Computer Vision for Autonomous Vehicles

Hajder Levente

TKP Workshop Faculty of Informatics, Eötvös Loránd University

PROGRAM FINANCED FROM THE NRDI FUND

Introduction

- Processing of digital cameras is the main goal of computer vision.
- Aim of my TKP project: extension of point-based vision methods
 - with the utilization of affine transformations.
- Principal application: visual system(s) for autonomous devices.
 - Our car are equipped with several sensors, including digital cameras and LiDAR.
 - ► Key goals at ELTE: research, development and education.
- Industrial applicability is also very important:
 - Demonstrations based on research results.
 - Collaboration with Robert Bosch GmbH.

Progress Report

- ELTECar
 - Constructed as a joint EFOP TKP project
 - Sensor Kit (with Bandó Kovács)
 - Databases (with János Szalai-Gindl)
- Affine transformations in computer vision
 - Optimal surface normal estimation (with Lóczi Lajos)
 - Visual odometry using ELTECar
 - Validation: multiple-chessboards
 - Visual Debugger
- Camera-LiDAR calibration
 - Fully automatic methods proposed
 - Chessboard and sphere-based algorithms proposed.
- Cooperation with an industrial partner (Robert Bosch GmbH)
 - Competition for Parking Car detection
- Other
 - Reading group /seminars

ELTECar with Sensor-Kit

- → Collaboration with Bandó Kovács
- Sensor-set with several sensors
 - ► LiDAR (top)
 - Six digital camera (top)
 - Standard GPS
 - ► IMU
- ► Coming soon...
 - Ultrasound
 - Radar
 - One-beam LiDARs
- Real-time processing (speed: 1-4 FPS)
- Big-data collection
 - ► Joint project with János Szalai-Gindl: database construction

Affine Transformations in Stereo Vision

 Affine transformations, camera parameters and point correspondences relate to each other.

- Basic equation proposed by Jozsef Molnar in 2013.
- We have extended this work to generalize epipolar geometry.
 - Homography, Fundamental/Essential matrix estimation, Plane segmentation, ...

Reconstruction Pipeline

Validation Using Special Calibration Object

- ► A special calibration object constructed to validate the reconstruction method.
- ► Known geometry: three perpendicular planes.
- Special pattern to support estimation of affine transformations.

Rapid optimal surface normal estimation

► The task is an argument-minimization one:

$$\operatorname{arg}_{\mathbf{n}} \min \sum_{i=1}^{4} \left\| a_i - \frac{\mathbf{w}_i^T \mathbf{n}}{\mathbf{w}_5^T \mathbf{n}} \right\|^2$$

- $\mathbf{A} = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}$ is the known affine transformation
- ▶ w_i depends on camera parameters and point locations.
- n: normal vector to be estimated.
- Our novel solution given via a linear equation
 - Multiple addition and multiplication + one division

(1)

LiDAR-camera calibration

- Joint calibration of different sensors/modalities are very challenging
- ► In this research, we focus on
 - ► LiDARs → Point clouds
 - ► Digital cameras → RGB images
- Novel methods proposed
 - 1. Chessboard-based method with a special fixation
 - 2. Spherical object-based calibration

Camera (Image) Processing

- Merging images with different orientations
 - ► Field of View (FoV) enlarged.

Real-time Plane Detection

- Road surface detection
 - ► RANSAC-type algorithm using GPU.
- $\rightarrow\,$ Joint work with Bandó Kovács

Camera (Image) Processing

- Planar motion has several advantages
 - For example, DoF of external calibration reduced from five to two.
- ► For planar motion,
 - Camera image must be perpendicular to the road space.
 - Vertical image direction must be parallel to the gravity vector.
- Correction can be carried out by algorithm. We have developed two methods
 - By detecting the road or
 - the horizon.

ELTE-Bosch Competition for Parking Car Detection

- ► (Joint work with János Szalai-Gindl and his colleagues.)
- ► Goal: Detection of parking devices
- ELTECar with multiple sensors
 - Digital cameras (3)
 - Velodyne VLP-16 LiDAR LiDAR (1) (20 RPM/sec)
- Students should produce results in LiDAR and/or camera images
- Manual annotation
- Fully automatic quantitative evaluation
 - Using Sutherland-Hodgeman polygon cutting

Publications

Published

- A Q2 journal article
- A Springer selected paper (CCIS series)
- A CVPR tutorial (A*)
- ► Four ICRA papers (A)
- ► Four VISAPP papers (B-C)
- Several papers in local conferences (CVWW, KEPAF)

Under Review

- A D1 journal article (major revision)
- An ECCV paper (A)

Thank you for your attention

hajder@inf.elte.hu cv.inf.elte.hu