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Introduction - Course details

Course details

> Csaba Balint csabix@inf.elte.hu (me). Room: 2-706.
» Lecture: Wednesday, 16:00-17:30

» Exam: Explain 2 topics. You chose one, and | choose one.

> Points from practice can help your course (but do not count on it).
» Practice: Wednesday, 17:45-19:15 and 19:30-21:00

» Small assignment (=30 points) and large assignment (1004 points)

» Work during practice (/15 points)

> Scores above 100 points will count towards the lecture exam
> In both

» Grade boundaries: 40, 55, 70, 85.
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Introduction - Course details

About this course

» This course was originally based on the Hungarian
master course Advanced Computer Graphics

» The difficulty was lowered, now it consists of

ARICG:%-BSCCG+§-MSCCG .

- A
> Prerequisites: ’
> Linear algebra (the more the merrier)

» Calculus (differentiation and integration) ;, |
> Geometry (good understanding is beneficial) N

» This course is still hard. To pass:

» Do not miss Practices! It is really hard to catch up.
» Maximize points. Ask questions.
» Follow the Lectures.
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Introduction - Course details

Further reading

1. Edward Angel, Dave Shreiner: Interactive Computer Graphics: A Top-Down Approach
with Shader-Based OpenGL (6th Edition)

2. Andrew Glassner: Principles of digital image synthesis

3. Pharr, Humphreys, Hanrahan: Physically Based Rendering (From Theory to
Implementation)

4. Akenine-Méller, Haines, Hoffman: Real-Time Rendering (4th edition)

5. Tekla Téth, lvan Eichhardt, Gabor Valasek: BSc Computer Graphics Lecture slides
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Introduction - Motivation

Introduction

» Computer graphics deals with the synthesis,
analysis, and manipulation of visual content
» Our focus is on the basics of
» modeling, i.e. how can we describe (and more
importantly: store in a computer-decipherable way)
our virtual worlds
» algorithms which allow us to make pictures of our
virtual world
» devices on which we can display the results of our
visualisations
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Introduction - Motivation

Modeling

» Geometric modeling
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Introduction - Motivation

Modeling

» Geometric modeling

» Optical models
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Motivation
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» Optical models

> Textures
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Introduction - Motivation

Algorithms

Image

Approaches

Camera Light Source

> Ray tracing

, 1
View Ray/i;‘ Shadow Ray

Scene Object
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Introduction - Motivation

Algorithms

Approaches

> Ray tracing

> Incremental image synthesis
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Introduction - Motivation

Algorithms

Approaches

> Ray tracing

> Incremental image synthesis

» Reflections and refractions
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Introduction - Motivation

Algorithms

Approaches

> Ray tracing

> Incremental image synthesis

V.

» Reflections and refractions
» Shadows
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Introduction - Motivation

Algorithms

Approaches

> Ray tracing

> Incremental image synthesis

Light
» Reflections and refractions
» Shadows

» Global illumination
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Introduction - Motivation

Algorithms

Approaches

> Ray tracing

> Incremental image synthesis

Light
» Reflections and refractions

» Shadows
» Global illumination

» Volumetric lighting
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Introduction - Motivation

| don’'t need math!

I'll just make videogames when | grow up!

VIA 9GAG.COM
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Coordinate systems - Table of contents

Coordinate systems

¥V Coordinate systems
o Cartesian
@ Polar and spherical
@ Barycentric
@ Homogeneous
coordinates
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Coordinate systems - Vector operations

Points and vectors

> A point is an entity that has a location in space (or plane), but it has no extent
> A vector is an element of a vector space. Geometrically, a vector has a direction and a
magnitude. All the usual operations are defined on them: vector addition, subtraction,
multiplication by scalar, dot product, and cross product
» The following operations can be carried out that bridge the realm of points and vectors:
> Difference of points yields a vector A — B = v that translates B to A.
> A point plus a vector translates the point B + v = A to another one
> Barycentric combination of points . \; P; where ). \; =1 (more details later)
> Barycentric combination of vectors ). \;v; where Y. \; =0
» In the following we presume that n points/lines/planes will be n distinct
points/lines/planes.
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Coordinate systems - Vector operations

Vector addition and substraction

a+b
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Coordinate systems - Vector operations

Vector dot product

The dot product of vectors a = [a,, ay,a.] and b = [b,, by, b.] is denoted by (a,b) and can be
computed using their coordinates as

(a,b) = azby + ayby + a.b..

This is equivalent to
<a7b> = |a” : |b‘ -cos(a),

where « denotes the angle between vectors a and b.
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Coordinate systems - Vector operations

Vector cross product

a x b| =|a| |b| sin
axb [a x b| = Ja] |b] sinc
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Coordinate systems - Vector operations

Vector cross product

You can use determinants to compute the cross product:

g b, i 7 k
ay| X |by| =| az ay a;
a, b, by by, b,
s lay ax| ap ay ay
e b | T b b | TR,
ayb, —a.by,
= | —a.b, + asb,

azby — ayb,
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Coordinate systems - Vector operations

Notation

» Points: a € E?,b ¢ E?
> Vectors: v € R",n=2,3,...
> Special notation: v € R is the direction of vector v, i.e. |v| =||v]|]2 = 1.

> Lines: e, f, g, ...
Planes: S, ...
Matrices: M, M € R™*™

vy
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Coordinate systems - Vector operations

Coordinate systems

» Coordinate systems allow us to uniquely represent points of the space with n-tuples (of

numbers)
x
» Egp=|vy | €E?
z

> |t allows us to use algebraic and analytic tools in geometric problems
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Coordinate systems - Cartesian coordinate system

Cartesian coordinate system

» The Cartesian coordinate system uniquely assigns a pair [triple] of numbers to each finite
point of the Euclidean plane [space]

» A Cartesian coordinate system is defined by a point in the space, in other words the origin
0, and an orthonormal system of three vectors, , 7, and k

» Then the x,y, z coordinates of a point p are the (signed) orthogonal projections of the
vector p — o to the orthonormal basis vectors i, 7, k

» Reminder: the (signed) orthogonal projection of vector a to unit vector [b], is
(a, [bly) = |a|cos Z(a, [b],)
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Coordinate systems - Cartesian coordinate system

Signed orthogonal projection
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Coordinate systems - Cartesian coordinate system

Geometric interpretation

» In other words: p(x,y, z) denotes the point of the space which we get by starting from
the origin 0 and going x units in the direction of 2, y units in the direction of j, and 2
units in the direction of k

(2,3)
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Coordinate systems - Cartesian coordinate system

Geometric interpretation

]T

» That is, given the orthonormal basis vectors i, j, k, the Cartesian coordinates [z, y, z
denote the following point of the Euclidean space:

p=o+zt+yj+ zk

1 0 0
=o+z |0 |4+y| 1 |+2]|0
0 0 1
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Coordinate systems - Cartesian coordinate system

ht-handed coordinate systems

2D

o>
y

Csaba Balint (ELTE IK)

3D
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Coordinate systems - Cartesian coordinate system

Left-handed coordinate systems

2D 3D 3D

e
\

—
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Coordinate systems - Polar coordinates

Polar coordinates

» Each point of the plane is determined by a distance from a fixed point o (reference
point) and an angle from a fixed (reference) direction (polar axis)
» The polar coordinates of p are (7, ¢):
> r>0:r=|p-—o0
> ¢ € [0,27): the angle between the line through o and p and the reference direction
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Coordinate systems - Polar coordinates

Polar coordinates: Conversions

» Polar — Cartesian: (r,¢) — (z,y)
> (z,y) =7 - (cos¢,sin @)
» Cartesian — polar: (z,y) — (r,¢)

St G

>
atan(%), xr>0Ay>0
atan(¥) 42w, z>0Ay <0
¢ =atan2(y,z) =< atan(¥) 47, <0
z r=0Ay>0
%’r, r=0Ay <0

» Origin of the Cartesian system = polar reference point

> x Cartesian axis = polar axis

» What happens at z = 0,y = 07 When r = 0, any angle will result in [0, 0]
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Coordinate systems - Spherical coordinates

Spherical coordinates

» A planar polar coordinate system plus an additional axis (Z-axis, zenith), perpendicular to
the polar plane
» The spherical coordinates (r, ¢, 0) of p denote:

» : the polar angle of p's projection onto the polar plane

» 6 e [0,7]: the angle between the line through o and p and the Z-axis
> rr=|p-—o
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Coordinate systems - Spherical coordinates

Spherical coordinates: Conversions

» Spherical — Cartesian: (r,¢,0) — (x,y, 2)
r=rcospsinf, y=rsinpsinf, z =rcosf

» Cartesian — spherical: (x,y,2) — (1, ¢,0)

r=+/x2+y?+ 22

» = atan2(y, x)

z
0 = arccos —, r#0
r
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Coordinate systems - Barycentric coordinate system

centric coordinates

» August Ferdinand Mobius [1827]
> Motivation: a more balanced representation of the region of interest

» The term is derived from barycenter, meaning center of gravity.

X—a b—x

V @ A e U

What u,v > 0 weights should we put at the ends of the rod if we want the rod to stay in
balance when elevated at the point denoted by the triangle?

Csaba Balint (ELTE IK) CG Crash Course Computer Graphics Lecture
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Coordinate systems - Barycentric coordinate system

Motivation

v ® A

What u,v > 0 weights should we put at the ends of the rod if we want the rod to stay in
balance when elevated at the point denoted by the triangle?

» Let = be the position of the triangle

» The rod will be balanced if (x — a)v = (b — x)u

» The above only determines the ratio of u and v!

» Using a normalisation condition of u +v =1

T —a b—=x
U= v =

b—a’ b—a
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Coordinate systems - Barycentric coordinate system

» Let ag,...,a, be n+ 1 affinely independent points in E™

» Then every x point of E™ can be expressed as a barycentric combination of basis points
ag, ..., Qy, i.e. there exists \; € R, i =0, ...,n, such that

n n
T = Z Aia; where Z A= 1.
i=0 i=0

» We need 3 points in the plane, and 4 in space to cover all dimensions

> The case of Vi : \; > 0 is called convex combination
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Coordinate systems - Barycentric coordinate system

Planar barycentric coordinate system
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Coordinate systems - Barycentric coordinate system

centric — Cartesian conversion

» Let (u,v,w) be the barycentric coordinates wrt.
p1 = (21,11), P2 = (22,92), 3 = (3,y3) € E? ((4,v;) given in Cartesian coordinates)
» Then the Cartesian coordinates of the point represented by the barycentric coordinates
(u,v,w) can be computed as = up; + vps + wps, i.e.

T = Ur] + vr9 + Wrs3

Y = uyy + vy2 + wys
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Coordinate systems - Barycentric coordinate system

Cartesian — barycentric conversion

1 1 1
> Let A(a,b,c):=| az b, ¢ |, a,b,ccE?
ay by ¢y

» Remark: A(a,b,c) equals to twice the signed area of the triangle spanned by a, b, ¢ (the
signed area is positive if the 3 vertices come in a counter-clockwise direction, otherwise it
is negative)

» Remark: in space A(a,b,c) = ((b—a) x (c — a),n), where n is the normal of the 3
points’ plane
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Coordinate systems - Barycentric coordinate system

Cartesian — barycentric conversion

Let & € E? be a point. Then its barycentric coordinates wrt.
p1 = (z1,y1), P2 = (z2,92), p3 = (23,y3) € E? affinely independent points are:

Pq

Az, p2,p3)
~ A(p1.p2.p3)
_ A(p1,x,p3)
~ A(p1,p2.p3)
_ A(p1,p2,x)
~ A(p1,p2.p3)

Such that

T = up1 + vps + wps
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Coordinate systems - Homogeneous coordinates

Motivation

» D’ is not on the Euclidean plane, since the projection line is parallel with the z axis

> Let us consider the same orientation of the lines (their direction) as a point!

» This way all parallel lines will have a common point at infinity :

@
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Coordinate systems - Homogeneous coordinates

Definition

» Each line has an additional point, an ideal point on it, such that
» The ideal points of parallel lines are the same
» The ideal points of all the lines of the plane form an ideal line
» The ideal lines of parallel planes coincide
» All the ideal points of the space form the ideal plane
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Coordinate systems - Homogeneous coordinates

Properties

> Projective plane: the projective closure of E?, that is all the points of E? and its ideal line

> Two points always determine a line in the projective plane (remark: remember, by two points
we mean two different points!)

» Two lines always determine a point in the projective plane!

> ..

» Projective space: the projective closure of E3, that is E? plus its ideal plane

» Three points always determine a plane (unless they are colinear).
» Three distinct planes (not all three having the same orientation) always determine a point
> ..
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Coordinate systems - Homogeneous coordinates

Embedding the Euclidean plane

E2
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Coordinate systems -

Embedding the Euclidean plane

Homogeneous coordinates

o X,y h]
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Coordinate systems - Homogeneous coordinates

Embedding the Euclidean plane

[x, y, h]

e e
& [x/h, y/h, 1]

&
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Coordinate systems - Homogeneous coordinates

Cartesian — homogeneous conversion

» For each p(z,y,2) € 3 point, let its homogeneous coordinates be:
p(x7y7z) _> [x7y7'27 1]
~ h[z’ y? Z’ 1]
= [ha,hy,hz,h], h #0

» For each v = [z,v,2]T € R? vector :
[%%Z] - [ﬂU;Z/;ZaO]
~ hlx,y, z,0]
= [hx, hy, hz,0], h #0
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Coordinate systems - Homogeneous coordinates

Homogeneous — Cartesian conversion

» What does [z1, x9, x3, z4] denote in the Euclidean space?
» x4 # 0: it's the following point of the Euclidean space:

Tr1 To I3 1 To I3
[.%1,%2,%3,1'4]% 7773771 =P\ — —H
Ty Tyg X4

» 2, =0 and x:{ + :c% +x§ # 0: it is an ideal point, i.e. a vector!

> 2, =0,1=1,2,3,4: cannot happen.
[x,y, h]

VA g
[x/h, y/h, 1]

Vi

\
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Coordinate systems -

Homogeneous coordinates

» Let ¢ # 0 then:

[0,0,0,c] origin

[¢,0,0,0] ideal point of the x axis
[0,¢,0,0] ideal point of the y axis
[0,0, ¢, 0] ideal point of the z axis

Homogeneous coordinates

) )

>
>
>
>

]

(X, y, h]

S >
[x/h, y/h, 1]

/

A )

X
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Coordinate systems - Homogeneous coordinates

Homogeneous coordinate properties

> In the projective plane the point and the line, in the projective space the point and plane
are dual entities
> Be careful, not everything is valid in the projective space that was valid in the Euclidean!
> One point does not split a line into two! But two points do!
» One line does not split the plane into two! But two different lines do!
» The line segment between two points is not unique!

[x, y, h]

/ 52
b, Xl 1, y/ 1 I
d

\J
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Curves and surfaces - Table of contents

Curves and surfaces

@ Surfaces

V¥ Curves and surfaces
@ Lines and planes
@ Curves
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Curves and surfaces - Motivation

Curves and surfaces

> Motivation

> We can now represent the points of the plane or space by numbers (their coordinates)

> How can we represent nice sets of points, e.g. a line in the plane or a plane in space?

> We seek the answer to this in the Cartesian coordinate system
> Informally, the curves and surfaces are special subsets of space - i.e. they are sets of points
» How can we define these - usually infinite — sets?

> explicit: y = f(x) — what happens when the curve folds onto itself?

» parametric: p(t) = [ z(?) ] ,teR

y(t)

> implicit: f(z,y) = 0, for example: 22 +y? -9 =10
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Curves and surfaces - Lines

Implicit equation of line with a point and normal

» High school: y = mx + b. Problem: vertical lines!

> Let p(ps, py) be a point on the line and n = [n,,n,|T # 0 a vector, a normal
perpendicular to the line.

» All (z,y) points of the plane that satisfy the following are exactly the points of the line:

(®—pn)=0 = (z—pu)na+ (y—py)ny =0

» Two half-planes: (x —p,n) <0and (x —p,n) >0

p v
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Curves and surfaces - Lines

The homogeneous implicit equation of the line on the plane

» The equation ax + by + ¢ = 0 is the implicit equation of the line on the plane

» In the previous representation, choosing a = n,, b =ny and ¢ = —(pyn, + pyny),
a® + b% # 0 we get the implicit equation of the line going through p, with normal n

» If a® + b? = 1 then this is the Hesse normal form
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Curves and surfaces - Lines

Homogeneous implicit equation with determinant

> Let p(psz,py) and q(gz, qy) be two distinct points on the line. A point x(x,y) belongs to

the line if:
z y 1
Pz Py 11=0
dz dy 1

> This determinant is twice the signed area of the triangle spanned by x, p, g which
vanishes whenever they are collinear.

p v
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Curves and surfaces - Lines

Parametric equation of lines

> Let p(pz,py,p.) be a point on the line and v = [vy, vy, v.]T # 0 a direction vector of
the line (a vector parallel to the line):

z(t) Do + tug
x(t)=p+tv= |y(t)| = |py+ty, (t eR)
z(t) p. + tu,

> Let p and g be two points of the line. The previous form can be attained by setting
v=gq-—p:
(1= )ps + tgu
z(t)=p+t(g—p)= |(1—t)p, +tqy (t €R)
(1 - t)pz +tq,

> Note that the above is linear interpolation or the barycentric interpolation of two po(:,, S
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Curves and surfaces - Lines

Lines

» A line can be represented in the projective plane by the line-coordinate triplet
e = [e1,ea,e3). A point x = [z1, 72, 23]7 belongs to the line iff
(e,x) = e1x1 + eawa + e3x3 =0
» This goes for the ideal line of the projective plane: [0,0, 1] are the line-coordinates of the
ideal line, since all points of the form [z, 22, 0] will satisfy (e, z) =0
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Curves and surfaces - Planes

Implicit equation of the plane using a point and normal

> Let p(pz,py,p.) be a point on the plane and n = [n,,ny, n,]7 be a vector perpendicular
to the plane. Then x is a point on the plane iff:

(x —p,n) =0

» Half-spaces: (x —p,n) <0, (x —p,n) >0
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Curves and surfaces - Planes

Homogeneous implicit equation of the plane

» The implicit equation of the plane is in the form ax + by + cz +d =0

» From the previous slide choosing a = n,, b =n,, ¢ =n. and d = —ngp, — nyp, — n.p.
determines the plane going trough p, with n perpendicular to it

» Hesse normal-form: a? +b? 4+ ¢? =1
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Curves and surfaces - Planes

Homogeneous implicit equation with determinant

> Let p(pz, Py, P2), (42, 4y, qz), T(72, 7y, 72) be three, affinely independent points. Then x
lies on the plane spanned by p, g, r iff

z y =z 1
Pz Dy Dz 1 —0
9z 4y 4z 1

re Ty T, 1

This determinant is the signed volume of a paralelepipedon with sides p — x,q — x,r — x.

n r
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Curves and surfaces - Planes

Parametric equation of the plane — using three points

> Let p, q,r be three affinely independent points. Then all points & belonging to the plane
spanned by p, g, can be expressed in the form
z(s,t) =p+s(g—p) +t(r—p)
where s,t € R.
> This is a barycentric form, just like in the case of the parametric line through two points
x(s,t)=(1—s—t)p+sq+tr
since(1—s—t)+s+t=1
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Curves and surfaces - Planes

Parametric equation of the plane — using a point and spanning vectors

> Let p be a point of the plane and u, v two, linearly independent vectors in the plane
x(s,t) =p+ su+tv
» We can get this from the previous one by settingu =q—p, v=r —p
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Curves and surfaces - Planes

Homogeneous form of a plane

> The plane coordinates are analogous to the definition of the line-coordinates. In the
projective space the 4-tupple s = [s1, S2, s3, s4] defines a plane. All points
x = |11, 72,23, 74]7 belong to the plane iff
(s,x) = s1x1 + S2xa + 373 + Sqxqy = 0
» Some example planes in homogeneous form:
> [0,0,0,c] ideal plane
> [c,0,0,0] the YZ plane
> [0,¢,0,0] the XZ plane
> [0,0,c,0] the XY plane

Csaba Balint (ELTE IK) CG Crash Course Computer Graphics Lecture 57 /168



Curves and surfaces - Table of contents

Curves and surfaces

@ Surfaces

V¥ Curves and surfaces
@ Lines and planes
@ Curves
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Curves and surfaces - Curves

Parabola
» The parabola of focus point (0, p) about the Y axis can be written
> implicitly as 22 = 4py,
2
> explicitly as y = 47, z € R, and

> parametrically as p(t) = [t, %]T, t eR.
» How can we translate this, such that its focus point becomes (0, p) + ¢?

» In implicit and explicit formulation one has to work the coordinates of the translation
(cz,cy) into the formulation (e.g. (7 — ¢;)? = 4p(y — ¢,) in implicit)
» In parametric form it is simply p(¢) + ¢

Computer Graphics Lecture 59 /168
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Curves and surfaces - Curves

Circle

> Let us consider the circle of origin ¢ € E? and radius » > 0.
> Implicit: (z —c;)* + (y — ¢)? = r?
> Explicit: impossible to express the entire circle! However, a semi-circle is doable:
c=0,7=1, where y = +v1 — 22, x € [-1,1]
> Parametric: p(t) = rlcost,sint]” + ¢, where ¢ € [0,27)
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Curves and surfaces - Curves

Ellipse

» The ellipse of center point ¢ € E? having the X and Y axes as its major and minor axes,
with major and minor radii a > 0, b > 0, respectively, can be written as
2 2
> Implicit: 2% 4 ool — g

> Explicit: same deal as with the circle...
> Parametric: p(t) = [acost,bsint]T + ¢, where t € [0,27)

Computer Graphics Lecture 61 /168
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Curves and surfaces - Curves

Ellipse

» How about having major and minor axes different from the axes of the coordinate system?
» Implicit: seems kind of elaborate... (we will re-visit this during ray-surface intersections)
> Parametric: a mere change of basis — let the directions of the new major and minor axes be
denoted by k, 1 unit vectors. Then

p(t) = acostk + bsintl+ ¢, t € [0,27)
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Curves and surfaces - Curves

Line segment

» The line connecting the two points a, b € E3 can be written parametrically as
p(t) = (1 —t)a + tb, (t e R)

» If t € [0,1], then the above gives the line segment connecting a, b.
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Curves and surfaces - Surfaces

Sphere

The sphere of center ¢(c;, ¢y, c;) and radius r > 0
can be written

» implicitly as f(z,y,z) =
(z—c)?+(y—c)?+(z—c)?—r?=0
> parametrically as
cos u sin v
p(u,v) =r |sinusinv | + ¢

COS v

where (u,v) € [0,27) x [0, 7].

Csaba Balint (ELTE IK) CG Crash Course Computer Graphics Lecture 66 /168



Curves and surfaces - Surfaces

Sphere

Surface normal:

T —Cy
» Implicit: Vf(z,y,2) =2 |y — ¢y | (needs to
z—c,
be normalized)
cosusinv
» Parametric: n(u,v) = |sinusinv
cos v
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Curves and surfaces - Surfaces

Ellipsoid

| 2 Imphclt (x_agz)g + (y;)(éy)z + (2—032)2 -1

@ cos u sin v
» Parametric: p(u,v) = |bsinusinv | + ¢ (u,v) € [0,27) x [0, 7]
cCcosv

(D
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Curves and surfaces - Surfaces

Ellipsoid

Surface normal:

T—cCy
a?
> implicit: Vf =2- | %% (needs to be normalized)
Z—Cy
c2
bc cos usinv
> parametric: n = —sinv - |acsinusinv | (needs to be normalized)

ab cosv
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Curves and surfaces - Surfaces

Simple paraboloid

> Explicit: z = az? + by?
» Implicit: az? +by? — 2 =0
» Parametric (derived from explicit):

U
pu)=| v |+e  (wov)eR?
au?® + bv?
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Curves and surfaces - Surfaces

Simple paraboloid

Surface normal:

2ax
» Implicit: Vf(x,y,z) = |2by | (needs to be
-1
normalized)
—2au
» Parametric: n(u,v) = | —2bv | (needs to be
1
normalized)
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Curves and surfaces - Surfaces

A word of caution

Most mathematical formulae treat axis z as the up direction

This holds for the equations shown previously

However, in computer graphics up is many times axis y.

So swap the appropriate coordinates!

Note that, this changes the right handedness of the coordinate system (to left handed).

vVvYyyvyy
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Transformations - Table of contents

Transformations

V¥ Transformations
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Motivation

v

vvyyypy

Transformations - Motivation

A transformation maps a point in one coordinate system to another point in another
coordinate system

We will need different coordinate systems more often than one would think! (E.g. object,
world, eye, screen)

The complex geometric entities of our scenes are made of smaller, simpler elements
These elements need to be brought together — transformations
The entities of our scenes can move around — transformations

Our scene has to be rendered into a 2D image — transformations

Csaba Balint (ELTE IK) CG Crash Course Computer Graphics Lecture 74 /168



Transformations - General properties

Transformations

» Our expectations

» defined for all points

» map a point to a point, a line to a line, a plane to a plane

> preserve coincidence relation

» The image should be unique and reversible (provided the dimensions of the domain and the
range are the same)

> Remember: our points are stored using their coordinates in an appropriate coordinate
system

» Transformations work on these points, i.e. on the coordinates

» From now on, let us associate the points of the Euclidean space E3 (or plane E?) with the
vectors of R? (or R?) by setting an origin o € E3, and to p € E? let p = p — 0 be its

vector )
NS
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Transformations - General properties

Linear mappings

» The mapping ¢ : R> — R3 is linear, iff for Va,b € R3 and A € R
> ¢(a+b) = ¢(a)+ ¢(b) (additivity)
> o(Aa) = Agp(a) (homogeneity)

» Reminder: a linear mapping f : R™ — R™ can be represented with an A € R™*™ matrix:
f(x) = Ax, x € R™.
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Transformations - General properties

Projective and affine transformations

» Transformations of the projective space/plane that map lines to lines are the projective
transformations

» A transformation that preserves lines and parallelism (maps parallel lines to parallel lines)
is an affine transformation

> Remark: affine transformations cannot map points at infinity to finite points and vice
versa. Projective transformation, on the other hand, can.
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Transformations - General properties

Properties

» The projective and affine transformations form an algebraic group with the operation of
concatenation, i.e.
» the group is closed under concatenation
> concatenation is associative
> there exists an identity element (identity transformation)
> each transform has an inverse (provided they preserve the dimension)

> Attention: this group is not commutative!
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Transformations - General properties

Affine transformations

> Every affine transformation can be written as a linear transformation followed by a
translation
» That is, they can be represented by a A € R3*3 matrix and b € R? vector:

p(x) =Ax+b

» Using homogeneous coordinates, we can use a single 4 x 4 matrix (actually a 3 x 4 is
enough) to represent the transformation p(x) = Ax + b:

A b 4x4
[{0,0,0] T
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Transformations - General properties

Affine transformations

Barycentric coordinates are invariant under affine transformations.

Proof: let ; be the barycentric coordinates of x wrt. x;, then
n
p(x) = SO(Z @iX;)
i=0
n
= ()
i=0

= Z ip(x;)
i=0
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Affine transformations - Translation

Translation

v+p
> Translate all points with the vector d:
x' =x+d
» We denote the matrix by T(d,d,,d.). Using homogeneous coordinates:
1 0 0 d,
o100 4
T(da, dy,d-) = 0 0 1 d.
0 00 1
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Affine transformations - Translation

Translation

» Since
1 0 0 dg T 1-24+0-y4+0-24+1-d, T+ dy
010 d, y 0-24+1-y+0-2+1-dy | _|y+d,
00 1 d, 2 0-2+0-y+1l-241-d, | |z+d,
0 0 0 1 1 1 1

> A commutative sub-group of the group of affine transformations
» The inverse of T(a,b,c) is T !(a,b,c) = T(—a,—b,—c)
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Affine transformations - Rotation

Rotation

» Rotation in the XY plane by 6:

x' = xcos —ysinf

Yy = xsind 4+ ycos.

| |cosf n —sin@|  |cos@ —sinf| |z
y T lsing Y\ cosd | = |sin® cosd y

» Similar in the XZ and YZ planes so...

» |n matrix form:
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Affine transformations - Rotation

Rotations about cardinal axis

7 axis Y axis X axis

c —s 0 O c 0 s O 1 0 0 O

s ¢ 00 0O 1 0 O 0 ¢c —s 0
RZ(H) - 0 0 1 0 9 RY(Q) - —3 0 c O ) RX(Q) - 0 s c 0 )

0O 0 0 1 0O 0 0 1 00 0 1

where ¢ = cos and s = sin 6.
> The rotations along the same axis form a commutative sub-group
> They are linear transformations, 3 x 3 matrices suffice to represent them
» The inverse of rotation Rx(0) is Rx(—6)
» Since Rx(0) - Rx(p) = Rx (0 + )
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Affine transformations - Rotation

Yaw, pitch, roll

An arbitrary orientation can be attained by doing 3 rotations sequentially:

cosa —sina 0 cosfB 0 —sinpg 1 0 0
R(a, B,vy) = sina  cosa 0| - 0 1 0 - |0 cosy —sin~y
0 0 1 sin 0 cosf 0 siny cosvy

> Store the rotations about the three axes: Y (yaw), X (pitch), and Z (roll)
» Common in flight dynamics and robotics

> Same as the three matrices multiplied seen earlier

» Most of the graphics APls have support for this
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Affine transformations - Rotation

Rigid body transformations

» The translations and rotations are rigid body transformations
» They preserve distances and angles
» Their determinant is 1

» Important in physics simulations
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Affine transformations - Scaling

Scaling

» Shrink and expand the object independently along the z, ¥, z axes

> Matrix:
s, 0 0 O
sy 0 O
S8z, Sy, $2) = 0 6’ s, 0
0 0 0 1
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Affine transformations - Scaling

Special case: Mirroring

» If at least one of s,, 5,5, <0
> if exactly 1 is negative: mirror the point to the plane spanned by the axes of the
non-negative coefficients
> if exactly 2 are negative: mirror to the third axis
> if all 3 are negative: mirror to the origin

> Attention: if s;s,s, < 0, the winding (handedness) of our coordinate system changes!

» Using the basis vectors i, j, k of the canonic base

o(p) = p(xi+ yj + 2k) = zo(i) + yp(j) + z¢(k)
» If the determinant of a transformation matrix is negative, then it changes the winding of
the coordinate system (left handed — right handed, and vice versa)
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Affine transformations - Scaling

Special case: Orthographic projection

» If one of s;, sy, 5. is zero:

> 1 zero: orthogonal projection to the plane spanned by the other two axes
> 2 zeros: project onto the non-zero axis
> all 3 are zeros: project to the 'origin'...

» Remark: the determinant is zero! = there is no inversel!
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Affine transformations - Shearing

Shear

Consider a deck of cards:
1 L
1 | 1 ||

o
N NS
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Affine transformations - Shearing

Shear

Shear of the x,y coordinates proportional to the z coordinates:

1 0 a O

01 b 0

N= 0 010

0 0 01

In general: ) )
1 a b 0

01 ¢ O

N= 0 010

0 0 01
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Affine transformations - Change of basis

Change of basis

> Let i,j,k be the canonical orthonormal base, and u, v, w the new orthonormal basis
vectors (wrt. i,j,k)

» What will be the new ' = [2/,y/, 2/]7 coordinates (in the new base) of the point
x = [z,y,2]T (in the old base)?

z = [ul, v’ w’)

' =Bx — x' =B 'z=B"x

Up Uy Uy
Uy Uy U
Wy Wy W,
0O 0 O

» If the origin has changed to c, then the matrix of the change of basis is
M = B7'T(—cy, —Cy, —Cz)

» Since the bases are orthonormal M = B~ is the following: M =

0
0
0
1
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Affine transformations - Additional notes

Commutativity counterexample

Matrix multiplication (and concatenation of transformations) is not commutative, i.e.

ABv # BAv

Rotation followed by translation Translation followed by rotation

4 4
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Affine transformations - Additional notes

Transformation of normal vectors

» Consider the following example:
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Affine transformations - Additional notes

Transformation of normal vectors

» Consider the following example:
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Affine transformations - Transforming surface normals

> Let us consider the implicit equation of the tangent plane:
<$ — D, n> =0
» Then for an arbitrary, invertible A matrix:
(A"A(xz —p),n) =0
T
(A_IA(ac - p)) n=0
(Az—p)"(A ") 'n=0

» Using the properties of the dot product and matrix multiplication
AT
(A(x —p), (A_ ) n) =0

» Thus, transform the normal vectors by the inverse transpose of A (eg.: A~7T)!
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Projective transformations - Overview

General case

If the last row of the transformation matrix is not [0, 0,0, 1], then it is a linear homogeneous
transformation (a transformation that is linear in the homogeneous space, but not necessarily
linear in the Euclidean) This is what we need for perspective projections!

Perspective transform
> Projection from a point onto a plane (central projection)
> Let that point be the origin, and the plane by parallel to the XY plane at z = d

> Viewing frustum

@@
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Projective transformations - Overview

Perspective transform
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Projective transformations - Overview

Homogeneous division

» If M is a real projective transformation, its last row is not [0,0,0,1]7, i.e. after
[x,y,z,w]=Mv = w#1

» We need to divide all the coordinates by the last coordinate w (provided w # 0) — this is
the homogeneous division
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Central projection

Csaba Balint (ELTE IK)

Projective transformations - Overview

X, ¥, 2)

}y'!d =yl/z

-
z

o =24 y=Y4 +=Zd=4d
z z

z
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Projective transformations - Overview

Central projection

> Let the origin be the point of projection, the plane onto which we project is the z = d
plane. Then the matrix is:

S O O =
S O = O
Q== O O
o O O O

> We get the same formulas as before after we apply the homogeneous division with Z
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Projective transformations - Overview

Transformation matrices

In summary, transformations will be 4 x 4 matrices:

o X

3x3 s
: y
linear g Z
projective 1

Attention: points and vectors are column vectors, therefore the vectors are on the right side
of matrices during this course.
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Graphics Pipeline - Table of contents

Graphics Pipeline

@ Shading
@ Display

¥ Graphics Pipeline
@ Transformations
o Clipping
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Graphics Pipeline - Overview

Raytracing vs incremental image synthesis

Raycasting
For every pixel on the screen:
For every object (geometry) in the scene:
Does the ray of the pixel intersects the object?

| \

Incremental image synthesis

For every object (geometry) in the scene:
For every pixel on the screen:
Does the projection of the object contain the pixel?

A\

@@
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Graphics Pipeline - Overview

Raytracing vs incremental image synthesis

> Advantages of raytracing:

> Wide range of geometries (almost the only restriction: carry out ray-surface intersection
efficiently)

> Easy to implement using recursion

» It handles light as particles — effects related to the particle nature of light are simple to
implement

» Disadvantages of raytracing:

> Computationally expensive (intersection test with all objects, for every pixel!)

> Global algorithm: in order to compute the color of a single pixel, you need access to the
description of the entire scene

> |t is harder to simulate the wave properties of light

» Slow for real-time applications
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Graphics Pipeline - Overview

Graphics pipeline — Motivation

» Speed up image synthesis by changing the loop ordering in the raycast/raytrace
pseudo-code

> In the new loop order the efficiency of the algorithms greatly depends on how easy it is to
determine whether a pixel is inside the projection of a geometry or not

» Thus the range of appropriate geometries is much more narrow = in practice, this means
linear geometries (e.g. lines, triangles), so called primitives

» Nonlinear geometries have to be approximated (tessellated) by linear elements
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Graphics Pipeline - Overview

Real-time

» Avoid unnecessary computations: pre-filter the geometries so that we cull (throw away)
every geometry that is guaranteed to not end up on the screen (because e.g. they are
behind us, etc.)

Let us carry out every operation in a coordinate system that is a best fit to the problem
Use the results of the previous computations to speed up things

Coherence: instead of pixels, base computations on bigger elements — primitives

Use object space precision (instead of pixel precision)

Clipping: cull every part of the primitives that lie outside the screen

vVvvyVvVvYyypy

Incremental synthesis: use the information computed for the bigger elements to resolve
the shading and occlusion problem (e.g. the slope of the primitives w.r.t. the = and y)
coordinates
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Graphics Pipeline - Overview

Graphics Pipeline

1. Transform every single vertex into the Normalized Device Coordinates (NDC)
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Graphics Pipeline - Overview

Graphics Pipeline

1. Transform every single vertex into the Normalized Device Coordinates (NDC)
2. Assemble every primitive from the transformed coordinates

3. Clip every primitive to the viewport window
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Graphics Pipeline - Overview

Graphics Pipeline

. Transform every single vertex into the Normalized Device Coordinates (NDC)
. Assemble every primitive from the transformed coordinates

. Clip every primitive to the viewport window

A w N =

. Rasterize all the primitives creating fragments
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Graphics Pipeline

o b=

Graphics Pipeline - Overview

Transform every single vertex into the Normalized Device Coordinates (NDC)
Assemble every primitive from the transformed coordinates

Clip every primitive to the viewport window

Rasterize all the primitives creating fragments

Interpolate the vertex attributes for every single fragment
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Graphics Pipeline

I o

Graphics Pipeline - Overview

Transform every single vertex into the Normalized Device Coordinates (NDC)
Assemble every primitive from the transformed coordinates

Clip every primitive to the viewport window

Rasterize all the primitives creating fragments

Interpolate the vertex attributes for every single fragment

Colorize every single fragment using textures and a shading model
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Graphics Pipeline

No o b=

Graphics Pipeline - Overview

Transform every single vertex into the Normalized Device Coordinates (NDC)
Assemble every primitive from the transformed coordinates

Clip every primitive to the viewport window

Rasterize all the primitives creating fragments

Interpolate the vertex attributes for every single fragment

Colorize every single fragment using textures and a shading model

Decide for each fragment whether it is visible and how, and blend the value accordingly
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Graphics Pipeline - Overview

Graphics Pipeline — How do we optimize?

1.
2.
3.
4.
5.
6.
7.

Transform every single vertex into the Normalized Device Coordinates (NDC)
Assemble every primitive from the transformed coordinates

Clip every primitive to the viewport window

Rasterize all the primitives creating fragments

Interpolate the vertex attributes for every single fragment

Colorize every single fragment using textures and a shading model

Decide for each fragment whether it is visible and how, and blend the value accordingly
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Graphics Pipeline - Overview

Graphics Pipeline — parallelization

1.
2.
3.
4.
5.
6.
7.

Transform every single vertex into the Normalized Device Coordinates (NDC)
Assemble every primitive from the transformed coordinates

Clip every primitive to the viewport window

Rasterize all the primitives creating fragments

Interpolate the vertex attributes for every single fragment

Colorize every single fragment using textures and a shading model

Decide for each fragment whether it is visible and how, and blend the value accordingly
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Graphics Pipeline - Overview

Graphics Pipeline — parallelization stages

1.
2.
3.
4.
5.
6.
7.

Transform every single vertex into the Normalized Device Coordinates (NDC)
Assemble every primitive from the transformed coordinates

Clip every primitive to the viewport window

Rasterize all the primitives creating fragments

Interpolate the vertex attributes for every single fragment

Colorize every single fragment using textures and a shading model

Decide for each fragment whether it is visible and how, and blend the value accordingly
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Graphics Pipeline - Overview

Comparison

Ray-tracin : .
S ———

» performed per pixel
pemormed per pix » performed per primitive

» anything can be a geometry as long as

. . » anything that is not a primitive has to
it can be intersected by a ray yrhing P

; _ be approximated
» reflection, refraction, shadows are

. . » individual algorithms for each effect
inherently part of the computation

\4

. D several algorithms for occlusion tests
> occlusion resolution is trivial

. : » orders of magnitude less computation
> many rays per pixel: expensive

@@

Csaba Balint (ELTE IK) CG Crash Course Computer Graphics Lecture 111 /168



Graphics pipeline

>

>

Graphics Pipeline - Overview

A pipeline is a chain of data processing elements, arranged such that the input of stage s;
is the output of the previous stage s; 1, and the output of s; is the input of s;41

If one can decompose a problem into an n-stage pipeline (each stage taking roughly the
same time), n elements can be processed per unit time — after the initial startup and final
pass-through

The graphics pipline is a set of operations that we have to carry out on primitives in order
to render them to the screen

This is accompanied by several change of basis transformations so that every operations is
carried out as efficiently, as possible
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Graphics Pipeline -

Graphics pipeline

» General overview of steps:

>

vyvyvVyYVvyy

» The

Transformations

Clipping

Homogeneous division
Rasterization and interpolation
Shading

Display

Overview

Transformation

Clipping

Homogeneous div.

\J

Display -¢

Shading

-

Rasterization

output of the graphics pipeline is a picture: a 2D array consisting of colors

Csaba Balint (ELTE IK)
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Graphics Pipeline - Overview

Graphics pipeline inputs

» The geometric model of the scene (=list of primitives to be drawn)
» Optical model of the scene geometries
» The attributes of the virtual camera (point of view and viewing frustum)

» Screen boundaries
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Graphics Pipeline - Transformations

Transformations

» Transformations operate on the vertices of the primitives
1. Model coordinate system
= transformations: move, rotate, ect. =—

2. World coordinate system
= 'lookAt’ =

3. Camera coordinate system
—> projective transformation —-

4. Normalized device coordinate system
=— orthographic projection —

5. Screen coordinate system
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Graphics Pipeline - Transformations

Coordinate systems

» Model CS: The own, individual coordinate system of each object.

» World CS: The actual CS of the world (scene), where every object has its own position.
In general, we think in terms of the world CS.

» Camera CS: A CS with origin at the camera position and axes aligned to the camera
attributes.

» Normalized device CS: The GPU's internal CS, [—1,1] x [-1,1] x [-1,1] or
[—1,1] x [-1,1] x [0,1].

» Screen CS: A left-handed CS, conforming to the current display properties. Units along
the axes are pixels. The origin is at the top-left corner.
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Graphics Pipeline - Transformations

world) transformation

> |t should transform the object from its own CS into the common, world CS
» Generally, it's unique for every object
> Almost always a sequence of affine transformations, represented by a single 4 x 4 matrix

» We call these world or model in our code
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Graphics Pipeline - Transformations

View (camera) transformation

> Aligns the world CS with the camera

> This is translation followed by a change-of-basis transformation, represented by a single
4 x 4 matrix

» |n our code: this is the view or camera matrix
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Graphics Pipeline - Transformations

View (camera) transformation

> |t can be specified similarly to the ray-casting case:
eye, center,up
» The camera CS X,Y, Z axes are then:

eye — center

:|eye — center|
_upxXw
|up x w|

V=w XUu

up

\gﬂ/uevnter
Y @ o
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Graphics Pipeline - Transformations

View (camera) transformation

> Let the origin be at eye, with axes u, v, w:

Upy Uy uy 0O 1 0 0 —eyey
To. Ve vy vy 0 0 1 0 —eyey
View = 1y, wy w, 0 0 0 1 —eye,

O 0 0 1 0 00 1

Sidenote: Orthographic projection

A simple orthogonal projection to the XY plane would be
1 0 00
01 0 0
0 00 O
0 0 0 1

Instead, however, let's talk about perspective projection
Csaba Balint (ELTE IK) CG Crash Course
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Graphics Pipeline - Transformations

Projection — perspective

> Actually, this is more than just a simple central projection
> First, we need the camera projection properties:

> horizontal and vertical field-of-view (fovx, fovy) or either of them and the aspect ratio of
the width and height of the display
» distance of near and far planes

1/ tan 1%* 0 0 0
f
T 0 1/ tan 154 0 0
rojection 0 0 _ far+near  2-near-far
far—near far—near
0 0 —1 0

How do we get such a transformation?
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Graphics Pipeline - Transformations

Projection — perspective

1. Transform the space such that the projection defined by (fovx, fovy) turns into (3, )
(this is a simple scale)
2. Carry out the central projection (this is the actual projective transformation)
3. Map the near and far planes to z = —1 and z = 1, respectively
Reminder: at this stage the origin is the camera position!

(-1.1,1)

(1.-1,-1)
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Graphics Pipeline - Transformations

Projection step 1: normalize frustum

1/ tan 122 0 0 0

0 1/tan£2% 0 0

TProjectionl = 0 /ag 2 10
0 0 0 1

Csaba Balint (ELTE IK) CG Crash Course Computer Graphics Lecture 123 /168



Graphics Pipeline - Transformations

Projection step 2: make lines of central projection parallel

1 0 0 0

0 1 0 0
TProjectionz = far4+near 2-near-far

0 0 " far—near =~ far—near

0 0 —1 0
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Graphics Pipeline - Transformations

Central projection through the origin

> Central projection along the Z axis, onto a plane parallel to XY, at distance d from the

origin:
1 0 0 0
01 0 O
00 10
0030
» We project onto the d = —1 plane, so z € [— far, —near].
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Graphics Pipeline - Transformations

Transform to Normalized Device Coordinates (NDC) (OpenGL

» Map the near and far planesto z = —1 and 2 =1
far+near 2-near-far
< = far—near ~  far—near
zZ
-1z

» The last division is the homogeneous division which is done by the GPU

(-1.1,1)

(1,-1,-1)
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Graphics Pipeline - Transformations

Transform to Normalized Device Coordinates (NDC) (OpenGL

10 0 0

0 1 0 0

00 — far+near  2-near-far
far—near far—near

0 0 -1 0
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Graphics Pipeline - Clipping

Clipping

» Clipping has to be done before homogeneous division
» For example, consider a line segment starting in front and ending behind the camera
» The transformed (projected) line segment is not the connection of the projected endpoints!
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Graphics Pipeline - Clipping

eneous coordinates

> Let [:Uh,yh,zh,w]T = dprojall * ['Tvyaz7 1]T

» If the projected coordinates should be within [—1, 1], then for w > 0 we get

—w <zp <w
—w < yp <w
—w < zp <w

as a clipping condition.

> If any of the above containments do not hold, the primitive of the vertex should be clipped
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Graphics Pipeline -

Rasterization

> For each clipped primitive: discretize the
geometry

» Every pixel-worth chunk of the geometry
becomes a fragment

» Using the barycentric coordinates of each
fragment (with respect to the 3 vertices of
the triangle), we interpolate every
attribute for the fragments (not just
position, but color, normals, etc. as well)

Csaba Balint (ELTE IK)

CG Crash Course

Rasterization

Va Vi A

. ° \ Vg V3 Va Vs
Vse .V Vs/ Vi Vsd BV \.r5<:>vZ
o o
Vi Va Vi

Ve Vi Va Vi Ve
GL_POINTS GL_LINES GL_LINE_STRIP GL_LINE_LOOP
V.
Vs Vs 4 V3 Vs Vi
Vz Vs
Vs Vy
Vs
Vg Vs Va v
Vo Vi \ Vi o
GL_POLYGON GL_TRIANGLES GL_TRIANGLE_STRIP
Vs v,
5 £ v, v Vs v, Vs
51 x :
V: v, v
! v,
Ve Vs Ve V2 °
GL_TRIANGLE_FAN GL_QUADS GL_QUAD_STRIP

OpenGL Primitives
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Graphics Pipeline - Rasterization

Rasterization of primitives

O"""_'_FFF.D
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Graphics Pipeline - Rasterization

Rasterization of primitives

sEENEEENS

Csaba Balint (ELTE IK) CG Crash Course Computer Graphics Lecture 132 /168



Graphics Pipeline - Shading

More on this later
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Graphics Pipeline - Display

Occlusion

» Occlusion resolution is important
» The real-time industry went with the z-buffer

> But let us see some other approaches too

View-frustum culling
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Graphics Pipeline - Display

Painter al

» Order the objects from farthest to closest
» Draw things starting from the farthest

> Problem: there is no guaranteed ordering
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Graphics Pipeline - Display

Z-buffer

» Allocate a secondary buffer (depth buffer) to store depth values for every pixel

» When determining occlusion for a fragment: check if the fragment's depth is closer than
the distance stored for the pixel

» If closer: write the color to the framebuffer and update Z-buffer for the pixel (must be an
atomic operation)

> Else: discard the fragment

¥ i

CG Crash Course Computer Graphics Lecture
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Graphics Pipeline - Display

Optimization — Backface culling

> May be used for the rendering of a single, closed convex object possessing a volume

» Do not render triangles that are not facing us

» Not facing us = its vertices are either clockwise or counter-clockwise (depends on
convention)

» Used in general too: you can roughly shave off half of the triangles (but you need
volume-like geometries!)
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Raycasting - Table of contents

Raycasting

¥ Raycasting
@ Raycasting
@ Ray creation
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Raycasting - Motivation

The Draughtsman of the Lute — Albrecht Diirer, 1525

Csaba Balint (ELTE IK) CG Crash Course Computer Graphics Lecture 139 /168



- Motivation

Pinhole camera

» Let us consider each pixel as a small window to the world
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Raycasting - Motivation

Pixel-sized hole

» What color shall we paint this window, so that we end up with an image that looks like
reality?
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Raycasting - Raycasting

Raycasting

For each pixel:
Construct a ray r from the pixel

For each object o in the scene:
Compute intersection of r with o

Pixel color = closest intersected object’s color
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Raycasting - Raycasting

Ra

» A ray! has a pg origin and a v direction

» The parametric form of the ray is then

p(t)=po+t-v

'Not to be confused with Rey from Star Wars.
Csaba Balint (ELTE IK) CG Crash Course

(t>0)
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Raycasting - Ray creation

Ray creation

1. How to compute py, v for a given pixel (i,7)?

up

\g}/ﬁefntcr
" @ J

2. How to intersect anything with a ray?

Camera properties

» Camera position (eye € E?),
> Look at point (center € E3),
» Up direction (up € R3),

» Horizontal and vertical field of view fovz, fovy € R.
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Raycasting - Ray creation

Ray creation

Let us find the right-handed w, v, w orthonormal base of the cameral

» Let the camera face —Z:
eye — center

|leye — center||,

> Let the X axis be perpendicular to w and up:

up X w

[up x w2
> Let the Y axis be perpedincular to X and Z:

vV=wXUu
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Raycasting - Ray creation

Coordinates of the pixel at (7,

N\ Let the plane, onto which we are projecting, be 1 unit
away from the origin (eye. The p(t) = po + tv (¢t > 0)
™ N ray for pixel (i, j) is:
=~ ™~ . .
TR 2o eve s tous o), oo 2T —cve
@ [~ ||p(l’]) —eye||2
eye -w o
Y — [ (X | | where
B B . <fovx> i — width/2
o = tan . . ’
p 2 width/2
ol Bt fovy\ height/2 —j
= tan . .
|~ 2 height /2
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Ray intersections - Table of contents

Ray intersections

¥V Ray intersections

@ Ray — plane

@ Ray — triangle

@ Ray — polygon

@ Ray — sphere

@ Transformed objects
o Ray — AAB

BN/
& @
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Ray intersections - In general

Ray intersections

» Let us consider the parametric form of the ray: p(t) = po + tv, where in the following we
presume that [[v]js =1
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Ray intersections - In general

Parametric ray — implicit surface intersection

» Implicit surface: f(x) =0, where = € E3
> Let us plug the parametric ray's equation into the implicit equation of the surface!

flp(t) =0

> Let ¢ be a root of f(p(t)).
» ¢ > 0: the ray intersects the surface. (Object intersection is in front of the camera)

» ¢ = 0: the ray starts from the surface.
» t < 0: the ray does not intersect the surface. (Intersection is behind the camera)

s(t) =py+t-vo
Py Vo Ray

First intersection

{f<o0}
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Ray intersections - In general

Parametric ray — parametric surface intersection

v

Let r(u,v) = [ry(u,v), 7y (u,v),7.(u,v)]? be a parametric surface, (u,v) € [a,b] x [c,d]

v

Solve for t,u, v:
p(t) = 7(u,v)
» If (t,u,v) is a solution, then t > 0, (u,v) € [a,b] X [c,d] has to be verified as well.

» Parametric ray — parametric surface intersections are usually hard to solve

v

If you do solve it, you get texture coordinates too.
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Ray intersections - Ray — plane

— implicit plane intersection
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Ray intersections - Ray — plane

— implicit plane intersection

» Implicit plane: Az + By+Cz+ D =0

i) X
» Theray p(t) =po+tv= |yo| +1 |y| intersects the plane for ¢-s such that
20 z

A(xo+tx)+ Blyo+ty) + C(z0+t2z) + D=0
» Solve it for t:

t(Axr+ By + Cz) + Axg+ Byo+ Cz+ D =0
__Al‘o—i—Byo—FCZo—l—D
n Ax+ By + Cz

» The ray intersects the plane in front of the camera if t > 0

Csaba Balint (ELTE IK) CG Crash Course Computer Graphics Lecture

152 /168



Ray intersections - Ray — plane

— plane intersection, plane given by a point and normal

» Let g be a point of the plane and n its t— (n,q0) — (n, po) _ (n, g0 — Po)
(n,v) (n,v)

normal

> The implicit equation of the plane: » The ray's line intersects the plane in front
of the camera if t > 0.

n,q—qo) =0 e R3
(n.q =) (q ) » (n,v) = 0: the plane is parallel to the ray

» Plug p(t) into q:
(n,po +tv —qo) =0,

<’I’L,p0> + t<’l’L,U> - <’I’L, qo) =0,

©)

v N
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Ray intersections - Ray — plane

— parametric plane intersection

> Let the plane be given by one of its points, g and two spanning vectors, 1, j:
s(u,v) = q + ui +vj
» Intersection with the ray p(t) = po + tv: find ¢ and u, v such that
p(t) = s(u,v)

pttv=q+ui+vy = po—q=—tv+ui+vj

» |n matrix form:

Pox — 4z Vg Iy Ja t
Poy —Qy| = |—Vy ity Jy| |u
Poz — 4z vy 1y J v

» The previous can be solved iff v, 4, j are linearly independent

P Intersection in front of the camera iff t > 0
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Ray intersections - Ray — triangle

le intersection (Tomas Modller and Ben Trumbore, 1997

» Triangle is given as a convex barycentric combination of its vertices a, b, c:
r(u,v) = (1 —u—v)a+ub+ve (u,v,u+v € [0,1])
» po + tv = r(u,v) equation is to be solved for u,v,t, after rearranging:

t
—v b—a c—a]- u| =pg—a
v

> Using the Cramer's rule:

" det[po—a b—a c—a}
1

u| = -| det|—v pp—a c—a

v det |—v b—a c—a]

det |—v b—a py—a
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Ray intersections - Ray — triangle

' det[po—a b—a c—a
1

u| = | det|—v pg—a c—a

v det[—v b—a c—a}

det |—v b—a py—a

» Determinants expressed as triple products: det [a: Y z} =(xxy,z), (x,y,z € R3)

t 1 <(Pz) — a() X (b)— a), c—>a> 1 <<?,a0>>
u| = : vXx(c—a), pp—a = ,Q
of Extemabma | G bl a ey | T | )
where

ab=b-a ac=c—a ap=py—a

f=vxac g=ap X ab
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Ray intersections - Ray — triangle

» Therefore, the final formula is

t (9,ac)
u| = |(f,ap)
b )
v (f,ab) (g, v)
where
ab=b-a ac=c—a ap =py—a
f=vxac g=ap xab.

> There is an intersection with the triangle if ¢,u,v,1 — u — v values are non-negative

> Solution resolves u, v texture coordinates as well
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Ray intersections - Ray — polygon

gon intersection

> Let the polygon be a planar polygon. The jﬁ
intersection can be tested in two steps: D/

> Intersect the ray with the polygon’s plane
> Test whether the intersection point is inside the
polygon or not
> The second step once again can be done in a plane
(either in the polygon’s or a coordinate plane)
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Ray intersections - Ray — polygon

Point — polygon containment test

» A point is inside the polygon if an arbitrary half-line (ray) starting from that point has an
odd amount of intersections with the edges of the polygon

» Other idea method via the winding number.
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Ray intersections - Ray — polygon

-line segment intersection

» The line segment spanned between the two consecutive points of the polygon
d; = (zi,vi),dit+1 = (xiy1, Yi+1) has the parametric form

di,i+1<3) =(1—=s)d;+sdiy1 =d; + s(diy1 — dy), s €[0,1]

> Let us intersect it with p(t) = po + tv, where py = (20, y0) (where py is the intersection of
the ray and the plane, and v is the projection of the direction in the plane).

» Need to solve p(t) = d; i+1(s) for s € [0,1],¢ > 0!

» Let v = (1,0) since we may choose any direction.

Yo — Yi

» Solve for Y direction only: (d;i+1)y = vi + 5 (Yit+1 — ¥i) = Yo, thatis: |s =
Yi+1 — Yi

> If s ¢ [0,1] or t < 0 the ray does not intersect the line segment
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Ray intersections - Ray — sphere

- sphere intersection
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Ray intersections - Ray — sphere

Ray — sphere intersection
» The ¢ = (cg, ¢y, c2) centered, radius r sphere’s equation is:
(:U—cm)2+(y—cy)2+(z—cz)2—r2:O

(p—c,p—c)—’rQZO, P:(ﬂ%yaz)
> Let po be the ray’s origin and v its direction
» Substituting the ray’s equation into the plane's

(po+tv—c,pg+tv—c)—12=0
t2(v,v) 4+ 2t{(v,po — ¢) + (P — ¢, po — ) — 12 =0

T~

~

T~
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Ray intersections - Ray — sphere

Ray — sphere intersection
t*(v,v) + 2t(v,po — €) + (po — ¢, po —¢) —1? =0

» Quadratic equation in ¢ with discriminant

D = (2(v,po — ¢))* = 4{v,v)({(po — ¢,po — ¢) —17%)
» If D > 0: two solutions, the smallest positive is the intersection in front of the camera

» If D = 0: one solution, ray is tangential
> If D < 0: no intersection

T~

~

T~
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Ray intersections - Transformed objects

Transformed objects

Theorem

The intersection of the ray » and an object transformed by transformation M

the intersection of the transformed ray M~!7 and the non-transformed object transformed by
M

» M < R*** homogeneous transformation

> Ray's origin: po = (Pe, Py, P=) = [Pas Pys P2 1|7

> Ray's direction: v = (vy, vy, vs) = [Uz, vy, v5,0]7. Translation in M does not affect it.
» Transformed ray 7p;(t) = M~ lp+t- M~ lv
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Ray intersections - Transformed objects

Transformed objects

» Intersection query: use 7y (t)!
> If the intersection in the model space is q, then in the world space it is M - q.
> Distances change unless M is a rigid transformation

» Pay attention to normal vectors: M~7 . n

@E=F-
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Ray intersections - Ray — AAB

— Axis aligned box (AAB) intersection

> AAB = axis aligned box, the sides of the box are parallel to the coordinate planes
» Let p(t) = po + tv be a ray, where pg = (z0,y0) and v = (v, vy)
> Let us represent the AAB by the endpoints of its diagonal, a and b, where a < b

YA YA YA

b=[54] b=[54]

,,:[” te[03] ":E] rel03] ‘.:E]

b=[54]
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Ray intersections - Ray — AAB

— Axis aligned box (AAB) intersection

> We check the intersection for all axis one by one, let us start with z

» v, = 0: the ray is vertical, there's no intersection if xg ¢ [ay, by]
> v, #0: let t, ;== —o00,t; :=+00 and t; : :% Lot —bmv_f"
> f ty > to: swap t1 and to

> |ftn<t1: tn =11

> |ftf>t22 tf =1t

» Then proceed to the y and then the z coordinates
> Finally, if
» t, > ts: the ray misses the box
» t; < 0: the box is behind the ray
> Else: t,, is the closer, t¢ is the farther intersection point's ray parameter
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It took - long enough

Thank you for your attention!
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Introduction - Course details

Course details

> Csaba Balint csabix@inf.elte.hu (me). Room: 2-706.
> Lecture: Tuesday, 16:15-17:45
» Exam: Explain 2 topics. You chose one, and | choose one.
> Points from practice can help your course (but do not count on it).
> Practice: Tuesday, 18:00-19:30
» Small assignment (=30 points) and large assignment (1004 points)
» Work during practice (/15 points)
> Scores above 100 points will count towards the lecture exam
> In both
» Grade boundaries: 40, 55, 70, 85.
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Introduction - Course details

Further reading

1. Edward Angel, Dave Shreiner: Interactive Computer Graphics: A Top-Down Approach
with Shader-Based OpenGL (6th Edition)

2. Andrew Glassner: Principles of digital image synthesis

3. Pharr, Humphreys, Hanrahan: Physically Based Rendering (From Theory to
Implementation)

4. Akenine-Méller, Haines, Hoffman: Real-Time Rendering (4th edition)

5. Tekla Téth, lvan Eichhardt, Gabor Valasek: BSc Computer Graphics Lecture slides
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Human vision - Motivation

Motivation

Computer Graphics: physics simulation based on some postulates/assumptions.
How do we represent our virtual world (scene)?

What algorithms do we use to render the images?

It depends on how we perceive the real world in the first place

Sensors and psychological factors

vVvYvyVvyVvyy

Generate real looking images. They must look real to us.
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Human vision - Motivation

Motivation — fun facts!

>
>
>
>
>
>
>
>
>
>
>

Your eyes focus on 50 different objects every second.

The only organ more complex than the eye is the brain.

Your eyes can distinguish approximately 10 million different colors.

It is impossible to sneeze with your eyes open.

80 percent of all learning comes through the eyes.

Your eyes can detect a candle flame 2.7km away.

Your iris (the colored part of your eye) has 256 unique characteristics; your fingerprint has just 40.

Only % of your eyeball is visible.

The average person blinks 12 times a minute (bet you just blinked!).

The shark cornea is nearly identical to the human cornea, and has even been used in human eye surgery!

Your eye is the fastest contracting muscle in the body, contracting in less than ﬁ of a second.

1

'Source: https://versanthealth.com/blog/15-facts-about-all-things-eyes/
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Human vision - Motivation
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Human vision - Motivation

Cydonia (1997
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Human vision - Eye Anatomy

Human Eye
Eye Anatomy
1. Cornea refracts light conkncia *—\""
= strong gathering lens A \,

_~macula

Iris limits (filters) light intensity

Lens focuses light ray onto the retina
= adjustable lens

i ; el . o
Retina contains the receptors (rods & cones) \ “i""/

conjunctiva —" optic nerve

Optic nerve encode and transmit data to brain

sclera—/ J
optic disc
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Human vision - Eye Anatomy

Near vs Farsightedness

(nearsightedness)
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Human vision - Eye Anatomy

Lens

. ) ) PINK FLOYD
> Light coming from close objects need more

refraction

» Refraction depends on the wavelength of
the light (color)

» Muscles have to adjust the shape of the
lens to correct

> A red room feels smaller than a blue room
because the eye has to focus closer in a

red room
DARK SIDE OF THE MOON
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Human vision - Eye Anatomy

Photoreceptors — Cones

Invaginations of
cell membranes
that form a stacks of
membranous disks %,
where photopigments }, &
existas transmembraney. .

=
proteins -

Outer segment

- Connecting cilium

Inner segment

» Color perception Mitochondria-*

> 3 types, SIM:L = 1:4:8 j__\ | —

» High accuracy at

e
Nucleus [

» Central fovea 150000/ mm?
» 6-7 million (ﬂ

Synaptic terminal

that forms a synapse ;

with a neuron "~ L\
ﬁ/“/

Cone cell

8
[]
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Human vision - Receptors

Photoreceptors — Rods

Membrane
shelves
. . . lined with Quter a
» Light intensity fhodopsin segmen
.. . pigment —
» More sensitive to light =
» No color information o -
> Lower accuracy segment
» Peripheral vision
> Slower reaction Outer limiting
e membrane
| 90-120lﬂ”h0n Nucleus

Synaptic
body
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Human vision - Receptors

180000
160000
E
420 nm 498 nm 534nm 564 nm
Green  Red E 140000
Blue cones Rods cones _cones [
100 o, o
A » 120000
s
< o
g g 100000
E 50 Y
P e . o 80 000 Rode™
‘z§ ."-,..Medmm Long 'g 60 000
., 5
4c|>o séo I eéo I 7(I)0 40000 § Foveq Blind spot
Violet Blue Cyan Green - Red
Wavelength (nm) 20000 Cones
—
0

-60° -40° -20° 0° 20° 40° 60° 80°
Angle from fovea
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Human vision - Receptors

Photoreceptors — normal vision vs color blind
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Human vision - Receptors

Blind spot — experiment

Look at the X with your right eye while having your left one closed. How far back do you have
to sit to make the dot on the right disappear?
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Human vision - Receptors

Blind spot
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Human vision - Receptors

Signal frequenc

> A single photon can cause a signal that
lasts a few milliseconds Lot Fe

» Each of these are additive = average in
time = low pass filter
» Critical Flicker Frequency: lowest
frequency flicker seen as continuous
» Depends on several human and
environmental factors
> About 60Hz

» However, we can detect 500Hz
anomalies!
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Human vision - Receptors

Signal compression

» 120 million rods, 6 million cones = 1 million nerves
» Different channels:

> A =M + L achromatic channel (R + G) intensity
» R/G = M - L red minus green red-green
> B/Y =S - A blue minus achromatic blue-yellow

» Neurons connect to multiple photoreceptors

» JPEG compression does a similar transform!
Source: MIT
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https://news.mit.edu/2013/making-connections-in-the-eye-0807

Human vision - Receptors

Signal compression

On center cell Off center cell
» Neurons connect to multiple photoreceptors e
only
» Two types of neurons: On-center and Off-center

» On-center neuron:
» High positive weight on middle photoreceptors e @

> Small negative weight on the rest (sum is not zero)
» Enhanced resolution around edges = Edge detection

@

Gell does not fre Cellires rapidly
» Off-center neuron is opposite —
center or
> Similar to edge detection: suround g @
—_— 1 —_— 1 —_— 1 0 — 1 0 Cell does not fire Cell does not fire
Light on
-1/8|-1] |-1]4]-1 :zg:;}:::" @
~1|-1]-1] [o[-1|0 7/
Weak response Weak response
Common Laplacian edge detection filters (low frequency firing) (low lrequencyﬁring)t
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Computer Colors - Table of contents

Computer Colors

@ Perception-based
o sRGB

V¥ Computer Colors
@ Color spaces
o RGB
o XYZ
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Computer Colors - Reminder

Reminder: Cone light absorption

420 nm 498 nm 534 nm 564 nm
Green Red
Blue cones Rods cones cones
100 -
[]
o
c
©
£
o
17}
Q
c 50 -
o
Q
N
©
£ 3
o %, Medium \Long
z .
0 1 T 1 1 LN I I R R B B B I I R B O R DR R R N DL N R |
400 500 600 700
Violet Blue Cyan Green - Red

Wavelength (nm)
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Computer Colors - Color spaces

CIE: Commission internationale de I'éclairage
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Computer Colors - RGB

CIE RGB color space

» Not the same as receptor

R e el R TR T A e absorption!
r() 3 » Reflectors had specific
0.3 gQ)
: B wavelengths, but each cone has
0.2 3 an absorption spectrum
0.1¢ E
0.0CE ]

400 500 A 600 700 800
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Computer Colors - RGB

CIE RGB color space

» Not the same as receptor

R e el R TR T A e absorption!
r() 3 » Reflectors had specific
0.3 gQ)
: By ] wavelengths, but each cone has
0.2 3 an absorption spectrum
0.1¢ E
0.0CE ]

400 500 A 600 700 800
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Computer Colors - RGB

Spectrum — RGB

Given S(A) spectrum for a light, we can calculate the RGBs as inner products:

+oo

R= [ S(\)-7(N\)dA
/
+o0o

G= [ S(\)-g(\)dx
/

+oo
B= [ S(\)-b(N\)dA
/
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https://en.wikipedia.org/wiki/Inner_product_space

Computer Colors - RGB

RGB — XYZ

Another CIE color space: XYZ
> Average observer light intensity —
» RGB has negative weights
» RGB — XYZ has to be linear
» Equal intensity point has to be (%, %, %)

X L |t bz bis| R . 0.49000 0.31000 0.20000| | R
Y = bor by bos| |G = 17607 0.17697 0.81240 0.01063| |G
Z 2L 1 by, b3y bss| | B : 0.00000 0.01000 0.99000| | B
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RGB — XYZ

Computer Colors - XYZ

0AGTTyTTrTITITTY AL L UL TIAR EEELTILLEE IRRF
Q)
g —— 7@ 7
: —b® 3
0.2¢ 3
0.1 3
0.0¢
—0,15...!.”......| AN P PR .|.j
400 500 A 600 700 800

Figure: RGB

— W)

400 500 600 700
A/nm

Figure: XYZ
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Computer Colors - XYZ

Color spaces

R — 217
» RBG and XYZ are not practical for creative work ol

v

Changing the color slightly can be difficult o
» What colors are similar?
» MacAdam ellipses
> Participants recorded when two colors appear
different
> Similar colors appear as ellipses
> If MacAdam ellipses are circles
= Uniform color space

» If linear changes in color space appear linear
= Linear color space 0 o
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Computer Colors - Perception-based

sRGB

» HP and Microsoft created the standard for monitors, printers, and internet

» Linear transformation from XYZ
» Non-linear Gamma correction
» for each channel

12.92Cinear, Clinear < 0.0031308
C(srgb = 1/2.4 a = 0.055
(1+a)CL2% — a4, Chinear > 0.0031308
Riinear 3.2406 —1.5372 —0.4986| |X
Glinear | = |—0.9689  1.8758 0.0415 Y
Blinear 0.0557 —0.2040 1.0570 Z
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Computer Colors - sRGB

sRGB — XYZ

» Since sRGB is non-linear, vector operations are not allowed
> because energy is non-linear too!

> Image processing usually requires linear space
» Data is often stored in sSRGB

» Conversion:

f5r312)7 Csrgb§0-04045 X 0.4124 0.3576 0.1805 Riinear
Clinear = § [ 4a) 24 Y| =102126 0.7152 0.0722| |Giinear
(W) » Cargp > 0.04045 Z 0.0193 0.1192  0.9505| | Biinear
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Physics of Light - Table of contents

¥ Physics of Light

@ Motivation

@ Properties of light
Speed of light
Light as a wave
Blackbody radiation
Photoelectric effect
Relativity
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Physics of Light - Motivation

Motivation

traditional shader content pbr shader content
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Physics of Light - Motivation

Motivation

>
>
| 4
| 4
>

Goal: simulate how light behaves to render realistic images

Build a mathematical model, create data structures, and algorithms
We must understand how light behaves

Capture core properties and disregard the rest

42
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Physics of Light - Properties of light

r

wave crest

W

amplitude
)Fi
2
]
|

wave trough

\ frequency

N= C/Y
/ \

wavelength speed of light
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Physics of Lig -

ht as a wave — wave properties

Properties of light

» Waves can do:
> 10%
Reflection
Refraction
Diffraction
Interference
Polarization
Dispersion

y rays

1
10716

vVvyvVvYvYyyYy

380
<

>
> Longitudinal and transverse
> Electromagnetic wave

» Propagation speed

Absorption o

I
107

450 .

1020

|
1012

< Increasing Frequency (v)

"I,m I?m 1?14 "I,u ”I)m Ilnx ]Pf. ]Ioa llﬂz ]Po V(M)
Xrays | UV IR Microwave [FM[  |AM| Long radio waves
Radio waves
1 I ol 1 1 ! ‘ 1 I I
10710 Nl 107 1072 10° 10 10" 10° 10 2 (m)

107%
L.

e T Increasing Wavelength (1) —

Visible spectrum RRE T

495
750

G &

Y3

08

R
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Physics of Lig - Properties of light

ht as a wave — monochromatic waves

< Increasing Frequency (v)

1&)2‘ 1?22 19” “I)AS ul)ll) 10 “I]x: l?“’ lIUx le lloa lI(,z IPO v (Ho)

> Frequency y rays Xrays | UV R Microwave [FM[  |AM] Long radio waves
> color, speed / wavelength T S i e
i i i 07 10 1072 100 10 ) ot 10 1072 10° 10 10* 10° 108 % (m)
> Amphtude (IntenSIty) . T ”\‘“”—\;,\\_lncreasingWavelengm(h)—)

. . . Visibl trw
» Direction of propagation : e spectrum :
E R

G B|Y&

380
<
450

» Polarization
» Phase (relative)
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Physics of Light - Properties of light

What is lig

» Electromagnetic wave

> Wave in electric field induces wave in magnetic field and vice versa because of the Maxwell
equations

» Transverse wave (not longitudinal)

» Polarization: direction of displacement of the Electric field

Electromagnetic Wave

Propagation
Electric Direction ’r
Field (E) /

Magnetic
Field (B}
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Physics of Light - Properties of light

Electromagnetic spectrum

Energy increases

Short wavelength Long wavelength

10 nm 103 nm 1nm 103nm 10° nm Tm 10°m
1 1 1 1 L L

Gamma rays Xrays Ultraviolet Infrared Microwaves Radio waves
T

T T T T T
10"?Hz 10"°Hz 10%Hz 10°Hz 10%Hz 102Hz
Low frequency

T T T
10%Hz  10%2Hz 10®Hz 10'®Hz 10'°Hz
High frequency

Visible light

7 X 10" Hz 4% 10"Hz
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Physics of Light - Speed of light

Speed of lig

vwvyy

v

Speed of light in vacuum: ¢ = 299792458 m/s
Low Earth Orbit (LEO) ~ 7 km/s (0.002%c)
Parker Solar Probe (PSP) ~ 200 km/s (0.064%c)

Defines the speed of every reaction (also the speed
of time...)
The definition of 1 meter:

» The length of the path travelled by light in a

. 1
vacuum in sgg=ssrm=e of a second.
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Physics of Light - Speed of light

Roemer: lo's Shadow on Jupiter

@ilpner
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Physics of Light -

Measurements of the speed of light

Speed of light

Date Author Method Result (km/s) | Ervor
1676 |Olaus Roemer Jupiter's satellites 214.000

1726 |James Bradley Stellar aberration 301.000

1849 |Armand Fizeau Toothed wheel 315.000

1862 |Leon Foucault Rotating mirror 298.000 +-500
1879 |Albert Michelson Rotating mirror 299910 +-50
1907 |Rosa, Dorsay Electromagnetic constants 209,788 +-30
1926 [Albert Michelson Rotating mirror 299.796 +-4
1947 |Essen, Gorden-Smith Cavity resonator 209,792 +-3
1958 |K. D. Froome Radio interferometer 209.792.5 +-0.1
1973 |Evanson et al Lasers 200.792.4574  |+-0.001
1983 Adopted value 209.792.458
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Physics of Light - Light as a wave

Diffraction
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Physics of Light - Light as a wave

Constructive Interference
occurs where wave crests meet
Destructive Interference
occurs where wave crest
and trough meet
-

-~
-
e i d

with
2 holes

Interference

HHHEHHHEHH]

(
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Physics of Light - Light as a wave

Reflection

incident reflected
wave wave

v, =v—2n-(n,v)

Householder transformation in linear algebra.
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Physics of Light - Light as a wave

Refraction

» Snell's law: .
sinfy  vi  ne

sin (92 () niy

» The refracted ray can be calculated as follows:

where n = 2. See refract in GLSL.
> Index Of Reflection (IOR)

» function of wavelength!

n, index
v, velocity

normal
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https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/refract.xhtml

Physics of Light - Light as a wave

Refraction and mirage

This side
hits first

Deep Water | Shallow Water
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Physics of Light - Light as a wave

Dispersion

» Abbe number:

Vp = np —1

ng — ne

» np, np and ne are the refractive indices of the material at the wavelengths of the
Fraunhofer C', Dy, and F spectral lines (656.3 nm, 589.3 nm, and 486.1 nm respectively)

» Problem in cameras

» Chromatic aberration

Longitudinal Chromatic
Aberration (LoCA) Focal plane
Transverse Chromatic (sensor)
Aberration (TCA) !
Blue Green Red \' ! I
Parallellight [\ focal, focal, focal 1 A oH
rays P 2 3 A X
i
: 4 =
i R
e = | Optical Axes
Optical Axes i 7
|
i 1
i
! I
< i |
I 1
............ !
i
Fl()gzlng‘l:il;g R T Off-axis subject Jiecoior=p————
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Physics of Light - Light as a wave

Dispersion

Refraction > PINK FLOYD
Sunlight //\ )
/Reﬂection

<

/ N :
RefraCtlon - : = = DARK SIDE OF THE MOON
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Physics of Light - Light as a wave

Polarization
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Light as a wave

Physics of Light -

Doppler Shift

4 L A VAVAVE b

Source moving TOWARD observer
‘Wavelength decreasing,
Frequency increasing,

Observer experiendng BLUE shift.

moving

Source moving AWAY from observer \ .'\ source ,". ;"I stationary
Wavelength increasing, A /
Frequency decreasing, \\‘ \ / / observer
Observer experiendng RED shift. \ ‘\\____ ,/ // v=0
o ) /
~— -

@

CG Lecture 2022
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Physics of Light -

Light as a wave

Doppler Shift — measuring astronomical distances

> \We can measure speed accurately
» How do we measure distance? = Parallax
» Standard candle = magnitude — distance

Distant [
stars

stellar parallax

January view July view

_ 1
diparsecs) = plarcseconds)

January

Extragalactic Distance Ladder
The Hubble Constant J
T [

SNIa

Local Group and
HST Cepheids

Local Group
RR Lyrac

Globular Cluster
RR Lyrac

Statistical F
> = Cluster Cepheids
Globular Cluster || RR i
Statistical BW
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Physics of Light as a wave

Background radiation

» Measure Hubble-s constant = Size of the universe

» CMB (cosmic microwave background) = Big Bang
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Blackbody radiation

radiation

Some important questions:
» Why does lava glow?
» Why is it red?

» What glows in blue?

2hv3 1
B, (v, T) = 2 /KT _ |
5 .44
_2WET 1 ol
15 2h3 7 T
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Spectral radiance (kW - sr=1 - m-2 . nm-1)

14

12

10

Physics of Light -

radiation

UV VISIBLE

5000 K
™\

/

1§ WA
2 \\\
[

\

3000 K

INFRARED

Classical theory (5000 K)

\g

05

T
1

15 2 25 3
Wavelength (um)
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Physics of Light - Blackbody radiation

Atmosphere

§ D,0 H,0
£
> Atmosphere blocks some of the blackbody 2
radiation coming from the sun =
> Each element has an absorption spectrum AN Z
1000 2000 3000 4000

Solar Radiation Spectrum Wavenumber, cm”

WV | Visible | Infrared —»

1
|, Sunlight at Top of the Atmosphere

I = Unseen planet

5250°C Blackbody Spectrum
Radiation at Sea Level

Absorption Bands

Spectral Irradiance (W/m2/nm)

H,0

500 750 1000 1250 1500 1750 2000 2250 2500

Wavelength (nm) Doppler Shift
due to Stellar Wobble
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Physics of Light - Photoelectric effect

Helios

> Subtracting the elements of the atmosphere, the spectrum of the sun is still not the
blackbody spectrum, because each element in the sun radiates in different spectrums

» Helium was discovered in the sun's spectrum and named after it
> From a single dot in the sky corresponding to a binary star we can tell their mass from

doppler shift and orbital mechanics, and each of their composition from the spectrum
The Solar Chromosphere Spectrum ( Flash Spectrum )

Emission spectra comparison

Hydrogen

Helium
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Physics of Light - Photoelectric effect

Planck’'s law (1900

» Blackbody radiation curves are really weird

UV VISIBLE INFRARED > Even though their formu|a was We” knOWn, it was
lacking explanation until Max Planck.

N
IS
1

He quantized the amount of possible energy transfer
in 1900 which explained the formula.

Classical theory (5000 K)

» The Planck constant is the smallest possible energy
value for a given frequency:

\\
/

-
v

Spectral radiance (kW - sr=1 - m-2 . nm-1)
@
I

. ] 20 h = 6.62607015 x 10°J - s
///30%\\\

——
T T

0 0‘I5 1‘ 15 2 25 3 E - hf
Wavelength (um) 2h 2 1
C
BA\(\,T) = R T —
eAkBT -1
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Physics of Light - Photoelectric effect

Photoelectric effect

» Shining light on a metal plate can decouple electrons from the metal
> Higher frequency radiation has more energy, so it moves more electrons

> Photoelectric effect is that even high intensity but low frequency light does not generate
electric charge in the metal plate

» This cannot be explained by the classical waveform of light

I|I ~10/

A eU/ev

N

s

[N

B
.

f/101“Hz
g G0 0 ©
-2 - (]
3 -7 ° ° © ©
_ 7

4] -

~-4,3
-5 E - hf
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Physics of Light - Photoelectric effect

Photoelectric effect

» Only large enough frequency produces current
> The effect is instantaneous

» Current is proportional to intensity

packet with

Particle-wave duality

Low frequency = more wave like
High frequency = particle like

Photon is the electromagnetic particle with E = hf energy.
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Physics of Light - Photoelectric effect

Photoelectric effect

Only large enough frequency produces current
The effect is instantaneous

Current is proportional to intensity

Red light in photographic darkrooms

Ultraviolet light causes sunburn

vVvYVvyVvyVvyy

Photons of different energies trigger different chemical
reactions in retina cells

Particle-wave duality

Low frequency = more wave like
High frequency = particle like

Photon is the electromagnetic particle with E = hf energy.
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Physics of Light - Photoelectric effect

Michelson — Morle

> But if light is a wave, what does it propagate in? — Aether?
» The Michelson and Morley experiment:

» Due the rotation of Earth around the sun and its axis we should be moving at a large speed
relative to the cosmic Aether.

Luminiferous aether
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Physics of Light - Photoelectric effect

Michelson — Morle

> But if light is a wave, what does it propagate in? — Aether?

» The Michelson and Morley experiment:
» Due the rotation of Earth around the sun and its axis we should be moving at a large speed
relative to the cosmic Aether.
» The light travelling in different direction and speed should destructively interfere with each
other. They did not, and thus making the experiment the most famous null result.

mirror Luminiferous aether

coherent mirror
light

source

semi-silvered
mirror

detector
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Physics of Light - Relativity

Special relativit

Derived from two postulates
1. The laws of physics are invariant in all inertial frames of reference
2. The speed of light in a vacuum is the same for all observers
It solves:
» Michelson - Morley null result
> Inconsistency of Newtonian mechanics and Maxwell's equations

Accurate if gravitation is negligible

CG Lecture 2022
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Physics of Light - Relativity

General relativit

Derived from three postulates
1. The laws of physics are invariant in all inertial frames of reference
2. Acceleration cannot be distinguished from gravity
3. The speed of light in a vacuum is the same for all observers

It solves EVERYTHING?!

2Except quantum stuff and climate change.
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Physics of Light - Gravitational waves

Ripples in Spacetime

The Gravitational Wave Spectrum

Quantum fluctuations in early universe

Binary Supermassive Black
Holes in galactic nuclei
—

> Matter affects the shape of the

1%]
[}
1 Compact Bi i
spacetime ’:5‘ U
(=]
1 1 v Compact objects
» Spacetime drives how mass can gl P
Supermassive Black Supernovae
move Holes
wave period 5% of b
H universe years hours sec ms
> Spacetime wanna be flat 3

. . toalfr iy . - “ X o - - o
» = Gravitational waves Ll R B

» = Similar to Michelson - Morley
experiment

Cosmic microwave Pulsar Timing Space Terrestrial
background Interferometers  interferometers

polarization

Detectors
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Physics of Light - Gravitational waves

Ripples in Spacetime

Hanford, Washington (H1) Livingston, Louisiana (L1)

— Llobserved
H1observed (shifted, inverted)
T T

> Matter affects the shape of the

Strain (10?%)
-
o

spacetime o

. . 0.0
» Spacetime drives how mass can 05 ]
move *1-01* Recoovind e T::zzz;z;z:?;::m. ' [

e Reconstructed (template) e Reconstructed (template)

» Spacetime wanna be flat ggwmwwwmwm
-0.5 1l

= Gravitational waves et || S=rm '

v

» = Similar to Michelson — Morley
experiment

Frequency (Hz)

2
g 2
3
65
kel
4 X
T
2 g
3
o

0.30
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It took - long enough

Thank you for your attention!
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Area on a sphere - Functions on the unit sphere

Area on sphere (from theory to practice
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Area on a sphere - Functions on the unit sphere

Area on sphere

Let us denote the unit sphere with
Si={peR’ : [jpl=1}.

How do we measure the area of a set D C S?
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Area on a sphere - Functions on the unit sphere

Area on sphere
Let us denote the unit sphere with

S:={peR’: |pla=1}.
How do we measure the area of a set D C S?

We denote the characteristic function as Xp : S — {0, 1}, such that

o= {0 190 wes
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Area on a sphere - Functions on the unit sphere

Area on sphere
Let us denote the unit sphere with

S:={peR’: |pla=1}.
How do we measure the area of a set D C S?

We denote the characteristic function as Xp : S — {0, 1}, such that

o= {0 190 wes

/XD _ S/Xp(w)dw— 27

S

The area of the D is
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Area on a sphere - Functions on the unit sphere

Represent surface area as a volume using ratios!
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Area on a sphere - Spherical coordinates

Spherical to Cartesian coordinate system |
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Area on a sphere - Spherical coordinates

Spherical to Cartesian coordinate system |l

[ T(p,0,7) = (r cos(p) sin(6), rsin(sp) sin(0), 7 cos(0)) |

» Homework: |det T'(p,0,7)| = r?sin(6)

» We could use this transformation to calculate the surface area of D, but how?
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Area on a sphere - Spherical coordinates

Spherical to Cartesian coordinate system |l

[ T(p,0,7) = (r cos(p) sin(6), rsin(sp) sin(0), 7 cos(0)) |

v

Homework: |det T (¢, 0,7)| = r?sin()
We could use this transformation to calculate the surface area of D, but how?

v

v

Let us calculate the volume from D to the origin, a cone-like shape.

The area A of D can be calculated from the ratio of volume relative to the volume of the
unit ball (so r = 1):

v

v

ArPr =3V
%7“377

A=
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Area on a sphere - Spherical coordinates

Homework
r cos sin f ! —rsinpsin® rcospcosl cospsinld
det T'(p,0,r) = det | rsinpsinf | =det| rcospsind rsinpcosf sinpsinf| =
rcosf 0 —rsinf cos 6

—sinpsinf cospcost cospsinb
=r2det | cospsinf sinpcosf sinpsinf| =

0 —sin @ cos 0

=r?. (sin9 sin@ - det [_ sy 008 ﬂ + cosf(sinf cos h) - det [_ S o8 ﬂ > =
cosp  sing cosp  sing

—sing cosp

= r2sinf (sin2 0 + cos> 9) -det [ .
cosp  sinp

} = —r?sinf
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Area on a sphere - Integrating functions

Generalize to functions

Let us generalize Xp to functions like f : [0,27) x [0,7) — R that operate in spherical
coordinates.

» Let us create an F : R? — R function that takes values from this domain:

F<$7yaz) = f([T_l(x,y, Z)]LQ)

» So we evaluate f after transforming back to spherical coordinates without the radius

» Now, the volume can be expressed as:

V= / F(x,y,z)dxdydz
unit ball

» Remember integration by substitution? (Change of Variables Theorem)
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Area on a sphere - Integral transform theorem

Integral transform theorem

Assume that U C R isanopenset, T: U — R", and f € R" — R. If

Then
/f(’v) dv = /f(T(u)) |det T (u)| du .

T(U) U
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Area on a sphere - Integral transform theorem

Integral transform theorem

Assume that U C R isanopenset, T: U — R", and f € R" — R. If

Then
/f(’v) dv = /f(T(u)) |det T (u)| du .

T(U) U

» The transformed set is T'(U) = {T(u) : uw € U}.
» T'(u) € R™ " is the Jacobian matrix of the transformation at u € R".

» The |det T"(u)| € R is by how much a unit volume is stretched.

Csaba Balint (ELTE IK) Rendering Equation CG Lecture 2022 10 / 27



Area on a sphere - Integral transform theorem

Integral transform theorem

Assume that U C R isanopenset, T: U — R", and f € R" — R. If

» T :U — R" is injective and continuously differentiable function such that
VueU : detT'(u) #0.

» The function f : T(U) — R is continuous and has a compact support.
Then

/f(’v) dv = /f(T(u)) |det T'(u)| du .
U

T(U)

» The transformed set is T(U) = {T(u) : uw € U}.
» T'(u) € R™ "™ is the Jacobian matrix of the transformation at u € R".

» The |det T"(u)| € R is by how much a unit volume is stretched.
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Area on a sphere - Integral transform theorem

Integral transform theorem — applied

Let
U:=(0,2m) x (0,m) x (0,1) CR",
and
T(gp,0,r) := (rcos(p)sin(f), rsin(p) sin(f), rcos(h)) ,
then

TU) = {(fUayaZ) €R? ‘ 22 +y2 + 22 < 1} = open unit ball.

Check theorem requirements!
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Area on a sphere - Integral transform theorem

Transforming the integral

Remember that f : [0,27) x [0,7] — R, then F(z,y,2) := f([T"*(z,9, 2)]1.2)-

V= / F(:E,y,z)dzndydz:/F(T(cp,@,r))-‘detT'(gp,G,r)‘ drdfde

unit ball U

» Where F(T((Pa Q,T)) = f([Til(T(va 9,7‘))]1’2) = f((pa 0)
> Note that | det 7"(¢, 9,7“)’ = 72 sin(f)

1
V= / r? -sin(0) - f(,0) drdﬁdtp—O/TQdT' / f(p,0)sin(6) d dp

[0,27] % [0,7] x[0,1] [0,27] x[0,7]

Csaba Balint (ELTE IK) Rendering Equation CG Lecture 2022
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Area on a sphere - Integral transform theorem

The new measure
1
» Since Ofr2 dr = %

A=3V = / f(p,0)sin(0)dode
[0,27] % [0,7]
» For a range of directions we often write w = (¢, 6) instead of the pair of angles.

» However, the meaning of dw is different now:

| dw = sin(6) do g |

» Ultimately, we can express integrals over a range of directions as

[ flw)dw
D
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Area on a sphere - Integral transform theorem

Another explanation
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Visibility - of a differential surface

Visibility of a differential surface
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Visibility - of a differential surface

Visibility of a differential surface

The solid angle at which the surface point @ with surface normal n and differential area dA is

visible from the origin is:

cos O, Al = (n,x)

= dA
r? ek

w =

This means we can transform an arbitrary surface integral onto a sphere, and vice versa.
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Luminance - Flux

Phase space flux

Csaba Balint (ELTE IK) Rendering Equation CG Lecture 2022 17 / 27



Luminance - Flux

Phase space flux

Spectral flux is the light energy emitted per unit time and wavelength by given surface point

aQQaw(w7t7 )\) agQ($7t7)‘)
) = =
ri() DO DT OLON

v

that describes light energy density with respect to time and wavelength

v

Qoz(x,t) is the light energy emitted at a given position and time towards dx direction

v

A is the wavelength of the light emitted

v

Spectral because of the 9\, otherwise radial flux
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Luminance - Radiance

Radiance or Luminance
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Luminance - Radiance

Radiance or Luminance

Radiance or Luminance is the flux emitted by a unit area of the surface under unit solid angle

d’®, ,
L =
(@, w) dw dA cos 6,

> @) 4(x) is the spectral flux
» dAcos0, is the area we project the flux to

» First quantity that makes physical and mathematical sense by itself
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Luminance - Fundamental Law of Photometry

Fundamental Law of Photometr
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Luminance - Fundamental Law of Photometry

Fundamental Law of Photometr

Definition of luminance: )
d*®y

Lx t(m w) = dwdAcosb,

Visibility of the other differential area from in a solid angle: (see Frame 16)

/
dew — cos@n aa’
72

implies
7"2 . d2(b)\’t

L — — L / /
ri(@;e0) dA’ cos 6!, - dAcos by, (@ W)

Rendering Equation CG Lecture 2022
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Luminance - Fundamental Law of Photometry

Fundamental Law of Photometr

Definition of luminance:

d’®y,
L At
il w) = dw dA cos 6,

Visibility of the other differential area from in a solid angle: (see Frame 16)

/

du — 08 Hn aa’
72
implies
7"2 . d2(b)\’t

Lyi(z,w) = = Ly(z',w')

dA’ cos ), - dAcos by,

Transmitted radiance (or luminance) from A to B is the same as from B to A!

CG Lecture 2022
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Light—Surface interaction - Reflectance probability

ht—Surface interaction
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Light—Surface interaction - Reflectance probability

ht—Surface interaction

Reflectance probability density function

wy \(w', @, w) = Pr{photon hits w + dw solid angle | coming from w’} € [0,1]

v

Probability of a photon going towards w and its w vicinity if it comes from w’ direction.

v

The distribution depends on the material properties at position x

» Energy conservation: [w) (w', ¢, w)dw <1
S

v

However, this is possible: [w) (', 2, w)dw’ > 1
S
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Light—Surface interaction - Reflectance probability

Reflected Flux

T—w em / W =z /
QY =D —I—/wt,,\(w , T, w) - PP dw

S
» Total light coming from the surface is the emitted light plus the total reflected light.
> OFVY = Lia(x,w)dAcosfdw
> O = L (x, w) dAcos 0 dw
g ‘I"t’fﬁﬂ =Lip(V(z,-w'),w’) dAcos 0 dw’
» The function V(z, —w') € R3 is the visibility function, it queries the closest point

towards —w’ from point .
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Light—Surface interaction - Rendering Equation

Rendering Equation

we (W, x, w)

Lix(z,w) = LY (z,w) + /LM(V(a:, ~w'),w') - -cos @' dw’

S

cos

The Bidirectional Reflectance Distribution Function is the following

/
we (W', T, w
frt,A(w',m,w) — M

cosf

The rendering equation can be summarized as

Lix(z,w) = LY (z,w) + /Lt7>\(V(m, —w'),w') - fr (W 2, w) - cosd do’
S
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Light—Surface interaction - Rendering Equation

Rendering Equation

v

Recursive integral equation
L=L"4+71L

v

Very hard to solve

v

Algorithms provide approximate solution

v

Error? Convergence? Artifacts?

To be continued...
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Rendering equation revised - Reflectance probability density function

Reflectance probability density function
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Rendering equation revised - Reflectance probability density function

Reflectance probability density function

Reflectance probability density function

wy \(w', @, w) = Pr{photon hits w + dw solid angle | coming from w’} € [0,1]

v

Probability of a photon going towards w and its w vicinity if it comes from w’ direction

v

The distribution depends on the material properties at position x

» Energy conservation: [w) (w', ¢, w)dw <1
S

v

However, this is possible: [w) (', 2, w)dw’ > 1
S
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Rendering equation revised - Rendering equation

From flux to rendering equation

/
PENY = DY + /wt)\(w’, x,w) - PP du’
S

» Total light coming from the surface is the emitted light plus the total reflected light.
» Visibility function V(z, —w’) € R?: queries the closest point towards —w’ from point x.

» Divide the equation by dA cosf dw to get the rendering equation

wy (W, T, w
t,/\( s by ) 'COSHIdw/

Lix(@,w) = L (@, w) + / Lor(V(@, —o'), ) -
S

cos
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Bidirectional Reflectance Distribution Function - Definition and modelling

The Bidirectional Reflectance Distribution Function

wt,)\(wlv T, w) wt,)x(w

/ L _
frip ('@, w) = cos 6 N (n,w)

The BRDF is an input function to the rendering equation solver engine that describes
materials properties

v

» x characterizes the position on the surface with surface normal n.

v

a will tell us which object is  on, and where are we on it (texture fetch).

w,w’ directions describe a direction of a possible bounce of photons

v

v

T“ o
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Bidirectional Reflectance Distribution Function - Definition and modelling
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Bidirectional Reflectance Distribution Function - Definition and modelling

Modelling BRDF

{ Ray intersection )
Y
Formula for @
»\material family
A
BRDF parameters

We can measure the BRDF as a function of ©,0, ¢, 6/, A
Memory issues: 100x100x100x100x10 data points.

Isotopic material: invariant under rotating both w and w’ around surface normal n

v

v

v

v

Anisotopic material: CD, polished metal
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Bidirectional Reflectance Distribution Function - Definition and modelling

Gonioreflectometer

Detector

Measured BRDF
Optical (scaled by cubic root function)

Source
i encoder

Off-axis encoder gears

Stepper
motors

Sample holder and turntable

7 -

\ White paint 7 Blue paint /
Large ring bearing

7 ;
,///:’/ -
P17 e
{fi 7

Commercial aluminum Blue plastic
Figure 8: Measured BRDF for four isotropic materials.

Figure 8 taken from “A Framework for Realistic Image Synthesis” by Greenberg, et. al. (Cornell)
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Bidirectional Reflectance Distribution Function - Definition and modelling

Properties of BRDF

L. Positive: f, (W', z,w) >0

2. Symmetric — Helmholtz law: f;, , (W', x,w) = fr, , (w, T, ')
3. Energy conservation: |a(w,x) <1

Albedo: Probability of a photon being reflected (to anywhere)

a(w,x) ::/w,\t(w,m,w')dw’:/th’A(w,a:,w’) cos 0 dw’
S S

» Symmetry implies that viewed from w direction a homogeneous skylight with radiance of 1
will produce a(w, x) radiance along the ray.

> a(x,w) =7l = [ f, (W, x,w)cosd dw'’
S
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Bidirectional Reflectance Distribution Function - Diffuse surface — Lambert’s law

Diffuse reflectance

» Material is opaque, i.e. fr, ((go,ﬁ),a:, (ga’,@’)) =0if (9 — %) . (9’ — g) <0
» Reflected radiance is invariant on viewing angle w

» Helmholtz law implies that it is invariant on illumination angle w’

» Thus, it is a constant: | f., , (w,z,w') = ka(A) |if (6 —F)-(0/=F) >0

1. Positive: 0 < kg(X)
2. Symmetric

3. Energy conservation:

kq(\) cosOsinfdedf < 1

O —
oy

a(w, ) = [ fr,,(w,z,w")cos dw' =
S
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Bidirectional Reflectance Distribution Function - Diffuse surface — Lambert’s law

Diffuse energy conservation

ety 5 H

3
2
a(w,w):/frt’k(w,a:,w’)cosﬂldw’ = // kq(X\) cosOsinfdedl =
0
S 0

21 g ™
1 ™
= /kd()\) dcp-/cos@sin@d@ = 27kq(N) - [2 SiHQ(H)] _
0 0 0
= wha(A) < 1
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Bidirectional Reflectance Distribution Function -

Lambertian reflectance

Diffuse surface — Lambert's law

th,A ((90,9),:1:, (‘70/,9/)) _ { kd()\) If (

specular diffuse

1. Positive: 0 < kg(X)
2. Symmetric

3. Energy conservation: kg(\) <

3=

Csaba Balint (ELTE IK)
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Phong model

Specular reflectance -

(v —1,)
(n, 1)

Mirror
Froal,v) = ke (N) -

15 / 45

CG Lecture 2022

¥
.
BRDF

2
[
]
»
Il
»
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Specular reflectance - Phong model

Reflect — Householder transformation

cosa = —(v,n) v, =v+2cosa-n

cos(a)v

cos(a)v
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Froa(l,v) = ke(A)-, (v, 1=2(n, )n)"
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Specular reflectance - Phong model
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Specular reflectance - Phong model

The Phong model

» Produces specular highlights
» Very fast to compute

» Asymmetric :(

Ambient + Diffuse + Specular = Phong Reflection
v@
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Specular reflectance - Blinn-Phong model

Blinn-Phong

u+ v
Tu+ ol

_ w+Hl
» Where h = T+l
> Very fast
» Symmetric

Csaba Balint (ELTE IK) BRDF
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Specular reflectance - Blinn-P

vs Blinn-Phong
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Fresnel refraction - Refraction and IOR

Refraction — Snell-Descartes law

plane of incidence: plane of incoming ray, outgoing ray, and normal

| |
| 'l
Critical angle Total Irpt_ernal
| reflection
n2 I I
| |
| |
I
I
nl [
I
i
Water i
I

‘ng sin(f2) = nq sin(61) ‘
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Fresnel refraction - Refraction and IOR

IOR: Index of Reflection

v

Speed of the light relative to vacuum

> 1, magnetic permeability: how hard is it to magnetize the material

> ¢ electric permeability: how hard is it to charge it with electrons

> 0= % electric conductivity is the reciprocal of electrical resistivity: large for conductors
» Metals produce complex numbers. The nominator is the wave impedance.

> Zy ~ 1207 Q is the wave impedance of the vacuum

» )\ is the wavelength of the light
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Fresnel refraction - Fresnel equations and approximation

Fresnel reflection

s-polarized: wave in the electric field is paralell with the plane of incidence
p-polarized is the perpendicular component
At high incidence angles, the s-polarized light is reflected more

vV vV v VY

Polarized sunglasses reduce glare
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Fresnel refraction - Fresnel equations and approximation

Fresnel equations

N9 cos 0; — nq cos O, N9 cos 0; — nq cos 6;

Rsz

p =

ng cos B; + ny cos O, ng cos 0y + ny cos b;

» Each polarized component of the light is reduced according R, and R, factors.
» Conservation of energy means R? + Rf, <1
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Fresnel refraction -

Metals and Non-metals

v

v

v

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Iy is the reflected light at 0 incident angle.
Non-metals typically range between 2%-5% gray.
Metals reflect 50%-100% of light in various colours.

Fresnel equations and approximation

0

' ' ' : ' ' ' ' Material Fy (Linear) | Fy (sRGB) | Color
Water 0.02,0.02,0.02 | 0.15,0.15,0.15 | | AN NI
Plastic / Glass (Low) | 0.03,0.03,0.03 | 0.21,0.21,0.21 | [ N NN
Plastic High 0.05,0.05,0.05 | 0.24,0.24,0.24 | [ RN
Glass (High) / Ruby | 0.08,0.08,0.08 | 0.31,0.31,0.31 | [ N NN
Diamond 0.17,0.17,0.17 | 0.45,0.45,0.45 | [N
Iron 0.56,0.57,0.58 | 0.77,0.78,0.78 | [ ]
Copper 0.95,0.64,0.54 | 0.98,0.82,0.76 | [ ]
Gold 1.00,0.71,0.29 | 1.00,0.86,0.57 | [ |
020 g 0 % 0] Aluminum 0.91,0.92,0.92 | 0.96,0.96,0.97 | [ ]
| = copper == aluminum — iron — diamond — glass — water || Silver 0.95,0.93,0.88 | 0.98,0.97,095 [ ]
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Fresnel refraction - Fresnel equations and approximation

Schlick's approximation

. . R2+R2
» For natural unpolarized light Ry ~ 2

» Incorporate it into Blinn-Phong as a multipier for specular highlight:

» Schlick simplified and approximated this with

2
ny —n2 Nn\o
> Fyo= (A2 F=Fy+(1-F)(1-(nuw
i () o+ (1= Fo) (1 - (n,)
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Cook-Torrance model - Roughness models

Cook-Torrance model 1983

v

Physically based: the surface is modelled as perfectly reflecting microfacets

v

Distribution of microfacets is given (roughness)

v

Calculates masking and self-shadowing effects between microfacets

v

Inputs are physical properties of the material, can be measured (unlike the specular power)

specula diffuse o -
\ . lof £ Normal of microfacet
ormal of face

Vector to eye
Vector to light
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Cook-Torrance model - Roughness models

Demo: generated random microfacet surface with ray intersections

W i
‘f‘y‘/{»’p Jrl L‘

Csaba Balint (ELTE IK) CG Lecture 2022 32 /45



Cook-Torrance model - Roughness models

Demo: reflected rays from surface with 0.05 normal variance
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Cook-Torrance model - Roughness models

Demo: reflected rays from surface with 0.15 normal variance
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Roughness models

Demo: reflected rays from surface with 0.40 normal variance

Cook-Torrance model -

35 / 45

CG Lecture 2022
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Cook-Torrance model - Roughness models

Demo: resulting BRDF
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Cook-Torrance model - Roughness models

Bisector angle h
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Cook-Torrance model - Roughness models

Roughness models

Microgeometry density from a given angle is modelled with a distribution.
Dy, (k) "counts" the microfacets that would reflect I to v.
1 2
1. Blinn: Guassian distribution D,,,(h) = — - (h,n) oz 2
m?
1 (h,n)2-1

1 i 1 - - = . pm2(hn)?
2. Backman distribution: D,,(h) T e

> h is the viewing angle for which D,,,(h) returns the relative microfacet density.
» D,,(h) is normally evaluated at h = ”lljis’h angular bisector

» The roughness parameter m is the root mean square — quadratic mean of the slope of the
microfacets
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Cook-Torrance model - Roughness models

Blinn Phong vs Backman

Blinn-Phong distribution (blue) and Backman distribution (purple) for roughness values of
0.2-0.5 (right) and 0.6-1.0 (left).
e
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Cook-Torrance model - Roughness models

Properties of D,, and the result of varying roug

ook-Torrance Cook-Torrance Cook-Terrance Cook-Teorrance
alpha 0.1 alpha 0.2 alpha 0.3 alpha 0.4
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Cook-Torrance model - Geometric Attenuation Factor

Cook-Torrance model

Fy(h)-G(n,v,l)- Dy, (h)

th,A(l’U) = <TL ’U>
* * 0 *) Q =
F (e7:\a D) 1/(pi*(n.v)) lcookTorrance
*( — »
E 3
- g
texture diffuse  lcooktorrance Final
_ v+l
» Where h = ”'U‘HHQ

» D,,(h) is the microfacet density towards h’. F)(h) is the Fresnel reflectance ratio.
» G(n,v,l) Geometric attenuation factor: self shadowing and masking

@®
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Cook-Torrance model - Geometric Attenuation Factor

Geometric Attenuation Factor

Lo Unblocked

e

f’ :"‘ Shadowing

2(h,n)(v,n 2(h,n){l,n
Gunblocked = 17 Gmask - %, GShadow - %
blocked
G=1- = mi Gun oceaGmasszaow
Facel min{ Gunblocked k> Gshadow }
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Cook-Torrance model - Geometric Attenuation Factor

Limitations

J

Csaba Balint (ELTE IK) BRDF CG Lecture 2022 43 / 45



Cook-Torrance model - Geometric Attenuation Factor

Code for Fresnel

19 cos B; — nq cos 0, 19 cos 0y — ny cosb;

RS: Rp:

ng cos B; + ny cos b, ng cos 0y + ny cos b;

float Fresnel(vec3 v, vec3 n)

vec3 t = normalize(refract(v, n, nl/n2));

float ci = max(dot(v,n),0.), ct= max(-dot(t,n),@.);

float Rs = (nl*ci-n2*ct)/(nl*ci+n2*ct); Rs *= Rs;

float Rp = (nl*ct-n2%ci)/(nl*ct+n2*ci); Rp *= Rp;

return ©.45%8.5%(Rp+Rs )+0.55%sqrt(8.5%(Rs*Rs+Rp*Rp)); //approx

}

vec3 radiance

(
vec3 n, // normal
vec3 1, // direction from x point to light
vec3 v // direction from x point to view
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Cook-Torrance model - Geometric Attenuation Factor

Code for Radiance

{

float m = sin(iTime)*8.5+40.5; //between @ and 1

vec3 h = normalize( 1 + v ); // half vector

float hn = max(dot(h, n), ©.9), vn = max(dot(v, n), ©.9);
float 1n = max(dot(1l, n), ©8.8), vh = max(dot(v, h), ©.9);

// Geometric Attenutation Factor
float G = min( min( 2.*hn*vn/vh, 2.*hn*1n/vh ), 1.0 );

// Microfacet density, normal distribution

float hn2 = hn*hn, m2= m*m; //tan(acos(hn)) optimized away l)(ﬂl OQ =
)

float D = exp((hn2-1.)/(hn2*m2)) / (m2*hn2*hn2*pi);

float R_spec = Fresnel(l, n); //Fresnel reflectance ratio
//float R_spec = RB_spec + (1.-R@_spec)*pow(1l.-1n,5.); //Schlick approx

[/ Cook-Torrance BRDF
vec3 brdf_spec = vec3(R_spec * D * G / (vn*¥ln));

// Lambertian BRDF
vec3 brdf_diff = k_d * ( 1.8 - R_spec );

// Punctual Light Source
return ( brdf_spec + brdf_diff )* light_int * 1n:

_ tan2 @
e m2
mm?2 cos? v

@®

Csaba Balint (ELTE IK) BRDF CG Lecture 2022 45 / 45



Csaba Balint

first name  family name

csabix@inf.elte.hu

Edtvés Lorand University,
Faculty of Informatics

Computer Graphics Lecture
Budapest 2022


mailto:csabix@inf.elte.hu

Table of Contents

¥V Rendering Equation

¥V Towards Radiosity
@ Integral transformation
@ Geometric term
@ Form factor

¥V Radiosity equation
@ Most important assumption
@ Discrete form
@ Numerical Performance

Csaba Balint (ELTE IK) Radiosity CG Lecture 2022 2 /13



Rendering Equation

v

Rendering Equation - Recap

Lix(z,w) = LY (z,w) + /Lt,\(V(cc, —w'), ') - fr (W 2, w) - cos 0 dw’
S

L \(z,w) is the radiance from a point on a surface x in a given direction w, at time ¢ in
wavelength A.

¢ (2, w) is the emitted radiance from x to w.
JLia(V(z,—w'), &) - fr,, (@', @, w) - cos#'dw’ Radiance contribution from all of the
S

other surfaces in the scene
Ly (V(:L', —w’),w’) incoming radiance — recursion
V(x, —w') =: &' closest object in direction —w’

frox (@', @, w) Bidirectional Reflectance Distribution Function, w’ = (¢', ¢").
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Towards Radiosity - Integral transformation

Remember: visibility of a differential surface

Csaba Balint (ELTE IK) Radiosity CG Lecture 2022 4 /13



Towards Radiosity - Integral transformation

the visibility function

Given that: (without proof)

Let F': I x I, — R? be a regular surface with normal mp(w) such that the
Vi (u,v) = [T (F(u,v))]12 €90 (u€ v e )

function is bijective. Let f : I; x Iy — R be a continuous function. Then

/ FV(w))dw = / flew ||F)>||§w)> dw

I x Iy
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Towards Radiosity - Integral transformation

the visibility function

Given that: (without proof)

Let F': I x I, — R? be a regular surface with normal mp(w) such that the
Vi (u,v) = [T (F(u,v))]12 €90 (u€ v e )

function is bijective. Let f : I; x Iy — R be a continuous function. Then

L (w) Fw))
/f )d /f TFaw ¢

I x Iy

In the rendering equation we have

/Ltv)\(V(:c,—w’),w’) ~frt’A(w’,az,w) ccosf dw' =
S
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Towards Radiosity - Integral transformation

Transforming the integral

/Ltv,\(V(m,w’),w/) ~frt’A(w',m,w) ccosf dw' =

S
Integrate on the visible surfaces instead of the sphere using the transformation
' =V(z,—w) o =T (z —x)]10.

(n,' —x)(n',x —x')
B /Lt’A(wl""’)'frt,x(w'aw,w)' |z — ||* da’ =

V(x,S)

Notice that V(x,S) C X, where X C R3 the set of all surfaces.

(n, ' —x)(n',x —x')

= /f’/‘t,A (wla a:,w) ' Lt,)\(wl7wl) ’ XV(%S) (m/) ' Ha:/ — £L'||4 da’
X
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Towards Radiosity - Geometric term

Geometric term and visibility function

= /fn,)\ (wla ac,w) ’ Lt,)\(x,7wl) ’ ‘)(V(%S) (x/) ' ‘ / da’ =
X

> (x,2') = Xy(g5)() is the visibility function between two points.

’_ I ool i . . .
» Gz, ') = (nz ”;f)f’;"‘ff ') describes the geometric relationship between x and z'.

» Symmetric function (fundamental law of photometry).

-
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Towards Radiosity - Form factor

Form factor (view factor

= /frt,k(w', z,w) - Liy(z, ) - XV(%S)(:B/) -Gz, x')dx’
X F(x,x')
» The geometric term multiplied by visibility is the form factor F(x,z').

> Also a symmetric function.
» Only depends on @, z’, and not on w. (Note that w’ is the direction of ' — x.)
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Radiosity equation - Most important assumption

Radiosity equation

Lia(z,w) = L{Y (z, w) + /frt,A(w’,:c,w) Liy(z,2) - F(z,2') de’
X

What do we want?
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Radiosity equation - Most important assumption

Radiosity equation

Lia(z,w) = L{Y (z, w) + /frt,A(w’,:c,w) Liy(z,2) - F(z,2') de’
X

What do we want? Precalculate the integral for all z € X.
What's the problem?
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Radiosity equation - Most important assumption

Radiosity equation

Lia(z,w) = L{Y (z, w) + /frt,A(w’,:c,w) Liy(z,2) - F(z,2') de’
X

What do we want? Precalculate the integral for all z € X.
What's the problem? Integral depends on w € S viewing angle.
What do we do?
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Radiosity equation - Most important assumption

Radiosity equation

Lia(z,w) = L{Y (z, w) + /frt,A(w’,:c,w) Liy(z,2) - F(z,2') de’
X

What do we want? Precalculate the integral for all z € X.
What's the problem? Integral depends on w € S viewing angle.
What do we do? Assume it does not.

What does that mean?
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Radiosity equation - Most important assumption

Radiosity equation

Lia(z,w) = L{Y (z, w) + /frt,A(w’,:c,w) Liy(z,2) - F(z,2') de’
X

What do we want? Precalculate the integral for all z € X.
What's the problem? Integral depends on w € S viewing angle.
What do we do? Assume it does not.

What does that mean? Diffuse BRDF

Lia(z,w) = L{ (x, w) + kq(z) - /Lt)\(a:, z')  F(zx,z')dz’
X
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Radiosity equation - Discrete form

Discretisation

Lt,/\(w7w) - gs\l(w,w) + kd(w) : /Lt,A<$7 wl) : F(.’B,CC/> da’
X

Discretize X into n patches over which the radiances are constant: X = O X;.
i=1
» F(xz,2') = F;; € [0,+00) (x € X;) discretized form factors
» L (z,w) = E; € [0,+00) (z € X;) emitted radiance
» ka(z) =p; €[0,1) (z € X;) is the reflectivity of the patch
» Liy(x,w)=1L; €0,+00) (x € X;) thisis the unknown radiance
This leads to the discrete radiosity equation

n
L; = E; +piZFi,j - Lj
i=1
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Radiosity equation - Discrete form

Discrete Radiosity Equation

n
Li=Ei+p» Fij Lj=
j=1

In matrix form:

(I-p-F) L=F

l—p1-F1 —p1-Fi2 ... —p1-Fip Ly Eq
—p2-For 1 —pa-Foy ... —pa-Io, Loy - Es
—pn - Fn1 —pn-Fna .. 1 —pn-Fop Ly, En

What can we see in this matrix?
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Radiosity equation - Discrete form

Jacobi method

Since the diagonal part was I, the Jacobi iteration becomes

LED —E 4 p, . F. LW

l
1
\
\

£==
il
N
\lﬂ\

[ ]
[ 1

But does it converge?
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Radiosity equation - Numerical Performance

Convergence condition

If I — pF is strictly diagonally dominant, so when

n n
11— piFl| > Z lpiFij] = 1 >Pi'ZFij
J=1,i#j j=1

Using that all values are positive. Moreover,

> > 7_1 Fij <1 because the ratio of visible surfaces cannot exceed 1 together.

» p; < 1 due to energy conservation discussed earlier.
™

Hence, the spectral radius is max; | ;| < % so we can bound the convergence error with

LW — |l < 1.47-0.32% - |LV —LO|.  (keN)
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Motivation - Raycast

Motivation: Raycast

» Simulate light rays — can only simulate

finite amount T

» How to choose from a continuum set of

rays? I I

> How to increase performance and quality? (

E-g.: choose the red ray: direct lighting lL 1 - /‘ p
» Need all other directions too = kl V

v

oy
A
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Motivation - Raycast

Motivation: Direct Illlumination
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Recursive ray tracing - Monte Carlo

Monte Carlo ray tracing

See supplemental material
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https://drive.google.com/file/d/1bw9v5TkuUBZypy0VKiAxesknLaQCslGO/view?usp=sharing

Recursive ray tracing - Ray tracing

Random sample directions - one bounce
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Recursive ray tracing - Ray tracing

Ray trace recursivel
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Direct lig

1 path
per pixel

4 paths
per pixel

Without explicit
light sampling

Csaba Balint (ELTE IK)

Recursive ray tracing - Ray tracing

With explicit
light sampling

Global lllumination
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Recursive ray tracing - Ray tracing

BRDF variance impact on performance

Diffuse 10 path per pixel Glossy 10 path per pixel Glossy 100 path per pixel

@®
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Recursive ray tracing - Ray tracing

» What happens if we use a fixed random sequence?

» Structured error is worse than random noise.

10 samples from fixed list 10 random samples
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Path tracing - Rendering equation

Rendering equation

Lix(z,w) = LY (z,w) + /Lt,/\ (V(z, —w'), ') fr, (W, 2, w) cos 0’ du’
K
Let 2’ = V(z, —w') and fp (@', w) = fr, , (@', z,w)cos @’ for brevity.

Liy(z,w) = Lia(x', ) fo (w w) dw’

)

?i\

Also, let Ly(w) = Ly y\(x,w).

Ly(w) =LY (w —i—/Lw/ ) fe (@', w) do'’
K
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Path tracing - Rendering equation

Recursion
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Path tracing - Rendering equation

Micimacké
SAFELY ENDANGERED SAFELY ENDANGERED
Szent habakuk SWEET JESVS, POOH!
Miclmacksll THAT'S NOT HONEY

UE

saety enoaneenco RS
. soéely cuomnaereo
Szent habakuk Il I
m 1 { SWEET Jesus, PooH)
Micimacks!! YOU'RE EATING I THAT'S NOT HONEY

Az nem méz, hanem
REKURZIO!! = RECURSION

YOU'RE EATING
RECURSION

Az nem méz, hanem
REKURZIO!!
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Path tracing - Rendering equation

Ly(w)=L" (w) + /Lm/ (W) fo (o w) do'’
K

Lop(w) =LY (w) + //Lm/ (W) fo (o', w)sin g’ dg’ dy’
0 0

Lem
://<277281n0’ ( /)foc (w’,w)> sin @’ do’ dy’
0 0

Ly(w) = / (Lgm(w) + Lo (@) fr, (W', 2, w) cos 0’) dw'’
K

272 sin 0/
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Path tracing - Rendering equation

Recursion

Ly(w) =LY (w) + /Lw/ (W) fo (W' w) dw’

K

Lo(w) = K/ (L%’"(w) + Lo (@) fa (w’,w)) de’

272 sin 0/

— L;m(w) L;m (w/) 14 " !/ /! / /
Lm(w)—/ 2’/T2SH19,+/<27T28.H1(9”+Lw//(w )fw/ (w ,w) dw” fz (w,w) dw
K

K

w) = // . 2Lem +<L%"’(w) + Lo (@) far (w//’w/)> fa (@, w) dw” du’
i

sin ¢’ sin 6" 2m* sin 6"
K
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Path tracing - Path tracing

Path tracing

LE™(w Lem( ) § o / o
// 2772 51n9’s1n9”+<27f281n9” Lw"(w )ff”' (w """) fw(w,w)dw dw

Lem (i—1)
/ / Z( ljr)l(]f[: 812190 Hf‘”m ( w!” 1)>
+ Ly (@ ( )Hf @) ( wl™ 1)) dw™D | dw’

LZ@ ) (w(i_l)) i n
nlggo/ / n o H] ZSIHQ(] wa(”( Y w(] 1)) dw( B ‘» /
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Path tracing - Path tracing

Path tracing

n Le'”:f w(i_l)
Lo(w) = nh—>120/ /Z Z( ler)l<1—[ 51) 0() wa(J) ( wl™ 1)> dw!™Y | de’

K K

Input: o € R3 > Surface position
Input: w[0] = (¢[0],0[0]) > Direction
Output: L :=[0,0,0] > linear RGB color value
factor :==[1,1,1] > BRDFs multiplied together
fori:=1...ndo

wli] := RandomDir() > Generate random direction vector

x; = RayTrace(x;—1,—w;) > Trace next position

L= W + factor - Emission(x;—1,w;_1) > Update summation

factor == factor - BRDF(w;, x;,w;_1) - cos(;) > Update product
end for (2
return L
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Path tracing - Path tracing

Path tracing with anti-aliasing
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Path tracing - Path tracing

ht sampling

Again, trace
shadow rays
from each
intersection

| >
-~ L@
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Further methods -
Further methods

See supplemental presentation
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OpencL 4.4 pipeline overview

https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview

OpenGL shaders

* Vertex shader

* Tessellation control shader

* Tessellation evaluation shader
* Geometry shader

* Fragment shader

Three optimization opportunities:

* Paralellisation (vertex, fregment, ect.) = Work item, work group, stb. = GPGPU
* Pipeline = data streams

* Memory waits spent computing = GPGPU

Computer Graphics Lecture — Csaba Bélint


https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Vertex_Shader
https://www.khronos.org/opengl/wiki/Tessellation_Control_Shader
https://www.khronos.org/opengl/wiki/Tessellation#Tessellation_control_shader
https://www.khronos.org/opengl/wiki/Geometry_Shader
https://www.khronos.org/opengl/wiki/Fragment_Shader
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OpencL 4.4 pipeline overview
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Part Il:

OpenGL%”
Objects

Texturing

Fragment Pixel
%

parameter data i
{10t ARB functionally yet) | Framebuffer |

glBegin, glDrawElements, atc. ‘ — i

MMMII..l?

lnaﬁmi |
glDrawPixels, glTeximage2D, elc.

gReacPixeks, [IRNDIR

LB

pixsl data

Computer Graphics Lecture — Csaba Balint



VAO — Vertex Array Object

* Draw commands: gl [Multi]Draw{Arrays, *Elements} [Instanced] *

*Draw command = Uses active VAO = VAO defines how the GPU
reads the geometry from the VBO (late

r)
* Array of AttribArray-s. A single AttribArra-

e Active or inactive

* If inactive, constant value at every location (glVertexAttrib)
* If active, points to a memory location (type, size, offset, ect)
* Reads new pointer after each Vertex, unless set otherwise

VAO does not hold geometric information, it only holds the layout.
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Setting up VAO — old method_geermy

Creation of VAO: glGenVertexArrays (1, &vaoid);

Binding the context: glBindVertexArray (vaoid)

Setting VBO ptr to VAO: glBindBuffer (GL ARRAY BUFFER, vboid);
Activation: glEnableVertexAttribArray(idx);

Setting layout & type:  glVertexAttribPointer*(idx, <type, size>);

Repeat 3-5 for every attribute.

Setting up Index buffer : glBindBuffer (GL._ELEMENT ARRAY BUFFER);
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OpenGL 4.3

Setting up VAO- ,new”method

1. glGenVertexArrays, glBindVertexArray
Separate memory & geometry structure:

2. Setting up Buffer Binding Point: How big is the data,
How to read the raw buffer? andis itinterleaveds

* glBindVertexBuffer (bindingindex, buffer, offset, stride)

* glVertexBindingDivisor (bindingindex, divisor)
Where does

3. Setting up Vertex Attribute Format:
How to interpret the fetched data?

* glVertexAttribFormat (attribindex, size, type, normalized,
Where does the relativeoffset) Which buffer holds
geometry start? that attribute?

4. Binding the two: glvertexAttribBinding (attribindex, bindingindex)

it start?
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Drawing commands: gl*Draw¥*

Optimizing memory access:
* *Elements*: Usage of index buffer (*Arrays* otherwise).

* *Range*: The range of the indices are given so the driver can optimize.
Paralellisation of Drawing:

e *Multi*: Iterate through draw calls efficiently.

* *Instancing¥*: Draw same geometry multiple times.

Omitting the GPU = CPU = GPU turnaround:

* *TransformFeedback*: Send geometry back to be drawn ,again”
e *Indirect*: Read draw parameters from buffer

**gl{Begin,End}ConditionalRender*: Rendering object based on
condition evaluated on the GPU (Occlusion queries)
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https://www.khronos.org/opengl/wiki/Query_Object#Occlusion_queries

OpenGL objects : Name

*Type: Gluint. glGen*, glCreate*, glDelete¥*.
* Zero is the default value. If glGen* returns 0 = Error

* Each context has its own namespace
(until they are connected: context sharing).

* Typical usage of OpenGL objects:

1. Generate name (declare GLuint, glGen*, glCreate®)
Activate resource glBind*
Call functions & use implicitly = Internal state changes
Deactivate resource (by binding another or 0)
Delete resource (glDelete*)

kW
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OpenGL objects : Binding

*Binding = Coupling to active context
* If coupling is to another object, it is called attachment!

1. First parameter is the target. If no index parameter present, only a single
resource can be attached to that point.

2. Optional parameter: index can have multiple resources at the same target with
different indices. (Multibind)

3. Second or third parameter is the object’s name to be binded.
*Sometimes there are more parameters

* OpenGL can only free up a resource if nothing points to it anymore
= Including attachments! = Deletion orphaning
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OpenGL Buffers

* OpenGL Objects
* glGenBuffers (1, ébufferName)
*» glBindBuffer (GLenum target, GLuint bufferName)

* Unformatted continuous memory
* OpenGL context allocates it (on the GPU).
* Examples:

* Vertex data (VBO = GI._ ARRAY BUFFER, index buffer = GL. ELEMENT ARRAY BUFFER)
* Arrays for in shader use(UBO, SSBO)

* Counters (atomic counter), Queries (GL_QUERRY BUFFER, eg. runtime)
* Transform feedback buffer, indirect buffer

* Special textures: texture-, pixel unpack-, pixel pack buffer.
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FROM APPLICATION FROM APPLICATION
v v

] —’{ Vertex Puller —l L Dispatch Indirect Buffer H Dispatch

[ Draw Indirect Buffer l | Vertex Shader |4' :
c— - * I Image Load/Store ] <

I Vertex Buffer Object ] | Tessellation Control Shader Iq. 7
+ ! Atomic Counter ’.I

I Element Array Buffer

A 4

Compute Shader

L Tessellation Primitive Gen.J [ Shader Storage ]

| Tessellation Eval. Shader |4'

Gi try Shad
| i I‘ Texture Fetch

v v —
l Transform Feedback Buffer 1'4—1 Transform Feedback [ Uniform Block 1
v

| Rasterization |

v

| Fragment Shader |4- FROM A:LICATION
* | Pixel Assembly

Pixel Unpack Buffer ]

| Per-Fragment Operations | *

* __,_.I Pixel Operations H Texture Image j

Framebuffer *
I—W Pixel Pack Buffer :]




OpenGL Buffer types

Mutable Storage
¢ Can be allocated any number of times

¢ glBufferData (target, size,
data, usage)

¢ Allocates AND uploads!
* GL_{STATIC, DYNAMIC, STREAM}
* _{DRAW, READ, COPY}

* Hard to read and write data from CPU

* Cannot map memory persistently

* Cacheing can be difficult for the driver

* Inneficient synchronization

OpenGL 4.4
Immutable Storage

* Allocate once

®glBufferStorage (target, size, data,
flags)

* GL_MAP {READ, WRITE} BIT

¢ GL_DYNAMIC_ STORAGE_BIT

¢ GL_{COHERENT, PERSISTENT} BIT
+ GL_CLIENT_ STORAGE_BIT

 All ,server-side” operations are allowed:
* Pipeline can write to it
 Clearable and invalidatable
* Copy to another
* glGetBufferSubData = odd one out
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OpenGL Buffer operations

*Clear: glClearBuffer[Sub]Data m
* Overwrite: glBufferSubData (does not allocate) often slow
* Read: glGetBufferSubData

*Copy: GL_COPY READ BUFFER = GL_COPY WRITE BUFFER
glCopyBufferSubData

* Mapping: glMapBuffer [Range] returns a readable/writable ptr.

* glUnmapBuffer ends operation and flushes updates.

* If GL_MAP PERSISTENT BIT is not set, then memory locked when not mapped.
* Flush early by using glFlushMappedBufferRange.

* Can be much faster than glBufferSubData.
OpenGL 1.9!
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A Taste of Types
TN CON ECR R

Integers GLbyte GLshort GLint GLint64
Naturals GLubyte GLushort GLuint GLuint64
Floating point GLhalf GLfloat GLdouble

Other types: GLboolean, GLfixed, GLbitfield, GLenum, GLsizei, GLclampf, GLintptr, GLsizeiptr, GLclampd.
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Part Ill;

Textures and
Framebuffers
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Anatomy of a Texture!

Texture Storage

Sampling

Parameters

Texture
Parameters

Texture Object

FrameBuffer Object (FBO)

s

=

~

Texture Image

4 GL COLOR ATTACHMENTO

GL_COLOR_ATTACHMENT1

Renderbuffer Object

(N

GL_COLOR_ATTACHMENTn

Renderbuffer
Image

b

A

GL_DEPTH_ATTACHMENT

4

A

GL_STENCIL_ATTACHMENT
_4




_

Not specified but expected
most hardware

Texture

Sampler

OpenGL 4.4 Texture Pipeline

LoD not provided

coordinate
wrapping
(8.14.2)

gather

Lo
calculation
(8.14.1)

integer texcoord

100 bias and
amping
(8.14.1)

Texture Level

Texture
Completness
(8.17)

SRGB Texture

conversion

(8.23)

Minification
(8.12)

(11.1.3.2)

Inage Sample

Expand to RGBA
(8.4.4.3)

Incomplete
Texture Sample

[
Texture Cache
L —

Fetches

Depth
Comparison
(8.22.1)

Magnification
(8.15)

swizzle
(15.2.1)

Mipsapping
(8.14.3)

Gather

Anisotropic
Samples

Anisotropic
Resolution

Not part of the core
specifications. GL EXT
texture filter anisotropi




OpenGL Textures

* OpenGL Objects

* glGenTextures (1, &textureName)

¢ glBindTexture (GLenum target,
GLuint textureName)

* Fast arrays of data with specified
pixel formats

* OpenGL context allocates (on the
GPU)

Texture type

GL_TEXTURE_1D
GL_TEXTURE_2D
GL_TEXTURE_3D
GL_TEXTURE_1D_ARRAY
GL_TEXTURE_2D_ARRAY
GL_TEXTURE_CUBE_MAP
GL_TEXTURE_CUBE_MAP_ARRAY
GL_TEXTURE_RECTANGLE
GL_TEXTURE_BUFFER
GL_TEXTURE_2D_MULTISAMPLE

GL_TEXTURE_2D_MULTISAMPLE_ARRAY
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Anatomy of a Texture

Texture Storage

Sampling Texture
Parameters Parameters

ipmaps "% eces amensionaity
Yes 1D
Yes 2D
Yes 3D
Yes Yes 1D
Yes Yes 2D
Yes Yes 2D
Yes Yes Yes 2D
2D
1D
2D
Yes 2D



Texture usage

GPU (GLSL) CPU (C++)

uniform sampler2d mytex; glActiveTexture (GL_TEXTUREQO +
//samplerID (int) ‘mSamplerlID);
//integers: 0-31

vecd col = texture (mytex,uv);

//read and interpolate glBindTexture (GL_TEXTURE 2D,

mTexName) ;
//mSampler points to mTexName

glUniformli (mLoc, mSamplerID);

//"mytex” uniform is mSampler
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Texture semantics

Image: a single {1,2,3}D array of pixels
Image format: type description how a single pixel is stored
- Sampler: stores sampling parameters for shaders to access a texture

Texture: Contains some number of images and a sampler
- same image format, but can have different sizes via mip-maps

Texture completeness
« Mipmap completeness: width/height/depth = floor (base level / 2%
- Cubemap completeness: square images only!
- Image format completeness: no interpolation for stencil textures
« Sampler objects and completeness: — Sampler object

Computer Graphics Lecture — Csaba Balint



// Create Texture2D:
glGenTextures (1, &mTexName) ;
ngindTexture(GL_TEXTURE_ZD, mTexName) ;

// Set the texture sampling parameters:

glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE_WRAP S, GL_REPEAT);

glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE_WRAP T, GL_REPEAT);

glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE_MAX FILTER, GL_LINEAR);
glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE_MIN FILTER, GL_LINEAR MIPMAP LINEAR);

// Allocate immutable storage:

glTexStorage2D (GL_TEXTURE 2D, levels, GL_RGB8, w, h);

// Write uninitialized memory. First mip-map layer:
glTexSubImage2D (GL _TEXTURE 2D, 0, 0, 0, w, h, GL RGB, GL_UNSIGNED_BYTE, data);

glGenerateMipmap (GL_TEXTURE 2D); //fill in the rest
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OpenGL Texture Storage

OpenGL 4.2

Mutable Storage Immutable Storage
¢ Can be allocated any number of times ¢ Allocate once!
e glTexImage{1l,2,3}D(...)

¢ Allocates AND uploads!

- Texture can easily be incomplete!

®*glTexStorage{l,2,3}D¢...
internalformat...)
- Base: GL_{RED ,RG[B[A]]}

+ Sized: Base{8,16[F],32F} [{_SNORM}, I, UI]
* Cacheing can be difficult for the driver « PI:GL RG16 SNORM

* Inneficient synchronization * All ,server-side” operations are allowed:
¢ Pipeline can write to it
* Clearable and copyable
* glTexSubImage{1l,23}D
¢ glClearTex[Sub] Image

* Hard to read and write data from CPU

Computer Graphics Lecture — Csaba Bélint



[Sized Internal Base Internal [Red [Green [Blue [Alpha [Shared P
Format Format Bits [Bits  [Bits [Bits  [Bits
8 32 f32
s8 32 f32 32
16 32 f32 32 f32
516 f11 f11 f10
8 8 9 9 °
s8 s8 is
16 16 -
uig
s16 | s16 =
i16
3 3 2
uil6
4 4 4
i32
5 5 5
s s s ui32
8 8 8 i B
10 [ 10 | 10 ulg | wig
12 12 12 i16 i16
16 16 16 uile uile
2 2 2 2 i32 i32
4 4 4 4 ui32 ui32
S S 5 1 i8 i8 i8
8 8 g g uig uig uig
ML 8 | R | & it6 | i16 | i16
Eil s i = uil6 uilé uilé
uil0 | wuil0 | uilo | ui2 - i .
i32 i32 i32
12 12 12 12 - - e
ui32 ui32 ui32
16 16 16 16
i8 i8 i8 i8
8 8 8
uig uig uig uig
8 8 8 8
16 i16 i16 i16 i16
16 f16 uilé uilé uile uilé
f16 | fie | fi6 32 | 32 i32 i32
f16 f16 f16 fi6 ui32 ui32 ui32 uiz2




Image Load/Store

e Allows direct access! GPU (GLSL):
o Nointerpolation layout (binding = 0)

® Read and write [coherent] [volatile] [restrict] [readonly, writeonly]

within shaders! uniform [iu]image{1l,2,3}D mylImage;

Image uniforms

vecd col = imageLoad (myImage, coords);
Atomic operations! imageStore (myImage, coords, col);
CPU (C++):

void glBindImageTexture (GLuint unit, GLuint texture,
GLint level, GLboolean layered, GLint layer,
GLenum access, GLenum format);



Texture View

o “Texel Data” is reference counted. = Simple to use!
e Texture Views are normal textures which point to existing data
e They can have different pixel format or layers (immutable)

To rest of
pipeline

Textur

Sampler
Parameters
(mutable)

if bound

Use sampler object

Hardware

Texture Object

New Texture Object

Sampler

Sampler

(mutable)

Created with TexStorage*()

Texture Lookup |

_Texture levels selected by view

Texel Data
(mutable, ref counted)

| i chain

with TextureView

(re;et to default)

Created with TextureView()
>

Texture levels selected by view

Use sampler object

Sampler
Parameters
(mutable)

if bound

=]
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Texture Lookup
Hardware

To rest of
pipeline



Texture View

void glTextureView (GLuint texture, GLenum target,
GLuint origtexture, GLenum internalformat, GLuint minlevel,

GLuint numlevels,

GLuint minlayer, GLuint numlayers);

Texture Object :
Sampler Sampler e 3 Sampler Sampler
Parameters Parameters 5 P Parameters Parameters
(mutable) (mutable) { a (reset to default) (mutable)
se sampler object se sampler object
if bound if bound
Created with TexStorage*() Created with TextureView()
S— Texel Data >
“ipeline | Texture Lookup (mutable, ref counted) Texture Lookup |Torest of
- pipeline
Hardware Texture levels sel d by view chain Hardware —>
— Texture levels selected by view
L—_ '3
—
Texturt with TextureView
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Framebuffer (FBO) semantics

- Renderbuffer: a single 2D image only needed during rendering to FBO
« Cannot read nor write to it from shaders.

- Attach: To connect one object to another (as opposed to binding).

- Attachment point: indexed location within the FBO where an image

Ca n b e a tta C h e d Texture Object FrameBuffer Object (FBO)

—{ GL_COLOR_ATTACHMENTO
Texture | 4
SRR GL_COLOR_ATTACHMENTI

- Framebuffer completeness: ‘
* Each texture must be complete and FBO compatible

* Draw buffer must be set correctly (61260 0R ATTACHVENTnL |

Renderbuffer Object

® Ect. Use glCheckFramebufferStatus

GL_DEPTH_ATTACHMENT

Renderbuffer | |
Image

GL_STENCIL_ATTACHMENT
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Framebuffer Object

glFramebufferTextureZD(GL_FRAMEBUFFER, GLenum attachment,
GLenum textarget, GLuint texture, GLint level);

¢ GL COLOR ATTACHMENTi, (i=0..8)
e GL_DEPTH_ ATTACHMENT,

¢ GL_STENCIL ATTACHMENT,

e GL_DEPTH_STENCIL ATTACHMENT

e Implicit synchronisation in pipeline. Simple and effective!
e Do not create feedback loops. Undefined behaviour!
e Connection between the FBO and texture images is like between VAO and VBO-s.
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More details

. https://www.khronos.org/opengl/wiki/Texture

. https://www.khronos.org/opengl/wiki/Sampler_Object

- https://www.khronos.org/opengl/wiki/Image Format

. https://www.khronos.org/opengl/wiki/Texture_Storage

. https://www.khronos.org/opengl/wiki/Image Load_Store
. https://www.khronos.org/opengl/wiki/Framebuffer_Object
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Part IV

transform

vemces feedback
Vertex Shader

transfcrmed
vertlces

Primitive/Patch

—_—
primitive/patch
conectivity

Assembly

primitives

transform
feedback

Geometry

Shader

primitives

haders

fragments

Fragment
Shader

shaded l
fragments
Raster
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Rasterization

pixels

atches
s Tessellation

Control

patches and
tessellation params
Tessellation
Primitive
Generation

vertices and uv
patch coordinates

Tessellation

Evaluation

screen




Vertex Shader

1:1 mapping of vertices or gl_VertexID to output
- Transformations should go here if further geometry operations are
invariant or unaffected by it

Examples
MVP, world, worldIT matrix multiplications
- Texture read to get geometry, eg. hightmap
Patch coefficient calculation for (eg.) tessellation
+ SSBO operations

- Additional clipping with gl_ClipDistance
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Geometry shader

- Per primitive create more
— Geometry generation
- 1:N (with predefined maximum)
- Much more sequential than other stages
- Less efficient but allows more
- Examples
+ Every tessellation can be done here
- For each triangle create an arrow with the
normal
- Shadow geometry generation -- shadow
volumes ! !
« Pointcloud visualization /f

shadowed scene wireframe shadow volumes
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Tessellation Control Shader

- TCS
- Runs for each vertex of the patch

« Outputs an array for the evaluation shader
* layout (vertices = patch_size) out;

- Defines the tessellation amount and shape

2%
iy

\
o
a4 “\
4
@i\

N
4
K]

if (gl _InvocationID ==0) {...}

¢ float gl_TessLevellnner[4], gl_TessLevelOuter[3]
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Tessellation Evaluation Shader

- TES

- Parametric evaluation
+ u,v (square) or
« u,v, w=1-u-v (triangle)
+ Very efficient
- The tessellation levels may vary dynamically

equal_spacing, ‘Subdivide 1.00

fractional even_spacing,

®
Subdivide 1.00

fractional odd spacing ® —e
- - Subdivide 2.00
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(0,1,0)
Triangle tessellation

OL-0, OoL-2

- gl TessCoord.xyz barycentric

coordinates, O<u,v,w<1, u+v+w=1 (0,0,1) oL-1 (1,0,0)

patch out float gl TessLevelOuter[3];

patch out float gl TessLevellnner([l];

Triangularization is up to vendor

OL416; ILS
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Quad tessellation

- gl TessCoord.xy normalized

patch coordinates in [0,1]?

patch out float gl TessLevelOuter([4];

patch out float gl TessLevellnner[2];

Triangularization is up to vendor
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(0,1) oL-3 (1,1)
IL-0

oL-0| |iL-1 IL-1| |oL-2
IL-0

(0,0 OoL-1 (1,0)

L 4 * L

[ ]

‘ I

[ ]

L L
OL 429 3; IL67



Isolines tessellation

- gl TessCoord.xy normalized

patch coordinates in [0,1]?

patch out float gl TessLevelOuter[2];

patch out float gl TessLevelInner[0];

Produces lines
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:+++_no edge for isolines | ----

Outer
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0
(0.0). —_—) (1,0)
Outer
Tess
Level
1
(0,1) (1,1)
:---[_no edge for isolines |- -.
: :
: :
(0,0) (1,0)



Fragment shader

Inputs:

in vecd4 gl _FragCoord; in bool gl FrontFacing; in vecZ gl_PointCoord;

in int gl_SampleID; in vec2 gl _SamplePosition; in int gl_SampleMaskIn|[];
in float gl _ClipDistance[]; in int gl PrimitiveID;

in int gl_Layer; in int gl _ViewportIndex;

. Color: layout (location = 3) out vec4 diffuseColor;

. Depthilayout (depth {any,greater, less,unchanged}) out float gl_FragDepth;
. SaﬂHﬂEZout int gl_SampleMask|[];
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References and recommended reading

e Real time rendering, 4th edition
e http://www.reedbeta.com/blog/understanding-bcn-texture-compression-formats/

e A QUiCk summary: http:/acko.net/files/altalks/pixelfactory/online.htm#0


https://www.amazon.com/Real-Time-Rendering-Fourth-Tomas-Akenine-M%C3%B6ller/dp/1138627003
http://www.reedbeta.com/blog/understanding-bcn-texture-compression-formats/
http://acko.net/files/gltalks/pixelfactory/online.html#0

Overview

Texture mapping

Texture filtering

Texture representations

Texture mapping techniques

3D Textures and procedural textures
Normal and bump mapping

Per pixel displacement mapping

Noas~wd-=



Texture mappings



Texturing pipeline
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Texturing pipeline

A brick wall
)
_— (x’yaz)
v >ﬂ object space
projector (-2.3,7.1,88.2)
function

(u,v) texture
parameter space ——3» image space
(0.32,0.29) corresponder (81 74)

function




Texturing pipeline

A brick wall
RO
I~ (x’yaz)
v >Q object space
projector (-2.3,7.1,88.2)
function

u

(u,v) texture
parameter space ——» image space —>» texel color
(0.32,0.29) corresponder (81 74) (0.9,0.8,0.7)

function




Texturing pipeline

A brick wall
eye
©)
E.g. has to know actual
texture dimensions to (x).2)
convert from I~ ‘x,y,..
normalized texture v >Q object space
coordinates to integer projector (-2.3,7.1,88.2)
texture coordinates. function e
u

texture
parameter space ——» image space —>» texel color
(0.32,0.29) corresponder (81 74) (0.9,0.8,0.7)

function




Texturing pipeline

®__

E.g. has to know actual
texture dimensions to

E.g. sRGB textures
need to be converted to
linear color space if
further computations
are to be done

convert from

normalized texture
coordinates to integer
texture coordinates.

proje

function

texture

ctor

brick wall

(x.y:2)

>a object space

u

parameter space ——» image space —>» texel color

(0.32,0.29) corresponder (81

function

74)

(23.71.852)

(0.9,0.8,0.7)




Texturing pipeline

object parameter texture transformed
space space space texture texture
location coordinates location value value
projector corresponder obtain
; - transform
function function(s) value .
function




Projector function

e Project the currently shaded world space position x € E? to normalized texture
coordinates (u,v) € [0,1]?
e Done either via
o Primitive projector functions: it is easy to derive the inverse of a planar, cylindrical or
spherical projection (actually, you’ve already done the grunt work for the latter during BSc and
you called it Cartesian to spherical conversion:
¢ = atan2(y, x) , @ = arccos &
All there’s left is to convert (¢, 8) € [0,27) x [0, 7] to0,1]: 2, 2)
o Unwrapping: artist provide (u,v) coordinates per vertex and we interpolate them for the
rasterized fragment (in perspectively correct way, if needed)



Two part mapping




Two part mapping

e Spheres and cylinders are rare.
e Tedious work to write down every texel coordinate

e Solution: introduce an intermediary surface
o Simple textured and parameterized intermediary surface
o O-mapping: Object point is mapped to a surface point on intermediary surface
o S-mapping: Surface points of the intermediary surface are mapped to texture space




Cylinder, Sphere, and Triangle (S-Mapping)




Projector functions: sphere

An origin centered sphere can be parametrized as

(2m, ) z cos ¢ - sinf
|:y:| =7-|sin¢-sinf
z

cos @

r=422+y2 +22

(0,0) ¢ = atan2(y, z)

0 = acosZ

You obtain normalized texture coordinates as

(u,0) = (2,2

2 W



Projector functions: cylinder

(2m, H)

¢ = atan2(y, z)
(0,0) h=z

You obtain normalized texture coordinates as

(u,0) = (2, L)



Projector functions: triangle

e Use 3 vertices and 3 corresponding UV coordinates: x; € E*,u; € R?
e Compute a 3x3 transformation mapping that maps the Euclidean space to the

texture space
Aol = [3] [%] [ %]

e |.e. you need to solve
e |If the points do not lie on a line, the solution is

s 3] 3] 2]

e = Screen-space interpolation without explicitly computing the matrix



Projector functions: O-map

Reflection vector: intersection between the reflected eye
ray and the proxy geometry that we use for texture
coordinate extraction

Object normal: intersection between the ray from the
shaded point towards the surface normal

Centroid: intersection between the line formed by the
object barycenter and the vertex and the simpler geometry
Proxy’s normal: above which point of the proxy is our
query point directly above?

\__/
/>>\
S A




Projector functions: two-part mapping - S-map

position

A -~

¢

-~
{

from centroid

reflection

position

e:’
/&

1

from centroid

reflection

position

plane sphere

surface normal surface normal

-

from centroid

(€
reflection

position

cylinder box

surface normal y & surface normal

k=

from centroid

reflection




Projector functions: two-part mapping - S-map

Plane Cylinder Sphere Cube
Reflected ray View dependent (environment mapping)
Object normal | Redundant | Low quality Adequate Adequate
Centroid Redundant | Low quality Good Good
Proxy’s Projector Shrinking Redundant Good
normal effect effect




Projector functions: unwrapping

e Bijection needed = problems:
o Distorted unwrapped geometry or
o Alot of cuts in unwrapped geometry
o Unused texture space
e Optimization problem
o  Still semi-automatic!




Corresponder function

e Convert continuous texture coordinates to texture space locations (i.e.
normalized texture coordinates)
e There are some ‘texture space’ funkiness, not even the handedness is the

same across APls: s
(1,1) (0,0)

A >

v OpenGL t DirectX

(1,1)



Corresponder function

e You can also use transformations on the incoming normalized texture

coordinates

e And determining how you compute a normalized texture coordinate from an
arbitrary continuous coordinate is also part of corresponders, i.e. addressing

(3,3) (3,3)
adadaas adadaas
| | o | |
aAdadaas il S
| | NMRARA IR
aAdadaa Adadaas
| | -/ v/

(0,0) (0,0)
mirror

Texture

(3,3)

Clamped texture appled to priritive

(0,0)
clamp

(3,3)

(0,0)

Texture with red border applied to prinitive

border


https://docs.microsoft.com/en-us/windows/uwp/graphics-concepts/texture-addressing-modes

Image texturing

e Given a normalized texture coordinate, query the texture to return a value

e Remove the abstraction of normalized coordinates: multiply (u,v) by width and
height

e Convert these to array indices
Remember: a face of the texture is a collection of discrete samples

e Here, we are given a continuous (*) coordinate tuple and in turn, we should
return a continuous texture function value for each input

e Inferring a continuous function from a discrete set of samples is often referred
to as filtering or reconstruction filtering in the literature

*: sans discretization due to floating point representations



Texture sampling



A must see presentation: hiip:/acko.netfiles/altalks/pixelfactory/online.htmi#0

Motivation

https://www.iquilezles.org/www/articles/filtering/filtering.htm



https://www.iquilezles.org/www/articles/filtering/filtering.htm
http://acko.net/files/gltalks/pixelfactory/online.html#0

Sampling problems

e Magnification problem
o Less than one texel per pixel
o Blocky

e Minification problem
o More than one texel per pixel
o Aliasing




Dimension-upscaled coordinates of samples

e Two conventions to convert dimension-upscaled texture coordinates to integer

array indices:
o  Truncating: now in both DX and OpenGL
o Rounding: used by DX previously

e By now, both DX and OpenGL uses the same convention (truncate) to convert
from upscaled texture space coordinates to integer indices

ITop—Ieﬁ comer = (0,0) in Texel Space, (0,0} in Space ] R
,-l ‘exel Space Coordinates
] H H H i s

“h=k
‘

‘1Imegra| Coordinate (Texel Space)

0 u < |
Normalized Coordinates | |Bo|lom-ngm comer = (5,5) in Texel Space, (1,1) in Normalized Space




Dimension-upscaled coordinates of samples

e The upscaled coordinates of texel (i, j) are (i+0.5, j+0.5)

e In turn, before normalization, if you want to access texel (i, j), regardless of
filtering, you have to sample using the normalized texture coordinates of

(i + 0.5)/w;

(j + 0.5)/H;

e Among other things, that’'s why power of two texture dimensions are useful:
so that you can exactly and efficiently represent the results of the division

e If you perturb your texture coordinates, you can use some types of
non-linearly weighted filterings with the GPU’s bilinear filtering acceleration;
knowing the above is useful for that

e (If you know what texel to fetch, just use a Load instruction - that’s faster)

ui

vi



Periodic band-limited signals

e The Whittaker—Shannon theorem states that band-limited periodic signals can
be exactly represented by a discrete set of samples given proper samples as

z(t)= 3 afn]sinc (‘ "T"T)

n=-—oo

AN

-‘1 0 1

https://www.desmos.com/calculator/gxocp9afaq



https://www.desmos.com/calculator/gxocp9afaq

Reconstruction filtering

e Sinc has infinite support: not feasible for arbitrary input
The simplest thing to do is to do nearest neighbor sampling
e Hardware also supports bilinear and trilinear interpolation (which are actually
2 and 3 dimensional tensor product linear interpolations)
Original Image Nearest Neighbor Bilinear Interpolation




Tensor product filtering

xjy+1)
®-

-4

+1)

(xy)=

(81,73)

(82,74)

1.0
.p,) I ‘
0.0

u’

0.0
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wy)=
(0.42,0.74)

C1y
001
Ca1
¢ C
10
c &
000 Coo 100

Cy

C

110



Simplex filtering

Wi=An A
Azvi=del(vi-v, Vv va-v)i2
Asrsdet(Vavs Vv, vavi 2

Trilinear Tetrahedral




Tensor product VS simplex interpolation

e In D dimensions
o Need 2"D samples for tensor product interpolation
o D+1 samples for simplex interpolation
e \What are the trade-offs?
o Have to manually interpolate and compute the barycentric weights
o  Certain continuity conditions may be more easily shown for tensor product constructs
o The precision itself is the same, at least upper bound-wise: according to Taylor’s theorem,
your error is roughly the same either way inside the convex hull of the closest samples:

[£x) = Y M) Ti(x) | < Y Mi(x) - [Ri(x
< max |R;(x)|
where
o,
Ti@= Y LG e

|
o<k %



Magnification

e \When a texel covers several pixels
e Hardware supports nearest neighbor and bilinear interpolation
e Sometimes you need cubic filters (basically: convolution, i.e. linear filtering)

o And there are some tricks to make it use GPU too:

https://developer.nvidia.com/gpugems/gpugems?2/part-ii-high-quality-rendering/chapter-20-fast
-third-order-texture-filtering

o Balazs Csébfalvi: https://dl.acm.ora/doi/10.1145/3306346.3323032

» - _ f\\\ -e/'-/ g \ J/’/ /%\T



https://developer.nvidia.com/gpugems/gpugems2/part-iii-high-quality-rendering/chapter-20-fast-third-order-texture-filtering
https://developer.nvidia.com/gpugems/gpugems2/part-iii-high-quality-rendering/chapter-20-fast-third-order-texture-filtering
https://dl.acm.org/doi/10.1145/3306346.3323032

Magnification: nearest VS bilinear VS bicubic




Magnification: Detail textures

e Detail textures can help to avoid the blurry look
e |tis a carefully crafted texture that adds high
frequency detail as we get closer




Minification

e \When a single pixel contains several texels
We have to somehow average their contribution

e Much harder than magnification: the the Nyquist frequency becomes closer
and closer so we are getting a ton of aliasing




Fourier transform

FT
—

Time Domain

s(t)

Frequency Domain
S(w)



Minification

Theorem: If a function x(t) contains no frequencies higher than B hertz, it is
completely determined by giving its ordinates at a series of points spaced 1/(2B)
seconds apart.

Theoretically, if we can get rid of the high frequency details from the texture,
we can avoid aliasing - we just have to replace ‘seconds’ by ‘pixels’
So any detail that ‘changes’ at least as fast as two pixels should be removed
How do we remove high frequency details in 1D? Ideal low-pass filter!

o Unfortunately, it's ideal in the sense as that it cannot be realized for finite signals

Averaging is supposed to make things less high frequency, right? Maybe that
will do?



Low pass filtering with averaging
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Lost battle from the get go

DFT Amplitude Response at k=N/4
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https://ccrma.stanford.edu/~jos/mdft/Frequencies_Cracks.html


https://ccrma.stanford.edu/~jos/mdft/Frequencies_Cracks.html

Low pass filtering

e In audio, there are established techniques to decompose a signal into sines +
noise or even sines + noise + transients

These parametric representations can be correctly (~ideally) filtered

Not much luck for images

In practice, many applications use averaging

But even that is computationally infeasible if done in real-time



Mipmaps

S
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Mipmapping

e Multum in parvo = ‘many things in a small place’
e Assume that minifaction happens equally along the axes and precompute the

half, quarter, etc. resolution lowpass filtered images
e Can be done with only +33% storage




Mipmapping

e All you need during lookup is the ratio of the pixel and texel sizes in screen
For this, we use the derivatives of the texture coordinates

e These are available because fragment shaders are grouped into quads, i.e.
2x2 fragments

e Actually, you can compute a forward differences approximation to all your
variables using dFdx and dFdy

| coarse fine



https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/dFdx.xhtml

Mipmapping

We can use the the partial derivatives of
the (u, v) texture coordinates w.r.t. the
screen space X and Y axes to compute
a level-of-detail value (LOD): YN mapping ilipwapping

ou\? o2 ou\? ow\?
pmvm (o ((3) () (3 (3 )
Remember that averaging sub-par (it keeps too many high frequency things)
so do experiment with other filters (Gaussian, Lanczos, etc.)
Also, be careful about your gamma
And not all data are equal: some things need different mipmapping...




Mipmapping

e Trilinear interpolation combines the result of the enclosing
two bilinearly filtered mipmap faces’ results

e Some bit image formats are slower in trilinear interpolation!
Also, you cannot do automatic LOD selection under
flow-control, you have to compute it beforehand (or
manually) - as the fragments of your quad may diverge

e Still, no end-of-all solution: it tends to overblur

Bilinear Trilinear

8w

P0O1

P101

P111

P100

P110



Alpha and mipmapping

e Averaging the alpha values doesn’t
make sense

e Instead, mipmap the signed distance
measured from the cutoff level-set

e Or just mipmap the result of pass-ratio
as the alpha value in a mip-level

Ck——Z >at




pixel space texture space

bounding
Summed-area table ‘
g
A
e For each texel, store an additional S |
color that is the sum of all the texels from (0,0) origin '

e This extra data has to be in a higher bit format so that the sum isn’t overflow
Upon query, compute the texture space bounding box of the pixel rectangle
and use the SAT to return an average

e Takes up at least twice as much memory and cannot handle general
anisotropy

- S[-Tura yur] - S[*Turv yll] = S{Ill: yur] il S[Illv yll]
(Tu‘r - -Tll)(yu’r‘ - yll)



Nearest VS mipmapping VS SAT




Anisotropic filtering
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Anisotropic filtering

e Use the derivative min to determine the LOD level
e And fetch a couple of samples from this LOD to infer the filtered result

pixel space texture space

mipmap /

samples

texture

line of
anisotropy




Anisotropic mipmapping

In reality, x and y distortion
does not equal.

area pre-
filtered in MIP-
map

textured surface
(texture map)

circular pixel window image plane

128x128 64x128

128%64

64x64




Anisotropic filtering

Calculating elongated average requires

more samples.

Colored Mips 16x
Colored Mips - Trilinear Anisotropic (Trilinear)

l texture

screen




Texture representation



Storage

A texture is collection of faces
o For example, many texture types have array variants like in OpenGL
o The collection may refer to the MIP hierarchy too
o And the combination of the above

Afaceis a1, 2, or 3 dimensional array of texels
A texel consists of 1-4 channels
A texture format determines how many bits you use to represent a texel and

how you partition them to represent the channels
o Keep in mind: hardware usually only supports multiplies of 4 bytes = 32 bits per texel formats
natively, the rest may not work or come at a performance or storage cost
o Larger formats also incur performance penalties for e.g. filtering


https://www.khronos.org/opengl/wiki/Array_Texture

Color spaces

e For color textures, the most common is to store 3 or 4 components:
o Coloris represented as a triplet, often referred to as RGB
o An alpha component can be used to encode transparency, referred to as A

Usually, RBG8B8A8 or R11G11B10 are used as backbuffer formats

e For 8 bits, it is very important to use your available bits where human vision is
sensitive; as such, storing the color primaries intensities is not the most
efficient use of your bitwidth if you take humans into account:

Linear gradient




Color spaces - sRGB

Display transfer function (DTF or EOTF): the mapping from digital values to

emitted radiance
e |tis done by your display

decode encode
display
transfer
linear function
values
tex2D(s 0
texture
shading and framebuffer display

tone mapping
modern displays are still trying to roughly replicate the CRT response curve, which
in turn is a pretty nice approximation to the HVS perceptually linear encoding



Color spaces - sRGB

If we are encoding linear colors, i.e. a twice as large value should emit twice
as much radiance, we need to take the inverse of the transfer function for

each x channel of our linear RGB output too:

r 1.05521/24 — 0.055, where z > 0.0031308,
¥ = faree(z) = - P
12.92z, where z < 0.0031308,

e From display encoding to linear, we use

=4 =4 2.4
Y ‘;85:"_") ,  where y > 0.04045,
.055

z = firgB(Y) = (
12y92 3 “,'here y S 004045.



Color spaces - sRGB

Usually, the above two are simplified as

Y= fiapay(2) =2

T = fdisplay(y) = y’)
You don’t have to do these manually all the times, there are cases when the

GPU does the encoding upon reads and decoding upon writes - consult your
APl documentation on this

If you forget encoding, you usually end up with a darker image



Color spaces

e Even if you are in linear space, there are several options

e RGB, especially with uneven bit-distributions can cause artifacts, hue shifts,
etc. when you apply post-processing

e There are many other color spaces that try to separate the intensity
information from the chroma (e.g HSV, HSL)

e One popular, but approximate one in real-time is YCoCaq:

¥ % R
Co -1 G
Cg _ B

e Simplified LMS (long, medium, short): ]}f]:F _11 g
B 0 0 1

1
=] 1
2

w= O N=
NI

1
1

(used by JPEG XL)



https://en.wikipedia.org/wiki/YCoCg

Color spaces

e Conversion between color spaces if often necessary

e You want to do your computations in a linear space
o Not necessarily linear RGB tough. For example in the case of linear filtering:
http://staff.fh-hagenberg.at/burger/publications/pdf/aapr2010.pdf

e In the presence of lower bit depth backbuffers, you want to output the final
result such that you are not wasting bits where they don’t matter

e A nice overview can be found at
http://www.babelcolor.com/download/A%20review%200f%20RGB%20color%

20spaces.pdf



http://staff.fh-hagenberg.at/burger/publications/pdf/aapr2010.pdf
http://www.babelcolor.com/download/A%20review%20of%20RGB%20color%20spaces.pdf
http://www.babelcolor.com/download/A%20review%20of%20RGB%20color%20spaces.pdf

Block compression




Block compression




Block compression - BC1

o Take a 4x4 tile of pixels
Store two colors to determine a line in a given color space

e And store 4x4 parameters for each pixel to store the closest color on the line
to the original pixel color

e BCH1:
o 2xR5G6B5 = 32 bits = 4 bytes for the two endpoints
o 16x2 = 32 bits = 4 bytes for the {0, 1, 2, 3} parameter values to represent the pixel colors

Uncompressed

BC1



Block compression: BC1

e The two endpoints can be of arbitrary order: use this redundancy to alpha!
If asuint( A) > asuint( B ): as before

e Else: reduce the parameter range to 3 and use the fourth as a transparent
black (RGBA = 0.0.rrrr)

Plain bilinear filtering With alpha correction



BC6H

e Intended for lossy-compressing 16 bits
float per channel HDR images

e |t also uses partitioning: depending on
partitionaing mode, it can use up to two
different color lines

==



Source data Minimum required data compression resolution Format Minimum feature level
Three-channel color with alpha Three color channels (5 bits:6 bits:5 bits), with 0 or 1 BC1 Direct3D 9.1
channel bit(s) of alpha

Three-channel color with alpha Three color channels (5 bits:6 bits:5 bits), with 4 bits of BC2 Direct3D 9.1
channel alpha

Three-channel color with alpha Three color channels (5 bits:6 bits:5 bits) with 8 bits of BC3 Direct3D 9.1
channel alpha

One-channel color One color channel (8 bits) BC4 Direct3D 10
Two-channel color Two color channels (8 bits:8 bits) BC5 Direct3D 10
Three-channel high dynamic range  Three color channels (16 bits:16 bits:16 bits) in "half" BC6H Direct3D 11
(HDR) color floating point*

Three-channel color, alpha channel  Three color channels (4 to 7 bits per channel) with0to 8  BC7 Direct3D 11

optional

bits of alpha

https://docs.microsoft.com/en-us/windows/win32/direct3d11/texture-block-compression-in-direct3d-11



https://docs.microsoft.com/en-us/windows/win32/direct3d11/texture-block-compression-in-direct3d-11

Memory layout

e Textures are not necessarily stored row-major or column-major in memory
due to how fragments usually address them, instead a Moreton z-ordering like
layout is preferred

https://docs.microsoft.com/en-us/windows/win32/api/d3d12/ne-d3d12-d3d12_texture layout

] 4
_L»

AT

e However, you can specify that you want a linear layout, i.e. row-major



Texture mapping techniques



Environment mapping




Environment mapping

e Supported effects:
o Reflection & Refraction
o  Chromatic aberration
o Fresnel effect

e Spherical texture has high distortion
= Cube texture = Skybox

e Can also be a render target
= Real-time reflection




Surface detail classification

e Macrogeometry: features covering many pixels. Usually represented by API
geometric primitives such as triangles

e Mesogeomerty: a couple of pixels-wide details. These are inefficient to
explicitly represent as geometry (as that would result in rendering
microgeometries, i.e. triangles that are only a few pixels large, which are a
performance bottleneck) like wrinkles on skin or cloth

e Microgeometry: details that are smaller than a pixel. The various BRDF
models try to represent these with various user parameters.

Macrogeometry Macro + mesogeometry Microgeometry



Displacement mapping




Displacement mapping

e Move each vertex towards
normal vector by texture value

e Changes geometry
Resolution depends on
geometry resolution




Normal mapping

“




Normal map

e Problem:
o Does not change geometry
o Modulate normal vectors from texture
e RGB texture holds a normal vector at

each texel
o norm = 2 * texCol - 1
o Normal vectors are unit length, values are
between -1 and 1

ok

b

) » _ O:>




Normal mapping

e These methods store the shading normal itself in the texture
e Nowadays, these normals are given in a tangent frame

(@]

At each vertex, store 3 linearly independent vectors that form 3D basis (may not be
orthogonal)

Usually, store a tangent and bitangent vector pair that span the tangent plane (in the
direction of u and v texture coordinates)

There are other efficient encodings, but these need not necessarily be interpolate-able



Normal mapping

Problem:

From local normal = word normal ?
Normal vector is not enough

Tangent & bitangent defines transformation
Tangent often can be exported

B=NxT I, B, N,
N=TxB I, B, N,
T=BxN T. B. N



Normal mapping

Originally, normals were proposed to be stored in world space or object space
However, that'd tie the normal map to a specific geometry or orientation

The tangent frame formulation allows more trivial normal map reuse
Nevertheless, there are other approaches, such Morten Mikkelson’s surface
gradient based approach to bump mapping

o Implicitly define the fine normals by providing a heightfield as a variable-radius offset

* 9,dx0,d
d*(u,v) = d(u,v) + h(u, v)m(u,v) m= G

o The gradient of this offset surface is then used for the modification of the geometric normal
o  Combination of several normal maps is more intuitive in this formulation because that’s just the
superposition of two heightfield displacements


http://jcgt.org/published/0009/03/04/
http://jcgt.org/published/0009/03/04/

Normal mipmapping V//\\/

2
A

i 27
R

e For diffuse shading, averaging is not that bad since

n n

holds, although imprecise since even Lambertian is nonlinear due to (1- n;),
e In general, however, we need to be smarter about filtering and mipmapping



Normal and normal distribution filtering

e |tis more precise to think in terms of filtering normal distributions, not just
individual normals (i.e. we need microscale information, such as the variance)

e One way is to take both the normal and roughness maps and generate a pair
of normal and roughness mip values that correspond to a distribution that fits
the entire region under the mip level’s footprint

e Toksvig: the length of the averaged normal is inverse proportional to the width
of the normal distribution. For Blinn-Phong NDF, modify roughness as

. Original
o = [l oy Blinn-Phong
p —_— T
[a] + ap(1 — |;]]) roughness

Averaged
normal




Normal and normal distribution filtering

e There are several advanced approaches to do this filtering (e.g. LEAN maps
the covariance matrix of the normal distribution)

e For example in case of specular this is even more problematic and it is still an
active area of research (see e.g. Improved Geometric Specular Antialiasing)



http://www.jp.square-enix.com/tech/library/pdf/ImprovedGeometricSpecularAA.pdf

Normal representation

e Usually, stored as tangent-space XY projections; after interpolation, the third
coordinate of the normal is reconstructed as == /2> ++*

e This interpolates reasonably, but certain applications (such as deferred G
buffers) don’t need interpolation

e Forthese cases, there are more efficient encodings; a recent survey on unit
vector representations: http://jcat.ora/published/0003/02/01/

-E
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http://jcgt.org/published/0003/02/01/

Bump mapping




Bump mapping

e Blinn, 1978: use a texture to modify the geometric normal (the normal
interpolated from the vertices) with a shading normal (from the texture)

e In Blinn’s formulation, the texture stored an offset to the geometric normal
This offset was given in a (u, v) basis

b bu
e Alternative formulation can be derived from taking 4
a heightfield input b
rd

e Recall that many texture formats can only store
unsigned values - so you will have to convert the
range of b , b, values to [0, 1]




Tangent-space to world-space

el

Uy )

[uy, 5]

[u;, v]

Ny

texture space modeling space

p(u,v) = po+ [u,v,h] - = Po + [u,v,h]-M

LN



Bump map

e Same problem, modulate the normals

e The bump map can be created from high
resolution modell or displacement map

e Normals are modulated by the
derivatives of the bumpmap

Original model (5M) Simplified (500) Simple model with bump map



3D Textures




Volume textures

e texture mapping can be identity
e 256x256x256 = 64Mbyte!
e Sometimes simulation result



Procedural textures

e TN




Procedural texture

e Mathematical function
o No repetition and easy to fit
o Best for natural materials (stone, wood)
o Can be zoomed in indefinitely.

e Only the function has to be stored
o 3D texture in a few bytes!
o Time can be a parameter
o Can be slow to compute




radius = sgrt(u*u + wiw);

C reati ng p roced u ral teXtu reS grain = radius%60;

if (grain<40) return
light-color;

else return dark color;

e Define mathematical structure
L] DiStort reSUIt radius += 2*sin(a*tan(u/w) + v/b);
e Add noise

Noise can be used to color or to distort




Noise

e Problems:
o Smooth enough to avoid aliasing
o Pseudorandom: same result twice

e Fractal noise:
o fractal_noise = noise(x) + %-:-noise(2:x) + Z%-noise(4-x) + ...

e Cellular texturing
o  Color is determined by the distance to some randomly scattered points
o  Closest point = Voronoi ( < Delaunay triangulation)



Bonus content:
Per-pixel displacement mapping



Literature

e Still interesting results
e Agood survey to understand the basic (confusing) notations:
http://page.mi.fu-berlin.de/block/htw-lehre/wise2012_2013/bel_und_rend/skrip

te/szirmay2006.pdf

_ + AMAV

'/ » height map stored
magtrostructure surface as a texture
mesostructure surface

—

F(u,v) = p(u,v) + No(u, v)h(u,v)


http://page.mi.fu-berlin.de/block/htw-lehre/wise2012_2013/bel_und_rend/skripte/szirmay2006.pdf
http://page.mi.fu-berlin.de/block/htw-lehre/wise2012_2013/bel_und_rend/skripte/szirmay2006.pdf

Tangent space to world space

el

Uy )

[uy, 5]

[u;, ]

Ny

texture space modeling space

p(u,v) = po+ [u,v,h] - = Po + [u,v,h]-M
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Motivation: Bump mapping

visible point
W' v, h(u' V) »

4

74
A
macrostructure 7, B (u,v,0) (u’V)
surface processed
point

e |t treats (u,v, 0) as the intersection point
e Only changes the normal used for shading




Single-step parallax mapping

N
constant height
surface

FPS = 695 FPS = 675

macrostructure T, B (wyv) (') Figure 10: Comparison of bump mapping (left) and parallax
surface mapping (right) setting BIAS = —0.06 and SCALE = 0.08.
e . . . L A 7
e It modifies the final (u,v) coordinates by solving (u',v",h(u,v)) = (u,v,0) + Vt

e The solutionis (u',v') = (u,v) +h(u,v) (% é)



Single-step parallax mapping with offset limiting

5
N
constant height
surface
FPS =675 FPS = 680
macrostructure _f E ( u, V) ( u’ V’) Figure 12: Comparison of parallax mapping (left) and par-
surface ! allax mapping with offset limiting (right) setting BIAS =

—0.14 and SCALE = 0.16.

e It modifies the final (u,v) coordinates by solving (u’,v', h(u,v)) = (u,v,0) + V1

e Thesolutionis («’,v') = (u,v) + h(u,v) <$,é>

e In practice, it's best to limit the offset which in this case is even better: (u,v") = (u,v) +h(u,v) <Vx ; Vy)



Single-step parallax with slope

FPS =675 FPS = 680

e Figure 14: Comparison of parallax mapping with offset lim-
' : £ U
macrostructure Tv B (U,V) (ll 'V ) iting (left) and parallax mapping with slope information
surface (right) using BIAS = —0.04 and SCALE = 0.12.

e Move the ray-heightfield intersection estimate to the intersection between the plane at (u,v,h) and
normal N’ and the ray

=p /

=/ -
[ ] From N . ((u, V,O)+Vt) :N (u7 v’h (u”v’):(u’v){—/’l(}_\./[/\]—z‘_})(vx,‘/y)
the unboun nd limited solutions are

T (V) = (u,v) + ANL(V, V)



Single-step parallax mapping

e The above methods tried to find the intersection with a single step
e It makes sense to try to find a solution via iteration
e Note that at every iteration, you have to query potentially multiple textures

FPS = 600 FPS =570

Figure 15: Comparison of parallax mapping with slope
(left) and iterative parallax mapping (right) setting BIAS =
—0.04, SCALE = 0.12, and PAR_ITER=2.



Raymarch parallax map

-

N
max height

surface

e

A= pr o
macrostructure ;) B FPS =410 FPS = 340
surface LIN_ITER = 4 LIN_ITER =8

Figure 20: Linear search. Note the stair-stepping artifacts.

e Use constant sized steps
e Stop when below hightfield



Binary search in parallax map

Figure 17: Binary search using 5 iteration steps. The ren-
dering speed is 455 FPS.

e You have no guarantee if you will find the first intersection
e But you’ll converge to one, eventually



Secant method in parallax map

N 14 §

A, Ap 1Hy
H"f
macrostructure ‘T’ § W) ' v’)
surface

e The new guess at every iteration is

Aa

Hnew = Hb + (Ha = Hb) A Ab
a —




Sphere tracing a parallax map

-
N
max level
surface
depths = 32 depths = 64
FPS = 460 FPS = 460
macrostructure - o P— )
gure . nhere tmcin results with li erent [i.YTllII(‘(’
surface . : o] i

field texture resolutions. The left image was rendered with
a 3D texture of 32 depth layers, while the right image with
64 depth layers.

e You need a heightfield to signed distance field conversion
e Otherwise, use your favorite sphere tracing algorithm



Parallax cone map

Viewing Ray i

- (s,f)

0.0
1

Depth Range

1.0

oh //(u’v) (cd) (ab) (s 10



Relaxed parallax cone map

@

(b)

©

Relaxed . Conse
Cone ", Cone

rvative

o
=

Depth Range

dst texel t,

-
=3

Intersection

isrc texel t,



Real-time shadows
Csaba Balint



Motivation




Real-time shadow algorithms

e Shadow Map
o Fixed precision can cause blocky artifacts

o Cascade shadows
e Shadow Volume

o Precise, but computationally demanding

o zpass and zfail
e Projected planar shadows: works best with flat surfaces
e Lightmaps: the scene must be static

e New: ray tracing: soft shadows, very demanding



Shadow Map




ldea

e Lance Williams - 1978

e Pixar’'s RenderMan, Toy Story

e Idea: render from the light source
o Independent of scene geometry (apart from rendering)
o May have sampling artifacts

e Two steps:

1. Calculate distances to light = Shadow map

2. Render final image from camera = Shade



Algorithm

1. Calculate distances to light
a.
b.
C.
d.

Shadow Mapping

o

Render scene from light source

Render depth buffer to a texture = shadow map
Calculate camera view to light view transformation
No need to shade, or look up textures = Fast shadow = dIight < dblocker + bias

2. Render final image from camera

a.

®© Q0T

Transform pixel position to light coordinate system

Compare measured distance to light to value in shadow map
Equal values mean surface is lit

If the shadow map value is less, the pixel is in shadow
Shade accordingly



Example: Goal

No shadow Real time shadow



Example: Two views

Light's view Camera’s view



Example: Shadow Map

Light's view Camera’s view
Shadow map Shadow map



Example: Compare distances

Camera’s view Camera’s view
Shadow map Calculated light distance



Example: Shadowing

Camera’s view Camera’s view
Difference Shaded



Sampling




Percentage-Closer Filtering (PCF)

Almost parallel light rays = Extreme aliasing
OpenGL shadow samplers (sampler2DShadow)

texture() returns comparison result in [0,1]
LINEAR filtering is 4x PCF

16x PCF

Sparse lookup kernes

Pixel to be
Shaded

000 000 0 01
00| o000 [1]1
olo|ojolol1]1|1]1
ofo|ofofolaf1 11
olo|ofol11]1|1/1
o|o|ofo e fafa 1]1
ARREREBREREE
N
Typical Shadow Shaded Pixel
Map Test (Black or White)
NI
.-;-.g--.- ’ L ] [ ] »
4-Sa.mple Perform 4 Shaded Pixel
PCF Depth Tests (0, 0.25, 0.50, 0.75, 1.0)




Soft shadows with shadow maps

PCF # soft shadows < area light

e Shadow map solutions must cheat

e Usually by varying the PCF kernel size

as a function of the ratio between the
distance to light and distance to occluder in

the surrounding shadow map texels

e Shadow map is often processed and

compressed



Omnl |Ight iéy;u;: Vétfiénéié\s) in;
layout (triangle strip, max vertices=18) out;
[ ] Render IntO a Cubemap uniform mat4 shadowVPs[6];

. out vecd FragPos;
o = Multi-layer FBO attachment!
void main ()

e (Geometry shader! {
for (int face = 0; face < 6; ++face)
o = Single pass! {
gl_Layer = face;
e gl_Layer : specifies FBO layer for{int 1 =0; & <37 +H1)

{
. FragPos = gl in[i].gl Position;
o - =
CUbemap side gl Position = shadowVPs[face] *
FragPos;
EmitVertex() ;
}

EndPrimitive() ;



trapezoidal space

light's
post—perspective space

Shadow Map LOD problems B

e Cover the view-frustum with the SM b
e Remap the domain in geom. shader .
e Split up the SM into multiple parts @ ]

bounding box space

Figure 3: An example of the trapezoidal approximation
(middle, top) and the smallest bounding box approximation
(middle, bottom) of the eye’s frustum as seen from the light
(left). The wastage in the shadow map generated by the for-
mer is much smaller than that by the latter in this case
(right).




Cascade shadows

e Calculate shadow map towards
camera viewing frustum

e Subdivide frustum into multiple
segments

View Direction

| |
\
\

1st Cascade 2nd Cascade 3rd Cascade 4th Cascade

Near Plane
Far Plane

/
/

1st Split
2nd Split
3rd Split

\

FIGURE 4.1.1 2D visualization of view frustum split (uniformly) into sepa-
rate cascade frustums.




Shadow Volume




Shadow volumes

Franklin C. Crown wireframe shadow volumes

1. ldentify contours of objects

2. Extruding the contours define shadow
volumes

3. Asurface point is in shadow when it is
inside a shadow volume



Lightsource ——

Algorithm

1. Render the shadow volumes

(o) 1] o R \'\.
a. During rendering we keep track of the number [ O ~ Litohiect noint
/ \ VN
' +2 \

I 3‘
+
v \

of the shadow volumes entered and exited
between camera eye and object point

b. Shadow volume faces facing the camera
increase the counter by one

c. Back-faces decrease the (stencil) counter

2. If the stencil buffer is positive, the object
in question is in shadow

3. Ifitis zero, itis lit \\_ " obisctaoint




Problems & Solutions P
1. Camera might be in shadow

a. Solution: Start from infinity! = zfail
2. Shadow volume may not be bounded

a. Enclose the volumes!

b. Volume bound can be at infinity

Ohbjects generating

3. Stencil buffer updates:

a. First, render front-facing triangles of the
shadow volumes, add values to stencil buffer
b. Second, render back-facing triangles,

decrease stencil buffer




Calculating contours
Several algorithms exist. For example, for every triangle:

1. If triangle is back-facing the light source skip it

2. Add edges of the triangle to a list (vertex pairs)

3. If the list contained the edge, remove both the new and the old
4

Process next triangle



Pros and cons

Advantages

e Works with omnidirectional lights
e Lights are precise
e Rendering is GPU accelerated

Disadvantages

e Performance heavily depends on scene
complexity
e Contour calculation is slow




Example from Abducted




Spatial Data Structures
Csaba Balint



Visibility Problem

e C(Classical methods
o  Backface culling, Frustum culling
o Painter, Z-Buffer, Warnock
o BVH: Bounding Volume Hierarchy
o Grids, Quadtree, Octree, KD-tree, BSP-tree
e Modern methods
o Cells and portals (portal culling)
o PVS (Potentially visible set), Virtual covering objects
o Hierarchical Z-buffer/occlusion maps (similar to Warnock)

e More in this article



https://www.researchgate.net/publication/2440562_A_Survey_of_Visibility_for_Walkthrough_Applications

View-frustum culling

Motivation &

&

Back-Face Culling

& A

Occlusion Culling

e Reduce redundant operations
Idea: Do not draw non-visible objects
e Solutions in object-space: il bk om oo sl ey

o Backface culling: throw away back-facing triangles (~2x)
o Frustum culling: only draw objects that are in the camera cone (~8x)

e Solutions in screen-space:

o Z-buffer: decide per pixel if the fragment is visible
o Early-Z: fragment shader does not have to run if fragment will fail depth test

Frustum

Why do we need more algorithms?

Runtime is still linear measured in the number of primitives in the scene.



Classification of methods

Algorithms can be classified based on efficiency and accuracy

Exact methods

o Classifies visible exactly those that are
Conservative methods

o May classify non-visible objects as visible. Usually good results.
Aggressive methods

o Visible objects might disappear, results in artifacts.

o Useful when conservative methods are too slow and the error is acceptable.
Approximate methods

o Imprecise classification of both visible and invisible objects.

o May be useful when geometry cannot be preprocessed



Bounding Volumes Hierarchy




Bounding volumes

Sphere

AABB: Axis Aligned Bounding Box
OBB : Oriented Bounding Box
K-DOP: Discrete Oriented Polytopes
Convex Hull

If a ray (or any connected set) does not
intersect the bounding volume, it
neither intersects its interior.

6-DOP
(AABB)

18-DOP

14-DOP

26-DOP




Bounding Volume Hierarchy

Create a hierarchy of the bounding volumes

If a BV is not intersected do not check its children
Significantly decreases intersection tests
Requires preprocessing and updates
Conservative optimization

Use cases:

o Raytracing: huge speedup!
o Frustum culling
o Collision detection, ragged dolls




Space Partitioning 1




Uniform Grid

e Pros
o Each cell holds the list of the objects within
Trivial neighbour lookup
Easy to implement
Ray-grid intersection is trivial:
“Voxelize” line = 3D Bresenham algorithm

e Cons

o  Subdivision is independent of scene geometry
o May be slow or use too much memory

O O O




Quadtree / Octree 1

e Root node is the AABB of the whole scene

If there are more objects in a node than a predefined
number, then subdivide cell to 8 / 4 equal cells.

e Recursively continue the previous step until it stops
or a maximum depth is reached




Tree construction

e Anode contains:
Pointers to children
Pointer to parent: useful for neighbour lookup
Extent of the cell = Can be calculated from the
tree
o List of objects in the cell

e Recursive “buildNode” algorithm:
o Inputis the node and the list of objects that
belong to it
o If there aren’t enough objects, set node to leaf
and return
Distribute objects among created nodes
Call “buildNode” for each




Tree navigation

e What happens if an object is in multiple cells?
o  Only pointer duplication = Memory efficient
o Intersection tests can happen multiple times
o  Solution: set flag to object, eg. frame number
e “A”is neighbour of cell “B” if
o They have a common side-plane
o Cell “A” is inside a cell that's the same size of “B” and is
touching it, or vice versa.
o “A” nor “B” has any children with the above properties
e Neighbour algorithm
o  Similar to binary tree —




Space Partitioning 11




KD-tree

Quadtree can become unbalanced!

e Each node represents a subdivision
o Anode has 2 children AABB-s

o subdivided along the longest dimension

o storing the position of that cut-plane.

O

Also store AABB positions, stored objects,
parent pointer.

e Neighborhood lookup is harder
During KD-tree construction, where
to draw the new plane?

o  Cut along median point
o Equalize surface area in cells

9




BSP-tree

e Similar to KD-tree
O  KD-tree is an axis align BSP-tree
Arbitrary subdivision planes
o All cells are convex

e Choosing cut-plane goals:
Minimize cell count and divided objects

Cut-planes should coincide with polygons

o

o

o Heuristics:
choose cut-planes from scene polygons

|
m start with the largest polygon
m random choice is not bad

e Widely used algorithm!

]



BSP-tree Ordering

e Traverse the tree from a given point of view

o Objects on “this” side appear in front of those on the “other” side of the cut-plane
e Back-to-front ordering

o May not need Z-buffer!

o Perfect for rendering transparent objects!
e Front-to-back ordering

o Fewer Z-buffer overrides = Early-Z!




Other Methods




Painter algorithm - Newell’s algorithm

Front-to-back drawing. Can lead to overlaps:

e Need to cut: Test overlap
o Ifthe AABB of P and Q polygons overlap
m Test for Z overlap from the sorting list
m Test minimax overlap in X and Y directions
o Test the ordering of the planes
m  All vertices of P lie deeper than Q
m Al vertices of Q lie closer than P
o Finally, test if the rasterization of P and Q overlap

If they overlap, swap them and try again.
If a pair overlaps again

o Cut them along the intersection
o  Put both back into the sorting list

e Continue until all pairs pass the test




Warnock algorithm

e Input: viewport and list of polygons
e Simple cases:

o Viewport is 1x1 pixel in size

o Empty list or only a single polygon is in the list
e Otherwise: divide and conquer

o Divide viewports into 4

o Splitlistinto 4

o Call recursively

e O(polygons * pixels)




Cells and Portals

e Start with current cell (room) within frustum

e For all portals (doors)

o  Cut frustum cone to portal

o Draw next cell

o  Continue recursively Q Cells & Portals
e Portals must be convex

Cons:

o Alot of cuts

o Only interiors
e Pros:

o Fast

o Works on dynamic scenes

e Potentially Visible Set: Similar...
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Part I

DirectX 12

Raytracing

with selected slides of:

Gabor Valasek




API support

DirectX Ray Tracing:
0.01: initial draft in September, 2017
1.0: initial release in October, 2018 (preview since March, 2018)
1.1: major update in May, 2020
Vulkan Ray Tracing:
Provisional extension: March 2020

Final version: December 2020

\\ Shapr3D


https://devblogs.microsoft.com/directx/dxr-1-1/

Nvidia GA102: Geforce 3080 - Geforce 3090 Ti




Hardware support for ray tracing

NVIDIA:
2018: Volta architecture (Titan V/V100, a professional card - not
used in any consumer level GPUs)
2018: Turing (GeForce 20 series, consumer level, T4 for pros)
2020: Ampere (GeForce 30 series, consumer level, A100 et al. for
professionals)

AMD:
2020: November, AMD RDNA 2 (Radeon RX 6000 desktop GPUs,

also used in PS5, XBX, and even new Model S and X Tesla cars)

\\ Shapr3D



Register File (16,384 x 32:bit) Register File (16,384 x 32-bit)
Rogister File (16,384 x 32:bit) Rogistor Filo (16,384 x 32:bit

TENSOR TENSOR
INT32 FP32 CORES INT32 FP32 CORES FP32 T(E;'(‘)izR FP32 TE:??OER
s 3rd Gen 3rd Gen

wsT st wsT st | SFU st ST LosT st | SFU

Register File (16,384 x 32:bit) Register File (16,384 x 32-bit)
Register File (16,384 x 32:bit) Register File (16,384 x 32:bit

TENSOR TENSOR
gosz Bz CORES INT32 FF32 CORES FP32 TENSOR FP32 P32 TENSOR
CORE CORE

!
3rd Gen INT32 3rd Gen

LosT oSt Lot LosT  LoST  LoisT

sFu wsr s wer et

96KB L1 Data Cache / Shared Memory
128K8 L1 Data Cache / Shared Memory

Tox Tox
Tex Tex

| RTCORE

2nd Generation

Q Shapr3D
a /; S J https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-archite
cture-whitepaper-v2.pdf



https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf

Acceleration Structure

e Bottom Level Acceleration Structure

o “per object” acceleration structure

o triangle mesh or procedural shape

o procedural — define AABB and intersection shader
e Top Level Acceleration Structure

o “scene” acceleration structure is a list

o bottom level structures and instance data (eg.

transformation matrix)

e Generated during runtime and must be

updated regularly

[ inst.3 W inst. 4 M Inst5 |




Input: Set of Triangles

rasterization

Shader(s) to transform
e : : Shader to compute color
vertices into displayable Rasterizer ; :
: for each rasterized pixel
triangles

HHH

http://intro-to-dxr.cwyman.org/presentations/IntroDXR_RaytracingShaders.pdf

. Shapr3D

HHH

Output: Final Image


http://intro-to-dxr.cwyman.org/presentations/IntroDXR_RaytracingShaders.pdf

Input: Set of Pixels

HIH

— Ray tracing

Shade hit points;
(Optional) generate
recursive ray(s)

Take input pixel position, Intersect Rays

generate ray(s) With Scene

http://intro-to-dxr.cwyman.org/presentations/IntroDXR_RaytracingShaders.pdf

. Shapr3D

HHHH


http://intro-to-dxr.cwyman.org/presentations/IntroDXR_RaytracingShaders.pdf

DXR ray tracing pipeline

Ray Generation

TraceRay()

Any Hit

Acceleration
Structure
Traversal




DXR ray tracing pipeline

The DXR pipeline is composed of five new shader types:
Ray generation shaders
Intersection shaders
Closest-hit shaders
Any-hit shaders
Miss shaders
Plus a new shader class:
Callable shader

\\ Shapr3D



struct SceneConstantStructure { ... };

ConstantBuffer<SceneConstantStructure> SceneConstants;

RaytracingAccelerationStructure MyAccelerationStructure : register(t3);

DXR ray tracin =-oc: weavioss ... 1

[shader ("raygeneration") ]
void raygen main () {

The DXR pipeline is composed of five ne|

Ray generation shaders Raypese mytey -
<ray origin>,
<TMin>,

<ray direction>,

<TMax> };
MyPayload payload = { ... };// init payload
TraceRay (

MyAccelerationStructure,

<trace flags>,

<optional flag to mask out instances>,
Plus a new shader class: <RayContributionToHitGroupIndex>,
<MultiplierForGeometryContributionToHitGroupIndex>,
<MissShaderIndex>,

myRay,

payload) ;

\~ Shapr3D WriteFinalPixel (DispatchRaysIndex (), payload);




DXR ray tracir

The DXR pipeline is composed of five ne|

e Intersection shaders

Plus a new shader class:

\\' Shapr3D

struct CustomPrimitiveDef { ... };
struct MyAttributes { ... };

struct CustomIntersectionIterator {...};

void InitCustomIntersectionIterator (CustomIntersectionIterator it) {..

bool IntersectCustomPrimitiveFrontToBack (
CustomPrimitiveDef prim,
inout CustomIntersectionIterator it,
float3 origin, float3 dir,
float rayTMin, inout float curT,
out MyAttributes attr) {...}

[shader ("intersection")]

void intersection_main() {
float THit = RayTCurrent();
MyAttributes attr;
CustomIntersectionIterator it;

InitCustomIntersectionIterator (it);

while(IntersectCustomPrimitiveFrontToBack (
CustomPrimitiveDefinitions[LocalConstants.PrimitiveIndex],
it, ObjectRayOrigin(), ObjectRayDirection(),
RayTMin (), THit, attr)) {
if (ReportHit(THit, /*hitKind*/ 0, attr) &&
RayFlags () & RAY_FLAG_FORCE_OPAQUE))

break;

-}




DXR ray tr,

The DXR pipeline is composed of

o Closest-hit shaders

Plus a new shader class:

[shader ("closesthit™) ]
void closesthit main @nout MyPayload payload, in MyAttributes attr)
{

Callshader( ... ); // maybe needed to shade

float3 worldRayOrigin =
WorldRayOrigin() + WorldRayDirection() * RayTCurrent();
float3 worldNormal = mul (attr.normal, float3x3)ObjectToWorld3x4());
RayDesc reflectedRay = { worldRayOrigin, SceneConstants.Epsilon,
ReflectRay (WorldRayDirection (), worldNormal),

SceneConstants.TMax };

TraceRay (MyAccelerationStructure,
SceneConstants.RayFlags,
SceneConstants.InstanceInclusionMask,
SceneConstants.RayContributionToHitGroupIndex,
SceneConstants.MultiplierForGeometryContributionToHitGroupIndex,
SceneConstants.MissShaderIndex,
reflectedRay,
payload) ;

\\' Shapr3D




DXR ray tracing pipeline

The DXR pipeline is CompOSed of| voia anyhit main( inout MyPayload payload, in MyAttributes attr )

e  Any-hit shaders

Plus a new shader class:

Q"‘ Shapr3D

[shader ("anyhit")]

float3 hitLocation =

float alpha = computeAlpha (hitLocation, attr, ...);

// Processing shadow and only care if a hit is registered?

if (TerminateShadowRay (alpha)) AcceptHitAndEndSearch();

// Save alpha contribution and ignoring hit?
if (SaveAndIgnore (payload, RayTCurrent(), alpha, attr,
IgnoreHit () ;

—}

ObjectRayOrigin() + ObjectRayDirection() * RayTCurrent();

)

{




DXR ray tracing pipeline

The DXR pipeline is composed of five ne| [shader ("miss")]
void miss_main(inout MyPayload payload) {

// Use ray system values to compute contributions of

// background, sky, etc.

// Combine contributions into ray payload
CallShader( ... ); // maybe
. .

Miss shaders TraceRay( ... ); // maybe

Plus a new shader class:

// this ray query is now complete

Q"‘ Shapr3D



DXR ray tracing pipeline

The DXR pipeline is composed of five new shader types:

[shader ("callable")]

void callable_main(inout MyParams params)

Plus a new shader class: {

// Perform some common operations and update params

o Ca”able shader Callshader( ... ); // maybe

\\ Shapr3D



Gene

N VA WN R

Ray

Shader

DirectX BVH (Bounding Volume Hierarchy)

ration

Intersection
Shader

No

Any-Hit
Shader

} Pl cClosest-Hit

Shader
Y-

Shader

Hit Accepted
ReportHit()

Hit lgnored
IgnoreHit

QY Closest Hit
DISELLY

RaytracingAccelerationStructure scene;
RayDesc ray = { rayorigin, minHitDist,

userbefinedPayloadstruct payload = { ...

TraceRay( scene, RAY_FLAG_NONE, instancesToQuery,
hitGroup, numHitGroups, missShader,

ray,
payload );

// scene BVH from C+
rayDirection, maxHitDist };
<initialize here>... };

ray to trace?

what data to use?

for z,y € image.dims() do
[1] ray = computeRay(x, y);
closestHit = null;

while
leaf = findBvhLeafNode(ray, scene)
do
[2] hit = intersectGeometry (ray,
leaf);

if isCloser (hit, closestHit) then
if [3] isOpaque(hit) then
L closestHit = hit;

if closestHit then
[4] image[x,y] = shade(ray,
| closestHit);

=

else
I_ [5] image[x,y] = miss(ray);




N VA WN R

Ray
Generation
Shader

DirectX BVH and intrinsics

No; ray exits scene i
v Closest-Hit

Shader

Hit Accepted
ReportHit()

Intersection
Shader

Any-Hit
Shader

Miss

Hit Ignored Y Slierhy
IgnoreHitQ) !
|
H
i = sn ray ; :
i intrinsics \ shaders . intersection
i generation
No A Closest Hit i CallShader() »
DISELLY
TraceRay() x
ReportHit() *
IgnoreHit()
RaytracingAccelerationStructure scene; // scene BVH from C+
RayDesc ray = { rayorigin, minHitDist, rayDirection, maxHitDist }; AcceptHitAndEndSearch()
userbefinedPayloadstruct payload = { ... <initialize here>... };

TraceRay( scene, RAY_FLAG_NONE, instancesToQuery, //
hitGroup, numHitGroups, missShader,
ray, // what ray to trace?
payload ); / what data to use?

that geometry:

any
hit

closest
hit

miss

callable



DXR intrinsics

values \ shaders
Ray dispatch system values:
uint3 DispatchRaysindex()
uint3 DispatchRaysDimensions()
Ray system values:
float3 WorldRayOrigin()
float3 WorldRayDirection()
float RayTMin()
float RayTCurrent()

uint RayFlags()

Primitive/object space system values:

uint Instancelndex()
uint InstancelD(

uint GeometryIndex()
(requires Tier 1.1 implementation)

uint Primitivelndex(
float3 ObjectRayOrigin()
float3 ObjectRayDirection(
float3x4 ObjectToWorld3x4(
float4x3 ObjectToWorld4x3()
float3x4 WorldToObject3x40
floatdx3 World ToObject4x3(
Hit specific system values:

uint Hitkind()

ray generation intersection  anyhit  closesthit miss  callable

: : : : intrinsics \ shaders gen::tion intersection
CallShader() *

: TraceRay() *

i i ) ReportHit() *

N . . IgnoreHit()

= . B AcceptHitAndEndSearch()

any
hit

closest
hit

mi;

sS

callable



TraceRay()

enumerate next
candidate
primitive [1]

have a
committed
hit?

T yes
active’
ntersection fixed-function
shader? triangle
5 intersection

closest so closest hit
far?

shader

ves

hit committed:
2
no—<_opaque? [3] >-yesk| update TMax

ignore
intersection?.

it search
flagged to end
immediately?

Q Shapr3D
4




HLSL Support

Shader Table

e Ray traversal functions e

Miss.
Shader Records  Shader Records.

e Launch introspection —:EEED

o launch data(which pixel, ray)

Hit Group Shader Records

. . I Hit Group
e Ray introspection : oS
2 % Closest-Hit Shader
o ray p ay| oad data E § zm:": cu;’::m Intersection Shader
e Obiject introspection el
o bOttom |nSta nce data Figure 3-3. Avisualization of a DXR shader table and its shader records. Shader Records contain a

shader identifier and root arguments used to look up resources.

e Hit introspection
o user defined
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bottom level
acceleration structure

acceleration structure

top level acceleration structure
instance instance instance instance
o s o o e sy
D, Shaderinden| | D, Shaderindex] | s, Shaderingex] | 1nsi, Shaderindex)
Flags et Flags,ctc._ @@ Fags clc._ @ Flags,etc
1 11 T N
bottom level .
bottom level acceleration structure

geometry

geometry (| geometry.

=

9 s

Og

Type = (GLES, Type= || Type- Ivpe =
Flags, el du, dura,| | procegural
Flags, etc. || Fiags,etc. || Fiags, et

geometry

geometry

7 IANGLES,

GLES,

e =
Flags, el

e = TRI
Flagy, el

opaque after build

addressing part 1: app
defined

independently
modifiable,
app owned

per-instance + per-ray
shader index contributions

shader table

geometry index (order in
ottom level acc. structure) *

\
\
b (multi

AN addressing part 2
’ \
’
/ K b

per-ray multiplier
iplier=2in this example)

shader identi

hit gr

shader
record

local root arguments
e.g. root constants,

optional.

root descriptors,
descriptor tables

shaders can reference local root
arguments from shader records

and/or root arguments shared

oup

with

optional: any hit shader
optional: closest hit shader
for procedural primitives:
intersection shader

graphics from the C
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Vulkan raytracing vs DXR

Vulkan Ray DX12 / DXR
Tracing

Ray Tracing Pipelines Yes
L L At least one

must be available DXR Tier 1.1

Ray Queries - :
Yy Q Inline ray tracing

Language for

Ray Tracing Shaders sl =
Pipeline Libraries Yes A dgf;;:jgb}élt 0
it o

Deferred Host Operations Optional No
Capture/Replay Support for Optional No

Tools (e.g. RenderDoc)

Figure 5: Comparing Vulkan Ray Tracing and DXR. It is straightforward to port code between the two APIs
including re-use of ray tracing shaders written in HLSL



Vulkan ray tracing extension

Top Level Acceleration Structure (AS)
Transform &
Properties

Bottom Level AS

Bottom Level AS

Vertex & Index Buffers

Join
{IDLE/DONE}

Deferral Granted

Deferral Denied

Figure 4: Deferred Operation State Diagram

Join

{SUCCESS}



Load balancing

cpuol_ [ o cpuo|_ I | e |
vt W T m vt DEEAE | D D | ISl |
cruz| o il ceu2| [ IESHIN [ FSIN | 0 @S |
cpu3| CPU3|_ [as ] [as ]

oovce | RSI] Render | (RS Render |[AST Rendor ] . | [ Rendar™] [ Rendar ] [ Render "] |

Figure 5: Load balancing: No Host Build

Figure 6: Load Balancing: Host Build Enabled



Ray Tracing Architecture

hics, Compute or Ray

Shading Inf
RayGen Shader RSt (tasing oo | ] ) @ RayQuery

Traversal Wiy, ...
G220 (o] - 1 - ) O ey

Bottom Level AS

Bottom Level AS

Handle Confirm Hit, Generate
Result Details, or Terminate

.
Explicit Ray Management

within Single Shader

Recursion
i Closest Hit g

Vertex & Index Buffers

Implicit Ray and Shader
E tion M: t
xecution Managemen Build Step



Part lll:

Applications

https://www.youtube.com/watch?v=J3ue35ago3Y


https://www.youtube.com/watch?v=J3ue35ago3Y

Things to look out for

On NVIDIA, RT Cores are (partially) independent pipelines - if you
are not using RTX, you do waste some GPU resources

Ray tracing is a 2-in-1 deal: you get bounding volume-ray and
primitive-ray intersection capabilities - think about how you can
use this beyond graphics

Even with optimizations, you have a severely limited ray budget
per frame (1-2 rays per pixel) - you need to tackle variance

If doing recursions, mind your stack

\\ Shapr3D



No recursion

[a)
(%]
1
o
]
=
(7]
7


https://docs.google.com/file/d/1K4Yu-ZUBmMif7AwPf7xu-MGYzVgWd94K/preview

Q Shapr3D



https://docs.google.com/file/d/1wo-sAZ-Z6M_r9hs2en7HXxPqEgVcIZv0/preview

Recursion depth = 2 + temporal accumulation

Shapr3D



https://docs.google.com/file/d/1cxP8cHbZ_PNoRdRLZ_SEoLkpqeeklFYu/preview

https://media.contentapi.ea.com/content/dam/ea/seed/presentations/2019-ray-tracing-gems-chapter-25-barre-brisebois-et-al.pdf

G-Buffer Direct Lighting Reflections
(Raster) (Ray Trac (Compute) (Ray Trace or Compute)

Global Illumination Ambient Occlusion Transparency Post-Processing
(Ray Trace and Compute) (Ray trace or Compute) & Translucency (Compute)
(Ray Trace and Compute)

https://www.youtube.com/watch?v=L XoOWdIEL Jk



https://media.contentapi.ea.com/content/dam/ea/seed/presentations/2019-ray-tracing-gems-chapter-25-barre-brisebois-et-al.pdf
https://www.youtube.com/watch?v=LXo0WdlELJk

Part |V:

Mesh Shaders



Mesh Shaders

No access to . 2
Vertex Shader nectivity 1 Vertex No influence
Variable output 1 Primitive / : 5
Geometry Shader doesn‘t fit HW well 10 Strip Triangle Strips
Fixed-function
: 1 Patch / O
Tessellation Shader topology 1|Evaliated Vertex Fast Patterns & 8 /\ A
Compute shader Flexible within work —

Mesh Shader

Flexible

features group allocation @ @



Meshlets

del courtesy of PTC

© photo by Chis Christan - model by Russel Berkof 2]

Triangles 20 80 1,280 20,480 327,680



Task and Mesh shader

MESHLETS

TRADITIONAL PIPELINE

VERTEX TESS. TESS.
AL e Wl cowror W Tesseamon [ Evaation W CEMETRY B paster [ PRC
C SHADER SHADER ADER

Pipelined memory, keeping interstage data on chip

TASK/MESH PIPELINE

MESH PIXEL

Optlonal Expansion Fipelined;memory



Compute mesh modell

Task shader : a programmable unit that
operates in workgroups and allows each
to emit (or not) mesh shader workgroups
Mesh shader : a programmable unit that
operates in workgroups and allows each
to generate primitives

EXECUTION

Compute Like Model

TASK/MESH SHADER
Input uint WorkGrouplD

Cooperative
thread group

Cooperative access to memol
Output & temporary likz‘:ﬁ compute v
memory <=16 KB Output
fixed compile-time zllt)aar;nt{aelr?))/r;izr;)nlzatlon oquined
allocation size Shared Memory :

Figure 5. Mesh shaders behave similarly to compute shaders in using a cooperative thread
model.




Compute mesh modell

Optional Expansion
L

r
TASK SHADER

WorkGrouplD

TASK

MESH SHADER

# Primitives
Vertex Attributes

GENERATION

Raw access for
each child task

Primitive Attributes
Primitive Indices (uint8)
Pipelined Shared Memory
memory

Higher scalability: less fixed-function, but scalable
Bandwidth-reduction: vertex re-use, index buffers,
own VBO compression

Felxibility: replaces both geometry and tessellation
without their drawbacks

PRIMITIVE PIXEL
ASSEMBLY | SHADER

WorkGrouplD 0 “ “ Spavm Up:to
TASK — 4
I QOO D
SHADER 64K children

per workgroup

IDis
o relative to

Workgroups are launched ordered within level |:>
(execution can be out of order)

[ Primitive ordering is depth-first l:_‘>




Thank you for your attention!

Mesh shader references

e https://developer.nvidia.com/blog/intr
oduction-turing-mesh-shaders/

e https://blog.siggraph.org/2021/04/me
sh-shaders-release-the-intrinsic-pow
er-of-a-gpu.html/

e https://microsoft.github.io/DirectX-Sp
ecs/d3d/MeshShader.html

e htips://www.geeks3d.com/20200519/
introduction-to-mesh-shaders-opengl
-and-vulkan/

Ray tracing references
Ray Tracing Gems:

https://www.realtimerendering.com/raytracin

ems/

Microsoft: DXR functional specification

Khronos: Vulkan Ray Tracing specification

Chris Wyman: |ntroduction to ray fracing
(Siggraph 2018)
Peter Shirley: Ray Tracing in One Weekend

Ray Tracing: The Next Week

Ray Tracing: The Rest of Your Life



https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://blog.siggraph.org/2021/04/mesh-shaders-release-the-intrinsic-power-of-a-gpu.html/
https://blog.siggraph.org/2021/04/mesh-shaders-release-the-intrinsic-power-of-a-gpu.html/
https://blog.siggraph.org/2021/04/mesh-shaders-release-the-intrinsic-power-of-a-gpu.html/
https://microsoft.github.io/DirectX-Specs/d3d/MeshShader.html
https://microsoft.github.io/DirectX-Specs/d3d/MeshShader.html
https://www.geeks3d.com/20200519/introduction-to-mesh-shaders-opengl-and-vulkan/
https://www.geeks3d.com/20200519/introduction-to-mesh-shaders-opengl-and-vulkan/
https://www.geeks3d.com/20200519/introduction-to-mesh-shaders-opengl-and-vulkan/
https://www.realtimerendering.com/raytracinggems/
https://www.realtimerendering.com/raytracinggems/
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
https://www.khronos.org/blog/vulkan-ray-tracing-final-specification-release
http://intro-to-dxr.cwyman.org/
http://intro-to-dxr.cwyman.org/
https://www.realtimerendering.com/raytracing/Ray%20Tracing%20in%20a%20Weekend.pdf
https://www.realtimerendering.com/raytracing/Ray%20Tracing_%20The%20Next%20Week.pdf
https://www.realtimerendering.com/raytracing/Ray%20Tracing_%20the%20Rest%20of%20Your%20Life.pdf
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