Titokmegosztások és elosztott protokollok

₋igeti Péter

ELTE IK Komputeralgebra tsz. Digitális szolgáltatások

Titokmegosztások

Secret sharing scheme

- Some secret data is distributed into shares
- Each participant get a share
- ► The "good" guys can recover the secret
- ▶ Perfect SS: the other guys learn "nothing"

Parameters

- Dealer has secret s
- Participants $\mathcal{P} = \{1, \ldots, n\}$
- $\blacktriangleright \quad \mathsf{Qualified sets} \ \mathcal{A} \subseteq 2^{\mathcal{P}}$

THE NRDI FUN

Algorithmic point of view

- ▶ Distribution: $s \rightarrow (s_1, \ldots, s_n)$ by the dealer
- ▶ Reconstruction $(s_{i_1}, \ldots, s_{i_k}) \rightarrow s$ by $\{i_1, \ldots, i_k\} \subseteq \mathcal{P}$

Security point of view

Given \mathcal{P}, \mathcal{A} choose s and compute shares s_i such that

- ▶ $\{i_1, ..., i_k\} \in A \Rightarrow s$ can be computed from $s_{i_1}, ..., s_{i_k}$
- $\{j_1, \ldots, j_l\} \notin A \Rightarrow$ all possible *s* can be computed with the same probability from s_{j_1}, \ldots, s_{j_l} (i.e. independence)

FINANCED FROM THE NRDI FUND

Problems

- ▶ For which A exsists a SS? (\forall)
- ► Are these methods efficient? (Efficient???)

Efficient schemes

- ► Storage: low information ratio + ideal schemes
- Computational (Reconstruction)

Graph based schemes

- \mathcal{A} is monotone: if $A \in \mathcal{A}$ and $A \subset B$, then $B \in \mathcal{A}$.
- ► (P, A_0) is a hypergraph.

Graph based SS

- The minimal qualified subsets has two elements.
- Graph representation of A is a graph G = (V, E) such that:
 - $\blacktriangleright V = P.$
 - $uv \in E$ iff $\{u, v\}$ is qualified.
 - $A \subset V$ independent if A is non-qualified.

• If G is the graph representation of A, then $\sigma(G) := \sigma(A)$.

FINANCED FROM THE NRDI FUND

Graph based schemes

Examples

• Small graphs
$$(|V| \le 6)$$

- Trees: $\sigma(T) = 2 1/c(G)$ (Csirmaz, Tardos '13)
- Large girth graphs: $\sigma(T) = 2 1/d$ (Csirmaz, LP '09)

Problems

- Connection between the tree + girth results
- Reduce the assumptions for girth
- $\sigma(G)$ for larger family of graphs

Graphs without high-degree neighbours

Results (Gyarmati, LP '21 DAM)

simple graph reduction

$$\blacktriangleright \quad \forall G = (V, E) : u, v \in V : d(u), d(v) \ge 3 \Rightarrow \{u, v\} \notin E$$

•
$$\sigma(G) = 2 - \frac{1}{\max_{v \in V^*} d(v) - t(v)}$$

Elosztott protokollok

Problems

- Centralized vs. distributed protocols
- ► Security drawbacks: DOS, TTP, ...
- ▶ Device constraints: computation, communication, location, ...

M

Crypto drawbacks: efficient tools only

Examples

- Data validation in IIoT
- Attribute based access control
- Distributed address distribution
- Location-awareness, lightweight devices

Distributed Address Table (DAT)

- Decentralized end-to-end communication in IoT
- Address distribution without TTP
- ► NAT traversal problem
- Efficiency/security trade-off

Building blocks

Communication

- structured P2P overlay
- ► DHT + F2F
- Crypto
 - ► hash functions
 - symmetric/public key methods

Ideas

- Sophisticated ID generation
- ► IoT nodes + gateways
- Data packets: $DATQ \leftarrow (header|ts|IN|c)$

Security requirements

- ► Weak anonymity
- Address privacy
- Soundness

Results (Kamel, Nagy, Reich, LP '21 P2P Net & App)

- ► ID generation + address distribution algorithms
- ► Simple + realistic assumptions
- Precise security requirements + proofs
- Preliminary implementation results (PeerSim + RPI3)

Next steps

Conference talks

 M. Kamel, P. Ligeti, C. Reich: LADA: Locality Aware Distributed Addressing for Edge/Fog Computing Infrastructures, *IEEE Conf. on International Conference on Electrical, Computer and Energy Technologies (ICECET '21)*

Results

Papers

- M. Gyarmati, P. Ligeti: On the information ratio of graphs without high-degree neighbours, *Discrete Applied Mathematics* (Q2)
- M. Kamel, P. Ligeti, C. Reich: Lamred: Location-Aware and Privacy Preserving Multi-Layer Resource Discovery for IoT, Acta Cybernetica (Q4)
- M. Kamel, P. Ligeti, Á. Nagy, C. Reich: Distributed Address Table (DAT): A Decentralized Model for End-to-End Communication in IoT, *Peer-to-Peer Networking and Applications* (Q2)

