Secure Distributed Protocols

Ligeti Péter

ELTE IK Komputeralgebra tsz. Digitális szolgáltatások

2022. május 26-27.

Motivation

Theory: secret sharing

- ► Goal: distribution of sensitive data
- ► Challenge: security + efficiency
- ► Tool: interesting combinatorial constructions

Practice: distributed communication systems

- ► Goal: secure distributed*
- ► Challenge: decentralization + constraints
- ► Tool: network + crypto protocols

Secret sharing

Motivation

Secret sharing scheme

- ► Some secret data is distributed into shares
- ► Each participant get a share
- ► The "good" guys can recover the secret
- ► Perfect SS: the other guys learn "nothing"

Algorithmic point of view

- ▶ Distribution: $s \rightarrow (s_1, ..., s_n)$ by the dealer
- ▶ Reconstruction $(s_{i_1}, \dots, s_{i_k}) \rightarrow s$ by $\{i_1, \dots, i_k\} \subseteq \mathcal{P}$

Research problem

Multilevel conjunctive hierarchical threshold schemes

- $\triangleright \mathcal{P} = \bigcup_{i=1}^m \mathcal{L}_i$
- lacktriangle Different thresholds for different levels: $t_1 < \cdots < t_m$
- $ightharpoonup |A \cap \bigcup_{j=1}^{j} \mathcal{L}_{j}| \geq t_{j}$
- $\blacktriangleright \ \mathcal{A} = \{A \subseteq \mathcal{P} : \forall j (|A \cap \bigcup_{i=1}^{j} \mathcal{L}_{j}| \geq t_{j})\}$

Existing solutions

- ► Mostly for 2 levels only
- ► Construction: random or monotone allocation of elements (Tassa '04)
- ► Reconstruction: Birkhoff interpolation (Tassa '04)
- ► Reconstruction: bivariate Lagrange interpolation (Tassa, Dyn '09)
- ► Drawback: restrictions for the field size/characteristics

Solution

Results (Sziklai, Takáts, LP '21)

- ▶ Novel construction for 3 levels: finite geometry tools
- ► Construction: intersection properties in a projective space
- ► Reconstruction: linear algebra
- Advantages: ideal, smaller field size $(O(n^3))$ improvement
- ► Sziklai, Takáts, LP: Generalized threshold secret sharing and finite geometry, DESIGNS, CODES AND CRYPTOGRAPHY, **89** pp. 2067–2078 (2021)

Distributed communication systems

Motivation

Problems

- ► Centralized vs. distributed protocols
- ► Security drawbacks: DOS, TTP, ...
- ▶ Device constraints: computation, communication, location, ...
- Crypto drawbacks: efficient tools only

Examples

- ► Data validation in IIoT
- ► Attribute based access control
- ► Distributed address distribution
- ► Location-awareness, lightweight devices

M D

Research problem

Distributed Address Table (DAT)

- Decentralized end-to-end communication in IoT
- Address distribution without TTP
- ► NAT traversal problem
- ► Efficiency/security trade-off

PROGRAM FINANCED FROM THE NRDI FUND

IoT Nodes

NATs

Fog Nodes

Solution

Building blocks

- ► Communication
 - ► structured P2P overlay
 - ► DHT + F2F
- ► Crypto
 - ► hash functions
 - symmetric/public key methods

Solution

Results (Kamel, Nagy, Reich, LP '22)

- ► ID generation + address distribution algorithms
- ► Simple + realistic assumptions
- ► Precise security requirements + proofs
- Preliminary implementation results (PeerSim + RPI3)
- ► Kamel, Nagy, Reich, LP: Distributed Address Table (DAT): A Decentralized Model for End-to-End Communication in IoT, PEER-TO-PEER NETWORKING AND APPLICATIONS, 15 pp. 178–193 (2022)

PROGRAM FINANCED FROM THE NRDI FUND

Q&A

