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Strict equations

There are two kinds of equalities, weak and strict.

Lotto: strict or weak?

(a) 1 + 1 = 2
(b) x + 0 = x
(c) 0 + x = x
(d) x + y = y + x

Definition of addition on natural numbers:

0 + y := y
suc(x) + y := suc(x + y)
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Strict equations

There are two kinds of equalities, weak = and strict ≡.

Lotto: strict or weak?

(a) 1 + 1 ≡ 2
(b) x + 0 = x
(c) 0 + x ≡ x
(d) x + y = y + x

Definition of addition on natural numbers:
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Strict equations in type theory

I We cannot talk about strict equalities.
I a ≡ b is a judgement, not a type
I a = b is a type

I However in intensional type theory without function extensionality
I (∀x .f (x) = g(x))→ f = g

strict and weak equality coincide in the empty context.
I Idea: we only state equations in the empty context. E.g.

I x + 0 = x is in a context including x : N
I (λx .x + y) = (λx .x) is in the empty context
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Example

A graph is a 4-tuple: (V : Set)× (E : Set)× (dom : E → V )× (cod : E → V ).

A graph homomorphism from (V ,E , dom, cod) to (V ′,E ′, dom′, cod ′) is:

(a) (f : V → V ′)× (g : E → E ′)× (∀e.f (dom(e)) = dom′(g(e)))× same for cod
(b) (f : V → V ′)× (g : E → E ′)× (λe.f (dom(e))) = (λe.dom′(g(e)))× same for cod

We cannot define composition of homomorphisms in case (a). In case (b) it works.

Paper: using point-free equations to define the setoid model in intensional type theory
I Donkó, Kaposi: Internal strict propositions using point-free equations
I Conditionally accepted in the TYPES 2021 post-proceedings (LiPiCS).
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TKP project in the past 3 years by subtopics
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I Universes: 1 published
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