
LANGUAGE-INDEPENDENT
REFACTORINGS THROUGH
LANGUAGE-SPECIFIC REWRITES

SIMON THOMPSON

Work with

Dániel Horpácsi, Judit Köszegi,
Péter Bereczky, Márton Sevella,

Dominik Katko and the HARP team

Collaboration with

Erlang Ecosystem Foundation,
erlang_ls team, Rotor project,

UKRI/EPSRC, Nik Sultana,
Univ. of St Andrews

INTRODUCTION

Refactoring

Transforming code
to improve it in some way,

without changing what it does.

In practice

Transforming a large body
of text, so that it is still

recognisable & acceptable.

Under the hood

Working with a complex
semantic object that includes
types, bindings, effects, etc.

Requirement

We have to reconcile editing
the complex semantic object
with textual format being OK.

ASSURANCE

It's crucial that we get it right

We have to find ways of
convincing users that our tools

don't break their code.

Approaches

Is the code still OK?
Testing, SMT, proof, …

Is the system built right?
Engineering, proof

ARCHITECTURE

Building the tool right

Build tools that support ease
of use & re-use, and are

straightforward to implement.

parse

analyse

transform

render

analyse

transform

Compiler front-end

Static semantics
Types

Macros etc.

Architecture

Abstractions
Components

Libraries

Finding the right abstractions

Simple
General

Implementable

KEY INSIGHTS

Key insight #1

Language independent

Language dependent

Key insight #2

Layout independent

Layout dependent

Not just for functional languages

The examples here are from
functional languages, but other

abstractions OK for e.g. OO.

EXAMPLE

Example refactorings

Renaming,
Generalisation,

Argument reordering, …

Function transformation scheme

F(pat) = res

 … F(args) …

Transformation
Rename

Reorder args
Regroup args

Generalise

Function

F(pat) = res

 … F(args) …

Language independent

Describe these examples in a
language-independent way only

by hiding complexity …

Language independent

Describe these examples in a
language-independent way only

by hiding complexity …

Erlang

Haskell

F(pat) = res

 … F(args) …

Complexity of application

Partial application, symbolic
references, DIY infix, …

different in each language

THE FUNCTION
TRANSFORMATION

Solution

Generic transformation

Language-specific rewrites

Function transformation scheme

Fnew(pat) = res

 Fold = … Fnew …

Function

f(X) -> X+3

 … f(A) …

Generalise

f(X,Y) -> X+Y

 … f(A,3) …

Function transformation scheme

fnew(X,Y) -> X+Y

fold = fun (X) -> fnew(X,3) end

Applying the scheme
fnew(X,Y) -> X+Y

fold = fun (X) -> fnew(X,3) end

gold(Z) -> f(Z+2)

Applying the scheme
fnew(X,Y) -> X+Y

fold = fun (X) -> fnew(X,3) end

gold(Z) -> f(Z+2)

Applying the scheme
fnew(X,Y) -> X+Y

fold = fun (X) -> fnew(X,3) end

gold(Z) -> f(Z+2)
gnew(Z) -> (fun (X) -> fnew(X,3) end)(Z+2)

Applying the scheme
fnew(X,Y) -> X+Y

fold = fun (X) -> fnew(X,3) end

gold(Z) -> f(Z+2)
gnew(Z) -> (fun (X) -> fnew(X,3) end)(Z+2)

Applying the scheme
fnew(X,Y) -> X+Y

fold = fun (X) -> fnew(X,3) end

gold(Z) -> f(Z+2)
gnew(Z) -> (fun (X) -> fnew(X,3) end)(Z+2)

gnew(Z) -> fnew(Z+2,3)

Correctness proof obligation

fold(X) -> X+3 fnew(X,Y) = X+Y

fold = fun (X) -> fnew(X,3) end?

Rewrites

Many rewrites to tidy
up the code …

… but only need to
be proved once.

Transformation

One transform per
refactoring

One proof per
refactoring

Formalisation

Proof assistant: Coq
Formalise language: CoreErlang

Formalise framework: AML

API MIGRATION

Automated API Migration in a User-Extensible Refactoring
Tool for Erlang Programs

Huiqing Li
School of Computing

University of Kent, UK

H.Li@kent.ac.uk

Simon Thompson
School of Computing

University of Kent, UK

S.J.Thompson@kent.ac.uk

ABSTRACT

Wrangler is a refactoring and code inspection tool for Erlang
programs. Apart from providing a set of built-in refactorings
and code inspection functionalities, Wrangler allows users to
define refactorings, code inspections, and general program
transformations for themselves to suit their particular needs.
These are defined using a template- and rule-based program
transformation and analysis framework built into Wrangler.

This paper reports an extension to Wrangler’s extension
framework, supporting the automatic generation of API mi-
gration refactorings from a user-defined adapter module.

Categories and Subject Descriptors

D.2.3 [SOFTWARE ENGINEERING]: Coding Tools and
Techniques; D.2.6 []: Programming Environments; D.2.7 []:
Distribution, Maintenance, and Enhancement

General Terms

Languages, Design

Keywords

Erlang, refactoring, API migration, Wrangler, software en-
gineering, template, rewrite rule.

1. INTRODUCTION

Most software will evolve, and this will often change the
API of a library, and such changes could potentially a↵ect
all client applications of the library, both locally and re-
motely. API migration is a process of refactoring, but API
migrations are not generally supported by refactoring tools
due to the specifics of each particular migration, and so the
transformations required tend to be done manually by the
maintainers of the client code, risking incorrectness.

This paper presents our approach to automating the im-
plementation of API migration for Erlang. This work is
built on top of Wrangler, a refactoring and code inspection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’12, September 3-7, 2012, Essen, Germany
Copyright 12 ACM 978-1-4503-1204-2/12/09 ...$10.00.

tool for Erlang programs, but we note that the approach
applies to other languages equally well. One of the features
that distinguishes Wrangler from other refactoring tools is
its user-extensibility, given by a template- and rule-based
program analysis/transformation framework, allowing users
to express their intentions using Erlang concrete syntax.

Our approach to automatic API migration works in this
way: when an API function’s interface is changed, the au-
thor of this API function implements an adapter function,
defining calls to the old API in terms of the new. From this
definition we automatically generate the refactoring that
transforms the client code to use the new API. This refac-
toring can be supplied by the API writer to clients on library
upgrade, allowing users to upgrade their code automatically.

As a design principle, we try to limit the scope of changes
as much as possible, so that only the places where the ‘old’
API function is called are a↵ected, and the remaining part of
the code is una↵ected. One could argue that the migration
can be done by unfolding the function applications of the old
API function using the adaptor function once it is defined.
However, the code produced by this approach would be a
far cry from what a user would have written. Instead, we
aim to produce code that meets users’ expectations.

The paper is organised thus: Sec. 2 introduces a running
example, and Sec. 3 gives a brief overview of Wrangler and
its template- and rule-based framework. Automated API
migration in Wrangler is reported in Sec. 4, related work is
covered in Sec. 5, and the paper is concluded in Sec. 6.

2. EXAMPLE: REGULAR EXPRESSIONS

As a running example we take the implementation of reg-
ular expressions in Erlang; the regexp library has been dep-
recated, and users are expected to use the re library, which
has a somewhat di↵erent application programmer interface.

For instance, the function match from the regexp library
is used to find the first longest match of regular expression
RegExp in a String. If the match succeeds, the function
returns a tuple {match, Start, Length} where Start is the
starting position of the match, and Length is the length of
the matching string; if the match fails it returns nomatch.
Fig. 1 shows two examples that use the function; note that it
would be possible to rewrite the case expressions in various
di↵erent ways without changing their meaning.

Replacing uses of match in Fig. 1 with the corresponding
functions in the re library gives Fig. 2. In particular, the
replacement for match would be the run function with the
option global set. The function run is di↵erent from match
not only in the name, but also in inputs and outputs. The

API migration

Change in library API.
Erlang example: from regexp to re.

How to refactor client code to
accommodate this?

CONCLUSION

Solution

Generic transformation

Language-specific rewrites

EXTRA MATERIAL

OTOH: human factors

90% correct better than nothing
Layout change unacceptable

I trust what X does

OTOH: programming language

If it type checks then it’s OK
If it runs, then fine

Function

F(pat) = res

 … F(args) …

Rename

G(pat) = res

 … G(args) …

Function

F(X,Y) = res

 … F(A,B) …

Swap

F(Y,X) = res

 … F(B,A) …

Function

F(X) = X+3

 … F(A) …

Generalise

F(X,Y) = X+Y

 … F(A,3) …

Applying the scheme
fnew(X,Y) -> X+Y

fold = fun (X) -> fnew(X,3) end

gold(Zs) -> map(fun f/1,Zs)

Applying the scheme
fnew(X,Y) -> X+Y

fold = fun (X) -> fnew(X,3) end

gold(Zs) -> map(fun f/1,Zs)

Applying the scheme
fnew(X,Y) -> X+Y

fold = fun (X) -> fnew(X,3) end

gold(Zs) -> map(fun f/1,Zs)
gnew(Zs) -> map(fun (X) -> fnew(X,3) end,Zs)

Applying the scheme
fnew(X,Y) -> X+Y

fold = fun (X) -> fnew(X,3) end

gold(Zs) -> map(fun f/1,Zs)
gnew(Zs) -> map(fun (X) -> fnew(X,3) end,Zs)

