A METÁN-LEVEGŐ GYULLADÁS HOMOGÉN KÉMIAI KINETIKAI RENDSZEREINEK AZONOSÍTÁSA

VALKÓ ÉVA

ELTE, ALKALMAZOTT ANALÍZIS ÉS SZÁMÍTÁSMATEMATIKA TANSZÉK ELTE, KÉMIAI INTÉZET, REAKCIÓKINETIKAI LABORATÓRIUM

Budapest, 2022. január 13-14.

Bevezetés

- A fosszilis energiahordozók korlátozott mennyisége, illetve égetésük káros hatásai mára mindenki számára nyilvánvaló alapigazságokká váltak, így jelentősen nőtt az alternatív energiaforrások kutatásának szerepe.
- Egy lehetséges forgatókönyv része lehet a biomassza alkalmazása, amely biológiai úton létrejövő szervesanyag-tömeget jelent.
- A biomasszából anaerob körülmények között keletkező biogáz legfőbb komponense a metán, amely a földgáz legjelentősebb alkotóeleme is.
- A metán égését leíró részletes reakciómechanizmus fejlesztése.

Bevezetés

Mérések típusai

- Gyulladási idő mérése
- Egyes anyagfajták koncentrációjának mérése
- Lamináris lángsebesség mérése
- Sebességi együtthatók direkt mérése

Égéskémiai modell

- Több ezer anyagfajta és akár több tízezer elemi reakció
- Reakciókinetikai és termodinamikai paraméterek
- Homogén kinetika esetén nyomásra, hőmérsékletre nézve egy merev közönséges differenciálegyenletrendszer
 változák száma = 100,1000

változók száma = 100-1000 paraméterek száma \approx anyagfajták x 20

A modellt illesztjük a kísérleti eredményekhez a paramétereinek hangolásával

Feladata / Célja

- Lángsebesség szimulálása
- Egyes anyagfajták koncentrációprofiljának meghatározása
- Gyulladási idő szimulálása
- Motorok fejlesztése
- Égők tervezése
- Energiaátalakító berendezések fejlesztése

NATIONAL RESEARCH, DEVELOPMENT AND INNOVATION OFFICE HUNGARY

Bevezetés

Mérések típusai	Kísérleti berendezés	Mért mennyiség			
Indirekt mérések	Lökéshullámcső	Gyulladási idő Koncentráció			
	Gyorsösszenyomású berendezés	Gyulladási idő			
	Áramlási reaktor	Koncentráció			
	Jólkevert reaktor	Koncentráció			
	Bunsen-égő	1D lamináris lángsebesség			
	Ikerláng-módszer	1D lamináris lángsebesség			
	Gömbláng-technika	1D lamináris lángsebesség			
	Hőfluxus égő	1D lamináris lángsebesség			
Direkt mérések	LP-LIF, LP-RF stb.	Sebességi együttható			

Metán-oxigén-higítógáz elegyek gyulladási ideje

Zhang Peng és munkatársai (ELTE, Reakciókinetikai Laboratórium) által összegyűjtött gyulladásiidő-mérések:

- 3167 lökéshullámcsőben végzett mérés,
- 413 gyorsösszenyomású berendezéssel végzett mérés.

76 cikk 643 adatsorának feldolgozásával kapott adatok: 3580 mérési körülmény (különböző hőmérséklet, nyomás, higítógáz összetétel). A mérési eredmények ReSpecTh Kinetics Data (RKD) formátumban elérhetőek a <u>http://respecth.hu</u> adatbázisban.

Peng Zhang, István Gy. Zsély, Viktor Samu, Tibor Nagy, Tamás Turányi Comparison of methane combustion mechanisms using shock tube and rapid compression machine ignition delay time measurements, *Energy&*Fuels, **35**, 12329–12351 (2021)

Vizsgált égéskémiai mechanizmus

Zhang Peng és munkatársai 13 metán égését leíró mechanizmust hasonlítottak össze. Aramco mechanizmus: az egyik legjobb mechanizmus, amely széles hőmérséklet-, nyomás- és tüzelőanyag-levegő-összetétel tartományban jó egyezést ad a valós mérésekkel az (519 elemi reakció és 86 anyagfajta).

NUI Galway Combustion Chemistry Centre, AramcoMech 2.0, 2016, (http://www.nuigalway.ie/combustionchemistrycentre/mechanismdownloads/aramcomech20/)

Peng Zhang, István Gy. Zsély, Viktor Samu, Tibor Nagy, Tamás Turányi Comparison of methane combustion mechanisms using shock tube and rapid compression machine ignition delay time measurements, *Energy&*Fuels, **35**, 12329–12351 (2021)

A mostani vizsgálat célja és legfontosabb lépései

- 1. A fizikai körülmények széles tartományában az égéskémiai modell viselkedésének feltérképezése lokális érzékenységanalízis segítségével.
- 2. Az érzékenységanalízis eredményét felhasználva homogén reakciókinetikai rendszerek azonosítása klaszterezés segítségével.
- 3. A mérések besorolása az egyes klaszterekbe.
- 4. Az egyes klasztereken belül a mérések hibájának és a modell megbízhatóságának vizsgálata.

1. Az égéskémiai modell viselkedésének feltérképezése

- A modell átfogó vizsgálata a teljes fizikai térben, gyulladásiidő kiszámítása (7) az Aramco mechanizmus alapján az OpenSMOKE++ program segítségével
 - T = 500-3000 K, 26 ekvidisztáns pont
 - -p = 0,05-500 atm, 21 logekvidisztáns pont
 - $-\varphi = 0,05-8,00$ 34 pont

Oxidálógáz összetétele: 21% O $_2$ - 79% N $_2$ ("levegő")

18564 kísérleti körülményből 14417 esetben történik gyulladás

Minden gyulladási mérési körülménynél a normalizált lokális érzékenységi vektor kiszámítása

OpenSMOKE++, https://www.opensmokepp.polimi.it/ Cuoci, A. Frassoldati, T. Faravelli, E. Ranzi, OpenSMOKE++: An object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms, Comput. Phys. Commun., 192 (2015) 237–264.

1. Az égéskémiai modell viselkedésének feltérképezése

• Minden 14417 gyulladási körülménynél a normalizált lokális érzékenységi vektor kiszámítása, ahol az *i*-edik érzékenységi együttható értéke

 $(\partial \ln{\tau}/\partial \ln{A_i}), i=1...519.$

 A_i- az
 i-edik reakciósebességi együttható preexponenciális Arrhenius-paraméter
e $\tau-$ gyulladásiidő

• A derivált értékét véges differencia közelítéssel számítjuk az Optima++ program felhasználásával

14417 körülménynél 519 hosszú érzékenységi vektor

M. Papp, T. Varga, Á. Busai, I.Gy. Zsély, T. Nagy, T. Turányi, Optima++ package v2.1.0: A general C++ framework for performing combustion simulations and mechanism optimization, 2021.

- 519 preexponenciális Arrhenius-paraméter (érzékenységi vektor dimenziója) és 14417 mérési körülmény (vektorok száma)
- Hierarchikus klaszterezés, a távolságot a vektorok által bezárt szög koszinuszának segítségével mérjük:

$$d(\boldsymbol{x},\boldsymbol{y})=1-cos\gamma,$$

ahol γ az \boldsymbol{x} és \boldsymbol{y} vektorok által bezárt szög.

 A klaszterek között súlyozott átlagos távolságfüggvényt használunk, azaz ha az r-edik klaszter a p és q klaszterek összevonásával keletkezett, akkor

$$d(r,s) = \frac{d(p,s) + d(q,s)}{2}$$

$$PROGRAM FINANCED FROM FINANCED FROM THE NRDI FUND$$

- Az optimális klaszterszám meghatározását a Gap statisztika segítségével végeztük.
- Az érzékenységi vektorok klaszterezése alapján
 5 homogén reakciókinetikai tartományt azonosítottunk.
- A klasztereken belül az egyes pontokra konvex burkolót illesztettünk.
- Számításainkhoz a Matlab program Statistics and Machine Learning programcsomagját használtuk.

 Az egyes klaszterek reprezentatív pontjának meghatározása: annak a rácspontnak a kiválasztása, melyhez átlagosan a legközelebb van az összes többi klaszteren belüli adatpont.

Reprezentatív rácspont	1	2	3	4	5	
1	0,00	0,77	0,97	0,91	0,92	
2		0,00	0,64	0,42	0,41	-
3			0,00	0,23	0,14	
4				0,00	0,15	-
5					0,00	

Jól elkülönülő klaszterek

Egymáshoz közel lévő klaszterek

Az 5 reprezentatív rácspont egymástól vett távolsága.

• Az egyes klaszterek homogenitásának vizsgálata

• Az egyes klaszterek leszűkítése, a reprezentatív rácspont körüli 0,2-es sugár alkalmazása.

 Az egyes tartományokon belül a legfontosabb reakciók azonosítása, a kémiai folyamatok átfogó feltérképezése minden tartományon belül.

M. Papp, FluxViewer++, respecth.hu, (2021).

3. Mérések besorolása a klaszterekbe

- Összesen 3580 gyulladásiidő mérés, melyek közül 1038 esetben volt az oxidálógáz "levegő" 21% O₂ - 79% (N₂ vagy Ar)
- Minden klaszterre kiszámítottuk a vizsgált mérési adatponthoz tartozó érzékenységi vektornak és a klaszteren belüli rácspontokhoz tartozó érzékenységi vektoroknak az átlagos távolságát. Ahol ez a távolság a legkisebb volt, oda soroltuk be a mérési adatpontot.

3. Mérések besorolása a klaszterekbe

A mérések besorolása a klaszterektől vett átlagos távolságon alapul.

					reprezentatív rácspont			mérések		
#	szín	rácspontok száma	T intervallum / K	<i>p</i> intervallum / atm	arphi intervallum	Τ ₀ / Κ	p₀/ atm	φ	száma	$E_{\mathrm{\acute{a}tlagos}}$
1	sötétkék	698	800-1100	6,37-500	0,15-8	1000	189,63	1,0	214	1,697
2	világoskék	2830	1000-2000	0,05-500	0,05-8	1400	27,3	0,65	328	0,858
3	lila	2095	2000-3000	0,05-116,8	0,05-3.5	2500	0.9	0,35	3	0,302
4	sárga	979	1500-3000	0,05-307,9	1,5-8	2100	1,5	6,0	0	-
5	narancs	3414	1400-3000	0,05-500	0,1-7,5	2100	10,3	0,55	237	1,400

4. A mérések hibája az egyes klaszterekben

A "mérések hibája": a mért és számított gyulladási idők eltérése. Az egyes klasztereken belül vizsgáltuk a mérések hibáit (a reprezentatív érzékenységi vektortól vett távolság, a hőmérséklet, a nyomás és a tüzelőanyag-levegő-összetétel függvényében).

A hiba becslésére használt függvény:

4. A mérések hibája az egyes klaszterekben

- Nem igaz, hogy a klaszterek reprezentatív rácspontjához közel a mérések hibája kisebb és a középponttól távolodva nő a bizonytalanságuk.
- A hiba általában kisebb nagyobb nyomás esetén.
- A hiba nagyobb a 2150 K–2300 K, 2000 K–2500 K, 2050 K–2150 K hőmérséklettartományokban az 1-es, 2-es és 5-ös klaszterek esetében.
- Mivel ezeken a hőmérséklettartományokon az egyes klasztereken belül ugyanazok a reakciók dominálnak, ezért a szisztematikus eltéréseket vagy a kísérleti nehézségeknek vagy a nem eléggé pontos sebességi együtthatóknak tulajdoníthatjuk.

Eredmények

- A metán–levegő elegyek gyulladási idő számítására használt Aramco égéskémiai mechanizmust átfogó vizsgálat alá vetettük a kezdeti körülmények széles tartományában (14417 szimulált gyulladásiidő-mérés).
- a modell viselkedésének feltérképezése lokális érzékenységanalízis segítségével
- érzékenységi vektorok klaszterezése: a homogén reakciókinetikai rendszerek és a legfontosabb elemi reakciók azonosítása
- 1038 gyulladásiidő-mérés besorolása az egyes tartományokba, a mérések hibájának feltérképezése

További célok

- A vizsgálatok megismétlése más összetételű oxidálógáz esetén (100% O_2 tartalmú, valamint 3,5% O_2 tartalmú oxidálógáz)
- Hasonló vizsgálatok nem csak gyulladásiidő mérésekkel, hanem lángsebesség mérésekkel is, ezzel egy átfogó vizsgálat elkészítése a metán égését leíró Aramco 2016 mechanizmuson.

közlemények (2021. szeptember – 2022. január)

- É. Valkó, M. Papp, M. Kovács, T. Varga, I. Gy. Zsély, T. Nagy, T. Turányi Design of combustion experiments using differential entropy *Combustion Theory and Modelling* (Q1), elfogadott kézirat, online elérhető https://doi.org/10.1080/13647830.2021.1992506
- É. Valkó, M. Papp, P. Zhang, T. Turányi Identification of homogeneous chemical kinetic regimes of methane-air ignition *Proceedings of the Combustion Institute* (Q1/D1), benyújtott kézirat

Külön köszönet az ELTE Reakciókinetikai Laboratórium munkatársainak

Köszönöm a figyelmet!

