Covering Radius, Lonely Runner Conjecture, Half-space Depth

Márton Naszódi, Computational Geometry Research Group (CoGe) & Dept. of Geometry, Eötvös Univ., Budapest

joint with

HSD Attila Jung, ELTE, Budapest

Func. John Grigory Ivanov, IST Austria, Vienna

The Covering Radius, Lonely Runner Conjecture

K — convex body in \mathbb{R}^n

$$\mu(K) = \min\{\mu > 0 : \mu K + \mathbb{Z}^n = \mathbb{R}^n\}.$$

Lonely Runner Conjecture - J. Wills '60s, Cusick '73

Given $v_0, v_1, \ldots, v_d \in \mathbb{R}$ pairwise distinct. Then for each $0 \le i \le d$ there is a $t \in \mathbb{R}$ such that for all $0 \le j \le d$, $i \ne j$, the distance of $t(v_i - v_j)$ to the nearest integer is at least $\frac{1}{d+1}$.

Equivalent Formulation: As a geometric problem: bound the covering radii of certain zonotopes in \mathbb{R}^n with n = d - 1.

```
Accepted: Combinatorica (Q1).
```

Results

Shifted Lonely Runner Conjecture

Three runners with pairwise distinct velocities, each from her individual starting position plus a Spectator at a fixed position. Then, there exists a time at which all the runners have distance at least 1/4 from the spectator.

Covering Radius – Efficient Computation

Let $P = \{x \in \mathbb{R}^n : a_i^T x \leq b_i, i \in [m]\}$ be a rational polytope, with $a_i \in \mathbb{Z}^n$ and $b_i \in \mathbb{Z}_{>0}$, for all $i \in [m]$. Then, the algorithm CoveringRadius(P) returns the covering radius of P in time

$$\mathcal{O}\left((\|P\|_{\infty}n)^{2n^2(n+2)}\cdot m^{n+2}\right).$$

The Key: A Geometric Observation

$$N_P := \mathbb{Z}^n \cap ([0,1]^n - \mu_0 P).$$
 (1)

$$\mu = a_{i_1}^{\mathsf{T}}(x - z_1)/b_{i_1} = \ldots = a_{i_{n+1}}^{\mathsf{T}}(x - z_{n+1})/b_{i_{n+1}}$$
(2)

Find a last covered point

Let $P = \{x \in \mathbb{R}^n : a_i^T x \leq b_i, i \in [m]\}$ be a facet description of the polytope P with $b_i > 0$. Assume that $\mu(P) \leq \mu_0$ for some $\mu_0 > 0$, and let N_P be defined by (1). Then, there are facet normals $a_{i_1}, \ldots, a_{i_{n+1}}$ of P, and not necessarily distinct lattice points $z_1, \ldots, z_{n+1} \in N_P$ such that the system of linear equations (2) in the variables μ and x has a unique solution $(\bar{\mu}, \bar{p})$, and in this solution $\bar{\mu} = \mu(P)$ and \bar{p} is a last-covered point with respect to P.

The Algorithm

Algorithm 1 CoveringRadius(P, β_0, μ_0) 1: $\mu_{max} := 0$ 2: for z_1, \ldots, z_{n+1} not necessarily distinct points in \overline{N}_P do 3: for $a_{i_1}, \ldots, a_{i_{n+1}}$ facet normals of P do if $a_{i_1}/b_{i_1}, \ldots, a_{i_{n+1}}/b_{i_{n+1}}$ are affinely independent **then** 4: solve the linear system (2) to obtain (μ, p) 5: if $p \in [0,1]^n$ and $p \notin int(()\mu P) + \overline{N}_P$ then {ls (μ, p) 6: relevant?} $\mu_{\max} := \max\{\mu, \mu_{\max}\}$ 7: end if 8. 9 end if end for 10: 11: end for 12: return μ max

Half-space Depth

Definition

Given $X \subset \mathbb{R}^d$ finite, $p \in \mathbb{R}^d$.

Take a half-space H that contains the minimum number of points of X among half-spaces containing p.

$$\operatorname{depth}(p, X) = \frac{|X \cap H|}{|X|}.$$

Exact computation: Slow.

Approximation: Finite VC-dimension helps.

Functional problems

John's ellipsoid

For any convex body K in \mathbb{R}^d , if the largest volume ellipsoid E contained in K is centered at o, then we have $E \subseteq K \subseteq dE$.

Functional problems

John's ellipsoid

For any convex body K in \mathbb{R}^d , if the largest volume ellipsoid E contained in K is centered at o, then we have $E \subseteq K \subseteq dE$.

Functionalization of results on convex sets

Consider *logarithmically concave* functions on \mathbb{R}^d , that is, of the form $f(x) = e^{-\varphi}$, where $\varphi : \mathbb{R}^d \longrightarrow \mathbb{R} \cup \{\infty\}$ is a convex function. This yields an extension of the theory of convex sets.

What is the right analogue of an ellipsoid? Is the Gaussian density (a prime example of a log concave function) a functional ellipsoid? What is the analogue of John's theorem?

Functional problems

John's ellipsoid

For any convex body K in \mathbb{R}^d , if the largest volume ellipsoid E contained in K is centered at o, then we have $E \subseteq K \subseteq dE$.

Functionalization of results on convex sets

Consider *logarithmically concave* functions on \mathbb{R}^d , that is, of the form $f(x) = e^{-\varphi}$, where $\varphi : \mathbb{R}^d \longrightarrow \mathbb{R} \cup \{\infty\}$ is a convex function. This yields an extension of the theory of convex sets.

What is the right analogue of an ellipsoid? Is the Gaussian density (a prime example of a log concave function) a functional ellipsoid? What is the analogue of John's theorem?

Motivation: Understanding the volume distribution of high dimensional convex bodies.

Almost accepted: J. of Functional Analysis (Q1).

Simplicial Depth

Definition

Given $X \subset \mathbb{R}^d$ finite, $p \in \mathbb{R}^d$.

$$\operatorname{depth}(p, X) = \frac{|\{Y \subset X : |Y| = d + 1, p \in \operatorname{conv}(Y)\}|}{\binom{|X|}{d+1}}$$

Related phenomenon: Fractional Helly

For every dimension d and $\alpha \in (0, 1]$, there is a $\beta \in (0, 1]$ such that for any finite family \mathcal{F} of convex sets in \mathbb{R}^d , if $\alpha \binom{|\mathcal{F}|}{d+1}$ of the (d+1)-tuples of \mathcal{F} intersect, then there is a subfamily $\mathcal{G} \subset \mathcal{F}$ all of whose members intersect. Moreover, $\beta \longrightarrow 1$ as $\alpha \longrightarrow 1$.

Simplicial Depth

Definition

Given $X \subset \mathbb{R}^d$ finite, $p \in \mathbb{R}^d$.

$$\operatorname{depth}(p,X) = \frac{|\{Y \subset X : |Y| = d+1, p \in \operatorname{conv}(Y)\}|}{\binom{|X|}{d+1}}$$

Related phenomenon: Fractional Helly

For every dimension d and $\alpha \in (0, 1]$, there is a $\beta \in (0, 1]$ such that for any finite family \mathcal{F} of convex sets in \mathbb{R}^d , if $\alpha \binom{|\mathcal{F}|}{d+1}$ of the (d+1)-tuples of \mathcal{F} intersect, then there is a subfamily $\mathcal{G} \subset \mathcal{F}$ all of whose members intersect. Moreover, $\beta \longrightarrow 1$ as $\alpha \longrightarrow 1$.

Progress: We almost understand the problem.

M. Naszódi