Machine Learning, Optimization and Quantum Computing

Zoltán Zimborás Application Domain Specific Highly Reliable IT Solutions Final Workshop 26 May 2022, Budapest

PROGRAM FINANCED FROM THE NRDI FUND

The team that helped achieving the results

Where are we at?

1984

Bennett & Brassard come up with quantum *cryptography*.

1981

Feynman proposes quantum computers to simulate physics

Very sketchy preliminary ideas, nothing concrete

1970s

1994-1996

All hell breaks loose. Basically everything at the basic theory level is discovered. Algorithms, entanglement, quantum error correction, etc.

2016-2020

?

[First] commercial boom (speculative).

2014

John Martinis (Google) presents first plausible demo of quantum error correction using 9 superconducting qubits.

Google's Supremacy Experiment

Quantum gates on 53 qubits

The plans of Google and IBM

Google Al Quantum hardware roadmap

Shor algorithm for factoring integer numbers

The possibility of running Shor's algorithm

How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits

Craig Gidney^{1,*} and Martin Ekerå²

¹Google Inc., Santa Barbara, California 93117, USA ²KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden Swedish NCSA, Swedish Armed Forces, SE-107 85 Stockholm, Sweden (Dated: December 6, 2019)

Historical cost Physical gate Cycle time Reaction time Physical Distillation Execution Physical qubits Expected runtime Expected volum estimate at $n = 2048$ error rate (microseconds) (microseconds) connectivity strategy strategy (millions) (days) (megaqubitday) Fowler et al. 2012 [9] 0.1% 1 0.1 planar 1200 T single threaded 1000 1.1 1100		Physical assumptions				Approach		Estimated costs		
estimate at $n = 2048$ error rate (microseconds) connectivity strategy strategy (millions) (days) (megaqubitday) Fowler et al. 2012 [9] 0.1% 1 0.1 planar 1200 T single threaded 1000 1.1 1100	Historical cost	Physical gate	Cycle time	Reaction time	Physical	Distillation	Execution	Physical qubits	Expected runtime	Expected volume
Fowler et al. 2012 [9] 0.1% 1 0.1 planar 1200 T single threaded 1000 1.1 1100	estimate at $n = 2048$	error rate	(microseconds)	(microseconds)	connectivity	strategy	strategy	(millions)	(days)	(megaqubitdays)
	Fowler et al. 2012 [9]	0.1%	1	0.1	planar	1200 T	single threaded	1000	1.1	1100
O'Gorman et al. 2017 [18] 0.1% 10 1 arbitrary block CCZ single threaded 230 3.7 850	O'Gorman et al. 2017 [18]	0.1%	10	1	arbitrary	block CCZ	single threaded	230	3.7	850
Gheorghiu et al. 2019 [19] 0.1% 0.2 0.1 planar 1100 T single threaded 170 1 170	Gheorghiu et al. 2019 [19]	0.1%	0.2	0.1	planar	1100 T	single threaded	170	1	170
(ours) 2019 (1 factory) 0.1% 1 10 planar 1 CCZ serial distillation 16 6 90	(ours) 2019 (1 factory)	0.1%	1	10	planar	1 CCZ	serial distillation	16	6	90
(ours) 2019 (1 thread) 0.1% 1 10 planar 14 CCZ single threaded 19 0.36 6.6	(ours) 2019 (1 thread)	0.1%	1	10	planar	14 CCZ	single threaded	19	0.36	6.6
(ours) 2019 (parallel) 0.1% 1 10 planar 28 CCZ double threaded 20 0.31 5.9	(ours) 2019 (parallel)	0.1%	1	10	planar	28 CCZ	double threaded	20	0.31	5.9

Near-term Quantum Algorithms

Classification of Machine Learning from a Quantum Computing point of view

Abstraction -> Artificial Neural Networks

Input points = synapses

$$y_i = heta \left(\sum_j J_{ij} x_j - U_0
ight)$$

 $\mathbf{y} = g\left(\mathbf{W}^{\top}\mathbf{x} + \mathbf{b}\right)$

Further Abstraction -> Quantum Neural Networks

Quantum Neural Networks: realization with integrated quantum optics

source: https://strawberryfields.ai

Piquasso photonic quantum computer simulator

Hybrid Quantum-Classical Reinforcement Learning

OpenAl Gym problem: cartpole

The structure of the Quantum Neural Networks

Results

Radio communication: 16 QAM

Radio communication: 16 QAM

Thank you!

https://www.inf.elte.hu/

PROGRAM FINANCED FROM THE NRDI FUND