Reliable numerical computations

Lajos Lóczi

LLoczi@inf.elte.hu ELTE Faculty of Informatics Dept. of Numerical Analysis

> TKP workshop May 26–27, 2022

PROGRAM FINANCED FROM THE NRDI FUND • H. Ranocha, L. Lóczi, D. I. Ketcheson: *General relaxation methods for initial value*

problems with application to multistep schemes, Numerische Mathematik 146, 875–906 (2020), **D1** journal

• L. Lóczi: *Guaranteed- and high-precision evaluation of the Lambert W function*, 30 pages, submitted to a **Q1** journal, positive feedback from the 3 reviewers asking for some revisions

• Y. Hadjimichael, D. I. Ketcheson, L. Lóczi: *Positivity preservation of implicit discretizations of the advection equation*, 25 pages, to be submitted

• L. Hajder, L. Lóczi: *Rapid Estimation of Surface Normals from Affine Transformations*, manuscript

• I. Fekete, L. Lóczi: *Linear multistep methods and global Richardson extrapolation*, under review in a Q1 journal

• L. Lóczi: On some growth and convexity properties of the solutions of $x^y = y^x$, under review, submitted to a leading mathematics education journal of Cambridge Univ. Press

Work in progress:

- linear multistep methods and local Richardson extrapolation
- monotonicity preservation of Runge—Kutta—Patankar schemes

Guaranteed- and high-precision evaluation of the Lambert W function

The Lambert function W satisfies $W(x) e^{W(x)} = x$ (for x > -1/e) — a generalization of the logarithm function

The solutions to many polynomial-exponential-logarithmic equations can be expressed in terms of the W function

$$\begin{aligned} & \text{Solve}[x + \text{Exp}[x] = y, x] // \text{Quiet} \\ & \{x \rightarrow y - \text{ProductLog}[e^{y}]\} \} \\ & \text{Solve}[x + \text{Log}[x] = y, x] // \text{Quiet} \\ & \{x \rightarrow \text{ProductLog}[e^{y}]\} \} \\ & \text{Solve}[x^{2} + \text{Log}[x] = y, x] // \text{Quiet} \\ & \{x \rightarrow -\frac{\sqrt{\text{ProductLog}[2 e^{2y}]}}{\sqrt{2}}\}, \{x \rightarrow \frac{\sqrt{\text{ProductLog}[2 e^{2y}]}}{\sqrt{2}}\} \} \\ & \text{Solve}[x^{3} \text{Log}[x] = y, x] // \text{Quiet} \\ & \{\{x \rightarrow -\frac{(-3)^{1/3} y^{1/3}}{\sqrt{2}}, \{x \rightarrow \frac{3^{1/3} y^{1/3}}{\sqrt{2}}\}, \{x \rightarrow \frac{(-1)^{2/3} 3^{1/3} y^{1/3}}{\sqrt{2}}\} \} \\ & \text{Solve}[x^{3} \text{Log}[x] = y, x] // \text{Quiet} \\ & \{\{x \rightarrow -\frac{(-3)^{1/3} y^{1/3}}{x} = y, x] // \text{Quiet} \\ & \{\{x \rightarrow -\frac{(-3)^{1/3} y^{1/3}}{x} = y, x] // \text{Quiet} \\ & \{\{x \rightarrow -\frac{(-3)^{1/3} y^{1/3}}{y}, \{x \rightarrow \frac{3^{1/3} y^{1/3}}{\sqrt{2}}\}, \{x \rightarrow \frac{(-1)^{2/3} 3^{1/3} y^{1/3}}{\sqrt{2}}\} \} \\ & \text{Solve}[\frac{\text{Log}[x]}{x} = y, x] // \text{Quiet} \\ & \{\{x \rightarrow -\frac{\text{ProductLog}[-y]}{y}\}\} \\ & \text{Solve}[\frac{\text{Exp}[x]}{x^{2}} = y, x] // \text{Quiet} \\ & \{\{x \rightarrow -2 \text{ProductLog}[-\frac{1}{2 \sqrt{y}}]\}, \{x \rightarrow -2 \text{ProductLog}[\frac{1}{2 \sqrt{y}}]\} \} \end{aligned}$$

The W function has two real branches: W_0 (continuous curve) and W_{-1} (dashed curve)

The W function gained popularity in the last few decades, and it is implemented in all major symbolic systems (e.g. *Mathematica*, Maple).

Both branches of the W function are now extensively used in science and engineering:

D.A. Barry et al./ Mathematics and Computers in Simulation 53 (2000) 95–103

97

Table 1

Problem description	Branch of the W-function used	Reference
Water movement in soil	W_{-1} or W_0^- or W_0^+	[5,6]
Enzyme-substrate reactions	$W_0^+ \text{ or } W_0^-$	[22,36]
Time of a parachute jump	W_0^+	[29]
Iterated exponentiation	$W_0(x), -\exp(-1) \le x \le \exp(1)$	[13,23]
Jet fuel consumption	W_0^- or W_{-1}	[1,13]
Combustion	W_0^+	[13,30]
Forces in hydrogen ions	W_0^+ or W_0^-	[34,35]
Population growth	W_{-1} and W_0^-	[13]
Roots of trinomials	W_{0}^{+}	[21]
Disease spreading	W_0^-	[13]
Recurrences in algorithm analysis	W_0^-	[13,25]
Binary search tree height	W_0^-	[13,15,32]
Hashing with uniform probing	W_{0}^{+}	[20]
Hashing methods	W_{-1}	[27]
Optimal wire shapes	W_{0}^{-}	[17]
SU(N) gauge theory	W_0^+	[2]
QCD renormalisation	W_0^+ or W_0^- or W_{-1}	[18,19,37]
Star collapse	W_0^+	[14]
Two-body motion	W_0^- and W_{-1}	[28]
Structure learning	W_0^+	[7]
Reaction-diffusion modelling	W_{-1}	[9]
Sample partitioning	W_0^+	[12]
Entropy-constrained scalar quantization	W_0^-	[39]
Redox barrier design	W_0^-	[11]
Photochemical bleaching	W_0^+	[40]
Thin film life time	W_{-1}	[38]
Testing Legendre transform algorithm	W_{0}^{+}	[26]
Exponential function approximation	W_{-1} and W_0^-	[33]
Herbivore-plant coexistence	W_0^+	[24]
Photorefractive two-wave mixing	W_0^+	[31]

The W function is not an elementary function, natural question: how to approximate it with elementary functions? There are several known formulae, including

• Taylor expansions, e.g., about the origin

$$\sum_{k=1}^{\infty} \frac{(-k)^{k-1}}{k!} x^k = x - x^2 + \frac{3x^3}{2} - \frac{8x^4}{3} + \frac{125x^5}{24} + \mathcal{O}\left(x^6\right);$$

- Puiseux expansions, e.g., about the branch point x = -1/e;
- asymptotic expansions about $+\infty$, such as

$$\ln(x) - \ln(\ln(x)) + \sum_{k=0}^{\infty} \sum_{m=1}^{\infty} c_{k,m} \frac{(\ln(\ln(x)))^m}{(\ln(x))^{m+k}}$$

where the coefficients $c_{k,m}$ are defined in terms of the Stirling cycle numbers; recursive approximations

 $\bullet\,$ the recursion

$$\lambda_{n+1}(x) := \ln(x) - \ln(\lambda_n(x));$$

• the Newton-type iteration

$$\nu_{n+1}(x) := \nu_n(x) - \frac{\nu_n(x) - xe^{-\nu_n(x)}}{1 + \nu_n(x)};$$

• the iteration

$$\beta_{n+1}(x) := \frac{\beta_n(x)}{1 + \beta_n(x)} \left(1 + \ln\left(\frac{x}{\beta_n(x)}\right) \right);$$

• the Halley-type iteration

$$h_{n+1}(x) := h_n(x) - \frac{h_n(x)e^{h_n(x)} - x}{e^{h_n(x)}(h_n(x) + 1) - \frac{(h_n(x) + 2)(h_n(x)e^{h_n(x)} - x)}{2(h_n(x) + 1)}}$$

• the Fritsch–Shafer–Crowley (FSC) scheme;

analytic bounds on different intervals

• the bounds

$$\ln(x) - \ln(\ln(x)) + \frac{\ln(\ln(x))}{2\ln(x)} < W_0(x) < \ln(x) - \ln(\ln(x)) + \frac{e\ln(\ln(x))}{(e-1)\ln(x)},$$

valid for $x \in (e, +\infty);$

Error estimates for the remainder terms in the series expansions?

For the recursive approximations: What starting value should one pick? Is the recursion well-defined then? Will it converge for a particular value of x? If yes, what is the error committed when n recursive steps are performed? How many steps to take to approximate W(x) to a given precision? How to tackle the difficulties when x is close to the branch point at -1/e, to the singularity near x < 0, or when x > 0 is very large?

In our work, we analyzed the following recursion proposed by R. Iacono and J. P. Boyd:

$$\beta_{n+1}(x) := \frac{\beta_n(x)}{1+\beta_n(x)} \left(1 + \ln\left(\frac{x}{\beta_n(x)}\right)\right)$$

• We proposed **simple and suitable starting values** (consisting of the basic operations, logarithms, or square roots) that guarantee monotone convergence on the full domain of definition of both real branches.

• The quadratic rate of convergence of the above recursion is proved via **explicit** and **uniform** error estimates.

• From these estimates, the maximum number of iteration steps needed to achieve a desired precision can easily be determined in advance.

Some results:

$$\begin{cases} \beta_0(x) := -1 - \sqrt{2}\sqrt{1 + ex} & \text{for } -1/e < x \le -1/4, \\ \beta_0(x) := \ln(-x) - \ln(-\ln(-x)) & \text{for } -1/4 < x < 0, \\ \beta_{n+1}(x) := \frac{\beta_n(x)}{1 + \beta_n(x)} \left(1 + \ln\left(\frac{x}{\beta_n(x)}\right)\right) & (n \in \mathbb{N}). \end{cases}$$

Theorem 2.23. For any -1/e < x < 0 and $n \in \mathbb{N}^+$, the recursion (27) satisfies

$$0 < W_{-1}(x) - \beta_n(x) < \left(\frac{1}{2}\right)^{2^n}.$$

In particular, for -1/4 < x < 0, the sharper estimate

$$W_{-1}(x) - \beta_n(x) < \left(\frac{1}{2}\right)^{2^n} \left(\frac{1}{|\ln(-x) - \ln(-\ln(-x))| \cdot |1 + \ln(-x) - \ln(-\ln(-x))|}\right)^{-1 + 2^n}$$

also holds.

The proofs are of symbolic character, e.g.:

$$\frac{ye^{y+1}\left(10 + \sqrt{1 + ye^{y+1}}\right)\ln\left(1 + \sqrt{1 + ye^{y+1}}\right)}{10\left(1 + ye^{y+1} + \sqrt{1 + ye^{y+1}}\right)} < y,$$

 $(w+10)^2z^2 + (w+1)(w^3 + 9w^2 - 120w - 200)z + 10(w+1)^3(w^2 + 10),$

Some examples (may have relevance in number theory):

• uniform, high-precision approximations (quadratic rate of convergence)

Remark 2.5. According to (19), we have the following uniform estimates for any

$$0 < W_0(x) - \beta_5(x) < 8 \cdot 10^{-17},$$

$$0 < W_0(x) - \beta_{10}(x) < 7 \cdot 10^{-517},$$

$$0 < W_0(x) - \beta_{15}(x) < 8 \cdot 10^{-16519}.$$

• very large arguments

$$0 < W_0 \left(10^{10^{20}} \right) - \beta_9 \left(10^{10^{20}} \right) < 10^{-10000}.$$