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« H. Ranocha, L. Loczi, D. I. Ketcheson: General relaxation methods for initial
value

problems with application to multistep schemes, Numerische Mathematik 146,
875-906 (2020), D1 journal

- L. Loczi: Guaranteed- and high-precision evaluation of the Lambert W function,
30 pages, submitted to a Q1 journal, positive feedback from the 3 reviewers
asking for some revisions

- Y. Hadjimichael, D. I. Ketcheson, L. Loczi: Positivity preservation of implicit
discretizations of the advection equation, 25 pages, to be submitted

- L. Hajder, L. Loczi: Rapid Estimation of Surface Normals from Affine
Transformations, manuscript

- |. Fekete, L. Loczi: Linear multistep methods and global Richardson
extrapolation, under review in a Q1 journal

- L. Loczi: On some growth and convexity properties of the solutions of X’ = y*,
under review, submitted to a leading mathematics education journal of
Cambridge Univ. Press

Work in progress:
« linear multistep methods and local Richardson extrapolation
« monotonicity preservation of Runge—Kutta—Patankar schemes
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Guaranteed- and high-precision evaluation of the Lambert W function

The Lambert function W satisfies W(x)e"W® =x (forx>-1/e) —a

generalization of the logarithm function

The solutions to many polynomial-exponential-logarithmic equations can be

expressed in terms of the W function

Solve[x + Exp[Xx] ==y, X] // Quiet

{{x>y-Productlog|e’]}}

Solve[x + Log[x] ==y, x] // Quiet

{{x > ProductLog|e’]}}

Solve[x? + Log[x] =y, x] // Quiet
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Solve[x® Log[x] =y, x] // Quiet
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The W function has two real branches: W, (continuous curve) and W_;
(dashed curve)

)= Plot[{ProductLog[x], ProductLog[-1, x]}, {x, -1/E, 4},
PlotRange -» {-4, 1.5}, AspectRatio » 1, PlotStyle » {, Dashed}]
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The W function gained popularity in the last few decades, and it is
implemented in all major symbolic systems (e.g. Mathematica, Maple).

Both branches of the W function are now extensively used in science and
engineering:

D A. Barry et al./ Mathematics and Computers in Simulation 53 (2000) 95-103 97
Table 1
Applications of the real-valued W -function including the branch used
Problem description Branch of the W-function used Reference
Water movement in soil W_y or Wy or Wy [5.6]
Enzyme—substrate reactions W, or Wy [22,36]
Time of a parachute jump Wy [29]
Iterated exponentiation Wo(x), —exp(—1) < x <exp(l) [13,23]
Jet fuel consumption Wy or W_; [1,13]
Combustion Wy [13.30]
Forces in hydrogen ions W, or Wy [34.35]
Population growth W_; and Wy [13]
Roots of trinomials Wy [21]
Disease spreading W, [13]
Recurrences in algorithm analysis W, [13.25]
Binary search tree height Wy [13.15,32]
Hashing with uniform probing Wo [20]
Hashing methods W_, [27]
Optimal wire shapes Wy [17]
SU(N) gauge theory W 21
QCD renormalisation Wo+ or Wy or W_,; [18,19,37]
Star collapse Wy [14]
Two-body motion W, and W_; [28]
Structure learning Wy (7]
Reaction—diffusion modelling W, [9]
Sample partitioning W, [12]
Entropy-constrained scalar quantization W, [39]
Redox barrier design Wy [11]
Photochemical bleaching WO+ [40]
Thin film life time W_, [38]
Testing Legendre transform algorithm Wy [26]
Exponential function approximation W_; and W, [33]
Herbivore—plant coexistence WO+ [24]
Photorefractive two-wave mixing Wo+ [31]
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The W function is not an elementary function, natural question: how to
approximate it with elementary functions?
There are several known formulae, including

e Taylor expansions, e.g., about the origin

o~ (=R o 32® 8zt 12545 6
Z I rr=x—=x —0—7—?4- 1 —I-O(I.),
k=1

e Puiseux expansions, e.g., about the branch point z = —1/¢;

e asymptotic expansions about 400, such as

o0 00

In(z) — In(In(z)) + Z Z ck,mw

somm (@)
where the coefficients ¢y, are defined in terms of the Stirling cycle numbers;

recursive approximations

e the recursion
Ans1(z) = In(x) — In(A,(2));

e the Newton-type iteration

vn(z) — a:e_””(x)_
1+ vp(x)

Fn1(x) = 1+ Bn(x) (l o (Sn(x))) ‘

e the Halley-type iteration

Vns1(2) == vn(z) —

e the iteration

hn(z)en(®) —

(hn(2)+2) (hp(x)ehn (@) —x) )
hn xr .
ehn(@) (h,(z) 4+ 1) i

hoi1(z) = hyo(z) —

e the Fritsch-Shafer-Crowley (FSC) scheme;
analytic bounds on different intervals

e the bounds

eln(In(z))

- In(In(x)) V(o _ i St
In(z) — In(In(z)) + ———— < Wo(z) < In(z) — In(In(z)) + (c—Dn(z)’

21In(x)

valid for z € (e, +00);
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Error estimates for the remainder terms in the series expansions?

For the recursive approximations:

What starting value should one pick?

Is the recursion well-defined then?

Will it converge for a particular value of x?

If yes, what is the error committed when n recursive steps are performed?
How many steps to take to approximate W(x) to a given precision?

How to tackle the difficulties when x is close to the branch point at -1/e, to the
singularity near x <0, or when x> 0 is very large?

In our work, we analyzed the following recursion proposed by R. lacono and
J. P. Boyd:

Bns1(X) = % (1 * ln(ﬁ ))

« We proposed simple and suitable starting values (consisting of the basic
operations, logarithms, or square roots) that guarantee monotone
convergence on the full domain of definition of both real branches.

« The quadratic rate of convergence of the above recursion is proved via
explicit and uniform error estimates.

 From these estimates, the maximum number of iteration steps needed to
achieve a desired precision can easily be determined in advance.
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Some results:

Bo(z) :=—1—v2y/1+ex for —1/e <z < —1/4,
Bo(z) :=In(—z) — In(— In(—z)) for —1/4 <z <0,

Brsr(@) ::% (1 +In (ﬁ%(x))) (n € N).

Theorem 2.23. For any —1/e < x < 0 and n € N*, the recursion @ satisfies

1\
0 <W_i(z) — fBn(z) < (5) .

In particular, for —1/4 < x < 0, the sharper estimate

o 1 on 1 C1gan
W-sla) ’3”(”‘”“(2) (|ln(—m>—1n(—1n(—x>>|-\1+1n(—m)—1n(—1n(—r)>|)

also holds.
(a) (b)
The proofs are of symbolic character, e.g.:
v+ (10 1 y+1 ) In (1 14 yevtl
ye + + ye n + + ye
<Y,

10 (1 +yevtl 4 /1 + yeyH)

(w4 10)222 + (w + 1)(w® 4 9w? — 120w — 200)z 4 10(w + 1)*(w? + 10),
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Some examples (may have relevance in number theory):

« uniform, high-precision approximations (quadratic rate of convergence)

Remark 2.5. According to , we have the following uniform estimates for any
0 < Wo(z) — Bs(x) < 8-10717,

0 < Wo(z) — pro(z) < 7-107°17,
0 < Wo(z) — Bys(z) < 8- 10716519,

- very large arguments

0 < W, (10102") — By (10102”) < 1010000,



