Reliable numerical computations

Lajos Lóczi
LLoczi@inf.elte.hu
ELTE Faculty of Informatics
Dept. of Numerical Analysis

TKP workshop
May 26-27, 2022

- H. Ranocha, L. Lóczi, D. I. Ketcheson: General relaxation methods for initial value problems with application to multistep schemes, Numerische Mathematik 146, 875-906 (2020), D1 journal
- L. Lóczi: Guaranteed- and high-precision evaluation of the Lambert W function, 30 pages, submitted to a Q1 journal, positive feedback from the 3 reviewers asking for some revisions
- Y. Hadjimichael, D. I. Ketcheson, L. Lóczi: Positivity preservation of implicit discretizations of the advection equation, 25 pages, to be submitted
- L. Hajder, L. Lóczi: Rapid Estimation of Surface Normals from Affine Transformations, manuscript
- I. Fekete, L. Lóczi: Linear multistep methods and global Richardson extrapolation, under review in a Q1 journal
- L. Lóczi: On some growth and convexity properties of the solutions of $x^{y}=y^{x}$, under review, submitted to a leading mathematics education journal of Cambridge Univ. Press

Work in progress:

- linear multistep methods and local Richardson extrapolation
- monotonicity preservation of Runge-Kutta-Patankar schemes

Guaranteed- and high-precision evaluation of the Lambert W function

The Lambert function W satisfies $W(x) e^{W(x)}=x($ for $x>-1 / e)-a$ generalization of the logarithm function

The solutions to many polynomial-exponential-logarithmic equations can be expressed in terms of the W function

$$
\begin{aligned}
& \text { Solve }[x+\operatorname{Exp}[x]==y, x] / / \text { Quiet } \\
& \left\{\left\{x \rightarrow y-\operatorname{Product} \log \left[e^{y}\right]\right\}\right\} \\
& \\
& \text { Solve }[x+\log [x]==y, x] / / \text { Quiet } \\
& \left\{\left\{x \rightarrow \operatorname{ProductLog}\left[e^{y}\right]\right\}\right\} \\
& \text { Solve }\left[x^{2}+\log [x]=y, x\right] / / \text { Quiet } \\
& \left\{\left\{x \rightarrow-\frac{\sqrt{\operatorname{ProductLog}\left[2 e^{2 y}\right]}}{\sqrt{2}}\right\},\left\{x \rightarrow \frac{\sqrt{\operatorname{ProductLog}\left[2 e^{2 y}\right]}}{\sqrt{2}}\right\}\right\}
\end{aligned}
$$

$$
\text { Solve }\left[x^{3} \log [x]=y, x\right] / / \text { Quiet }
$$

$$
\left\{\left\{x \rightarrow-\frac{(-3)^{1 / 3} y^{1 / 3}}{\operatorname{ProductLog}[3 y]^{1 / 3}}\right\},\left\{x \rightarrow \frac{3^{1 / 3} y^{1 / 3}}{\operatorname{ProductLog}[3 y]^{1 / 3}}\right\},\left\{x \rightarrow \frac{(-1)^{2 / 3} 3^{1 / 3} y^{1 / 3}}{\operatorname{ProductLog}[3 y]^{1 / 3}}\right\}\right\}
$$

$$
\text { Solve }\left[\frac{\log [x]}{x}==y, x\right] / / \text { Quiet }
$$

$$
\left\{\left\{\mathrm{x} \rightarrow-\frac{\operatorname{ProductLog}[-\mathrm{y}]}{\mathrm{y}}\right\}\right\}
$$

$$
\text { Solve }\left[\frac{\operatorname{Exp}[x]}{x^{2}}==y, x\right] / / \text { Quiet }
$$

$$
\left\{\left\{x \rightarrow-2 \operatorname{ProductLog}\left[-\frac{1}{2 \sqrt{y}}\right]\right\},\left\{x \rightarrow-2 \operatorname{ProductLog}\left[\frac{1}{2 \sqrt{y}}\right]\right\}\right\}
$$

The W function has two real branches: W_{0} (continuous curve) and W_{-1} (dashed curve)
$\ln [\cdot]:=$
Plot[\{ProductLog[x], ProductLog[-1, x]\}, $\{x,-1 / E, 4\}$, PlotRange $\rightarrow\{-4,1.5\}$, AspectRatio $\rightarrow 1$, PlotStyle $\rightarrow\{$, Dashed $\}]$

The W function gained popularity in the last few decades, and it is implemented in all major symbolic systems (e.g. Mathematica, Maple).

 Both branches of the W function are now extensively used in science and

 Both branches of the W function are now extensively used in science and engineering:

 engineering:}

Table 1
Applications of the real-valued W-function including the branch used

Problem description	Branch of the W-function used	Reference
Water movement in soil	W_{-1} or W_{0}^{-}or W_{0}^{+}	$[5,6]$
Enzyme-substrate reactions	W_{0}^{+}or W_{0}^{-}	$[22,36]$
Time of a parachute jump	W_{0}^{+}	$[29]$
Iterated exponentiation	$W_{0}(x),-\operatorname{xp}(-1) \leq x \leq \exp (1)$	$[13,23]$
Jet fuel consumption	W_{0}^{-}or W_{-1}	$[1,13]$
Combustion	W_{0}^{+}	$[13,30]$
Forces in hydrogen ions	W_{0}^{+}or W_{0}^{-}	$[34,35]$
Population growth	W_{-1} and W_{0}^{-}	$[13]$
Roots of trinomials	W_{0}^{+}	$[21]$
Disease spreading	W_{0}^{-}	$[13]$
Recurrences in algorithm analysis	W_{0}^{-}	$[13,25]$
Binary search tree height	W_{0}^{-}	$[13,15,32]$
Hashing with uniform probing	W_{0}^{+}	$[20]$
Hashing methods	W_{-1}	$[27]$
Optimal wire shapes	W_{0}^{-}	$[17]$
SU(N) gauge theory	W_{0}^{+}	$[2]$
$Q C D$ renormalisation	W_{0}^{+}or W_{0}^{-}or W_{-1}	$[18,19,37]$
Star collapse	W_{0}^{+}	$[14]$
Two-body motion	W_{0}^{-}and W_{-1}	$[28]$
Structure learning	W_{0}^{+}	$[7]$
Reaction-diffusion modelling	W_{-1}	$[9]$
Sample partitioning	W_{0}^{+}	$[12]$
Entropy-constrained scalar quantization	W_{0}^{-}	$[39]$
Redox barrier design	W_{0}^{-}	$[11]$
Photochemical bleaching	W_{0}^{+}	$[40]$
Thin film life time	W_{-1}	$[38]$
Testing Legendre transform algorithm	W_{0}^{+}	$[26]$
Exponential function approximation	W_{-1} and W_{0}^{-}	$[23]$
Herbivore-plant coexistence	W_{0}^{+}	$[31]$
Photorefractive two-wave mixing	W_{0}^{+}	

The W function is not an elementary function, natural question: how to approximate it with elementary functions? There are several known formulae, including

- Taylor expansions, e.g., about the origin

$$
\sum_{k=1}^{\infty} \frac{(-k)^{k-1}}{k!} x^{k}=x-x^{2}+\frac{3 x^{3}}{2}-\frac{8 x^{4}}{3}+\frac{125 x^{5}}{24}+\mathcal{O}\left(x^{6}\right)
$$

- Puiseux expansions, e.g., about the branch point $x=-1 / e$;
- asymptotic expansions about $+\infty$, such as

$$
\ln (x)-\ln (\ln (x))+\sum_{k=0}^{\infty} \sum_{m=1}^{\infty} c_{k, m} \frac{(\ln (\ln (x)))^{m}}{(\ln (x))^{m+k}}
$$

where the coefficients $c_{k, m}$ are defined in terms of the Stirling cycle numbers; recursive approximations

- the recursion

$$
\lambda_{n+1}(x):=\ln (x)-\ln \left(\lambda_{n}(x)\right) ;
$$

- the Newton-type iteration

$$
\nu_{n+1}(x):=\nu_{n}(x)-\frac{\nu_{n}(x)-x e^{-\nu_{n}(x)}}{1+\nu_{n}(x)} ;
$$

- the iteration

$$
\beta_{n+1}(x):=\frac{\beta_{n}(x)}{1+\beta_{n}(x)}\left(1+\ln \left(\frac{x}{\beta_{n}(x)}\right)\right) ;
$$

- the Halley-type iteration

$$
h_{n+1}(x):=h_{n}(x)-\frac{h_{n}(x) e^{h_{n}(x)}-x}{e^{h_{n}(x)}\left(h_{n}(x)+1\right)-\frac{\left(h_{n}(x)+2\right)\left(h_{n}(x) e^{h_{n}(x)}-x\right)}{2\left(h_{n}(x)+1\right)}} ;
$$

- the Fritsch-Shafer-Crowley (FSC) scheme;
analytic bounds on different intervals
- the bounds

$$
\ln (x)-\ln (\ln (x))+\frac{\ln (\ln (x))}{2 \ln (x)}<\mathrm{W}_{0}(x)<\ln (x)-\ln (\ln (x))+\frac{e \ln (\ln (x))}{(e-1) \ln (x)}
$$

valid for $x \in(e,+\infty)$;

Error estimates for the remainder terms in the series expansions?

For the recursive approximations:
What starting value should one pick?
Is the recursion well-defined then?
Will it converge for a particular value of x ?
If yes, what is the error committed when n recursive steps are performed?
How many steps to take to approximate $\mathrm{W}(x)$ to a given precision?
How to tackle the difficulties when x is close to the branch point at $-1 / e$, to the singularity near $x<0$, or when $x>0$ is very large?

In our work, we analyzed the following recursion proposed by R. lacono and J. P. Boyd:

$$
\beta_{n+1}(x):=\frac{\beta_{n}(x)}{1+\beta_{n}(x)}\left(1+\ln \left(\frac{x}{\beta_{n}(x)}\right)\right)
$$

- We proposed simple and suitable starting values (consisting of the basic operations, logarithms, or square roots) that guarantee monotone convergence on the full domain of definition of both real branches.
- The quadratic rate of convergence of the above recursion is proved via explicit and uniform error estimates.
- From these estimates, the maximum number of iteration steps needed to achieve a desired precision can easily be determined in advance.

Some results:

$$
\left\{\begin{array}{rlrl}
\beta_{0}(x) & :=-1-\sqrt{2} \sqrt{1+e x} & \text { for }-1 / e<x \leq-1 / 4, \\
\beta_{0}(x) & :=\ln (-x)-\ln (-\ln (-x)) & \text { for }-1 / 4<x<0 \\
\beta_{n+1}(x) & :=\frac{\beta_{n}(x)}{1+\beta_{n}(x)}\left(1+\ln \left(\frac{x}{\beta_{n}(x)}\right)\right) \quad(n \in \mathbb{N}) .
\end{array}\right.
$$

Theorem 2.23. For any $-1 / e<x<0$ and $n \in \mathbb{N}^{+}$, the recursion (27) satisfies

$$
0<\mathrm{W}_{-1}(x)-\beta_{n}(x)<\left(\frac{1}{2}\right)^{2^{n}}
$$

In particular, for $-1 / 4<x<0$, the sharper estimate

$$
\mathrm{W}_{-1}(x)-\beta_{n}(x)<\left(\frac{1}{2}\right)^{2^{n}}\left(\frac{1}{|\ln (-x)-\ln (-\ln (-x))| \cdot|1+\ln (-x)-\ln (-\ln (-x))|}\right)^{-1+2^{n}}
$$

also holds.

The proofs are of symbolic character, e.g.:

$$
\frac{y e^{y+1}\left(10+\sqrt{1+y e^{y+1}}\right) \ln \left(1+\sqrt{1+y e^{y+1}}\right)}{10\left(1+y e^{y+1}+\sqrt{1+y e^{y+1}}\right)}<y
$$

$$
(w+10)^{2} z^{2}+(w+1)\left(w^{3}+9 w^{2}-120 w-200\right) z+10(w+1)^{3}\left(w^{2}+10\right)
$$

Some examples (may have relevance in number theory):

- uniform, high-precision approximations (quadratic rate of convergence)

Remark 2.5. According to (19), we have the following uniform estimates for any

$$
\begin{gathered}
0<\mathrm{W}_{0}(x)-\beta_{5}(x)<8 \cdot 10^{-17} \\
0<\mathrm{W}_{0}(x)-\beta_{10}(x)<7 \cdot 10^{-517} \\
0<\mathrm{W}_{0}(x)-\beta_{15}(x)<8 \cdot 10^{-16519}
\end{gathered}
$$

- very large arguments

$$
0<\mathrm{W}_{0}\left(10^{10^{20}}\right)-\beta_{9}\left(10^{10^{20}}\right)<10^{-10000}
$$

