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REFACTORERL PROJECT



• Academic project @ ELTE and ELTE-Soft 
• Researchers, PhD students 
• BSc/MSc student 

• Static source code analysis project 

• Ananlyses & transformations 

• plc.inf.elte.hu/erlang

RefactorErl project



• Shorten learning term of  a newcomer 
• Shorten bug report solution time 
• Make the possibility of  a better team work 
• Support software delivery product line 
• Increase code quality by reducing faults 
• Shorten time-consuming daily jobs 
• Helps to detect vulnerabilities and undesired 

software properties

Key benefits



• Understand legacy code 

• Refactoring/Application restructuring 

• Code checking: complexity/quality/style/
vulnerability/custom properties

Main features



• Compile-time analysis 
• Functions, variables, records, etc 
• Lifetime, scope, visibility 
• Static and dynamic references 
• Side-effects 
• Data-flow, control-flow 
• Dynamic function call graph 
• Hidden dependencies

Static analysis framework



• Semantic queries 
• Software complexity metrics 
• Bad smell detection 
• Duplicated code detection and elimination 
• Clustering - software restructuring 
• Dependency visualisation 
• Secure programming 
• Code quality checking

Program development support through



• Communication/process relation analyses 
• Program slicing for test case selection 
• OTP behaviour analyses 
• Decompilation 
• Pattern candidate discovery and refactorings for parallelisation 
• Ad-hoc parellelisation 
• Distribution analysis and refactorings to introduce distribution 
• Improving the “functional style” of  the code  
• Merging static and dynamic analyses 
• Green computing

And lots of  experiments on



• Checking various software properties 
• Support for secure coding 
• Design rule classification 
• Complexity metrics 

• Automatised rule checking based on 
configurations 

• Analysing distributed Erlang applications 
• Improving data-flow analysis 
• Erlang LS integration / VSCode interface 
• Supporting first-time users 
• BEAM analysis 
• Elixir analysis 
• Support for software/service migration

TKP topics in 2019-2022

• Finding concurrent design pattern candidates 
• Finding “error-path” based on symbolic 

execution 
• Distributed database backend 
• Refactoring concurrent Erlang applications 

for distribution  
• Refactorings for optimising functional code 
• Graph-based duplicated code analysis 
• Software dependency visualisation to support 

code comprehension 
• Model for storing software versions 
• Analysing the fingerprint of  the programmers 
• Green Computing 
• Fixes and improvements on RefactorErl



• Members 
• 2 researchers 
• 2+3 PhD students 
• ca 40 MSc students 
• ca 10 BSC students 

• 3 + 13 Journal papers 
• 7 Conference papers 
• 10 Abstracts 
• 17 Conference talks 
• 4 invited talks

TKP in numbers 

• 11 TDK theses 
• 9 presented OTDK theses 

• 7 prizes 
• 14 Master theses 
• 10 Bachelor theses 
• 2 Internships 
• Industrial connection  

• Ericsson 
• OTP 

• Trainings 
• OTP 

• International cooperation 
• Univ. Novi Sad, SSQSA 

• International project involvment 
• COST CA19135 - CERCIRAS



• Coding convention  
• Design rules 
• Style 
• Complexity 
• Custom properties 
• Non-intentional software vulnerabilities

Checking software properties
clause-limit 

exported-functions-limit 
exported-without-spec 

used-underlined-var 
find-function-call 

find-io-format 
no-imports 

tag-messages 
flush-message-box 

tail-recursive-servers 
macro-naming 

no-nested-try-catch 
module-naming 

function-naming 
state-for-otp-behaviours 

etc…



• Support for secure coding 
• Erlang specific analysis 
• Identify unsecure function calls and 

constructs 
• Filter those based on data-flow analysis 

(taint analysis)

Vulnerability checks



• Support for secure coding 
• Erlang specific analysis 
• Identify unsecure function calls and 

constructs 
• Filter those based on data-flow 

analysis (taint analysis)

Vulnerability checks

• Injection 
• Memory overload  
• Interoperability mechanism related 

issues 
• Concurrent/distributed 

programming related issues



• Semantic Query Language 
• Standalone, automatic rule checker interface: 

DRC 
• Diagnostics in ELS

Code Checking

mods.funs.unsecure_prioritization
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