
High-assurance refactoring
via machine-checked formalization

Horpácsi Dániel et al.

TKP workshop, 26 May 2022



Gentle reminder: refactoring correctness

P1 P2≡

refactor

∀P: (P ≡ refactor(P))
?



Our approach 
in a nutshell

Compose Compose the correct refactoring steps into compound, 
widely applicable code paraphrasers by imperative means

Derive Derive several correct-by-construction refactoring steps by 
instantiating the generic transformations

Prove Prove that some generic (parametrized) transformations 
map every program to an equivalent program

Define Define (contextual) equivalence relations that imply 
observational behavioral equivalence

Define Define language semantics to formally capture program 
behavior



Our approach 
in a nutshell

Compose Compose the correct refactoring steps into compound, 
widely applicable code paraphrasers by imperative means

Derive Derive several correct-by-construction refactoring steps by 
instantiating the generic transformations

Prove Prove that some generic (parametrized) transformations 
map every program to an equivalent program

Define Define (contextual) equivalence relations that imply 
observational behavioral equivalence

Define Define language semantics to formally capture program 
behavior



Is there a 
reasonably 
complex 
sublanguage that 
is representative?

recursion / pattern 
matching / container 
types / exceptions / 
side-effects

Which formal 
semantics 
definition style is 
the most 
suitable?

structural / reduction / 
natural / pretty big-step 
/ denotational

What is the best 
way of encoding 
the formal 
language 
definition in Coq?

fully named / locally 
nameless / de Bruijn; 
scoping metatheory; 
value representation

How to validate 
the semantics 
against the 
reference 
implementation?

Extraction; property-
based testing with 
shrinking

How to define a 
practically useful 
equivalence 
relation for the 
language?

behavioral / contextual / 
CIU / logical relations

How to expand 
the preliminary 
results to the full-
featured 
language?

Formalizing the Erlang programming language



What is the right 
level of embedding 
for the matching logic 
in Coq?

Shallow or deep embedding? 
How to represent binders?

Can we prove the 
soundness of the 
matching logic proof 
system in Coq?

Including the fixed-point 
reasoning rules.

How to encode 
theories so that they 
are modular and 
practically usable?

Standard theories like 
definedness and sorts must 
be easily included.

What is the way of 
supporting matching 
logic reasoning 
within Coq?

We need ML-specific proof 
tactics and tautology solver.

How to import K 
semantics definitions 
into the Coq 
formalization?

This is needed for our 
ultimate goal of reasoning 
about PLs.

Matching Logic and its theories in Coq



Further projects
Modern interfaces for interactive refactoring
aka. the Wrangler Language Server

AI-based Erlang refactoring
with formally verified training data

Future work
Complete formal definition for Erlang in Coq
including concurrent language features

Prove Erlang refactoring schemes correct
and derive some practically useful steps

Further topics and future work



A successful Software Technology Lab

Bajka Ákos • Bense Viktor • Bereczky Péter • Boros Attila • Xiaohong Chen • 
Horpácsi Dániel • Horváth Szilárd • Katkó Dominik • Kókai Péter • Kőszegi Judit • 
Mizsei Tamás • Németh Dávid • Lucas Peña • Piszkor Balázs • Sághi György • 
Sevella Márton • Simon Thompson • Szalay Bence • Szalontai Balázs • Jan Tušil • 
Vadász András • Zászlós Márton

Dissemination

• 10 public repositories @ https://github.com/harp-project

• 8 published papers + 3 under review

• 4 theses accepted to be presented at the OTDK

Funding

• €100k grant from Runtime Verification Inc. for matching logic research

Results

https://github.com/harp-project


Contact:

daniel-h@elte.hu

Az Alkalmazásiterület-specifikus nagy megbízhatóságú informatikai megoldások című projekt a 
Nemzeti Kutatási Fejlesztési és Innovációs Alapból biztosított támogatással, a Tématerületi kiválósági 
program (TKP2020-NKA-06, Nemzeti Kihívások Alprogram) finanszírozásában valósult meg.

Thank you for your attention!


