origin: 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1

d 0


I We project onto the d = −1 plane, so z ∈ [−far,−near].
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Graphics Pipeline - Transformations

Transform to Normalized Device Coordinates (NDC) (OpenGL)

I Map the near and far planes to z = −1 and z = 1

z 7→
z · −far+near

far−near −
2·near·far
far−near

−1 · z

I The last division is the homogeneous division which is done by the GPU
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Graphics Pipeline - Transformations

Transform to Normalized Device Coordinates (NDC) (OpenGL)


1 0 0 0
0 1 0 0

0 0 −far+near
far−near −2·near·far

far−near
0 0 −1 0


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Graphics Pipeline - Clipping

Clipping
I Clipping has to be done before homogeneous division
I For example, consider a line segment starting in front and ending behind the camera
I The transformed (projected) line segment is not the connection of the projected endpoints!
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Graphics Pipeline - Clipping

Clipping using homogeneous coordinates

I Let [xh, yh, zh, w]T = Tprojall · [x, y, z, 1]T

I If the projected coordinates should be within [−1, 1], then for w > 0 we get

−w < xh < w

−w < yh < w

−w < zh < w

as a clipping condition.
I If any of the above containments do not hold, the primitive of the vertex should be clipped
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Graphics Pipeline - Rasterization

Rasterization

I For each clipped primitive: discretize the
geometry

I Every pixel-worth chunk of the geometry
becomes a fragment

I Using the barycentric coordinates of each
fragment (with respect to the 3 vertices of
the triangle), we interpolate every
attribute for the fragments (not just
position, but color, normals, etc. as well)
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Graphics Pipeline - Rasterization

Rasterization of primitives
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Graphics Pipeline - Rasterization

Rasterization of primitives
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Graphics Pipeline - Shading

Shading
More on this later
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Graphics Pipeline - Display

Occlusion

I Occlusion resolution is important
I The real-time industry went with the z-buffer
I But let us see some other approaches too
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Graphics Pipeline - Display

Painter algorithm

I Order the objects from farthest to closest
I Draw things starting from the farthest
I Problem: there is no guaranteed ordering
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Graphics Pipeline - Display

Z-buffer
I Allocate a secondary buffer (depth buffer) to store depth values for every pixel
I When determining occlusion for a fragment: check if the fragment’s depth is closer than

the distance stored for the pixel
I If closer: write the color to the framebuffer and update Z-buffer for the pixel (must be an

atomic operation)
I Else: discard the fragment
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Graphics Pipeline - Display

Optimization – Backface culling

I May be used for the rendering of a single, closed convex object possessing a volume
I Do not render triangles that are not facing us
I Not facing us = its vertices are either clockwise or counter-clockwise (depends on

convention)
I Used in general too: you can roughly shave off half of the triangles (but you need

volume-like geometries!)
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Raycasting - Table of contents

Raycasting

H Introduction
Course details

H Coordinate systems
Cartesian
Polar and spherical
Barycentric
Homogeneous
coordinates

H Curves and surfaces
Lines and planes
Curves

Surfaces
H Transformations
H Affine transformations

Translation
Rotation
Scaling
Shearing
Change of basis

H Projective transformations
H Graphics Pipeline

Transformations
Clipping

Shading
Display

H Raycasting
Raycasting
Ray creation

H Ray intersections
Ray – plane
Ray – triangle
Ray – polygon
Ray – sphere
Transformed objects
Ray – AAB
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Raycasting - Motivation

The Draughtsman of the Lute – Albrecht Dürer, 1525

Albrecht Dürer, 1525
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Raycasting - Motivation

Pinhole camera

I Let us consider each pixel as a small window to the world
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Raycasting - Motivation

Pixel-sized hole

I What color shall we paint this window, so that we end up with an image that looks like
reality?
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Raycasting - Raycasting

Raycasting

For each pixel:
Construct a ray r from the pixel

For each object o in the scene:
Compute intersection of r with o

Pixel color = closest intersected object’s color
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Raycasting - Raycasting

Ray

I A ray1 has a p0 origin and a v direction
I The parametric form of the ray is then

p(t) = p0 + t · v (t > 0)

1Not to be confused with Rey from Star Wars.
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Raycasting - Ray creation

Ray creation
1. How to compute p0, v for a given pixel (i, j)?
2. How to intersect anything with a ray?

Camera properties
I Camera position (eye ∈ E3),
I Look at point (center ∈ E3),
I Up direction (up ∈ R3),
I Horizontal and vertical field of view fovx, fovy ∈ R.
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Raycasting - Ray creation

Ray creation

Let us find the right-handed u,v,w orthonormal base of the camera!
I Let the camera face −Z:

w =
eye− center

‖eye− center‖2
I Let the X axis be perpendicular to w and up:

u =
up×w

‖up×w‖2

I Let the Y axis be perpedincular to X and Z:

v = w × u
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Raycasting - Ray creation

Coordinates of the pixel at (i, j)

Let the plane, onto which we are projecting, be 1 unit
away from the origin (eye. The p(t) = p0 + tv (t > 0)
ray for pixel (i, j) is:

p0 = eye + (αu + βv −w) , v =
p(i, j)− eye

‖p(i, j)− eye‖2

where

α = tan

(
fovx

2

)
· i− width/2

width/2
,

β = tan

(
fovy

2

)
· height/2− j

height/2
.
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Ray intersections - Table of contents

Ray intersections
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Ray intersections - In general

Ray intersections

I Let us consider the parametric form of the ray: p(t) = p0 + tv, where in the following we
presume that ‖v‖2 = 1
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Ray intersections - In general

Parametric ray – implicit surface intersection
I Implicit surface: f(x) = 0, where x ∈ E3

I Let us plug the parametric ray’s equation into the implicit equation of the surface!

f(p(t)) = 0

I Let t be a root of f(p(t)).
I t > 0: the ray intersects the surface. (Object intersection is in front of the camera)
I t = 0: the ray starts from the surface.
I t < 0: the ray does not intersect the surface. (Intersection is behind the camera)
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Ray intersections - In general

Parametric ray – parametric surface intersection

I Let r(u, v) = [rx(u, v), ry(u, v), rz(u, v)]T be a parametric surface, (u, v) ∈ [a, b]× [c, d]

I Solve for t, u, v:
p(t) = r(u, v)

I If (t, u, v) is a solution, then t > 0, (u, v) ∈ [a, b]× [c, d] has to be verified as well.
I Parametric ray – parametric surface intersections are usually hard to solve
I If you do solve it, you get texture coordinates too.
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Ray intersections - Ray – plane

Ray – implicit plane intersection
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Ray intersections - Ray – plane

Ray – implicit plane intersection

I Implicit plane: Ax+By + Cz +D = 0

I The ray p(t) = p0 + tv =

x0y0
z0

+ t

xy
z

 intersects the plane for t-s such that

A(x0 + tx) +B(y0 + ty) + C(z0 + tz) +D = 0

I Solve it for t:

t(Ax+By + Cz) +Ax0 +By0 + Cz0 +D = 0

t = −Ax0 +By0 + Cz0 +D

Ax+By + Cz

I The ray intersects the plane in front of the camera if t > 0
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Ray intersections - Ray – plane

Ray – plane intersection, plane given by a point and normal

I Let q0 be a point of the plane and n its
normal

I The implicit equation of the plane:

〈n, q − q0〉 = 0 (q ∈ R3)

I Plug p(t) into q:

〈n,p0 + tv − q0〉 = 0,

〈n,p0〉+ t〈n,v〉 − 〈n, q0〉 = 0,

I Thus,

t =
〈n, q0〉 − 〈n,p0〉

〈n,v〉
=
〈n, q0 − p0〉
〈n,v〉

,

I The ray’s line intersects the plane in front
of the camera if t > 0.

I 〈n,v〉 = 0: the plane is parallel to the ray
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Ray intersections - Ray – plane

Ray – parametric plane intersection

I Let the plane be given by one of its points, q and two spanning vectors, i, j:
s(u, v) = q + ui + vj

I Intersection with the ray p(t) = p0 + tv: find t and u, v such that

p(t) = s(u, v)

p0 + tv = q + ui + vj =⇒ p0 − q = −tv + ui + vj

I In matrix form: p0x − qxp0y − qy
p0z − qz

 =

−vx ix jx
−vy iy jy
−vz iz jz


tu
v


I The previous can be solved iff v, i, j are linearly independent
I Intersection in front of the camera iff t > 0
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Ray intersections - Ray – triangle

Ray – triangle intersection (Tomas Möller and Ben Trumbore, 1997)
I Triangle is given as a convex barycentric combination of its vertices a, b, c:

r(u, v) = (1− u− v)a + ub + vc (u, v, u+ v ∈ [0, 1])

I p0 + tv = r(u, v) equation is to be solved for u, v, t, after rearranging:

[
−v b− a c− a

]
·

tu
v

 = p0 − a

I Using the Cramer’s rule:

tu
v

 =
1

det
[
−v b− a c− a

] ·


det
[
p0 − a b− a c− a

]
det
[
−v p0 − a c− a

]
det
[
−v b− a p0 − a

]

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Ray intersections - Ray – triangle

Ray – triangle intersection (Tomas Möller and Ben Trumbore, 1997)

tu
v

 =
1

det
[
−v b− a c− a

] ·


det
[
p0 − a b− a c− a

]
det
[
−v p0 − a c− a

]
det
[
−v b− a p0 − a

]


I Determinants expressed as triple products: det
[
x y z

]
= 〈x× y, z〉, (x,y, z ∈ R3)tu

v

 =
1

〈v × (c− a), b− a〉
·

〈(p0 − a)× (b− a), c− a〉
〈v × (c− a), p0 − a〉
〈(p0 − a)× (b− a), v〉

 =
1

〈f ,ab〉

〈g,ac〉〈f ,ap〉
〈g,v〉


where

ab = b− a ac = c− a ap = p0 − a

f = v × ac g = ap× ab

Csaba Bálint (ELTE IK) CG Crash Course Computer Graphics Lecture 156 / 168



Ray intersections - Ray – triangle

Ray – triangle intersection (Tomas Möller and Ben Trumbore, 1997)

I Therefore, the final formula is tu
v

 =
1

〈f ,ab〉

〈g,ac〉〈f ,ap〉
〈g,v〉


where

ab = b− a ac = c− a ap = p0 − a

f = v × ac g = ap× ab .

I There is an intersection with the triangle if t, u, v, 1− u− v values are non-negative
I Solution resolves u, v texture coordinates as well
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Ray intersections - Ray – polygon

Ray – polygon intersection

I Let the polygon be a planar polygon. The
intersection can be tested in two steps:
I Intersect the ray with the polygon’s plane
I Test whether the intersection point is inside the

polygon or not

I The second step once again can be done in a plane
(either in the polygon’s or a coordinate plane)
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Ray intersections - Ray – polygon

Point – polygon containment test

I A point is inside the polygon if an arbitrary half-line (ray) starting from that point has an
odd amount of intersections with the edges of the polygon

I Other idea method via the winding number.
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Ray intersections - Ray – polygon

Ray-line segment intersection

I The line segment spanned between the two consecutive points of the polygon
di = (xi, yi),di+1 = (xi+1, yi+1) has the parametric form

di,i+1(s) = (1− s)di + sdi+1 = di + s(di+1 − di), s ∈ [0, 1]

I Let us intersect it with p(t) = p0 + tv, where p0 = (x0, y0) (where p0 is the intersection of
the ray and the plane, and v is the projection of the direction in the plane).

I Need to solve p(t) = di,i+1(s) for s ∈ [0, 1], t > 0!
I Let v = (1, 0) since we may choose any direction.

I Solve for Y direction only: (di,i+1)y = yi + s · (yi+1 − yi) = y0, that is: s =
y0 − yi
yi+1 − yi

I If s /∈ [0, 1] or t < 0 the ray does not intersect the line segment
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Ray intersections - Ray – sphere

Ray - sphere intersection
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Ray intersections - Ray – sphere

Ray – sphere intersection
I The c = (cx, cy, cz) centered, radius r sphere’s equation is:

(x− cx)2 + (y − cy)2 + (z − cz)2 − r2 = 0

〈p− c,p− c〉 − r2 = 0, p = (x, y, z)

I Let p0 be the ray’s origin and v its direction
I Substituting the ray’s equation into the plane’s

〈p0 + tv − c,p0 + tv − c〉 − r2 = 0

t2〈v,v〉+ 2t〈v,p0 − c〉+ 〈p0 − c,p0 − c〉 − r2 = 0
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Ray intersections - Ray – sphere

Ray – sphere intersection

t2〈v,v〉+ 2t〈v,p0 − c〉+ 〈p0 − c,p0 − c〉 − r2 = 0

I Quadratic equation in t with discriminant

D = (2〈v,p0 − c〉)2 − 4〈v,v〉(〈p0 − c,p0 − c〉 − r2)

I If D > 0: two solutions, the smallest positive is the intersection in front of the camera
I If D = 0: one solution, ray is tangential
I If D < 0: no intersection
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Ray intersections - Transformed objects

Transformed objects

Theorem
The intersection of the ray r and an object transformed by transformation M

≡

the intersection of the transformed ray M−1r and the non-transformed object transformed by
M

I M ∈ R4×4 homogeneous transformation
I Ray’s origin: p0 = (px, py, pz)→ [px, py, pz, 1]T

I Ray’s direction: v = (vx, vy, vz)→ [vx, vy, vz, 0]T . Translation in M does not affect it.
I Transformed ray rM (t) = M−1p + t ·M−1v
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Ray intersections - Transformed objects

Transformed objects

I Intersection query: use rM (t)!
I If the intersection in the model space is q, then in the world space it is M · q.
I Distances change unless M is a rigid transformation
I Pay attention to normal vectors: M−T · n
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Ray intersections - Ray – AAB

Ray – Axis aligned box (AAB) intersection

I AAB = axis aligned box, the sides of the box are parallel to the coordinate planes
I Let p(t) = p0 + tv be a ray, where p0 = (x0, y0) and v = (vx, vy)

I Let us represent the AAB by the endpoints of its diagonal, a and b, where a < b
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Ray intersections - Ray – AAB

Ray – Axis aligned box (AAB) intersection

I We check the intersection for all axis one by one, let us start with x
I vx = 0: the ray is vertical, there’s no intersection if x0 /∈ [ax, bx]
I vx 6= 0: let tn := −∞, tf := +∞ and t1 := ax−x0

vx
, t2 := bx−x0

vx
I If t1 > t2: swap t1 and t2
I If tn < t1: tn := t1
I If tf > t2: tf := t2

I Then proceed to the y and then the z coordinates
I Finally, if

I tn > tf : the ray misses the box
I tf < 0: the box is behind the ray
I Else: tn is the closer, tf is the farther intersection point’s ray parameter
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It took - long enough

Thank you for your attention!
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Introduction - Course details

Course details

▶ Csaba Bálint csabix@inf.elte.hu (me). Room: 2-706.
▶ Lecture: Tuesday, 16:15-17:45

▶ Exam: Explain 2 topics. You chose one, and I choose one.
▶ Points from practice can help your course (but do not count on it).

▶ Practice: Tuesday, 18:00-19:30
▶ Small assignment (≈30 points) and large assignment (100+ points)
▶ Work during practice (≈15 points)
▶ Scores above 100 points will count towards the lecture exam

▶ In both
▶ Grade boundaries: 40, 55, 70, 85.
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Introduction - Course details

Further reading

1. Edward Angel, Dave Shreiner : Interactive Computer Graphics: A Top-Down Approach
with Shader-Based OpenGL (6th Edition)

2. Andrew Glassner : Principles of digital image synthesis
3. Pharr, Humphreys, Hanrahan: Physically Based Rendering (From Theory to

Implementation)
4. Akenine-Möller, Haines, Hoffman: Real-Time Rendering (4th edition)
5. Tekla Tóth, Iván Eichhardt, Gábor Valasek: BSc Computer Graphics Lecture slides
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Human vision - Motivation

Motivation

▶ Computer Graphics: physics simulation based on some postulates/assumptions.
▶ How do we represent our virtual world (scene)?
▶ What algorithms do we use to render the images?
▶ It depends on how we perceive the real world in the first place
▶ Sensors and psychological factors
▶ Generate real looking images. They must look real to us.
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Human vision - Motivation

Motivation – fun facts1

▶ Your eyes focus on 50 different objects every second.
▶ The only organ more complex than the eye is the brain.
▶ Your eyes can distinguish approximately 10 million different colors.
▶ It is impossible to sneeze with your eyes open.
▶ 80 percent of all learning comes through the eyes.
▶ Your eyes can detect a candle flame 2.7km away.
▶ Your iris (the colored part of your eye) has 256 unique characteristics; your fingerprint has just 40.
▶ Only 1

6
of your eyeball is visible.

▶ The average person blinks 12 times a minute (bet you just blinked!).
▶ The shark cornea is nearly identical to the human cornea, and has even been used in human eye surgery!
▶ Your eye is the fastest contracting muscle in the body, contracting in less than 1

100
of a second.

1Source: https://versanthealth.com/blog/15-facts-about-all-things-eyes/
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Human vision - Motivation

Cydonia (1987)
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Human vision - Motivation

Cydonia (1997)
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Human vision - Eye Anatomy

Human Eye

1. Cornea refracts light
=⇒ strong gathering lens

2. Iris limits (filters) light intensity
3. Lens focuses light ray onto the retina

=⇒ adjustable lens
4. Retina contains the receptors (rods & cones)
5. Optic nerve encode and transmit data to brain
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Human vision - Eye Anatomy

Near vs Farsightedness
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Human vision - Eye Anatomy

Lens

▶ Light coming from close objects need more
refraction

▶ Refraction depends on the wavelength of
the light (color)

▶ Muscles have to adjust the shape of the
lens to correct

▶ A red room feels smaller than a blue room
because the eye has to focus closer in a
red room
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Human vision - Eye Anatomy

Photoreceptors – Cones

▶ Color perception
▶ 3 types, S:M:L = 1:4:8
▶ High accuracy at
▶ Central fovea 150000/mm2

▶ 6-7 million
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Human vision - Receptors

Photoreceptors – Rods

▶ Light intensity
▶ More sensitive to light
▶ No color information
▶ Lower accuracy
▶ Peripheral vision
▶ Slower reaction
▶ 90-120 million
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Human vision - Receptors

Photoreceptors
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Human vision - Receptors

Photoreceptors – normal vision vs color blind
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Human vision - Receptors

Blind spot – experiment

Look at the X with your right eye while having your left one closed. How far back do you have
to sit to make the dot on the right disappear?
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Human vision - Receptors

Blind spot
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Human vision - Receptors

Signal frequency

▶ A single photon can cause a signal that
lasts a few milliseconds

▶ Each of these are additive ⇒ average in
time ⇒ low pass filter

▶ Critical Flicker Frequency: lowest
frequency flicker seen as continuous
▶ Depends on several human and

environmental factors
▶ About 60Hz
▶ However, we can detect 500Hz

anomalies!
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Human vision - Receptors

Signal compression

▶ 120 million rods, 6 million cones ⇒ 1 million nerves
▶ Different channels:

▶ A = M + L achromatic channel (R + G) intensity
▶ R/G = M - L red minus green red-green
▶ B/Y = S - A blue minus achromatic blue-yellow

▶ Neurons connect to multiple photoreceptors
▶ JPEG compression does a similar transform!

Source: MIT
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Human vision - Receptors

Signal compression

▶ Neurons connect to multiple photoreceptors
▶ Two types of neurons: On-center and Off-center
▶ On-center neuron:

▶ High positive weight on middle photoreceptors
▶ Small negative weight on the rest (sum is not zero)
▶ Enhanced resolution around edges ⇒ Edge detection

▶ Off-center neuron is opposite
▶ Similar to edge detection:
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Computer Colors - Reminder

Reminder: Cone light absorption
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Computer Colors - Color spaces

CIE: Commission internationale de l’éclairage
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Computer Colors - RGB

CIE RGB color space

▶ Not the same as receptor
absorption!

▶ Reflectors had specific
wavelengths, but each cone has
an absorption spectrum
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Computer Colors - RGB

CIE RGB color space

▶ Not the same as receptor
absorption!

▶ Reflectors had specific
wavelengths, but each cone has
an absorption spectrum
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Computer Colors - RGB

Spectrum → RGB

Given S(λ) spectrum for a light, we can calculate the RGBs as inner products:

R =

+∞∫
0

S(λ) · r̄(λ)dλ

G =

+∞∫
0

S(λ) · ḡ(λ)dλ

B =

+∞∫
0

S(λ) · b̄(λ)dλ
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Computer Colors - RGB

RGB → XYZ

Another CIE color space: XYZ
▶ Average observer light intensity =⇒
▶ RGB has negative weights
▶ RGB → XYZ has to be linear
▶ Equal intensity point has to be (13 ,

1
3 ,

1
3)

XY
Z

 =
1

b21

b11 b12 b13
b21 b22 b23
b31 b32 b33


RG
B

 =
1

0.17697

0.49000 0.31000 0.20000
0.17697 0.81240 0.01063
0.00000 0.01000 0.99000


RG
B


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Computer Colors - XYZ

RGB → XYZ

Figure: RGB Figure: XYZ
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Computer Colors - XYZ

Color spaces

▶ RBG and XYZ are not practical for creative work
▶ Changing the color slightly can be difficult
▶ What colors are similar?

▶ MacAdam ellipses
▶ Participants recorded when two colors appear

different
▶ Similar colors appear as ellipses

▶ If MacAdam ellipses are circles
⇒ Uniform color space

▶ If linear changes in color space appear linear
⇒ Linear color space
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Computer Colors - Perception-based

sRGB

▶ HP and Microsoft created the standard for monitors, printers, and internet
▶ Linear transformation from XYZ
▶ Non-linear Gamma correction

▶ for each channel

Csrgb =

{
12.92Clinear, Clinear ≤ 0.0031308

(1 + a)C
1/2.4
linear − a, Clinear > 0.0031308

a = 0.055

Rlinear

Glinear

Blinear

 =

 3.2406 −1.5372 −0.4986
−0.9689 1.8758 0.0415
0.0557 −0.2040 1.0570

XY
Z


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Computer Colors - sRGB

sRGB → XYZ

▶ Since sRGB is non-linear, vector operations are not allowed
▶ because energy is non-linear too!

▶ Image processing usually requires linear space
▶ Data is often stored in sRGB
▶ Conversion:

Clinear =


Csrgb

12.92 , Csrgb ≤ 0.04045(
Csrgb+a

1+a

)2.4

, Csrgb > 0.04045

XY
Z

 =

0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

Rlinear

Glinear

Blinear



Csaba Bálint (ELTE IK) Vision, Colors, Light CG Lecture 2022 31 / 65



Physics of Light - Table of contents

Physics of Light

▼ Introduction
Course details

▼ Human vision
Motivation
Eye Anatomy
Receptors

▼ Computer Colors
Color spaces
RGB
XYZ

Perception-based
sRGB

▼ Physics of Light
Motivation
Properties of light
Speed of light
Light as a wave
Blackbody radiation
Photoelectric effect
Relativity

Csaba Bálint (ELTE IK) Vision, Colors, Light CG Lecture 2022 32 / 65



Physics of Light - Motivation

Motivation
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Physics of Light - Motivation

Motivation

▶ Goal: simulate how light behaves to render realistic images
▶ Build a mathematical model, create data structures, and algorithms
▶ We must understand how light behaves
▶ Capture core properties and disregard the rest
▶ 42
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Physics of Light - Properties of light

Light as a wave

Most of the properties of light can be explained with how waves behave.
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Physics of Light - Properties of light

Light as a wave – wave properties

▶ Waves can do:
▶ Absorption
▶ Reflection
▶ Refraction
▶ Diffraction
▶ Interference
▶ Polarization
▶ Dispersion

▶ Longitudinal and transverse
▶ Electromagnetic wave
▶ Propagation speed

Csaba Bálint (ELTE IK) Vision, Colors, Light CG Lecture 2022 36 / 65



Physics of Light - Properties of light

Light as a wave – monochromatic waves

▶ Frequency
▶ color, speed / wavelength

▶ Amplitude (intensity)
▶ Direction of propagation
▶ Polarization
▶ Phase (relative)
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Physics of Light - Properties of light

What is light?
▶ Electromagnetic wave

▶ Wave in electric field induces wave in magnetic field and vice versa because of the Maxwell
equations

▶ Transverse wave (not longitudinal)
▶ Polarization: direction of displacement of the Electric field
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Physics of Light - Properties of light

Electromagnetic spectrum
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Physics of Light - Speed of light

Speed of light

▶ Speed of light in vacuum: c = 299792458 m/s
▶ Low Earth Orbit (LEO) ≈ 7 km/s (0.002%c)

▶ Parker Solar Probe (PSP) ≈ 200 km/s (0.064%c)

▶ Defines the speed of every reaction (also the speed
of time...)

▶ The definition of 1 meter:
▶ The length of the path travelled by light in a

vacuum in 1
299792458 of a second.
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Physics of Light - Speed of light

Roemer: Io’s Shadow on Jupiter
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Physics of Light - Speed of light

Measurements of the speed of light
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Physics of Light - Light as a wave

Diffraction
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Physics of Light - Light as a wave

Interference
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Physics of Light - Light as a wave

Reflection

vr = v − 2n · ⟨n,v⟩

Householder transformation in linear algebra.
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Physics of Light - Light as a wave

Refraction

▶ Snell’s law:
sin θ1
sin θ2

=
v1
v2

=
n2

n1

▶ The refracted ray can be calculated as follows:

vt =
v

η
+ n

cosα

η
−

√
1− sin2 α

η2


where η = n2

n1
. See refract in GLSL.

▶ Index Of Reflection (IOR)
▶ function of wavelength!
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Physics of Light - Light as a wave

Refraction and mirage

Mirage
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Physics of Light - Light as a wave

Dispersion
▶ Abbe number:

VD =
nD − 1

nF − nC

▶ nD, nF and nC are the refractive indices of the material at the wavelengths of the
Fraunhofer C, D1, and F spectral lines (656.3 nm, 589.3 nm, and 486.1 nm respectively)

▶ Problem in cameras
▶ Chromatic aberration
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Physics of Light - Light as a wave

Dispersion
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Physics of Light - Light as a wave

Polarization
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Physics of Light - Light as a wave

Doppler Shift
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Physics of Light - Light as a wave

Doppler Shift – measuring astronomical distances

▶ We can measure speed accurately
▶ How do we measure distance? ⇒ Parallax
▶ Standard candle ⇒ magnitude → distance
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Physics of Light - Light as a wave

Background radiation

▶ Measure Hubble-s constant ⇒ Size of the universe
▶ CMB (cosmic microwave background) ⇒ Big Bang
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Physics of Light - Blackbody radiation

Blackbody radiation

Some important questions:
▶ Why does lava glow?
▶ Why is it red?
▶ What glows in blue?

Bν(ν, T ) =
2hν3

c2
1

ehν/kT − 1

L =
2π5

15

k4T 4

c2h3
1

π
= σT 4 1

π
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Physics of Light - Blackbody radiation

Blackbody radiation
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Physics of Light - Blackbody radiation

Atmosphere

▶ Atmosphere blocks some of the blackbody
radiation coming from the sun

▶ Each element has an absorption spectrum
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Physics of Light - Photoelectric effect

Helios

▶ Subtracting the elements of the atmosphere, the spectrum of the sun is still not the
blackbody spectrum, because each element in the sun radiates in different spectrums

▶ Helium was discovered in the sun’s spectrum and named after it
▶ From a single dot in the sky corresponding to a binary star we can tell their mass from

doppler shift and orbital mechanics, and each of their composition from the spectrum
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Physics of Light - Photoelectric effect

Planck’s law (1900)

▶ Blackbody radiation curves are really weird
▶ Even though their formula was well known, it was

lacking explanation until Max Planck.
▶ He quantized the amount of possible energy transfer

in 1900 which explained the formula.
▶ The Planck constant is the smallest possible energy

value for a given frequency:

h = 6.62607015× 10−34J · s

E = hf

Bλ(λ, T ) =
2hc2

λ5

1

e
hc

λkBT − 1
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Physics of Light - Photoelectric effect

Photoelectric effect

▶ Shining light on a metal plate can decouple electrons from the metal
▶ Higher frequency radiation has more energy, so it moves more electrons
▶ Photoelectric effect is that even high intensity but low frequency light does not generate

electric charge in the metal plate
▶ This cannot be explained by the classical waveform of light

E = hf
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Physics of Light - Photoelectric effect

Photoelectric effect

▶ Only large enough frequency produces current
▶ The effect is instantaneous
▶ Current is proportional to intensity
▶ Red light in photographic darkrooms
▶ Ultraviolet light causes sunburn
▶ Photons of different energies trigger different chemical

reactions in retina cells

Particle-wave duality
Low frequency ⇒ more wave like
High frequency ⇒ particle like

Photon is the electromagnetic particle with E = hf energy.
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Physics of Light - Photoelectric effect

Michelson – Morley (1887)

▶ But if light is a wave, what does it propagate in? =⇒ Aether?
▶ The Michelson and Morley experiment:

▶ Due the rotation of Earth around the sun and its axis we should be moving at a large speed
relative to the cosmic Aether.

▶ The light travelling in different direction and speed should destructively interfere with each
other. They did not, and thus making the experiment the most famous null result.
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Physics of Light - Relativity

Special relativity

Derived from two postulates
1. The laws of physics are invariant in all inertial frames of reference
2. The speed of light in a vacuum is the same for all observers

It solves:
▶ Michelson - Morley null result
▶ Inconsistency of Newtonian mechanics and Maxwell’s equations

Accurate if gravitation is negligible
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Physics of Light - Relativity

General relativity

Derived from three postulates
1. The laws of physics are invariant in all inertial frames of reference
2. Acceleration cannot be distinguished from gravity
3. The speed of light in a vacuum is the same for all observers

It solves EVERYTHING2!

2Except quantum stuff and climate change.
Csaba Bálint (ELTE IK) Vision, Colors, Light CG Lecture 2022 62 / 65



Physics of Light - Gravitational waves

Ripples in Spacetime

▶ Matter affects the shape of the
spacetime

▶ Spacetime drives how mass can
move

▶ Spacetime wanna be flat
▶ ⇒ Gravitational waves
▶ ⇒ Similar to Michelson - Morley

experiment
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It took - long enough

Thank you for your attention!
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Area on a sphere - Functions on the unit sphere

Area on sphere (from theory to practice)
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Area on a sphere - Functions on the unit sphere

Area on sphere

Let us denote the unit sphere with

S := {p ∈ R3 : ‖p‖2 = 1} .

How do we measure the area of a set D ⊆ S?

We denote the characteristic function as XD : S→ {0, 1}, such that

XD(ω) :=

{
0 if ω 6∈ D
1 if ω ∈ D (ω ∈ S)

The area of the D is ∫
S

XD =

∫
S

XD(ω) dω = ??
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Area on a sphere - Functions on the unit sphere

Represent surface area as a volume using ratios!
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Area on a sphere - Spherical coordinates

Spherical to Cartesian coordinate system I
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Area on a sphere - Spherical coordinates

Spherical to Cartesian coordinate system II

T (ϕ, θ, r) := (r cos(ϕ) sin(θ), r sin(ϕ) sin(θ), r cos(θ))

I Homework: |detT ′(ϕ, θ, r)| = r2 sin(θ)

I We could use this transformation to calculate the surface area of D, but how?

I Let us calculate the volume from D to the origin, a cone-like shape.
I The area A of D can be calculated from the ratio of volume relative to the volume of the

unit ball (so r = 1):

A =
V

4
3r

3π
· 4r2π = 3 · V
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Area on a sphere - Spherical coordinates

Homework

detT ′(ϕ, θ, r) = det

r cosϕ sin θ
r sinϕ sin θ
r cos θ

′=det

−r sinϕ sin θ r cosϕ cos θ cosϕ sin θ
r cosϕ sin θ r sinϕ cos θ sinϕ sin θ

0 −r sin θ cos θ

 =

= r2 det

− sinϕ sin θ cosϕ cos θ cosϕ sin θ
cosϕ sin θ sinϕ cos θ sinϕ sin θ

0 − sin θ cos θ

 =

= r2 ·
(

sin θ sin2 θ · det

[
− sinϕ cosϕ
cosϕ sinϕ

]
+ cos θ(sin θ cos θ) · det

[
− sinϕ cosϕ
cosϕ sinϕ

])
=

= r2 sin θ
(
sin2 θ + cos2 θ

)
· det

[
− sinϕ cosϕ
cosϕ sinϕ

]
= −r2 sin θ

Csaba Bálint (ELTE IK) Rendering Equation CG Lecture 2022 8 / 27



Area on a sphere - Integrating functions

Generalize to functions

Let us generalize XD to functions like f : [0, 2π)× [0, π)→ R that operate in spherical
coordinates.

I Let us create an F : R3 → R function that takes values from this domain:

F (x, y, z) := f([T−1(x, y, z)]1,2)

I So we evaluate f after transforming back to spherical coordinates without the radius
I Now, the volume can be expressed as:

V =

∫
unit ball

F (x, y, z) dx dy dz

I Remember integration by substitution? (Change of Variables Theorem)
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Area on a sphere - Integral transform theorem

Integral transform theorem

Assume that U ⊆ Rn is an open set, T : U → Rn, and f ∈ Rn → R. If

I T : U → Rn is injective and continuously differentiable function such that

∀u ∈ U : detT ′(u) 6= 0 .

I The function f : T (U)→ R is continuous and has a compact support.

Then ∫
T (U)

f(v) dv =

∫
U

f(T (u)) · | detT ′(u)| du .

I The transformed set is T (U) = {T (u) : u ∈ U}.
I T ′(u) ∈ Rn×n is the Jacobian matrix of the transformation at u ∈ Rn.
I The |detT ′(u)| ∈ R is by how much a unit volume is stretched.

Csaba Bálint (ELTE IK) Rendering Equation CG Lecture 2022 10 / 27



Area on a sphere - Integral transform theorem

Integral transform theorem

Assume that U ⊆ Rn is an open set, T : U → Rn, and f ∈ Rn → R. If

I T : U → Rn is injective and continuously differentiable function such that

∀u ∈ U : detT ′(u) 6= 0 .

I The function f : T (U)→ R is continuous and has a compact support.

Then ∫
T (U)

f(v) dv =

∫
U

f(T (u)) · | detT ′(u)| du .

I The transformed set is T (U) = {T (u) : u ∈ U}.
I T ′(u) ∈ Rn×n is the Jacobian matrix of the transformation at u ∈ Rn.
I The |detT ′(u)| ∈ R is by how much a unit volume is stretched.

Csaba Bálint (ELTE IK) Rendering Equation CG Lecture 2022 10 / 27



Area on a sphere - Integral transform theorem

Integral transform theorem

Assume that U ⊆ Rn is an open set, T : U → Rn, and f ∈ Rn → R. If
I T : U → Rn is injective and continuously differentiable function such that

∀u ∈ U : detT ′(u) 6= 0 .

I The function f : T (U)→ R is continuous and has a compact support.
Then ∫

T (U)

f(v) dv =

∫
U

f(T (u)) · | detT ′(u)| du .

I The transformed set is T (U) = {T (u) : u ∈ U}.
I T ′(u) ∈ Rn×n is the Jacobian matrix of the transformation at u ∈ Rn.
I The |detT ′(u)| ∈ R is by how much a unit volume is stretched.

Csaba Bálint (ELTE IK) Rendering Equation CG Lecture 2022 10 / 27



Area on a sphere - Integral transform theorem

Integral transform theorem – applied

Let
U := (0, 2π)× (0, π)× (0, 1) ⊆ Rn ,

and
T (ϕ, θ, r) :=

(
r cos(ϕ) sin(θ), r sin(ϕ) sin(θ), r cos(θ)

)
,

then
T (U) =

{
(x, y, z) ∈ R3

∣∣ x2 + y2 + z2 < 1
}

= open unit ball.

Check theorem requirements!

Csaba Bálint (ELTE IK) Rendering Equation CG Lecture 2022 11 / 27



Area on a sphere - Integral transform theorem

Transforming the integral

Remember that f : [0, 2π)× [0, π]→ R, then F (x, y, z) := f([T−1(x, y, z)]1,2).

V =

∫
unit ball

F (x, y, z) dx dy dz =

∫
U

F (T (ϕ, θ, r)) ·
∣∣detT ′(ϕ, θ, r)

∣∣ dr dθ dϕ

I Where F (T (ϕ, θ, r)) = f([T−1(T (ϕ, θ, r))]1,2) = f(ϕ, θ)

I Note that
∣∣ detT ′(ϕ, θ, r)

∣∣ = r2 sin(θ)

V =

∫
[0,2π]×[0,π]×[0,1]

r2 · sin(θ) · f(ϕ, θ) dr dθ dϕ =

1∫
0

r2 dr ·
∫

[0,2π]×[0,π]

f(ϕ, θ) sin(θ) dθ dϕ
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Area on a sphere - Integral transform theorem

The new measure

I Since
1∫
0

r2 dr = 1
3 ,

A = 3V =

∫
[0,2π]×[0,π]

f(ϕ, θ) sin(θ) dθ dϕ

I For a range of directions we often write ω = (ϕ, θ) instead of the pair of angles.
I However, the meaning of dω is different now:

dω = sin(θ) dθ dϕ

I Ultimately, we can express integrals over a range of directions as∫
D

f(ω) dω
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Area on a sphere - Integral transform theorem

Another explanation
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Visibility - of a differential surface

Visibility of a differential surface
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Visibility - of a differential surface

Visibility of a differential surface

The solid angle at which the surface point x with surface normal n and differential area dA is
visible from the origin is:

dω =
cos θn
r2

dA =
〈n,x〉
‖x‖3

dA

This means we can transform an arbitrary surface integral onto a sphere, and vice versa.
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Luminance - Flux

Phase space flux
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Luminance - Flux

Phase space flux

Spectral flux is the light energy emitted per unit time and wavelength by given surface point

Φλ,t(x) :=
∂2Q∂x(x, t, λ)

∂t∂λ
=
∂3Q(x, t, λ)

∂x∂t∂λ

I that describes light energy density with respect to time and wavelength
I Q∂x(x, t) is the light energy emitted at a given position and time towards ∂x direction
I λ is the wavelength of the light emitted
I Spectral because of the ∂λ, otherwise radial flux
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Luminance - Radiance

Radiance or Luminance
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Luminance - Radiance

Radiance or Luminance

Radiance or Luminance is the flux emitted by a unit area of the surface under unit solid angle

Lλ,t(x,ω) :=
d2Φλ,t

dω dA cos θn

I Φλ,t(x) is the spectral flux
I dA cos θn is the area we project the flux to
I First quantity that makes physical and mathematical sense by itself
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Luminance - Fundamental Law of Photometry

Fundamental Law of Photometry
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Luminance - Fundamental Law of Photometry

Fundamental Law of Photometry

Definition of luminance:

Lλ,t(x,ω) =
d2Φλ,t

dω dA cos θn

Visibility of the other differential area from in a solid angle: (see Frame 16)

dω =
cos θ′n
r2

dA′

implies

Lλ,t(x,ω) =
r2 · d2Φλ,t

dA′ cos θ′n · dA cos θn
= Lλ,t(x

′,ω′)

Transmitted radiance (or luminance) from A to B is the same as from B to A!

Csaba Bálint (ELTE IK) Rendering Equation CG Lecture 2022 22 / 27



Luminance - Fundamental Law of Photometry

Fundamental Law of Photometry

Definition of luminance:

Lλ,t(x,ω) =
d2Φλ,t

dω dA cos θn

Visibility of the other differential area from in a solid angle: (see Frame 16)

dω =
cos θ′n
r2

dA′

implies

Lλ,t(x,ω) =
r2 · d2Φλ,t

dA′ cos θ′n · dA cos θn
= Lλ,t(x

′,ω′)

Transmitted radiance (or luminance) from A to B is the same as from B to A!

Csaba Bálint (ELTE IK) Rendering Equation CG Lecture 2022 22 / 27



Light–Surface interaction - Reflectance probability

Light–Surface interaction
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Light–Surface interaction - Reflectance probability

Light–Surface interaction

Reflectance probability density function

wt,λ(ω′,x,ω) = Pr
{
photon hits ω ± dω solid angle

∣∣ coming from ω′
}
∈ [0, 1]

I Probability of a photon going towards ω and its ω vicinity if it comes from ω′ direction.
I The distribution depends on the material properties at position x
I Energy conservation:

∫
S
wλ,t(ω

′,x,ω) dω ≤ 1

I However, this is possible:
∫
S
wλ,t(ω

′,x,ω) dω′ ≥ 1
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Light–Surface interaction - Reflectance probability

Reflected Flux

Φx→ω
t,λ = Φem

t,λ +

∫
S

wt,λ(ω′,x,ω) · Φω′→x
t,λ dω′

I Total light coming from the surface is the emitted light plus the total reflected light.
I Φx→ω

t,λ = Lt,λ(x,ω) dA cos θ dω

I Φem
t,λ = Lemt,λ (x,ω) dA cos θ dω

I Φω′→x
t,λ = Lt,λ

(
V (x,−ω′),ω′

)
dA cos θ′ dω′

I The function V (x,−ω′) ∈ R3 is the visibility function, it queries the closest point
towards −ω′ from point x.
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Light–Surface interaction - Rendering Equation

Rendering Equation

Lt,λ(x,ω) = Lemt,λ (x,ω) +

∫
S

Lt,λ
(
V (x,−ω′),ω′

)
·
wt,λ(ω′,x,ω)

cos θ
· cos θ′ dω′

The Bidirectional Reflectance Distribution Function is the following

frt,λ(ω′,x,ω) :=
wt,λ(ω′,x,ω)

cos θ

The rendering equation can be summarized as

Lt,λ(x,ω) = Lemt,λ (x,ω) +

∫
S

Lt,λ
(
V (x,−ω′),ω′

)
· frt,λ(ω′,x,ω) · cos θ′ dω′

Csaba Bálint (ELTE IK) Rendering Equation CG Lecture 2022 26 / 27



Light–Surface interaction - Rendering Equation

Rendering Equation

I Recursive integral equation
L = Lem + τL

I Very hard to solve
I Algorithms provide approximate solution
I Error? Convergence? Artifacts?

To be continued...
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Rendering equation revised - Reflectance probability density function

Reflectance probability density function
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Rendering equation revised - Reflectance probability density function

Reflectance probability density function

Reflectance probability density function

wt,λ(ω′,x,ω) = Pr
{
photon hits ω ± dω solid angle

∣∣ coming from ω′
}
∈ [0, 1]

I Probability of a photon going towards ω and its ω vicinity if it comes from ω′ direction.
I The distribution depends on the material properties at position x
I Energy conservation:

∫
S
wλ,t(ω

′,x,ω) dω ≤ 1

I However, this is possible:
∫
S
wλ,t(ω

′,x,ω) dω′ ≥ 1

Csaba Bálint (ELTE IK) BRDF CG Lecture 2022 4 / 45



Rendering equation revised - Rendering equation

From flux to rendering equation

Φx→ω
t,λ = Φem

t,λ +

∫
S

wt,λ(ω′,x,ω) · Φω′→x
t,λ dω′

I Total light coming from the surface is the emitted light plus the total reflected light.
I Visibility function V (x,−ω′) ∈ R3: queries the closest point towards −ω′ from point x.
I Divide the equation by dA cos θ dω to get the rendering equation

Lt,λ(x,ω) = Lemt,λ (x,ω) +

∫
S

Lt,λ
(
V (x,−ω′),ω′

)
·
wt,λ(ω′,x,ω)

cos θ
· cos θ′ dω′
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Bidirectional Reflectance Distribution Function - Definition and modelling

The Bidirectional Reflectance Distribution Function

frt,λ(ω′,x,ω) :=
wt,λ(ω′,x,ω)

cos θ
=
wt,λ(ω′,x,ω)

〈n,ω〉

I The BRDF is an input function to the rendering equation solver engine that describes
materials properties

I x characterizes the position on the surface with surface normal n.
I x will tell us which object is x on, and where are we on it (texture fetch).
I ω,ω′ directions describe a direction of a possible bounce of photons
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Bidirectional Reflectance Distribution Function - Definition and modelling
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Bidirectional Reflectance Distribution Function - Definition and modelling

Modelling BRDF

I We can measure the BRDF as a function of ϕ, θ, ϕ′, θ′, λ
I Memory issues: 100x100x100x100x10 data points.
I Isotopic material: invariant under rotating both ω and ω′ around surface normal n
I Anisotopic material: CD, polished metal
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Bidirectional Reflectance Distribution Function - Definition and modelling

Gonioreflectometer

Figure 8 taken from “A Framework for Realistic Image Synthesis” by Greenberg, et. al. (Cornell)
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Bidirectional Reflectance Distribution Function - Definition and modelling

Properties of BRDF

1. Positive: frt,λ(ω′,x,ω) ≥ 0

2. Symmetric – Helmholtz law: frt,λ(ω′,x,ω) = frt,λ(ω,x,ω′)

3. Energy conservation: a(ω,x) ≤ 1

Albedo: Probability of a photon being reflected (to anywhere)

a(ω,x) :=

∫
S

wλ,t(ω,x,ω
′) dω′ =

∫
S

frt,λ(ω,x,ω′) cos θ′ dω′

I Symmetry implies that viewed from ω direction a homogeneous skylight with radiance of 1
will produce a(ω,x) radiance along the ray.

I a(x,ω) = τ1 =
∫
S
frt,λ(ω,x,ω′) cos θ′ dω′
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Bidirectional Reflectance Distribution Function - Diffuse surface – Lambert’s law

Diffuse reflectance

I Material is opaque, i.e. frt,λ
(
(ϕ, θ),x, (ϕ′, θ′)

)
= 0 if

(
θ − π

2

)
·
(
θ′ − π

2

)
< 0

I Reflected radiance is invariant on viewing angle ω
I Helmholtz law implies that it is invariant on illumination angle ω′

I Thus, it is a constant: frt,λ
(
ω,x,ω′) = kd(λ) if

(
θ − π

2

)
·
(
θ′ − π

2

)
> 0

1. Positive: 0 < kd(λ)

2. Symmetric
3. Energy conservation:

a(ω,x) =
∫
S
frt,λ(ω,x,ω′) cos θ′ dω′ =

π
2∫

0

2π∫
0

kd(λ) cos θ sin θ dϕdθ ≤ 1
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Bidirectional Reflectance Distribution Function - Diffuse surface – Lambert’s law

Diffuse energy conservation

frt,λ
(
(ϕ, θ),x, (ϕ′, θ′)

)
=

{
kd(λ) if

(
θ − π

2

)
·
(
θ′ − π

2

)
≥ 0

0 if
(
θ − π

2

)
·
(
θ′ − π

2

)
< 0

a(ω,x) =

∫
S

frt,λ(ω,x,ω′) cos θ′ dω′ =

π
2∫

0

∫ 2π

0
kd(λ) cos θ sin θ dϕdθ =

=

2π∫
0

kd(λ) dϕ ·

π
2∫

0

cos θ sin θ dθ = 2πkd(λ) ·
[

1

2
sin2(θ)

]π
2

0

=

= πkd(λ) ≤ 1
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Bidirectional Reflectance Distribution Function - Diffuse surface – Lambert’s law

Lambertian reflectance

frt,λ
(
(ϕ, θ),x, (ϕ′, θ′)

)
=

{
kd(λ) if

(
θ − π

2

)
·
(
θ′ − π

2

)
≥ 0

0 if
(
θ − π

2

)
·
(
θ′ − π

2

)
< 0

1. Positive: 0 < kd(λ)

2. Symmetric
3. Energy conservation: kd(λ) ≤ 1

π ⇐⇒ a(ω,x) ≤ 1
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Bidirectional Reflectance Distribution Function - Diffuse surface – Lambert’s law
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Specular reflectance - Phong model

Mirror

frt,λ(l,v) = kr(λ) · δ(v − lr)
〈n, l〉
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Specular reflectance - Phong model

Reflect – Householder transformation

cosα = −〈v,n〉 vr = v + 2 cosα · n

vr = v − 2〈v,n〉 · n
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Specular reflectance - Phong model

Phong model

δ(x) ≈ cosN (x) (x ∈ [−π, π])

frt,λ(l,v) = kr(λ)·,
〈
v, l−2〈n, l〉n

〉N
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Specular reflectance - Phong model
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Specular reflectance - Phong model

The Phong model

I Produces specular highlights
I Very fast to compute
I Asymmetric :(
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Specular reflectance - Blinn-Phong model
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Specular reflectance - Blinn-Phong model

Blinn-Phong model

frt,λ(l,v) = kr(λ) · 〈n, h〉N

I Where h = v+l
‖v+l‖2

I Very fast
I Symmetric
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Specular reflectance - Blinn-Phong model

Phong vs Blinn-Phong
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Specular reflectance - Blinn-Phong model
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Fresnel refraction - Refraction and IOR

Refraction – Snell–Descartes law

plane of incidence: plane of incoming ray, outgoing ray, and normal

n2 sin(θ2) = n1 sin(θ1)
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Fresnel refraction - Refraction and IOR

IOR: Index of Reflection

n1 =

√
i 2π
λ
µ

σ+i 2π
λ
ε

Z0

I Speed of the light relative to vacuum
I µ magnetic permeability: how hard is it to magnetize the material
I ε electric permeability: how hard is it to charge it with electrons
I σ = 1

ρ electric conductivity is the reciprocal of electrical resistivity: large for conductors
I Metals produce complex numbers. The nominator is the wave impedance.
I Z0 ≈ 120π Ω is the wave impedance of the vacuum
I λ is the wavelength of the light
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Fresnel refraction - Fresnel equations and approximation

Fresnel reflection

I s-polarized: wave in the electric field is paralell with the plane of incidence
I p-polarized is the perpendicular component
I At high incidence angles, the s-polarized light is reflected more
I Polarized sunglasses reduce glare
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Fresnel refraction - Fresnel equations and approximation

Fresnel equations

Rs =

∣∣∣∣n2 cos θi − n1 cos θt
n2 cos θi + n1 cos θt

∣∣∣∣ Rp =

∣∣∣∣n2 cos θt − n1 cos θi
n2 cos θt + n1 cos θi

∣∣∣∣
I Each polarized component of the light is reduced according Rs and Rp factors.
I Conservation of energy means R2

s +R2
p ≤ 1.
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Fresnel refraction - Fresnel equations and approximation

Metals and Non-metals

I F0 is the reflected light at 0 incident angle.
I Non-metals typically range between 2%-5% gray.
I Metals reflect 50%-100% of light in various colours.

Csaba Bálint (ELTE IK) BRDF CG Lecture 2022 28 / 45



Fresnel refraction - Fresnel equations and approximation

Schlick’s approximation

I For natural unpolarized light R0 ≈
√

R2
s+R2

p

2

I Incorporate it into Blinn-Phong as a multipier for specular highlight:

I Schlick simplified and approximated this with

I F0 :=

(
n1 − n2

n1 + n2

)2

F := F0 + (1− F0)
(
1− 〈n, ω′〉

)5
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Cook-Torrance model - Roughness models

Cook-Torrance model 1983

I Physically based: the surface is modelled as perfectly reflecting microfacets
I Distribution of microfacets is given (roughness)
I Calculates masking and self-shadowing effects between microfacets
I Inputs are physical properties of the material, can be measured (unlike the specular power)
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Cook-Torrance model - Roughness models

Microfacet theory
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Cook-Torrance model - Roughness models

Demo: generated random microfacet surface with ray intersections
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Cook-Torrance model - Roughness models

Demo: reflected rays from surface with 0.05 normal variance
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Cook-Torrance model - Roughness models

Demo: reflected rays from surface with 0.15 normal variance
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Cook-Torrance model - Roughness models

Demo: reflected rays from surface with 0.40 normal variance
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Cook-Torrance model - Roughness models

Demo: resulting BRDF
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Cook-Torrance model - Roughness models

Bisector angle h
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Cook-Torrance model - Roughness models

Roughness models

Microgeometry density from a given angle is modelled with a distribution.
Dm(h) "counts" the microfacets that would reflect l to v.

1. Blinn: Guassian distribution Dm(h) =
1

πm2
· 〈h,n〉

2
m2−2

2. Backman distribution: Dm(h) =
1

πm2〈h,n〉4
· e
〈h,n〉2−1

m2〈h,n〉2

I h is the viewing angle for which Dm(h) returns the relative microfacet density.
I Dm(h) is normally evaluated at h = l+v

‖l+v‖2 angular bisector
I The roughness parameter m is the root mean square – quadratic mean of the slope of the

microfacets
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Cook-Torrance model - Roughness models

Blinn Phong vs Backman

Blinn-Phong distribution (blue) and Backman distribution (purple) for roughness values of
0.2-0.5 (right) and 0.6-1.0 (left).
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Cook-Torrance model - Roughness models

Properties of Dm and the result of varying roughness

∀ v ∈ Ω, 〈v,n〉 =

∫
Ω

Dm(h)〈v,h〉 dh =⇒
v:=n

1 =

∫
Ω

Dm(h)〈n,h〉 dh

Csaba Bálint (ELTE IK) BRDF CG Lecture 2022 40 / 45



Cook-Torrance model - Geometric Attenuation Factor

Cook-Torrance model

frt,λ(l, v) =
Fλ(h) ·G(n,v, l) ·Dm(h)

〈n,v〉

I where h = v+l
‖v+l‖2

I Dm(h) is the microfacet density towards h′. Fλ(h) is the Fresnel reflectance ratio.
I G(n,v, l) Geometric attenuation factor: self shadowing and masking
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Cook-Torrance model - Geometric Attenuation Factor

Geometric Attenuation Factor

Gunblocked = 1, Gmask =
2〈h,n〉〈v,n〉
〈v,h〉

, Gshadow =
2〈h,n〉〈l,n〉
〈v,h〉

G = 1− blocked

facet
= min{Gunblocked, Gmask, Gshadow}
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Cook-Torrance model - Geometric Attenuation Factor

Limitations
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Cook-Torrance model - Geometric Attenuation Factor

Code for Fresnel

Rs =

∣∣∣∣n2 cos θi − n1 cos θt
n2 cos θi + n1 cos θt

∣∣∣∣ Rp =

∣∣∣∣n2 cos θt − n1 cos θi
n2 cos θt + n1 cos θi

∣∣∣∣

. . .
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Cook-Torrance model - Geometric Attenuation Factor

Code for Radiance

D(m,α) =
e−

tan2 α
m2

πm2 cos4 α
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Rendering Equation - Recap

Rendering Equation

Lt,λ(x,ω) = Lemt,λ (x,ω) +

∫
S

Lt,λ
(
V (x,−ω′),ω′

)
· frt,λ(ω′,x,ω) · cos θ′ dω′

I Lt,λ(x,ω) is the radiance from a point on a surface x in a given direction ω, at time t in
wavelength λ.

I Lemt,λ (x,ω) is the emitted radiance from x to ω.

I
∫
S
Lt,λ

(
V (x,−ω′),ω′

)
· frt,λ(ω′,x,ω) · cos θ′dω′ Radiance contribution from all of the

other surfaces in the scene
I Lt,λ

(
V (x,−ω′),ω′

)
incoming radiance – recursion

I V (x,−ω′) =: x′ closest object in direction −ω′

I frt,λ(ω′,x,ω) Bidirectional Reflectance Distribution Function, ω′ = (ϕ′, θ′).
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Towards Radiosity - Integral transformation

Remember: visibility of a differential surface
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Towards Radiosity - Integral transformation

Using the visibility function
Given that: (without proof)

Let F : I1 × I2 → R3 be a regular surface with normal mF (w) such that the

V −1(u, v) := [T−1(F (u, v))]1,2 ∈ Ω (u ∈ I1, v ∈ I2)

function is bijective. Let f : I1 × I2 → R be a continuous function. Then∫
Ω

f(V (ω)) dω =

∫
I1×I2

f(w)
〈mF (w), F (w)〉
‖F (w)‖3

dw

In the rendering equation we have∫
S

Lt,λ
(
V (x,−ω′),ω′

)
· frt,λ(ω′,x,ω) · cos θ′ dω′ =
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Towards Radiosity - Integral transformation

Transforming the integral

∫
S

Lt,λ
(
V (x,−ω′),ω′

)
· frt,λ(ω′,x,ω) · cos θ′ dω′ =

Integrate on the visible surfaces instead of the sphere using the transformation
x′ = V (x,−ω′), ω′ = [T−1(x′ − x)]1,2.

=

∫
V (x,S)

Lt,λ(x′,ω′) · frt,λ(ω′,x,ω) · 〈n,x
′ − x〉〈n′,x− x′〉
‖x′ − x‖4

dx′ =

Notice that V (x,S) ⊆ X, where X ⊆ R3 the set of all surfaces.

=

∫
X

frt,λ(ω′,x,ω) · Lt,λ(x′,ω′) · XV (x,S)(x
′) · 〈n,x

′ − x〉〈n′,x− x′〉
‖x′ − x‖4

dx′
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Towards Radiosity - Geometric term

Geometric term and visibility function

=

∫
X

frt,λ(ω′,x,ω) · Lt,λ(x′,ω′) · XV (x,S)(x
′) · 〈n,x

′ − x〉〈n′,x− x′〉
‖x′ − x‖4

dx′ =

I (x,x′)→ XV (x,S)(x
′) is the visibility function between two points.

I G(x,x′) := 〈n,x′−x〉〈n′,x−x′〉
‖x′−x‖4 describes the geometric relationship between x and x′.

I Symmetric function (fundamental law of photometry).
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Towards Radiosity - Form factor

Form factor (view factor)

=

∫
X

frt,λ(ω′,x,ω) · Lt,λ(x,x′) · XV (x,S)(x
′) ·G(x,x′)︸ ︷︷ ︸

F (x,x′)

dx′

I The geometric term multiplied by visibility is the form factor F (x,x′).
I Also a symmetric function.
I Only depends on x,x′, and not on ω. (Note that ω′ is the direction of x′ − x.)
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Radiosity equation - Most important assumption

Radiosity equation

Lt,λ(x,ω) = Lemt,λ (x,ω) +

∫
X

frt,λ(ω′,x,ω) · Lt,λ(x,x′) · F (x,x′) dx′

What do we want?

Precalculate the integral for all x ∈ X.
What’s the problem? Integral depends on ω ∈ S viewing angle.
What do we do? Assume it does not.
What does that mean? Diffuse BRDF

Lt,λ(x,ω) = Lemt,λ (x,ω) + kd(x) ·
∫
X

Lt,λ(x,x′) · F (x,x′) dx′
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Radiosity equation - Discrete form

Discretisation

Lt,λ(x,ω) = Lemt,λ (x,ω) + kd(x) ·
∫
X

Lt,λ(x,x′) · F (x,x′) dx′

Discretize X into n patches over which the radiances are constant: X =
n⋃
i=1

Xi.

I F (x,x′) = Fij ∈ [0,+∞) (x ∈ Xi) discretized form factors
I Lemt,λ (x,ω) = Ei ∈ [0,+∞) (x ∈ Xi) emitted radiance
I kd(x) = ρi ∈ [0, 1

π ) (x ∈ Xi) is the reflectivity of the patch
I Lt,λ(x,ω) = Li ∈ [0,+∞) (x ∈ Xi) this is the unknown radiance

This leads to the discrete radiosity equation

Li = Ei + ρi

n∑
j=1

Fi,j · Lj .
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Radiosity equation - Discrete form

Discrete Radiosity Equation

Li = Ei + ρ

n∑
j=1

Fi,j · Lj =

In matrix form:
(I − ρ · F ) · L = E


1− ρ1 · F11 −ρ1 · F12 . . . −ρ1 · F1n

−ρ2 · F21 1− ρ2 · F22 . . . −ρ2 · F2n
...

...
. . .

...
−ρn · Fn1 −ρn · Fn2 . . . 1− ρn · Fnn

 ·

L1

L2
...
Ln

 =


E1

E2
...
En


What can we see in this matrix?
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Radiosity equation - Discrete form

Jacobi method
Since the diagonal part was I, the Jacobi iteration becomes

L(k+1) = E + ρi · F · L(k)

But does it converge?
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Radiosity equation - Numerical Performance

Convergence condition

If I − ρF is strictly diagonally dominant, so when

|1− ρiFii| >
n∑

j=1,i 6=j
|ρiFij | ⇐⇒ 1 > ρi ·

n∑
j=1

Fij

Using that all values are positive. Moreover,
I
∑n

j=1 Fij ≤ 1 because the ratio of visible surfaces cannot exceed 1 together.

I ρi ≤ 1
π due to energy conservation discussed earlier.

Hence, the spectral radius is maxi |λi| ≤ 1
π , so we can bound the convergence error with

‖L(k) − L∗‖∞ ≤ 1.47 · 0.32k · ‖L(1) − L(0)‖∞ (k ∈ N)
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Motivation - Raycast

Motivation: Raycast

▶ Simulate light rays – can only simulate
finite amount

▶ How to choose from a continuum set of
rays?

▶ How to increase performance and quality?
▶ E-g.: choose the red ray: direct lighting
▶ Need all other directions too
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Motivation - Raycast

Motivation: Direct Illumination
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Recursive ray tracing - Monte Carlo

Monte Carlo ray tracing

See supplemental material
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Recursive ray tracing - Ray tracing

Random sample directions - one bounce
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Recursive ray tracing - Ray tracing

Ray trace recursively
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Recursive ray tracing - Ray tracing

Direct light sampling
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Recursive ray tracing - Ray tracing

BRDF variance impact on performance

Diffuse 10 path per pixel Glossy 10 path per pixel Glossy 100 path per pixel
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Recursive ray tracing - Ray tracing

Why random?

▶ What happens if we use a fixed random sequence?
▶ Structured error is worse than random noise.

10 samples from fixed list 10 random samples
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Path tracing - Rendering equation

Rendering equation

Lt,λ(x,ω) = Lem
t,λ (x,ω) +

∫
K

Lt,λ

(
V (x,−ω′),ω′)frt,λ(ω′,x,ω) cos θ′ dω′

Let x′ = V (x,−ω′) and fx
(
ω′,ω

)
= frt,λ(ω

′,x,ω)cos θ′ for brevity.

Lt,λ(x,ω) = Lem
t,λ (x,ω)

∫
K

Lt,λ(x
′,ω′)fx

(
ω′,ω

)
dω′

Also, let Lx(ω) = Lt,λ(x,ω).

Lx(ω) = Lem
x (ω) +

∫
K

Lx′
(
ω′)fx (ω′,ω

)
dω′
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Path tracing - Rendering equation

Recursion

Lx(ω) = Lem
x (ω) +

∫
K

Lx′
(
ω′)fx (ω′,ω

)
dω′

Lx(ω) = Lem
x (ω) +

∫
K

(
Lem
x′
(
ω′)+ ∫

K

Lx′′
(
ω′′)fx′

(
ω′′,ω′) dω′′

)
fx
(
ω′,ω

)
dω′

Lx(ω) = Lem
x (ω) +

∫
K

(
Lem
x′
(
ω′)+ ∫

K

(
Lem
x′′
(
ω′′)+

∫
K

Lx′′′
(
ω′′′)fx′′

(
ω′′′,ω′′) dω′′′

)
fx′
(
ω′′,ω′) dω′′

)
fx
(
ω′,ω

)
dω′
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Path tracing - Rendering equation

Micimackó
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Path tracing - Rendering equation

Lx(ω) = Lem
x (ω) +

∫
K

Lx′
(
ω′)fx (ω′,ω

)
dω′

Lx(ω) = Lem
x (ω) +

2π∫
0

π∫
0

Lx′
(
ω′)fx (ω′,ω

)
sin θ′ dθ′ dφ′

Lx(ω) =

2π∫
0

Lem
x (ω)

2π
+

π∫
0

Lx′
(
ω′)fx (ω′,ω

)
sin θ′ dθ′

dφ′

Lx(ω) =

2π∫
0

π∫
0

(
Lem
x (ω)

2π2 sin θ′
+ Lx′

(
ω′)fx (ω′,ω

))
sin θ′ dθ′ dφ′

Lx(ω) =

∫
K

(
Lem
x (ω)

2π2 sin θ′
+ Lx′

(
ω′)frt,λ(ω′,x,ω) cos θ′

)
dω′
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Path tracing - Rendering equation

Recursion

Lx(ω) = Lem
x (ω) +

∫
K

Lx′
(
ω′)fx (ω′,ω

)
dω′

Lx(ω) =

∫
K

(
Lem
x (ω)

2π2 sin θ′
+ Lx′

(
ω′)fx (ω′,ω

))
dω′

Lx(ω) =

∫
K

 Lem
x (ω)

2π2 sin θ′
+

∫
K

(
Lem
x′
(
ω′)

2π2 sin θ′′
+ Lx′′

(
ω′′)fx′

(
ω′′,ω′))dω′′fx

(
ω′,ω

)dω′

Lx(ω) =

∫
K

∫
K

Lem
x (ω)(

2π2
)2

sin θ′ sin θ′′
+

(
Lem
x′
(
ω′)

2π2 sin θ′′
+ Lx′′

(
ω′′)fx′

(
ω′′,ω′)) fx

(
ω′,ω

)
dω′′ dω′
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Path tracing - Path tracing

Path tracing

Lx(ω) =

∫
K

∫
K

Lem
x (ω)(

2π2
)2

sin θ′ sin θ′′
+

(
Lem
x′
(
ω′)

2π2 sin θ′′
+ Lx′′

(
ω′′)fx′

(
ω′′,ω′)) fx

(
ω′,ω

)
dω′′ dω′

Lx(ω) =

∫
K

. . .

∫
K

n∑
i=1

Lem
x(i−1)

(
ω(i−1)

)
(
2π2
)n−i+1∏n

j=i sin θ
(j)

i−1∏
j=1

fx(j)

(
ω(j),ω(j−1)

)

+ Lx(n)

(
ω(n)

) n∏
i=1

fx(i)

(
ω(i),ω(i−1)

)
dω(n+1) . . . dω′

Lx(ω) = lim
n→∞

∫
K

. . .

∫
K

n∑
i=1

Lem
x(i−1)

(
ω(i−1)

)
(
2π2
)n−i+1∏n

j=i sin θ
(j)

i−1∏
j=1

fx(j)

(
ω(j),ω(j−1)

)
dω(n+1) . . . dω′
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Path tracing - Path tracing

Path tracing

Lx(ω) = lim
n→∞

∫
K

. . .

∫
K

n∑
i=1

Lem
x(i−1)

(
ω(i−1)

)
(
2π2
)n−i+1∏n

j=i sin θ
(j)

i−1∏
j=1

fx(j)

(
ω(j),ω(j−1)

)
dω(n+1) . . . dω′

Input: x0 ∈ R3 ▷ Surface position
Input: ω[0] = (φ[0], θ[0]) ▷ Direction
Output: L := [0, 0, 0] ▷ linear RGB color value
factor := [1, 1, 1] ▷ BRDFs multiplied together
for i := 1 . . . n do

ω[i] := RandomDir() ▷ Generate random direction vector
xi := RayTrace(xi−1,−ωi) ▷ Trace next position
L := L

2π2 sin(θi)
+ factor · Emission(xi−1,ωi−1) ▷ Update summation

factor := factor ·BRDF (ωi,xi,ωi−1) · cos(θi) ▷ Update product
end for
return L
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Path tracing - Path tracing

Path tracing with anti-aliasing

Csaba Bálint (ELTE IK) Global Illumination CG Lecture 2022 18 / 20



Path tracing - Path tracing

Path tracing with direct light sampling
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Further methods -

Further methods

See supplemental presentation
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Computer Graphics Lecture

Csaba Bálint

OpenGL overview



Part I:

The OpenGL 
Pipeline





https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview

OpenGL shaders
• Vertex shader
• Tessellation control shader
• Tessellation evaluation shader
• Geometry shader
• Fragment shader

Three optimization opportunities:
• Paralellisation (vertex, fregment, ect.) ⇒ Work item, work group, stb. ⇒ GPGPU
• Pipeline ⇒ data streams
• Memory waits spent computing ⇒ GPGPU

Data Operation

Computer Graphics Lecture – Csaba Bálint

https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Vertex_Shader
https://www.khronos.org/opengl/wiki/Tessellation_Control_Shader
https://www.khronos.org/opengl/wiki/Tessellation#Tessellation_control_shader
https://www.khronos.org/opengl/wiki/Geometry_Shader
https://www.khronos.org/opengl/wiki/Fragment_Shader
















Part II:

OpenGL 
Objects
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VAO – Vertex Array Object

•Draw commands: gl[Multi]Draw{Arrays,*Elements}[Instanced]*

•Draw command ⇒ Uses active VAO ⇒ VAO defines how the GPU 
reads the geometry from the VBO (later)

•Array of AttribArray-s. A single AttribArray:
• Active or inactive
• If inactive, constant value at every location (glVertexAttrib)
• If active, points to a memory location (type, size, offset, ect)
• Reads new pointer after each Vertex, unless set otherwise

VAO does not hold geometric information, it only holds the layout.

Eg.: Position, normal, texture coordinate.
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Setting up VAO – old method

1. Creation of VAO: glGenVertexArrays (1, &vaoid);

2. Binding the context: glBindVertexArray(vaoid)

3. Setting VBO ptr to VAO: glBindBuffer(GL_ARRAY_BUFFER, vboid);

4. Activation: glEnableVertexAttribArray(idx);

5. Setting layout & type: glVertexAttribPointer*(idx, <type, size>);

6. Repeat 3-5 for every attribute.

7. Setting up Index buffer : glBindBuffer(GL_ELEMENT_ARRAY_BUFFER);

I’m still popular!
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Setting up VAO– „new”method

1. glGenVertexArrays, glBindVertexArray
Separate memory & geometry structure:

2. Setting up Buffer Binding Point:
How to read the raw buffer?
• glBindVertexBuffer(bindingindex, buffer, offset, stride)
• glVertexBindingDivisor(bindingindex, divisor)

3. Setting up Vertex Attribute Format:
How to interpret the fetched data?
• glVertexAttribFormat(attribindex , size , type , normalized ,

relativeoffset )

4. Binding the two: glVertexAttribBinding(attribindex , bindingindex )

OpenGL 4.3

Where does 
it start?

How big is the data, 
and is it interleaved?

Where does the 
geometry start?

Which buffer holds 
that attribute?
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https://www.khronos.org/opengl/wiki/Vertex_Specification#Separate_attribute_format


Graphics Pipeline and VAO
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Drawing commands: gl*Draw*
Optimizing memory access:

• *Elements*: Usage of index buffer (*Arrays* otherwise).

• *Range*: The range of the indices are given so the driver can optimize.

Paralellisation of Drawing:

• *Multi*: Iterate through draw calls efficiently.

• *Instancing*: Draw same geometry multiple times.

Omitting the GPU ⇒ CPU ⇒ GPU turnaround:

• *TransformFeedback*: Send geometry back to be drawn „again”

• *Indirect*: Read draw parameters from buffer

• *gl{Begin,End}ConditionalRender*: Rendering object based on 
condition evaluated on the GPU (Occlusion queries)
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OpenGL objects : Name
•Type: Gluint.  glGen*, glCreate*, glDelete*.

• Zero is the default value. If glGen* returns 0 ⇒ Error

•Each context has its own namespace
(until they are connected: context sharing).

•Typical usage of OpenGL objects:
1. Generate name (declare GLuint, glGen*, glCreate*)
2. Activate resource glBind*
3. Call functions & use implicitly ⇒ Internal state changes
4. Deactivate resource (by binding another or 0)
5. Delete resource (glDelete*)
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OpenGL objects : Binding

•Binding = Coupling to active context

• If coupling is to another object, it is called attachment!
1. First parameter is the target. If no index parameter present, only a single 

resource can be attached to that point.

2. Optional parameter:  index can have multiple resources at the same target with 
different indices. (Multibind)

3. Second or third parameter is the object’s name to be binded.

• Sometimes there are more parameters

•OpenGL can only free up a resource if nothing points to it anymore
⇒ Including attachments! ⇒ Deletion orphaning
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OpenGL Buffers

•OpenGL Objects
• glGenBuffers(1,&bufferName)
• glBindBuffer(GLenum target, GLuint bufferName)

•Unformatted continuous memory

•OpenGL context allocates it (on the  GPU).

• Examples:
• Vertex data (VBO = GL_ARRAY_BUFFER, index buffer = GL_ELEMENT_ARRAY_BUFFER)

• Arrays for in shader use(UBO, SSBO)

• Counters (atomic counter), Queries (GL_QUERRY_BUFFER, eg. runtime)

• Transform feedback buffer, indirect buffer

• Special textures: texture-, pixel unpack-, pixel pack buffer.
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OpenGL Buffer types

Mutable Storage
• Can be allocated any number of times

• glBufferData(target, size, 
data, usage)
• Allocates AND uploads!

• GL_{STATIC, DYNAMIC, STREAM}
• _{DRAW, READ, COPY}

• Hard to read and write data from CPU

• Cannot map memory persistently

• Cacheing can be difficult for the driver

• Inneficient synchronization

Immutable Storage

•Allocate once

• glBufferStorage(target, size, data, 
flags)

• GL_MAP_{READ, WRITE}_BIT
• GL_DYNAMIC_STORAGE_BIT
• GL_{COHERENT, PERSISTENT}_BIT
• GL_CLIENT_STORAGE_BIT

• All „server-side” operations are allowed:
• Pipeline can write to it

• Clearable and invalidatable

• Copy to another

• glGetBufferSubData ⇒ odd one out
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OpenGL Buffer operations

• Clear: glClearBuffer[Sub]Data

•Overwrite: glBufferSubData (does not allocate) often slow

• Read: glGetBufferSubData

• Copy: GL_COPY_READ_BUFFER ⇒ GL_COPY_WRITE_BUFFER
glCopyBufferSubData
•Mapping: glMapBuffer[Range] returns a readable/writable ptr.

• glUnmapBuffer ends operation and flushes updates.

• If GL_MAP_PERSISTENT_BIT is not set, then memory locked when not mapped.

• Flush early by using glFlushMappedBufferRange.

• Can be much faster than glBufferSubData.
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OpenGL 1.9!

OpenGL 4.3

OpenGL 3.1

OpenGL 1.5

OpenGL 2.0



A Taste of Types

Bitdepth 8 16 32 64

Integers GLbyte GLshort GLint GLint64

Naturals GLubyte GLushort GLuint GLuint64

Floating point GLhalf GLfloat GLdouble
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Other types: GLboolean, GLfixed, GLbitfield, GLenum, GLsizei, GLclampf, GLintptr, GLsizeiptr, GLclampd.

On the CPU side



Part III:

Textures and 
Framebuffers
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•OpenGL Objects
• glGenTextures(1,&textureName)
• glBindTexture(GLenum target,

GLuint textureName)

• Fast arrays of data with specified 
pixel formats

•OpenGL context allocates (on the  
GPU)

OpenGL Textures
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GPU (GLSL)

Computer Graphics Lecture – Csaba Bálint

uniform sampler2d mytex;
//samplerID (int)

vec4 col = texture(mytex,uv);
//read and interpolate

glActiveTexture(GL_TEXTURE0 +
mSamplerID);

//integers: 0-31

glBindTexture(GL_TEXTURE_2D,
mTexName);

//mSampler points to mTexName

glUniform1i(mLoc, mSamplerID);

//”mytex” uniform is mSampler

CPU (C++)

Texture usage



Texture semantics

• Image: a single {1,2,3}D array of pixels

• Image format: type description how a single pixel is stored

• Sampler: stores sampling parameters for shaders to access a texture

• Texture: Contains some number of images and a sampler
• same image format, but can have different sizes via mip-maps

• Texture completeness
• Mipmap completeness: width/height/depth = floor(base level / 2k)
• Cubemap completeness: square images only!
• Image format  completeness: no interpolation for stencil textures
• Sampler objects and completeness: → Sampler object
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// Create Texture2D:

glGenTextures(1, &mTexName);

glBindTexture(GL_TEXTURE_2D, mTexName);

// Set the texture sampling parameters:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);

// Allocate immutable storage:

glTexStorage2D(GL_TEXTURE_2D, levels, GL_RGB8, w, h);

// Write uninitialized memory. First mip-map layer:

glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGB, GL_UNSIGNED_BYTE, data);

glGenerateMipmap(GL_TEXTURE_2D); //fill in the rest
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OpenGL Texture Storage

Mutable Storage
• Can be allocated any number of times

• glTexImage{1,2,3}D(...)
• Allocates AND uploads!

• Texture can easily be incomplete!

• Hard to read and write data from CPU

• Cacheing can be difficult for the driver

• Inneficient synchronization

Immutable Storage

•Allocate once!

•glTexStorage{1,2,3}D(...
internalformat...)

• Base: GL_{RED,RG[B[A]]}
• Sized: Base{8,16[F],32F}[{_SNORM},I,UI]

• Pl: GL_RG16_SNORM

• All „server-side” operations are allowed:
• Pipeline can write to it

• Clearable and copyable

• glTexSubImage{1,23}D
• glClearTex[Sub]Image
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Image Load/Store

● Allows direct access!
○ No interpolation

● Read and write 

within shaders!

● Image uniforms

● Atomic operations!

GPU (GLSL):

layout(binding = 0)
[coherent] [volatile] [restrict] [readonly, writeonly]

uniform [iu]image{1,2,3}D myImage;

vec4 col = imageLoad(myImage, coords);
imageStore(myImage, coords, col);

CPU (C++):

void glBindImageTexture(GLuint unit , GLuint texture ,
GLint level , GLboolean layered , GLint layer ,
GLenum access , GLenum format );



Texture View
● “Texel Data” is reference counted. ⇒ Simple to use!
● Texture Views are normal textures which point to existing data
● They can have different pixel format or layers (immutable)
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Texture View
void glTextureView(GLuint texture, GLenum target,

GLuint origtexture, GLenum internalformat, GLuint minlevel,
GLuint numlevels, GLuint minlayer, GLuint numlayers);
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Framebuffer (FBO) semantics

• Renderbuffer: a single 2D image only needed during rendering to FBO
• Cannot read nor write to it from shaders.

• Attach: To connect one object to another (as opposed to binding).

• Attachment point: indexed location within the FBO where an image 

can be attached

• Framebuffer completeness:
• Each texture must be complete and FBO compatible

• Draw buffer must be set correctly

• Ect. Use  glCheckFramebufferStatus
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Framebuffer Object

glFramebufferTexture2D(GL_FRAMEBUFFER, GLenum attachment ,
GLenum textarget , GLuint texture , GLint level );

• GL_COLOR_ATTACHMENTi, (i=0..8)
• GL_DEPTH_ATTACHMENT,
• GL_STENCIL_ATTACHMENT,
• GL_DEPTH_STENCIL_ATTACHMENT

● Implicit synchronisation in pipeline. Simple and effective!
● Do not create feedback loops. Undefined behaviour!
● Connection between the FBO and texture images is like between VAO and VBO-s.
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More details

• https://www.khronos.org/opengl/wiki/Texture
• https://www.khronos.org/opengl/wiki/Sampler_Object
• https://www.khronos.org/opengl/wiki/Image_Format
• https://www.khronos.org/opengl/wiki/Texture_Storage
• https://www.khronos.org/opengl/wiki/Image_Load_Store
• https://www.khronos.org/opengl/wiki/Framebuffer_Object
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Part IV:

Shaders
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Vertex Shader

• 1:1 mapping of vertices or gl_VertexID to output
• Transformations should go here if further geometry operations are 

invariant or unaffected by it
• Examples

• MVP, world, worldIT matrix multiplications
• Texture read to get geometry, eg. hightmap
• Patch coefficient calculation for (eg.) tessellation
• SSBO operations

• Additional clipping with gl_ClipDistance
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Geometry shader

• Per primitive create more
    → Geometry generation

• 1:N (with predefined maximum)
• Much more sequential than other stages
• Less efficient but allows more
• Examples

• Every tessellation can be done here
• For each triangle create an arrow with the 

normal
• Shadow geometry generation -- shadow 

volumes
• Pointcloud visualization
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Tessellation Control Shader

• TCS

• Runs for each vertex of the patch

• Outputs an array for the evaluation shader

• layout(vertices = patch_size ) out;

• Defines the tessellation amount and shape

• if(gl_InvocationID ==0) {...}

• float gl_TessLevelInner[4], gl_TessLevelOuter[3]
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Tessellation Evaluation Shader

• TES
• Parametric evaluation

• u,v (square) or
• u,v, w=1-u-v (triangle)

• Very efficient
• The tessellation levels may vary dynamically
• equal_spacing,

fractional_even_spacing,

fractional_odd_spacing
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Triangle tessellation

• gl_TessCoord.xyz barycentric 

coordinates, 0≤u,v,w≤1, u+v+w=1

• patch out float gl_TessLevelOuter[3];

• patch out float gl_TessLevelInner[1];

• Triangularization is up to vendor
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Quad tessellation

• gl_TessCoord.xy normalized 

patch coordinates in [0,1]2

• patch out float gl_TessLevelOuter[4];

• patch out float gl_TessLevelInner[2];

• Triangularization is up to vendor
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Isolines tessellation

• gl_TessCoord.xy normalized 

patch coordinates in [0,1]2

• patch out float gl_TessLevelOuter[2];

• patch out float gl_TessLevelInner[0];

• Produces lines
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Fragment shader

Inputs:
• in vec4 gl_FragCoord; in bool gl_FrontFacing; in vec2 gl_PointCoord;
• in int gl_SampleID; in vec2 gl_SamplePosition; in int gl_SampleMaskIn[];
• in float gl_ClipDistance[]; in int gl_PrimitiveID;
• in int gl_Layer; in int gl_ViewportIndex;

Outputs:

• Color: layout(location = 3) out vec4 diffuseColor;
• Depth: layout (depth_{any,greater,less,unchanged}) out float gl_FragDepth;
• Sample: out int gl_SampleMask[];

glBindFragDataLocation
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Textures, mappings, 
sampling

Csaba Bálint
with selected slides of

Gábor Valasek



Motivation



Motivation



References and recommended reading
● Real time rendering, 4th edition
● http://www.reedbeta.com/blog/understanding-bcn-texture-compression-formats/ 
● A quick summary: http://acko.net/files/gltalks/pixelfactory/online.html#0 

https://www.amazon.com/Real-Time-Rendering-Fourth-Tomas-Akenine-M%C3%B6ller/dp/1138627003
http://www.reedbeta.com/blog/understanding-bcn-texture-compression-formats/
http://acko.net/files/gltalks/pixelfactory/online.html#0


Overview
1. Texture mapping 
2. Texture filtering
3. Texture representations
4. Texture mapping techniques
5. 3D Textures and procedural textures
6. Normal and bump mapping
7. Per pixel displacement mapping



Texture mappings



Texturing pipeline



Texturing pipeline

projector
function
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Texturing pipeline

projector
function

corresponder
function

E.g. has to know actual 
texture dimensions to 
convert from 
normalized texture 
coordinates to integer 
texture coordinates.



Texturing pipeline

projector
function

corresponder
function

E.g. has to know actual 
texture dimensions to 
convert from 
normalized texture 
coordinates to integer 
texture coordinates.

E.g. sRGB textures 
need to be converted to 
linear color space if 
further computations 
are to be done



Texturing pipeline



Projector function
● Project the currently shaded world space position            to normalized texture 

coordinates 
● Done either via 

○ Primitive projector functions: it is easy to derive the inverse of a planar, cylindrical or 
spherical projection (actually, you’ve already done the grunt work for the latter during BSc and 
you called it Cartesian to spherical conversion:

All there’s left is to convert                                       to                )
○ Unwrapping: artist provide (u,v) coordinates per vertex and we interpolate them for the 

rasterized fragment (in perspectively correct way, if needed)



Two part mapping



● Spheres and cylinders are rare.
● Tedious work to write down every texel coordinate
● Solution: introduce an intermediary surface

○ Simple textured and parameterized intermediary surface
○ O-mapping: Object point is mapped to a surface point on intermediary surface
○ S-mapping: Surface points of the intermediary surface are mapped to texture space

Two part mapping



Cylinder, Sphere, and Triangle (S-Mapping)



Projector functions: sphere
An origin centered  sphere can be parametrized as 

You obtain normalized texture coordinates as 



Projector functions: cylinder

You obtain normalized texture coordinates as 



Projector functions: triangle
● Use 3 vertices and 3 corresponding UV coordinates: 
● Compute a 3x3 transformation mapping that maps the Euclidean space to the 

texture space
● I.e. you need to solve

● If the points do not lie on a line, the solution is 

● ⇒ Screen-space interpolation without explicitly computing the matrix



Projector functions: O-map
● Reflection vector: intersection between the reflected eye 

ray and the proxy geometry that we use for texture 
coordinate extraction

● Object normal: intersection between the ray from the 
shaded point towards the surface normal

● Centroid: intersection between the line formed by the 
object barycenter and the vertex and the simpler geometry

● Proxy’s normal: above which point of the proxy is our 
query point directly above?



Projector functions: two-part mapping - S-map



Projector functions: two-part mapping - S-map
Plane Cylinder Sphere Cube

Reflected ray View dependent (environment mapping)

Object normal Redundant Low quality Adequate Adequate

Centroid Redundant Low quality Good Good

Proxy’s 
normal

Projector 
effect

Shrinking 
effect

Redundant Good



Projector functions: unwrapping
● Bijection needed ⇒ problems:

○ Distorted unwrapped geometry or
○ A lot of cuts in unwrapped geometry
○ Unused texture space

● Optimization problem
○ Still semi-automatic!



Corresponder function
● Convert continuous texture coordinates to texture space locations (i.e. 

normalized texture coordinates)
● There are some ‘texture space’ funkiness, not even the handedness is the 

same across APIs:

OpenGL DirectX

u

v t

s



Corresponder function
● You can also use transformations on the incoming normalized texture 

coordinates
● And determining how you compute a normalized texture coordinate from an 

arbitrary continuous coordinate is also part of corresponders, i.e. addressing

wrap mirror clamp border

https://docs.microsoft.com/en-us/windows/uwp/graphics-concepts/texture-addressing-modes


Image texturing
● Given a normalized texture coordinate, query the texture to return a value
● Remove the abstraction of normalized coordinates: multiply (u,v) by width and 

height
● Convert these to array indices
● Remember: a face of the texture is a collection of discrete samples 
● Here, we are given a continuous (*) coordinate tuple and in turn, we should 

return a continuous texture function value for each input
● Inferring a continuous function from a discrete set of samples is often referred 

to as filtering or reconstruction filtering in the literature

*: sans discretization due to floating point representations



Texture sampling



Motivation

https://www.iquilezles.org/www/articles/filtering/filtering.htm

A must see presentation: http://acko.net/files/gltalks/pixelfactory/online.html#0

https://www.iquilezles.org/www/articles/filtering/filtering.htm
http://acko.net/files/gltalks/pixelfactory/online.html#0


Sampling problems
● Magnification problem

○ Less than one texel per pixel
○ Blocky

● Minification problem
○ More than one texel per pixel
○ Aliasing



Dimension-upscaled coordinates of samples
● Two conventions to convert dimension-upscaled texture coordinates to integer 

array indices: 
○ Truncating: now in both DX and OpenGL
○ Rounding: used by DX previously

● By now, both DX and OpenGL uses the same convention (truncate) to convert 
from upscaled texture space coordinates to integer indices



Dimension-upscaled coordinates of samples
● The upscaled coordinates of texel (i, j) are (i+0.5, j+0.5)
● In turn, before normalization, if you want to access texel (i, j), regardless of 

filtering, you have to sample using the normalized texture coordinates of
ui = (i + 0.5)/W;
vi = (j + 0.5)/H;

● Among other things, that’s why power of two texture dimensions are useful: 
so that you can exactly and efficiently represent the results of the division

● If you perturb your texture coordinates, you can use some types of 
non-linearly weighted filterings with the GPU’s bilinear filtering acceleration; 
knowing the above is useful for that

● (If you know what texel to fetch, just use a Load instruction - that’s faster)



Periodic band-limited signals
● The Whittaker–Shannon theorem states that band-limited periodic signals can 

be exactly represented by a discrete set of samples given proper samples as

https://www.desmos.com/calculator/gxocp9afaq 

https://www.desmos.com/calculator/gxocp9afaq


Reconstruction filtering
● Sinc has infinite support: not feasible for arbitrary input
● The simplest thing to do is to do nearest neighbor sampling
● Hardware also supports bilinear and trilinear interpolation (which are actually 

2 and 3 dimensional tensor product linear interpolations)



Tensor product filtering



Simplex filtering



Tensor product VS simplex interpolation
● In D dimensions 

○ Need 2^D samples for tensor product interpolation
○ D+1 samples for simplex interpolation

● What are the trade-offs?
○ Have to manually interpolate and compute the barycentric weights
○ Certain continuity conditions may be more easily shown for tensor product constructs
○ The precision itself is the same, at least upper bound-wise: according to Taylor’s theorem, 

your error is roughly the same either way inside the convex hull of the closest samples:

where



Magnification
● When a texel covers several pixels
● Hardware supports nearest neighbor and bilinear interpolation
● Sometimes you need cubic filters (basically: convolution, i.e. linear filtering)

○ And there are some tricks to make it use GPU too: 
https://developer.nvidia.com/gpugems/gpugems2/part-iii-high-quality-rendering/chapter-20-fast
-third-order-texture-filtering 

○ Balázs Csébfalvi: https://dl.acm.org/doi/10.1145/3306346.3323032 

https://developer.nvidia.com/gpugems/gpugems2/part-iii-high-quality-rendering/chapter-20-fast-third-order-texture-filtering
https://developer.nvidia.com/gpugems/gpugems2/part-iii-high-quality-rendering/chapter-20-fast-third-order-texture-filtering
https://dl.acm.org/doi/10.1145/3306346.3323032


Magnification: nearest VS bilinear VS bicubic



Magnification: Detail textures
● Detail textures can help to avoid the blurry look
● It is a carefully crafted texture that adds high 

frequency detail as we get closer



Minification
● When a single pixel contains several texels
● We have to somehow average their contribution
● Much harder than magnification: the the Nyquist frequency becomes closer 

and closer so we are getting a ton of aliasing



Fourier transform



Minification
Theorem: If a function x(t) contains no frequencies higher than B hertz, it is 
completely determined by giving its ordinates at a series of points spaced 1/(2B) 
seconds apart.

● Theoretically, if we can get rid of the high frequency details from the texture, 
we can avoid aliasing - we just have to replace ‘seconds’ by ‘pixels’

● So any detail that ‘changes’ at least as fast as two pixels should be removed
● How do we remove high frequency details in 1D? Ideal low-pass filter!

○ Unfortunately, it’s ideal in the sense as that it cannot be realized for finite signals

● Averaging is supposed to make things less high frequency, right? Maybe that 
will do?



Low pass filtering with averaging



Lost battle from the get go

https://ccrma.stanford.edu/~jos/mdft/Frequencies_Cracks.html 

https://ccrma.stanford.edu/~jos/mdft/Frequencies_Cracks.html


Low pass filtering
● In audio, there are established techniques to decompose a signal into sines + 

noise or even sines + noise + transients
● These parametric representations can be correctly (~ideally) filtered
● Not much luck for images
● In practice, many applications use averaging
● But even that is computationally infeasible if done in real-time



Mipmaps



Mipmapping
● Multum in parvo = ‘many things in a small place’
● Assume that minifaction happens equally along the axes and precompute the 

half, quarter, etc. resolution lowpass filtered images
● Can be done with only +33% storage



Mipmapping
● All you need during lookup is the ratio of the pixel and texel sizes in screen
● For this, we use the derivatives of the texture coordinates
● These are available because fragment shaders are grouped into quads, i.e. 

2x2 fragments
● Actually, you can compute a forward differences approximation to all your 

variables using dFdx and dFdy

coarse fine

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/dFdx.xhtml


Mipmapping
● We can use the the partial derivatives of

the (u, v) texture coordinates w.r.t. the
screen space X and Y axes to compute
a level-of-detail value (LOD):

● Remember that averaging sub-par (it keeps too many high frequency things) 
so do experiment with other filters (Gaussian, Lanczos, etc.)

● Also, be careful about your gamma
● And not all data are equal: some things need different mipmapping...



Mipmapping
● Trilinear interpolation combines the result of the enclosing 

two bilinearly filtered mipmap faces’ results
● Some bit image formats are slower in trilinear interpolation!
● Also, you cannot do automatic LOD selection under 

flow-control, you have to compute it beforehand (or 
manually) - as the fragments of your quad may diverge

● Still, no end-of-all solution: it tends to overblur



Alpha and mipmapping
● Averaging the alpha values doesn’t 

make sense
● Instead, mipmap the signed distance 

measured from the cutoff level-set
● Or just mipmap the result of pass-ratio 

as the alpha value in a mip-level



Summed-area table

● For each texel, store an additional
color that is the sum of all the texels from (0,0) origin

● This extra data has to be in a higher bit format so that the sum isn’t overflow
● Upon query, compute the texture space bounding box of the pixel rectangle 

and use the SAT to return an average
● Takes up at least twice as much memory and cannot handle general 

anisotropy



Nearest VS mipmapping VS SAT



Anisotropic filtering



Anisotropic filtering
● Use the derivative min to determine the LOD level
● And fetch a couple of samples from this LOD to infer the filtered result



Anisotropic mipmapping
In reality, x and y distortion 
does not equal.



Anisotropic filtering
Calculating elongated average requires 
more samples.



Texture representation



Storage
● A texture is collection of faces 

○ For example, many texture types have array variants like in OpenGL
○ The collection may refer to the MIP hierarchy too
○ And the combination of the above

● A face is a 1, 2, or 3 dimensional array of texels
● A texel consists of 1-4 channels
● A texture format determines how many bits you use to represent a texel and 

how you partition them to represent the channels
○ Keep in mind: hardware usually only supports multiplies of 4 bytes = 32 bits per texel formats 

natively, the rest may not work or come at a performance or storage cost
○ Larger formats also incur performance penalties for e.g. filtering

https://www.khronos.org/opengl/wiki/Array_Texture


Color spaces
● For color textures, the most common is to store 3 or 4 components:

○ Color is represented as a triplet, often referred to as RGB
○ An alpha component can be used to encode transparency, referred to as A

● Usually, R8G8B8A8 or R11G11B10 are used as backbuffer formats
● For 8 bits, it is very important to use your available bits where human vision is 

sensitive; as such, storing the color primaries intensities is not the most 
efficient use of your bitwidth if you take humans into account:

Linear gradient

sRGB gradient



Color spaces - sRGB
● Display transfer function (DTF or EOTF): the mapping from digital values to 

emitted radiance
● It is done by your display

modern displays are still trying to roughly replicate the CRT response curve, which 
in turn is a pretty nice approximation to the HVS perceptually linear encoding



Color spaces - sRGB
● If we are encoding linear colors, i.e. a twice as large value should emit twice 

as much radiance, we need to take the inverse of the transfer function for 
each x channel of our linear RGB output too:

● From display encoding to linear, we use



Color spaces - sRGB
● Usually, the above two are simplified as

● You don’t have to do these manually all the times, there are cases when the 
GPU does the encoding upon reads and decoding upon writes - consult your 
API documentation on this

● If you forget encoding, you usually end up with a darker image



Color spaces
● Even if you are in linear space, there are several options
● RGB, especially with uneven bit-distributions can cause artifacts, hue shifts, 

etc. when you apply post-processing
● There are many other color spaces that try to separate the intensity 

information from the chroma (e.g HSV, HSL)
● One popular, but approximate one in real-time is YCoCg:

● Simplified LMS (long, medium, short):
(used by JPEG XL)

https://en.wikipedia.org/wiki/YCoCg


Color spaces
● Conversion between color spaces if often necessary
● You want to do your computations in a linear space

○ Not necessarily linear RGB tough. For example in the case of linear filtering: 
http://staff.fh-hagenberg.at/burger/publications/pdf/aapr2010.pdf 

● In the presence of lower bit depth backbuffers, you want to output the final 
result such that you are not wasting bits where they don’t matter

● A nice overview can be found at 
http://www.babelcolor.com/download/A%20review%20of%20RGB%20color%
20spaces.pdf 

http://staff.fh-hagenberg.at/burger/publications/pdf/aapr2010.pdf
http://www.babelcolor.com/download/A%20review%20of%20RGB%20color%20spaces.pdf
http://www.babelcolor.com/download/A%20review%20of%20RGB%20color%20spaces.pdf


Block compression



Block compression



Block compression - BC1
● Take a 4x4 tile of pixels
● Store two colors to determine a line in a given color space
● And store 4x4 parameters for each pixel to store the closest color on the line 

to the original pixel color
● BC1: 

○ 2xR5G6B5 = 32 bits = 4 bytes for the two endpoints
○ 16x2 = 32 bits = 4 bytes for the {0, 1, 2, 3} parameter values to represent the pixel colors



Block compression: BC1
● The two endpoints can be of arbitrary order: use this redundancy to alpha!
● If asuint( A ) > asuint( B ): as before
● Else: reduce the parameter range to 3 and use the fourth as a transparent 

black (RGBA = 0.0.rrrr)



BC6H
● Intended for lossy-compressing 16 bits 

float per channel HDR images
● It also uses partitioning: depending on 

partitionaing mode, it can use up to two 
different color lines 



Source data Minimum required data compression resolution Format Minimum feature level

Three-channel color with alpha 

channel

Three color channels (5 bits:6 bits:5 bits), with 0 or 1 

bit(s) of alpha

BC1 Direct3D 9.1

Three-channel color with alpha 

channel

Three color channels (5 bits:6 bits:5 bits), with 4 bits of 

alpha

BC2 Direct3D 9.1

Three-channel color with alpha 

channel

Three color channels (5 bits:6 bits:5 bits) with 8 bits of 

alpha

BC3 Direct3D 9.1

One-channel color One color channel (8 bits) BC4 Direct3D 10

Two-channel color Two color channels (8 bits:8 bits) BC5 Direct3D 10

Three-channel high dynamic range 

(HDR) color

Three color channels (16 bits:16 bits:16 bits) in "half" 

floating point*

BC6H Direct3D 11

Three-channel color, alpha channel 

optional

Three color channels (4 to 7 bits per channel) with 0 to 8 

bits of alpha

BC7 Direct3D 11

https://docs.microsoft.com/en-us/windows/win32/direct3d11/texture-block-compression-in-direct3d-11 

https://docs.microsoft.com/en-us/windows/win32/direct3d11/texture-block-compression-in-direct3d-11


Memory layout
● Textures are not necessarily stored row-major or column-major in memory 

due to how fragments usually address them, instead a Moreton z-ordering like 
layout is preferred

● However, you can specify that you want a linear layout, i.e. row-major



Texture mapping techniques



Environment mapping



Environment mapping
● Supported effects:

○ Reflection & Refraction
○ Chromatic aberration
○ Fresnel effect

● Spherical texture has high distortion 
⇒ Cube texture ⇒ Skybox

● Can also be a render target
⇒ Real-time reflection



Surface detail classification
● Macrogeometry: features covering many pixels. Usually represented by API 

geometric primitives such as triangles
● Mesogeomerty: a couple of pixels-wide details. These are inefficient to 

explicitly represent as geometry (as that would result in rendering 
microgeometries, i.e. triangles that are only a few pixels large, which are a 
performance bottleneck) like wrinkles on skin or cloth

● Microgeometry: details that are smaller than a pixel. The various BRDF 
models try to represent these with various user parameters. 

Macrogeometry MicrogeometryMacro + mesogeometry



Displacement mapping



Displacement mapping
● Move each vertex towards 

normal vector by texture value
● Changes geometry
● Resolution depends on 

geometry resolution



Normal mapping



Normal map
● Problem:

○ Does not change geometry
○ Modulate normal vectors from texture

● RGB texture holds a normal vector at 
each texel

○ norm = 2 * texCol - 1

○ Normal vectors are unit length, values are 
between -1 and 1



Normal mapping

● These methods store the shading normal itself in the texture
● Nowadays, these normals are given in a tangent frame

○ At each vertex, store 3 linearly independent vectors that form 3D basis (may not be 
orthogonal)

○ Usually, store a tangent and bitangent vector pair that span the tangent plane (in the 
direction of u and v texture coordinates)

○ There are other efficient encodings, but these need not necessarily be interpolate-able



Normal mapping
Problem:

● From local normal ⇒ word normal ?
● Normal vector is not enough
● Tangent & bitangent defines transformation
● Tangent often can be exported



Normal mapping
● Originally, normals were proposed to be stored in world space or object space
● However, that’d tie the normal map to a specific geometry or orientation
● The tangent frame formulation allows more trivial normal map reuse
● Nevertheless, there are other approaches, such Morten Mikkelson’s surface 

gradient based approach to bump mapping
○ Implicitly define the fine normals by providing a heightfield as a variable-radius offset

○ The gradient of this offset surface is then used for the modification of the geometric normal
○ Combination of several normal maps is more intuitive in this formulation because that’s just the 

superposition of two heightfield displacements

http://jcgt.org/published/0009/03/04/
http://jcgt.org/published/0009/03/04/


Normal mipmapping

● For diffuse shading, averaging is not that bad since

holds, although imprecise since even Lambertian is nonlinear due to
● In general, however, we need to be smarter about filtering and mipmapping 



Normal and normal distribution filtering
● It is more precise to think in terms of filtering normal distributions, not just 

individual normals (i.e. we need microscale information, such as the variance)
● One way is to take both the normal and roughness maps and generate a pair 

of normal and roughness mip values that correspond to a distribution that fits 
the entire region under the mip level’s footprint

● Toksvig: the length of the averaged normal is inverse proportional to the width 
of the normal distribution. For Blinn-Phong NDF, modify roughness as

Averaged 
normal

Original 
Blinn-Phong 
roughness



Normal and normal distribution filtering
● There are several advanced approaches to do this filtering (e.g. LEAN maps 

the covariance matrix of the normal distribution)
● For example in case of specular this is even more problematic and it is still an 

active area of research (see e.g. Improved Geometric Specular Antialiasing)

http://www.jp.square-enix.com/tech/library/pdf/ImprovedGeometricSpecularAA.pdf


Normal representation
● Usually, stored as tangent-space XY projections; after interpolation, the third 

coordinate of the normal is reconstructed as 
● This interpolates reasonably, but certain applications (such as deferred G 

buffers) don’t need interpolation
● For these cases, there are more efficient encodings; a recent survey on unit 

vector representations: http://jcgt.org/published/0003/02/01/ 

http://jcgt.org/published/0003/02/01/


Bump mapping



Bump mapping
● Blinn, 1978: use a texture to modify the geometric normal (the normal 

interpolated from the vertices) with a shading normal (from the texture)
● In Blinn’s formulation, the texture stored an offset to the geometric normal
● This offset was given in a (u, v) basis
● Alternative formulation can be derived from taking

a heightfield input 
● Recall that many texture formats can only store 

unsigned values - so you will have to convert the
range of bu, bv values to [0, 1]



Tangent-space to world-space



Bump map
● Same problem, modulate the normals
● The bump map can be created from high 

resolution modell or displacement map
● Normals are modulated by the 

derivatives of the bumpmap



3D Textures



Volume textures
● texture mapping can be identity
● 256x256x256 = 64Mbyte!
● Sometimes simulation result



Procedural textures



Procedural texture
● Mathematical function

○ No repetition and easy to fit
○ Best for natural materials (stone, wood)
○ Can be zoomed in indefinitely.

● Only the function has to be stored
○ 3D texture in a few bytes!
○ Time can be a parameter
○ Can be slow to compute



Creating procedural textures
● Define mathematical structure
● Distort result
● Add noise

Noise can be used to color or to distort



Noise
● Problems:

○ Smooth enough to avoid aliasing
○ Pseudorandom: same result twice

● Fractal noise:
○ fractal_noise = noise(x) + ½·noise(2·x) + ¼·noise(4·x) + …

● Cellular texturing
○ Color is determined by the distance to some randomly scattered points
○ Closest point ⇒ Voronoi ( ⇔ Delaunay triangulation)



Bonus content:
Per-pixel displacement mapping



Literature
● Still interesting results
● A good survey to understand the basic (confusing) notations: 

http://page.mi.fu-berlin.de/block/htw-lehre/wise2012_2013/bel_und_rend/skrip
te/szirmay2006.pdf 

http://page.mi.fu-berlin.de/block/htw-lehre/wise2012_2013/bel_und_rend/skripte/szirmay2006.pdf
http://page.mi.fu-berlin.de/block/htw-lehre/wise2012_2013/bel_und_rend/skripte/szirmay2006.pdf


Tangent space to world space



Motivation: Bump mapping

● It treats (u,v, 0) as the intersection point
● Only changes the normal used for shading



Single-step parallax mapping

● It modifies the final (u,v) coordinates by solving

● The solution is 



Single-step parallax mapping with offset limiting

● It modifies the final (u,v) coordinates by solving

● The solution is 

● In practice, it’s best to limit the offset which in this case is even better:



Single-step parallax with slope

● Move the ray-heightfield intersection estimate to the intersection between the plane at (u,v,h) and 
normal N’ and the ray

● From

the unbounded and limited solutions are



Single-step parallax mapping
● The above methods tried to find the intersection with a single step
● It makes sense to try to find a solution via iteration
● Note that at every iteration, you have to query potentially multiple textures



Raymarch parallax map

● Use constant sized steps
● Stop when below hightfield 



Binary search in parallax map

● You have no guarantee if you will find the first intersection
● But you’ll converge to one, eventually



Secant method in parallax map

● The new guess at every iteration is



Sphere tracing a parallax map

● You need a heightfield to signed distance field conversion
● Otherwise, use your favorite sphere tracing algorithm



Parallax cone map



Relaxed parallax cone map



Real-time shadows
Csaba Bálint



Motivation



Real-time shadow algorithms
● Shadow Map

○ Fixed precision can cause blocky artifacts

○ Cascade shadows

● Shadow Volume
○ Precise, but computationally demanding

○ zpass and zfail

● Projected planar shadows: works best with flat surfaces

● Lightmaps: the scene must be static

● New: ray tracing: soft shadows, very demanding



Shadow Map



Idea
● Lance Williams - 1978

● Pixar’s RenderMan, Toy Story

● Idea: render from the light source
○ Independent of scene geometry (apart from rendering)

○ May have sampling artifacts

● Two steps:

1. Calculate distances to light ⇒ Shadow map

2. Render final image from camera ⇒ Shade



Algorithm
1. Calculate distances to light

a. Render scene from light source
b. Render depth buffer to a texture = shadow map
c. Calculate camera view to light view transformation
d. No need to shade, or look up textures ⇒ Fast

2. Render final image from camera
a. Transform pixel position to light coordinate system
b. Compare measured distance to light to value in shadow map
c. Equal values mean surface is lit
d. If the shadow map value is less, the pixel is in shadow
e. Shade accordingly



Example: Goal

No shadow Real time shadow



Example: Two views

Light’s view Camera’s view



Example: Shadow Map

Light’s view
Shadow map

Camera’s view
Shadow map



Example: Compare distances

Camera’s view
Shadow map

Camera’s view
Calculated light distance



Example: Shadowing

Camera’s view
Difference

Camera’s view
Shaded



Sampling



Percentage-Closer Filtering (PCF)

● Almost parallel light rays ⇒ Extreme aliasing
● OpenGL shadow samplers (sampler2DShadow)
● texture() returns comparison result in [0,1]
● LINEAR filtering is 4x PCF
● 16x PCF
● Sparse lookup kernes



Soft shadows with shadow maps

● PCF ≠ soft shadows ⇐ area light

● Shadow map solutions must cheat

● Usually by varying the PCF kernel size

as a function of the ratio between the 

distance to light and distance to occluder in 

the surrounding shadow map texels

● Shadow map is often processed and 

compressed



Omni light
● Render into a cubemap

○ ⇒ Multi-layer FBO attachment!

● Geometry shader!
○ ⇒ Single pass!

● gl_Layer : specifies FBO layer
○ Cubemap side

#version 330 core
layout (triangles) in;
layout (triangle_strip, max_vertices=18) out;

uniform mat4 shadowVPs[6];
out vec4 FragPos;

void main()
{
    for(int face = 0; face < 6; ++face)
    {
        gl_Layer = face;
        for(int i = 0; i < 3; ++i)
        {
            FragPos = gl_in[i].gl_Position;
            gl_Position = shadowVPs[face] * 
FragPos;
            EmitVertex();
        }    
        EndPrimitive();
    }
}  



Shadow Map LOD problems
● Cover the view-frustum with the SM
● Remap the domain in geom. shader
● Split up the SM into multiple parts



Cascade shadows
● Calculate shadow map towards 

camera viewing frustum
● Subdivide frustum into multiple 

segments



Shadow Volume



Shadow volumes

Franklin C. Crown

1. Identify contours of objects
2. Extruding the contours define shadow 

volumes
3. A surface point is in shadow when it is 

inside a shadow volume



Algorithm
1. Render the shadow volumes

a. During rendering we keep track of the number 

of the shadow volumes entered and exited 

between camera eye and object point

b. Shadow volume faces facing the camera 

increase the counter by one

c. Back-faces decrease the (stencil) counter

2. If the stencil buffer is positive, the object 

in question is in shadow

3. If it is zero, it is lit



Problems & Solutions
1. Camera might be in shadow

a. Solution: Start from infinity! ⇒ zfail 

2. Shadow volume may not be bounded
a. Enclose the volumes!

b. Volume bound can be at infinity

3. Stencil buffer updates:
a. First, render front-facing triangles of the 

shadow volumes, add values to stencil buffer

b. Second, render back-facing triangles, 

decrease stencil buffer



Calculating contours
Several algorithms exist. For example, for every triangle:

1. If triangle is back-facing the light source skip it

2. Add edges of the triangle to a list (vertex pairs)

3. If the list contained the edge, remove both the new and the old

4. Process next triangle



Pros and cons
Advantages

● Works with omnidirectional lights
● Lights are precise
● Rendering is GPU accelerated

Disadvantages

● Performance heavily depends on scene 
complexity

● Contour calculation is slow



Example from Abducted



Spatial Data Structures
Csaba Bálint



Visibility Problem
● Classical methods

○ Backface culling, Frustum culling
○ Painter, Z-Buffer, Warnock
○ BVH: Bounding Volume Hierarchy
○ Grids, Quadtree, Octree, KD-tree, BSP-tree

● Modern methods
○ Cells and portals (portal culling)
○ PVS (Potentially visible set), Virtual covering objects
○ Hierarchical Z-buffer/occlusion maps (similar to Warnock)

● More in this article

https://www.researchgate.net/publication/2440562_A_Survey_of_Visibility_for_Walkthrough_Applications


Motivation
● Reduce redundant operations
● Idea: Do not draw non-visible objects
● Solutions in object-space:

○ Backface culling: throw away back-facing triangles (~2x)
○ Frustum culling: only draw objects that are in the camera cone (~8x)

● Solutions in screen-space:
○ Z-buffer: decide per pixel if the fragment is visible
○ Early-Z: fragment shader does not have to run if fragment will fail depth test

Why do we need more algorithms?

Runtime is still linear measured in the number of primitives in the scene.



Classification of methods
Algorithms can be classified based on efficiency and accuracy

● Exact methods
○ Classifies visible exactly those that are

● Conservative methods
○ May classify non-visible objects as visible. Usually good results.

● Aggressive methods
○ Visible objects might disappear, results in artifacts.
○ Useful when conservative methods are too slow and the error is acceptable.

● Approximate methods
○ Imprecise classification of both visible and invisible objects.
○ May be useful when geometry cannot be preprocessed



Bounding Volumes Hierarchy



Bounding volumes
● Sphere
● AABB: Axis Aligned Bounding Box
● OBB  : Oriented Bounding Box
● K-DOP: Discrete Oriented Polytopes
● Convex Hull

If a ray (or any connected set) does not 
intersect the bounding volume, it 
neither intersects its interior.



Bounding Volume Hierarchy
● Create a hierarchy of the bounding volumes
● If a BV is not intersected do not check its children
● Significantly decreases intersection tests
● Requires preprocessing and updates
● Conservative optimization

Use cases:

○ Raytracing: huge speedup!
○ Frustum culling
○ Collision detection, ragged dolls



Space Partitioning I



Uniform Grid
● Pros

○ Each cell holds the list of the objects within
○ Trivial neighbour lookup
○ Easy to implement
○ Ray-grid intersection is trivial:

“Voxelize” line ⇒ 3D Bresenham algorithm

● Cons
○ Subdivision is independent of scene geometry
○ May be slow or use too much memory



Quadtree / Octree

● Root node is the AABB of the whole scene
● If there are more objects in a node than a predefined 

number, then subdivide cell to 8 / 4 equal cells.
● Recursively continue the previous step until it stops 

or a maximum depth is reached



Tree construction

● A node contains:
○ Pointers to children
○ Pointer to parent: useful for neighbour lookup
○ Extent of the cell ⇒ Can be calculated from the 

tree
○ List of objects in the cell

● Recursive “buildNode” algorithm:
○ Input is the node and the list of objects that 

belong to it
○ If there aren’t enough objects, set node to leaf 

and return
○ Distribute objects among created nodes
○ Call “buildNode” for each



Tree navigation
● What happens if an object is in multiple cells?

○ Only pointer duplication ⇒ Memory efficient
○ Intersection tests can happen multiple times
○ Solution: set flag to object, eg. frame number

● “A” is neighbour of cell “B” if
○ They have a common side-plane
○ Cell “A” is inside a cell that’s the same size of “B” and is 

touching it, or vice versa.
○ “A” nor “B” has any children with the above properties

● Neighbour algorithm
○ Similar to binary tree →



Space Partitioning II



KD-tree
● Quadtree can become unbalanced!
● Each node represents a subdivision

○ A node has 2 children AABB-s
○ subdivided along the longest dimension
○ storing the position of that cut-plane.
○ Also store AABB positions, stored objects, 

parent pointer.

● Neighborhood lookup is harder
● During KD-tree construction, where 

to draw the new plane?
○ Cut along median point
○ Equalize surface area in cells



● Similar to KD-tree
○ KD-tree is an axis align BSP-tree

● Arbitrary subdivision planes
○ All cells are convex

● Choosing cut-plane goals:
○ Minimize cell count and divided objects
○ Cut-planes should coincide with polygons
○ Heuristics:

■ choose cut-planes from scene polygons
■ start with the largest polygon
■ random choice is not bad

● Widely used algorithm!

BSP-tree



BSP-tree Ordering
● Traverse the tree from a given point of view

○ Objects on “this” side appear in front of those on the “other” side of the cut-plane

● Back-to-front ordering
○ May not need Z-buffer!
○ Perfect for rendering transparent objects!

● Front-to-back ordering
○ Fewer Z-buffer overrides ⇒ Early-Z!



Other Methods



Painter algorithm - Newell’s algorithm

● Front-to-back drawing. Can lead to overlaps:
● Need to cut: Test overlap

○ If the AABB of P and Q polygons overlap
■ Test for Z overlap from the sorting list
■ Test minimax overlap in X and Y directions

○ Test the ordering of the planes
■ All vertices of P lie deeper than Q
■ All vertices of Q lie closer than P

○ Finally, test if the rasterization of P and Q overlap

● If they overlap, swap them and try again.
● If a pair overlaps again

○ Cut them along the intersection
○ Put both back into the sorting list

● Continue until all pairs pass the test



Warnock algorithm
● Input: viewport and list of polygons
● Simple cases:

○ Viewport is 1x1 pixel in size
○ Empty list or only a single polygon is in the list

● Otherwise: divide and conquer
○ Divide viewports into 4
○ Split list into 4
○ Call recursively

● O(polygons * pixels)



Cells and Portals
● Start with current cell (room) within frustum
● For all portals (doors)

○ Cut frustum cone to portal
○ Draw next cell
○ Continue recursively

● Portals must be convex
● Cons:

○ A lot of cuts
○ Only interiors

● Pros:
○ Fast
○ Works on dynamic scenes

● Potentially Visible Set: Similar...
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Part I:
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DirectX Ray Tracing:

● 0.01: initial draft in September, 2017

● 1.0: initial release in October, 2018 (preview since March, 2018)

● 1.1: major update in May, 2020

Vulkan Ray Tracing:

● Provisional extension: March 2020

● Final version: December 2020

API support

https://devblogs.microsoft.com/directx/dxr-1-1/


Nvidia GA102: Geforce 3080 - Geforce 3090 Ti



NVIDIA:

● 2018: Volta architecture (Titan V/V100, a professional card - not 

used in any consumer level GPUs)

● 2018: Turing (GeForce 20 series, consumer level, T4 for pros)

● 2020: Ampere (GeForce 30 series, consumer level, A100 et al. for 

professionals)

AMD:

● 2020: November, AMD RDNA 2 (Radeon RX 6000 desktop GPUs, 

also used in PS5, XBX, and even new Model S and X Tesla cars)

Hardware support for ray tracing



https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologi
es/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf 

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-archite
cture-whitepaper-v2.pdf 

https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf


Acceleration Structure
● Bottom Level Acceleration Structure

○ “per object” acceleration structure
○ triangle mesh or procedural shape
○ procedural → define AABB and intersection shader

● Top Level Acceleration Structure
○ “scene” acceleration structure is a list
○ bottom level structures and instance data (eg. 

transformation matrix)

● Generated during runtime and must be 
updated regularly



Ray tracing VS rasterization

http://intro-to-dxr.cwyman.org/presentations/IntroDXR_RaytracingShaders.pdf 

http://intro-to-dxr.cwyman.org/presentations/IntroDXR_RaytracingShaders.pdf


Ray tracing VS rasterization

http://intro-to-dxr.cwyman.org/presentations/IntroDXR_RaytracingShaders.pdf 

http://intro-to-dxr.cwyman.org/presentations/IntroDXR_RaytracingShaders.pdf


DXR ray tracing pipeline



The DXR pipeline is composed of five new shader types:

● Ray generation shaders

● Intersection shaders

● Closest-hit shaders

● Any-hit shaders

● Miss shaders

Plus a new shader class:

● Callable shader

DXR ray tracing pipeline



The DXR pipeline is composed of five new shader types:

● Ray generation shaders

● Intersection shaders

● Closest-hit shaders

● Any-hit shaders

● Miss shaders

Plus a new shader class:

● Callable shader

DXR ray tracing pipeline

struct SceneConstantStructure { ... };

ConstantBuffer<SceneConstantStructure> SceneConstants;

RaytracingAccelerationStructure MyAccelerationStructure : register(t3);

struct MyPayload { ... };

[shader("raygeneration")]

void raygen_main(){

    ...

    RayDesc myRay = {

        <ray origin>,

        <TMin>,

        <ray direction>,

        <TMax> };

    MyPayload payload = { ... }; // init payload

    TraceRay(

        MyAccelerationStructure,

        <trace flags>,

        <optional flag to mask out instances>,

        <RayContributionToHitGroupIndex>,

        <MultiplierForGeometryContributionToHitGroupIndex>,

        <MissShaderIndex>,

        myRay,

        payload);

    ...

    WriteFinalPixel(DispatchRaysIndex(), payload);

}



The DXR pipeline is composed of five new shader types:

● Ray generation shaders

● Intersection shaders

● Closest-hit shaders

● Any-hit shaders

● Miss shaders

Plus a new shader class:

● Callable shader

DXR ray tracing pipeline

struct CustomPrimitiveDef { ... };

struct MyAttributes { ... };

struct CustomIntersectionIterator {...};

void InitCustomIntersectionIterator(CustomIntersectionIterator it) {...}

bool IntersectCustomPrimitiveFrontToBack(

    CustomPrimitiveDef prim,

    inout CustomIntersectionIterator it,

    float3 origin, float3 dir,

    float rayTMin, inout float curT,

    out MyAttributes attr) {...}

[shader("intersection")]

void intersection_main() {

    float THit = RayTCurrent();

    MyAttributes attr;

    CustomIntersectionIterator it;

    InitCustomIntersectionIterator(it);

    while(IntersectCustomPrimitiveFrontToBack(

          CustomPrimitiveDefinitions[LocalConstants.PrimitiveIndex],

          it, ObjectRayOrigin(), ObjectRayDirection(),

          RayTMin(), THit, attr)) {

        if (ReportHit(THit, /*hitKind*/ 0, attr) &&

             (RayFlags() & RAY_FLAG_FORCE_OPAQUE))

            break;

    }

}



The DXR pipeline is composed of five new shader types:

● Ray generation shaders

● Intersection shaders

● Closest-hit shaders

● Any-hit shaders

● Miss shaders

Plus a new shader class:

● Callable shader

DXR ray tracing pipeline
[shader("closesthit")]

void closesthit_main(inout MyPayload payload, in MyAttributes attr)

{

    CallShader( ... ); // maybe needed to shade

    float3 worldRayOrigin = 

WorldRayOrigin() + WorldRayDirection() * RayTCurrent();

    ...

    float3 worldNormal = mul(attr.normal, (float3x3)ObjectToWorld3x4());

    RayDesc reflectedRay = { worldRayOrigin, SceneConstants.Epsilon,

                              ReflectRay(WorldRayDirection(), worldNormal),

                              SceneConstants.TMax };

    TraceRay(MyAccelerationStructure,

            SceneConstants.RayFlags,

            SceneConstants.InstanceInclusionMask,

            SceneConstants.RayContributionToHitGroupIndex,

            SceneConstants.MultiplierForGeometryContributionToHitGroupIndex,

            SceneConstants.MissShaderIndex,

            reflectedRay,

            payload);

    ...

}



The DXR pipeline is composed of five new shader types:

● Ray generation shaders

● Intersection shaders

● Closest-hit shaders

● Any-hit shaders

● Miss shaders

Plus a new shader class:

● Callable shader

DXR ray tracing pipeline
[shader("anyhit")]

void anyhit_main( inout MyPayload payload, in MyAttributes attr ) {

  float3 hitLocation =  

        ObjectRayOrigin() + ObjectRayDirection() * RayTCurrent();

  float alpha = computeAlpha(hitLocation, attr, ...);

  // Processing shadow and only care if a hit is registered?

  if (TerminateShadowRay(alpha)) AcceptHitAndEndSearch(); 

  // Save alpha contribution and ignoring hit?

  if (SaveAndIgnore(payload, RayTCurrent(), alpha, attr, ...))  

IgnoreHit();

  ...

}



The DXR pipeline is composed of five new shader types:

● Ray generation shaders

● Intersection shaders

● Closest-hit shaders

● Any-hit shaders

● Miss shaders

Plus a new shader class:

● Callable shader

DXR ray tracing pipeline

[shader("miss")]

void miss_main(inout MyPayload payload) {

  // Use ray system values to compute contributions of

  // background, sky, etc.

  // Combine contributions into ray payload

  CallShader( ... ); // maybe

  TraceRay( ... ); // maybe

  // this ray query is now complete

}



The DXR pipeline is composed of five new shader types:

● Ray generation shaders

● Intersection shaders

● Closest-hit shaders

● Any-hit shaders

● Miss shaders

Plus a new shader class:

● Callable shader

DXR ray tracing pipeline

[shader("callable")]

void callable_main(inout MyParams params)

{

    // Perform some common operations and update params

    CallShader( ... ); // maybe

}



DirectX BVH (Bounding Volume Hierarchy)



DirectX BVH and intrinsics



DXR intrinsics





HLSL Support
● Ray traversal functions
● Launch introspection

○ launch data(which pixel, ray)

● Ray introspection
○ ray payload data

● Object introspection
○ bottom instance data

● Hit introspection
○ user defined





Part II:



Vulkan raytracing vs DXR



Vulkan ray tracing extension



Load balancing



Ray Tracing Architecture



Part III:

Applications

https://www.youtube.com/watch?v=J3ue35ago3Y

https://www.youtube.com/watch?v=J3ue35ago3Y


● On NVIDIA, RT Cores are (partially) independent pipelines - if you 

are not using RTX, you do waste some GPU resources

● Ray tracing is a 2-in-1 deal: you get bounding volume-ray and 

primitive-ray intersection capabilities - think about how you can 

use this beyond graphics

● Even with optimizations, you have a severely limited ray budget 

per frame (1-2 rays per pixel) - you need to tackle variance

● If doing recursions, mind your stack

Things to look out for



No recursion

https://docs.google.com/file/d/1K4Yu-ZUBmMif7AwPf7xu-MGYzVgWd94K/preview


Recursion depth = 1

https://docs.google.com/file/d/1wo-sAZ-Z6M_r9hs2en7HXxPqEgVcIZv0/preview


Recursion depth = 2 + temporal accumulation

https://docs.google.com/file/d/1cxP8cHbZ_PNoRdRLZ_SEoLkpqeeklFYu/preview


https://media.contentapi.ea.com/content/dam/ea/seed/presentations/2019-ray-tracing-gems-chapter-25-barre-brisebois-et-al.pdf 

https://www.youtube.com/watch?v=LXo0WdlELJk

https://media.contentapi.ea.com/content/dam/ea/seed/presentations/2019-ray-tracing-gems-chapter-25-barre-brisebois-et-al.pdf
https://www.youtube.com/watch?v=LXo0WdlELJk


Part IV:

Mesh Shaders



Mesh Shaders



Meshlets



Task and Mesh shader



Compute mesh modell

● Task shader : a programmable unit that 
operates in workgroups and allows each 
to emit (or not) mesh shader workgroups

● Mesh shader : a programmable unit that 
operates in workgroups and allows each 
to generate primitives



Compute mesh modell

● Higher scalability: less fixed-function, but scalable
● Bandwidth-reduction: vertex re-use, index buffers, 

own VBO compression
● Felxibility: replaces both geometry and tessellation 

without their drawbacks



Thank you for your attention!

Mesh shader references

● https://developer.nvidia.com/blog/intr
oduction-turing-mesh-shaders/

● https://blog.siggraph.org/2021/04/me
sh-shaders-release-the-intrinsic-pow
er-of-a-gpu.html/

● https://microsoft.github.io/DirectX-Sp
ecs/d3d/MeshShader.html

● https://www.geeks3d.com/20200519/
introduction-to-mesh-shaders-opengl
-and-vulkan/

Ray tracing references

● Ray Tracing Gems: 

https://www.realtimerendering.com/raytracin

ggems/ 

● Microsoft: DXR functional specification

● Khronos: Vulkan Ray Tracing specification

● Chris Wyman: Introduction to ray tracing 

(Siggraph 2018)

● Peter Shirley: Ray Tracing in One Weekend

○ Ray Tracing: The Next Week

○ Ray Tracing: The Rest of Your Life

https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://blog.siggraph.org/2021/04/mesh-shaders-release-the-intrinsic-power-of-a-gpu.html/
https://blog.siggraph.org/2021/04/mesh-shaders-release-the-intrinsic-power-of-a-gpu.html/
https://blog.siggraph.org/2021/04/mesh-shaders-release-the-intrinsic-power-of-a-gpu.html/
https://microsoft.github.io/DirectX-Specs/d3d/MeshShader.html
https://microsoft.github.io/DirectX-Specs/d3d/MeshShader.html
https://www.geeks3d.com/20200519/introduction-to-mesh-shaders-opengl-and-vulkan/
https://www.geeks3d.com/20200519/introduction-to-mesh-shaders-opengl-and-vulkan/
https://www.geeks3d.com/20200519/introduction-to-mesh-shaders-opengl-and-vulkan/
https://www.realtimerendering.com/raytracinggems/
https://www.realtimerendering.com/raytracinggems/
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
https://www.khronos.org/blog/vulkan-ray-tracing-final-specification-release
http://intro-to-dxr.cwyman.org/
http://intro-to-dxr.cwyman.org/
https://www.realtimerendering.com/raytracing/Ray%20Tracing%20in%20a%20Weekend.pdf
https://www.realtimerendering.com/raytracing/Ray%20Tracing_%20The%20Next%20Week.pdf
https://www.realtimerendering.com/raytracing/Ray%20Tracing_%20the%20Rest%20of%20Your%20Life.pdf
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