
STATIC ANALYSIS OF ERLANG PROGRAMS
ISTVÁN BOZÓ, MELINDA TÓTH

Application Domain Specific Highly Reliable IT Solutions project has been implemented with the support
provided from the National Research, Development and Innovation Fund of Hungary, financed under the
Thematic Excellence Programme TKP2020-NKA-06 (National Challenges Subprogramme) funding scheme.

REFACTORERL PROJECT

• Academic project @ ELTE and ELTE-Soft
• Researchers, PhD students
• BSc/MSc student

• Static source code analysis project

• Ananlyses & transformations

• plc.inf.elte.hu/erlang

RefactorErl project

• Shorten learning term of a newcomer
• Shorten bug report solution time
• Make the possibility of a better team work
• Support software delivery product line
• Increase code quality by reducing faults
• Shorten time-consuming daily jobs
• Helps to detect vulnerabilities and undesired

software properties

Key benefits

• Understand legacy code

• Refactoring/Application restructuring

• Code checking: complexity/quality/style/
vulnerability/custom properties

Main features

• Compile-time analysis
• Functions, variables, records, etc
• Lifetime, scope, visibility
• Static and dynamic references
• Side-effects
• Data-flow, control-flow
• Dynamic function call graph
• Hidden dependencies

Static analysis framework

• Semantic queries
• Software complexity metrics
• Bad smell detection
• Duplicated code detection and elimination
• Clustering - software restructuring
• Dependency visualisation
• Secure programming
• Code quality checking

Program development support through

• Communication/process relation analyses
• Program slicing for test case selection
• OTP behaviour analyses
• Decompilation
• Pattern candidate discovery and refactorings for parallelisation
• Ad-hoc parellelisation
• Distribution analysis and refactorings to introduce distribution
• Improving the “functional style” of the code
• Merging static and dynamic analyses
• Green computing

And lots of experiments on

• Checking various software properties
• Support for secure coding
• Design rule classification
• Complexity metrics

• Automatised rule checking based on
configurations

• Analysing distributed Erlang applications
• Improving data-flow analysis
• Erlang LS integration / VSCode interface
• Supporting first-time users
• BEAM analysis
• Elixir analysis
• Support for software/service migration

TKP topics in 2019-2022

• Finding concurrent design pattern candidates
• Finding “error-path” based on symbolic

execution
• Distributed database backend
• Refactoring concurrent Erlang applications

for distribution
• Refactorings for optimising functional code
• Graph-based duplicated code analysis
• Software dependency visualisation to support

code comprehension
• Model for storing software versions
• Analysing the fingerprint of the programmers
• Green Computing
• Fixes and improvements on RefactorErl

• Members
• 2 researchers
• 2+3 PhD students
• ca 40 MSc students
• ca 10 BSC students

• 3 + 13 Journal papers
• 7 Conference papers
• 10 Abstracts
• 17 Conference talks
• 4 invited talks

TKP in numbers

• 11 TDK theses
• 9 presented OTDK theses

• 7 prizes
• 14 Master theses
• 10 Bachelor theses
• 2 Internships
• Industrial connection

• Ericsson
• OTP

• Trainings
• OTP

• International cooperation
• Univ. Novi Sad, SSQSA

• International project involvment
• COST CA19135 - CERCIRAS

• Coding convention
• Design rules
• Style
• Complexity
• Custom properties
• Non-intentional software vulnerabilities

Checking software properties
clause-limit

exported-functions-limit
exported-without-spec

used-underlined-var
find-function-call

find-io-format
no-imports

tag-messages
flush-message-box

tail-recursive-servers
macro-naming

no-nested-try-catch
module-naming

function-naming
state-for-otp-behaviours

etc…

• Support for secure coding
• Erlang specific analysis
• Identify unsecure function calls and

constructs
• Filter those based on data-flow analysis

(taint analysis)

Vulnerability checks

• Support for secure coding
• Erlang specific analysis
• Identify unsecure function calls and

constructs
• Filter those based on data-flow

analysis (taint analysis)

Vulnerability checks

• Injection
• Memory overload
• Interoperability mechanism related

issues
• Concurrent/distributed

programming related issues

• Semantic Query Language
• Standalone, automatic rule checker interface:

DRC
• Diagnostics in ELS

Code Checking

mods.funs.unsecure_prioritization

THANK YOU FOR YOUR ATTENTION

Application Domain Specific Highly Reliable IT Solutions project has been implemented with the
support provided from the National Research, Development and Innovation Fund of Hungary, financed
under the Thematic Excellence Programme TKP2020-NKA-06 (National Challenges Subprogramme)
funding scheme.

