Márton Naszódi, Computational Geometry Research Group (CoGe) \& Dept. of Geometry, Eötvös Univ., Budapest
joint with

CR, LRC $\left\{\begin{array}{l}\text { Jana Cslovjecsek, EPFL, Lausanne, Switzerland } \\ \text { Romanos Diogenes Malikiosis, Aristotle } \\ \text { U. of Thessaloniki, Greece } \\ \text { Matthias Schymura, BTU Cottbus-Senftenberg } \\ \text { Cottbus, Germany }\end{array}\right.$

HSD Attila Jung, ELTE, Budapest

Func. John Grigory Ivanov, IST Austria, Vienna

The Covering Radius, Lonely Runner Conjecture

K — convex body in \mathbb{R}^{n}

$$
\mu(K)=\min \left\{\mu>0: \mu K+\mathbb{Z}^{n}=\mathbb{R}^{n}\right\}
$$

Lonely Runner Conjecture - J. Wills '60s, Cusick '73

Given $v_{0}, v_{1}, \ldots, v_{d} \in \mathbb{R}$ pairwise distinct.
Then for each $0 \leq i \leq d$ there is a $t \in \mathbb{R}$ such that for all
$0 \leq j \leq d, i \neq j$, the distance of $t\left(v_{i}-v_{j}\right)$ to the nearest integer is at least $\frac{1}{d+1}$.

Equivalent Formulation: As a geometric problem: bound the covering radii of certain zonotopes in \mathbb{R}^{n} with $n=d-1$.

Accepted: Combinatorica (Q1).

Results

Shifted Lonely Runner Conjecture

Three runners with pairwise distinct velocities, each from her individual starting position plus a Spectator at a fixed position. Then, there exists a time at which all the runners have distance at least $1 / 4$ from the spectator.

Covering Radius - Efficient Computation

Let $P=\left\{x \in \mathbb{R}^{n}: a_{i}^{\top} x \leq b_{i}, i \in[m]\right\}$ be a rational polytope, with $a_{i} \in \mathbb{Z}^{n}$ and $b_{i} \in \mathbb{Z}_{>0}$, for all $i \in[m]$. Then, the algorithm CoveringRadius (P) returns the covering radius of P in time

$$
\mathcal{O}\left(\left(\|P\|_{\infty} n\right)^{2 n^{2}(n+2)} \cdot m^{n+2}\right)
$$

The Key: A Geometric Observation

$$
\begin{gather*}
N_{P}:=\mathbb{Z}^{n} \cap\left([0,1]^{n}-\mu_{0} P\right) . \tag{1}\\
\mu=a_{i_{1}}^{\top}\left(x-z_{1}\right) / b_{i_{1}}=\ldots=a_{i_{n+1}}^{\top}\left(x-z_{n+1}\right) / b_{i_{n+1}} \tag{2}
\end{gather*}
$$

Find a last covered point

Let $P=\left\{x \in \mathbb{R}^{n}: a_{i}^{\top} x \leq b_{i}, i \in[m]\right\}$ be a facet description of the polytope P with $b_{i}>0$. Assume that $\mu(P) \leq \mu_{0}$ for some $\mu_{0}>0$, and let N_{P} be defined by (1).
Then, there are facet normals $a_{i_{1}}, \ldots, a_{i_{n+1}}$ of P, and not necessarily distinct lattice points $z_{1}, \ldots, z_{n+1} \in N_{P}$ such that the system of linear equations (2) in the variables μ and x has a unique solution $(\bar{\mu}, \bar{p})$, and in this solution $\bar{\mu}=\mu(P)$ and \bar{p} is a last-covered point with respect to P.

The Algorithm

Algorithm 1 CoveringRadius $\left(P, \beta_{0}, \mu_{0}\right)$	
1: $\mu_{\text {max }}:=0$	
2: for z_{1}, \ldots, z_{n+1} not necessarily distinct points in \bar{N}_{P} do	
3: \quad for $a_{i_{1}}, \ldots, a_{i_{n+1}}$ facet normals of P do	
4:	if $a_{i_{1}} / b_{i_{1}}, \ldots, a_{i_{n+1}} / b_{i_{n+1}}$ are affinely independent then
5:	solve the linear system (2) to obtain (μ, p)
6:	if $p \in[0,1]^{n}$ and $p \notin \operatorname{int}(() \mu P)+\bar{N}_{P}$ then $\{\operatorname{ls}(\mu, p)$
7:	\quad relevant? $\}$
8:	$\quad \mu \max :=\max \{\mu, \mu \max \}$
9:	\quad end if
10: end for	
11: end for	
12: return $\mu \max$	

Half-space Depth

Definition

Given $X \subset \mathbb{R}^{d}$ finite, $p \in \mathbb{R}^{d}$.
Take a half-space H that contains the minimum number of points of X among half-spaces containing p.

$$
\operatorname{depth}(p, X)=\frac{|X \cap H|}{|X|}
$$

Exact computation: Slow.
Approximation: Finite VC-dimension helps.

Functional problems

John's ellipsoid

For any convex body K in \mathbb{R}^{d}, if the largest volume ellipsoid E contained in K is centered at o, then we have $E \subseteq K \subseteq d E$.

Functional problems

John's ellipsoid

For any convex body K in \mathbb{R}^{d}, if the largest volume ellipsoid E contained in K is centered at o, then we have $E \subseteq K \subseteq d E$.

Functionalization of results on convex sets

Consider logarithmically concave functions on \mathbb{R}^{d}, that is, of the form $f(x)=e^{-\varphi}$, where $\varphi: \mathbb{R}^{d} \longrightarrow \mathbb{R} \cup\{\infty\}$ is a convex function. This yields an extension of the theory of convex sets.

What is the right analogue of an ellipsoid?
Is the Gaussian density (a prime example of a log concave function) a functional ellipsoid?
What is the analogue of John's theorem?

Functional problems

John's ellipsoid

For any convex body K in \mathbb{R}^{d}, if the largest volume ellipsoid E contained in K is centered at o, then we have $E \subseteq K \subseteq d E$.

Functionalization of results on convex sets

Consider logarithmically concave functions on \mathbb{R}^{d}, that is, of the form $f(x)=e^{-\varphi}$, where $\varphi: \mathbb{R}^{d} \longrightarrow \mathbb{R} \cup\{\infty\}$ is a convex function.
This yields an extension of the theory of convex sets.
What is the right analogue of an ellipsoid?
Is the Gaussian density (a prime example of a log concave function) a functional ellipsoid?
What is the analogue of John's theorem?
Motivation: Understanding the volume distribution of high dimensional convex bodies.
Almost accepted: J. of Functional Analysis (Q1).

Simplicial Depth

Definition

Given $X \subset \mathbb{R}^{d}$ finite, $p \in \mathbb{R}^{d}$.

$$
\operatorname{depth}(p, X)=\frac{|\{Y \subset X:|Y|=d+1, p \in \operatorname{conv}(Y)\}|}{\binom{|X|}{d+1}}
$$

Related phenomenon: Fractional Helly

For every dimension d and $\alpha \in(0,1]$, there is a $\beta \in(0,1]$ such that for any finite family \mathcal{F} of convex sets in \mathbb{R}^{d}, if $\alpha\binom{|\mathcal{F}|}{d+1}$ of the ($d+1$)-tuples of \mathcal{F} intersect, then there is a subfamily $\mathcal{G} \subset \mathcal{F}$ all of whose members intersect. Moreover, $\beta \longrightarrow 1$ as $\alpha \longrightarrow 1$.

Simplicial Depth

Definition

Given $X \subset \mathbb{R}^{d}$ finite, $p \in \mathbb{R}^{d}$.

$$
\operatorname{depth}(p, X)=\frac{|\{Y \subset X:|Y|=d+1, p \in \operatorname{conv}(Y)\}|}{\binom{|X|}{d+1}}
$$

Related phenomenon: Fractional Helly

For every dimension d and $\alpha \in(0,1]$, there is a $\beta \in(0,1]$ such that for any finite family \mathcal{F} of convex sets in \mathbb{R}^{d}, if $\alpha\binom{|\mathcal{F}|}{d+1}$ of the ($d+1$)-tuples of \mathcal{F} intersect, then there is a subfamily $\mathcal{G} \subset \mathcal{F}$ all of whose members intersect. Moreover, $\beta \longrightarrow 1$ as $\alpha \longrightarrow 1$.

Progress: We almost understand the problem.

