
Staged Compilation With Dependent Types

András Kovács

Eötvös Loránd University

26 May 2022

Application Domain Specific Highly Reliable IT Solutions - Thematic Excellence
Project - Closing Conference



Metaprogramming & code generation

Metaprograms are programs which generate program code.

In any usual language, we can write programs which output code (as
strings).

However, this has serious safety and ergonomics drawbacks.

• The well-typing and well-formedness of the output is not guaranteed.

• We have to work directly with syntax trees and/or strings.

Staged compilation (two-stage):

• Users work in a language with structured metaprogramming features.

• Staging means running metaprograms and extracting code output.

• The compiler further proccesses the staging output.

Examples: templates, generics, macros.



Metaprogramming & code generation

Metaprograms are programs which generate program code.

In any usual language, we can write programs which output code (as
strings).

However, this has serious safety and ergonomics drawbacks.

• The well-typing and well-formedness of the output is not guaranteed.

• We have to work directly with syntax trees and/or strings.

Staged compilation (two-stage):

• Users work in a language with structured metaprogramming features.

• Staging means running metaprograms and extracting code output.

• The compiler further proccesses the staging output.

Examples: templates, generics, macros.



Metaprogramming & code generation

Metaprograms are programs which generate program code.

In any usual language, we can write programs which output code (as
strings).

However, this has serious safety and ergonomics drawbacks.

• The well-typing and well-formedness of the output is not guaranteed.

• We have to work directly with syntax trees and/or strings.

Staged compilation (two-stage):

• Users work in a language with structured metaprogramming features.

• Staging means running metaprograms and extracting code output.

• The compiler further proccesses the staging output.

Examples: templates, generics, macros.



Metaprogramming & code generation

Metaprograms are programs which generate program code.

In any usual language, we can write programs which output code (as
strings).

However, this has serious safety and ergonomics drawbacks.

• The well-typing and well-formedness of the output is not guaranteed.

• We have to work directly with syntax trees and/or strings.

Staged compilation (two-stage):

• Users work in a language with structured metaprogramming features.

• Staging means running metaprograms and extracting code output.

• The compiler further proccesses the staging output.

Examples: templates, generics, macros.



Metaprogramming & code generation

Metaprograms are programs which generate program code.

In any usual language, we can write programs which output code (as
strings).

However, this has serious safety and ergonomics drawbacks.

• The well-typing and well-formedness of the output is not guaranteed.

• We have to work directly with syntax trees and/or strings.

Staged compilation (two-stage):

• Users work in a language with structured metaprogramming features.

• Staging means running metaprograms and extracting code output.

• The compiler further proccesses the staging output.

Examples: templates, generics, macros.



Contribution

A highly general & expressive framework for staged compilation.

Based on two-level type theory (2LTT), which was originally intended as
a mathematical language of synthetic homotopy theory.1

• The first staged system to support dependent types.

• Generalizes a wide range of existing typed metaprogramming systems.

• Has an efficient staging implementation + proof of soundness.

Draft paper “Staged Compilation With Two-Level Type Theory” by AK,
conditionally accepted at ICFP 2022.

1Annekov, Capriotti, Kraus, Sattler: Two-Level Type Theory and Applications.



Contribution

A highly general & expressive framework for staged compilation.

Based on two-level type theory (2LTT), which was originally intended as
a mathematical language of synthetic homotopy theory.1

• The first staged system to support dependent types.

• Generalizes a wide range of existing typed metaprogramming systems.

• Has an efficient staging implementation + proof of soundness.

Draft paper “Staged Compilation With Two-Level Type Theory” by AK,
conditionally accepted at ICFP 2022.

1Annekov, Capriotti, Kraus, Sattler: Two-Level Type Theory and Applications.



Contribution

A highly general & expressive framework for staged compilation.

Based on two-level type theory (2LTT), which was originally intended as
a mathematical language of synthetic homotopy theory.1

• The first staged system to support dependent types.

• Generalizes a wide range of existing typed metaprogramming systems.

• Has an efficient staging implementation + proof of soundness.

Draft paper “Staged Compilation With Two-Level Type Theory” by AK,
conditionally accepted at ICFP 2022.

1Annekov, Capriotti, Kraus, Sattler: Two-Level Type Theory and Applications.



Contribution

A highly general & expressive framework for staged compilation.

Based on two-level type theory (2LTT), which was originally intended as
a mathematical language of synthetic homotopy theory.1

• The first staged system to support dependent types.

• Generalizes a wide range of existing typed metaprogramming systems.

• Has an efficient staging implementation + proof of soundness.

Draft paper “Staged Compilation With Two-Level Type Theory” by AK,
conditionally accepted at ICFP 2022.

1Annekov, Capriotti, Kraus, Sattler: Two-Level Type Theory and Applications.



2LTT language overview

A dependent type theory + extra staging features.

Staging features

1 Type0 is the type of runtime (object-level) types. Object-level types
& their values will appear in generated code.

2 Type1 is the type of compile time (meta-level) types. Meta-level
types & their values only appear during compilation.

3 For A : Type0 we have ⇑A : Type1. This is the type of
metaprograms which generate code with type A.

4 For A : Type0 and t : A, we have 〈t〉 : ⇑A. This is the metaprogram
which returns t as an expression (“quote”).

5 For t : ⇑A, we have ∼t : A. This inserts the result of a
metaprogram into an expression (“splice”).

6 These are the only ways to convert between Type0 and Type1.



2LTT language overview

A dependent type theory + extra staging features.

Staging features

1 Type0 is the type of runtime (object-level) types. Object-level types
& their values will appear in generated code.

2 Type1 is the type of compile time (meta-level) types. Meta-level
types & their values only appear during compilation.

3 For A : Type0 we have ⇑A : Type1. This is the type of
metaprograms which generate code with type A.

4 For A : Type0 and t : A, we have 〈t〉 : ⇑A. This is the metaprogram
which returns t as an expression (“quote”).

5 For t : ⇑A, we have ∼t : A. This inserts the result of a
metaprogram into an expression (“splice”).

6 These are the only ways to convert between Type0 and Type1.



2LTT language overview

A dependent type theory + extra staging features.

Staging features

1 Type0 is the type of runtime (object-level) types. Object-level types
& their values will appear in generated code.

2 Type1 is the type of compile time (meta-level) types. Meta-level
types & their values only appear during compilation.

3 For A : Type0 we have ⇑A : Type1. This is the type of
metaprograms which generate code with type A.

4 For A : Type0 and t : A, we have 〈t〉 : ⇑A. This is the metaprogram
which returns t as an expression (“quote”).

5 For t : ⇑A, we have ∼t : A. This inserts the result of a
metaprogram into an expression (“splice”).

6 These are the only ways to convert between Type0 and Type1.



2LTT language overview

A dependent type theory + extra staging features.

Staging features

1 Type0 is the type of runtime (object-level) types. Object-level types
& their values will appear in generated code.

2 Type1 is the type of compile time (meta-level) types. Meta-level
types & their values only appear during compilation.

3 For A : Type0 we have ⇑A : Type1. This is the type of
metaprograms which generate code with type A.

4 For A : Type0 and t : A, we have 〈t〉 : ⇑A. This is the metaprogram
which returns t as an expression (“quote”).

5 For t : ⇑A, we have ∼t : A. This inserts the result of a
metaprogram into an expression (“splice”).

6 These are the only ways to convert between Type0 and Type1.



2LTT language overview

A dependent type theory + extra staging features.

Staging features

1 Type0 is the type of runtime (object-level) types. Object-level types
& their values will appear in generated code.

2 Type1 is the type of compile time (meta-level) types. Meta-level
types & their values only appear during compilation.

3 For A : Type0 we have ⇑A : Type1. This is the type of
metaprograms which generate code with type A.

4 For A : Type0 and t : A, we have 〈t〉 : ⇑A. This is the metaprogram
which returns t as an expression (“quote”).

5 For t : ⇑A, we have ∼t : A. This inserts the result of a
metaprogram into an expression (“splice”).

6 These are the only ways to convert between Type0 and Type1.



2LTT language overview

A dependent type theory + extra staging features.

Staging features

1 Type0 is the type of runtime (object-level) types. Object-level types
& their values will appear in generated code.

2 Type1 is the type of compile time (meta-level) types. Meta-level
types & their values only appear during compilation.

3 For A : Type0 we have ⇑A : Type1. This is the type of
metaprograms which generate code with type A.

4 For A : Type0 and t : A, we have 〈t〉 : ⇑A. This is the metaprogram
which returns t as an expression (“quote”).

5 For t : ⇑A, we have ∼t : A. This inserts the result of a
metaprogram into an expression (“splice”).

6 These are the only ways to convert between Type0 and Type1.



2LTT language overview

A dependent type theory + extra staging features.

Staging features

1 Type0 is the type of runtime (object-level) types. Object-level types
& their values will appear in generated code.

2 Type1 is the type of compile time (meta-level) types. Meta-level
types & their values only appear during compilation.

3 For A : Type0 we have ⇑A : Type1. This is the type of
metaprograms which generate code with type A.

4 For A : Type0 and t : A, we have 〈t〉 : ⇑A. This is the metaprogram
which returns t as an expression (“quote”).

5 For t : ⇑A, we have ∼t : A. This inserts the result of a
metaprogram into an expression (“splice”).

6 These are the only ways to convert between Type0 and Type1.



Examples (1)

We use Agda-like syntax.

Runtime identity function

id0 : (A : Type0)→ A→ A

id0 Ax = x

Compile-time identity function

id1 : (A : Type1)→ A→ A

id1 Ax = x

Assume Bool0 : Type0 and true0 : Bool0. Now, id1 can be used on
expressions as well:

id1 (⇑Bool) 〈true〉 : ⇑Bool

This becomes simply 〈true〉 after staging.



Examples (1)

We use Agda-like syntax.

Runtime identity function

id0 : (A : Type0)→ A→ A

id0 Ax = x

Compile-time identity function

id1 : (A : Type1)→ A→ A

id1 Ax = x

Assume Bool0 : Type0 and true0 : Bool0. Now, id1 can be used on
expressions as well:

id1 (⇑Bool) 〈true〉 : ⇑Bool

This becomes simply 〈true〉 after staging.



Examples (1)

We use Agda-like syntax.

Runtime identity function

id0 : (A : Type0)→ A→ A

id0 Ax = x

Compile-time identity function

id1 : (A : Type1)→ A→ A

id1 Ax = x

Assume Bool0 : Type0 and true0 : Bool0. Now, id1 can be used on
expressions as well:

id1 (⇑Bool) 〈true〉 : ⇑Bool

This becomes simply 〈true〉 after staging.



Examples (2)

Inlined map function

map : (AB : ⇑Type0)→ (⇑∼A→ ⇑∼B)→ ⇑(List0 ∼A)→ ⇑(List0∼B)

map A B f as =

〈let go [] = []

go (a : as) = ∼(f 〈a〉) : go as

in go∼as〉

With inferred staging annotations:

map : (AB : ⇑Type0)→ (A→ B)→ List0 A→ List0 B

map A B f as =

let go [] = []

go (a : as) = f a : go as

in go as



Examples (2)

Inlined map function

map : (AB : ⇑Type0)→ (⇑∼A→ ⇑∼B)→ ⇑(List0 ∼A)→ ⇑(List0∼B)

map A B f as =

〈let go [] = []

go (a : as) = ∼(f 〈a〉) : go as

in go∼as〉

With inferred staging annotations:

map : (AB : ⇑Type0)→ (A→ B)→ List0 A→ List0 B

map A B f as =

let go [] = []

go (a : as) = f a : go as

in go as



Computing types at compile time

Vectors as nested pairs

Vector : Nat1 → ⇑Type0 → ⇑Type0

Vector 0 A = ()

Vector (n + 1) A = 〈(∼A, ∼(Vector n A))〉

∼(Vector 3 〈Bool0〉) is computed to (Bool0, (Bool0, (Bool0, ()))).

We can also write a map for vectors of given lengths. We can generate
types + well-typed programs depending on generated types.

This has not been possible in previous systems.



Computing types at compile time

Vectors as nested pairs

Vector : Nat1 → ⇑Type0 → ⇑Type0

Vector 0 A = ()

Vector (n + 1) A = 〈(∼A, ∼(Vector n A))〉

∼(Vector 3 〈Bool0〉) is computed to (Bool0, (Bool0, (Bool0, ()))).

We can also write a map for vectors of given lengths. We can generate
types + well-typed programs depending on generated types.

This has not been possible in previous systems.



Computing types at compile time

Vectors as nested pairs

Vector : Nat1 → ⇑Type0 → ⇑Type0

Vector 0 A = ()

Vector (n + 1) A = 〈(∼A, ∼(Vector n A))〉

∼(Vector 3 〈Bool0〉) is computed to (Bool0, (Bool0, (Bool0, ()))).

We can also write a map for vectors of given lengths. We can generate
types + well-typed programs depending on generated types.

This has not been possible in previous systems.



Computing types at compile time

Vectors as nested pairs

Vector : Nat1 → ⇑Type0 → ⇑Type0

Vector 0 A = ()

Vector (n + 1) A = 〈(∼A, ∼(Vector n A))〉

∼(Vector 3 〈Bool0〉) is computed to (Bool0, (Bool0, (Bool0, ()))).

We can also write a map for vectors of given lengths. We can generate
types + well-typed programs depending on generated types.

This has not been possible in previous systems.


