
Nagy megbízhatóságú refaktorálás Erlangban
Horpácsi Dániel • Simon Thompson

Bajka Ákos • Bereczky Péter • Katkó Dominik • Sághi György • Szalay Bence • Vadász András

TKP Workshop, 2022. január 13. (online)



Gentle reminder: refactoring correctness

P1 P2≡
?

refactor

∀P: (P ≡ refactor(P))
?



Gentle reminder: formal verification of refactoring

static dynamic
in

st
an

ce
d

ef
in

it
io

n

X

X

We formalize our definitions and prove the theorems in Coq, a formal proof management system. 
Therefore, the proofs are all machine-checked, which provides a very high assurance of correctness.



Our approach in a nutshell

Define language semantics to formally capture program behavior

Define (contextual) equivalence relations that imply observational 
behavioral equivalence

Prove that some generic (parametrized) transformations map every 
program to an equivalent program

Derive several correct-by-construction refactoring steps by instantiating 
the generic transformations

Compose the correct refactoring steps into compound, widely applicable 
code paraphrasers by imperative means



Our approach in a nutshell

Define language semantics to formally capture program behavior

Define (contextual) equivalence relations that imply observational 
behavioral equivalence

Prove that some generic (parametrized) transformations map every 
program to an equivalent program

Derive several correct-by-construction refactoring steps by instantiating 
the generic transformations

Compose the correct refactoring steps into compound, widely applicable 
code paraphrasers by imperative means



In focus

Formalization of Core Erlang: towards a complete language definition

Formalization of Matching Logic: towards a basis for semantics reasoning

Refactoring and LSP: a modern interface to applying Erlang refactoring



Formalization of Core Erlang: towards a complete language definition

Formalization of Matching Logic: towards a basis for semantics reasoning

Refactoring and LSP: a modern interface to applying Erlang refactoring

In focus



Outline a 
representative 
sublanguage

Define the 
syntax and 
semantics 
precisely

Define 
equivalence 
relations and 
prove their 

compatibility

Encode the 
theory in the 

proof assistant

Define and 
verify 

refactoring 
transformations

Our process towards a complete Erlang theory



In 2021-H1, we have developed

• Frame stack semantics for a minimalistic dialect of Core Erlang – a novel approach

• Behavioral and contextual equivalence definitions for the minimal language, adapting 
the best of the related work in the field

• Solutions to several formalization issues (e.g., function closure representation and 
equivalence, expression scoping, parallel substitutions, equivalence correspondences)

Formalization of Core Erlang

The results have been submitted to Journal of Logical and Algebraic Methods in Programming 
(JLAMP) in September 2021, currently awaiting reviews.



In 2021-H1, we have developed

• Frame stack semantics for a minimalistic dialect of Core Erlang – novel approach

• Behavioral and contextual equivalence definitions for the minimal language, adapting 
the best of the related work in the field

• Solutions to several formalization issues (e.g., function closure representation and 
equivalence, expression scoping, parallel substitutions, equivalence correspondences)

Formalization of Core Erlang

/harp-project/Core-Erlang-mini

https://github.com/harp-project/Core-Erlang-mini


In 2021-H2, we focused on extending language coverage

• Adding the rest of the expression kinds to the frame stack semantics (pattern matching, 
list and tuple types, exceptions and IO statements)

• Formalizing the Erlang module system (modules with local and global functions, export 
and import, MFA calls, related exceptions)

• Developing semantics for concurrent and distributed language features (processes and 
PIDs, process-local computation, send and receive, node interaction)

• And apparently, the static semantics (scoping, substitution) and the equivalence 
definitions need to be extended accordingly.

Formalization of Core Erlang

Publications to be written in 2022-H1 in cooperation with the involved students.

• Separation of process-local and node semantics
• Representation of processes and nodes
• Pattern matching in receive (mailbox query)



In 2021-H2, we focused on extending language coverage

• Adding the rest of the expression kinds to the frame stack semantics (pattern matching, 
list and tuple types, exceptions and IO statements)

• Formalizing the Erlang module system (modules with local and global functions, export 
and import, MFA calls, related exceptions)

• Developing semantics for concurrent and distributed language features (processes and 
PIDs, process-local computation, send and receive, node interaction)

• And apparently, the static semantics (scoping, substitution) and the equivalence 
definitions need to be extended accordingly.

Formalization of Core Erlang

/harp-project/Core-Erlang-Formalization

https://github.com/harp-project/Core-Erlang-Formalization


Formalization of Core Erlang: towards a complete language definition

Formalization of Matching Logic: towards a basis for semantics reasoning

Refactoring and LSP: a modern interface to applying Erlang refactoring

In focus



Matching Logic (ML) is a formal system for reasoning about programming languages.

• Numerous programming languages are already formalized in ML (in the K framework)

• So, our solutions will be available to those languages out of the box

• ML provides a nice intermediate calculus between the PL and CIC

• Reasoning about equivalence will be carried out on a higher level

• Reasoning about equivalence in ML has been studied in related work

• We can reuse those algorithms given for equivalence reasoning in ML

• ML and its ecosystem is actively developed and is of interest in the community

• Seemingly, it is a nice idea to contribute to

Rationale



• In 2021, in collaboration with UIUC, we have developed an initial locally nameless 
formalization of ML in the Coq proof assistant

• Simple theories (such as FOL and LTL) and soundness were also formalized

A formalization of ML

/harp-project/AML-Formalization

https://github.com/harp-project/AML-Formalization


• In 2021, in collaboration with UIUC, we have developed an initial locally nameless 
formalization of ML in the Coq proof assistant

• Simple theories (such as FOL and LTL) and soundness were also formalized

• In 2021-H2, the focus was shifted towards usability and applicability

• We keep working on improving the current formalization

• And we are working on building a framework around the formalization

A formalization of ML

Our partner (Runtime Verification Inc.) has offered a €100k grant for 
developing a complete framework around our ML formalization. 

The agreement has been signed in December.



Outline of the new project

WP1: Matching Logic 
proof mode in Coq

WP2: Import K definitions 
into Coq-ML

WP3: Export Coq proofs 
into MetaMath



Formalization of Core Erlang: towards a complete language definition

Formalization of Matching Logic: towards a basis for semantics reasoning

Refactoring and LSP: a modern interface to applying Erlang refactoring

In focus



• Our long-term vision is to make verified refactoring steps for Erlang available in IDEs

• In 2021H2, we have been working on integrating an existing Erlang refactoring tool into 
VSCode via LSP (Language Server Protocol), in cooperation with the Erlang LS developers

• The biggest challenge is handling interaction in an IDE-independent way

• For instance, in case of folding or unfolding definitions

• We are working on a generic solution based on transient files

• Expected academic outcome is a TDK and/or a short paper

Erlang refactoring in VSCode



In focus

Formalization of Core Erlang: towards a complete language definition

Formalization of Matching Logic: towards a basis for semantics reasoning

Refactoring and LSP: a modern interface to applying Erlang refactoring



Dissemination 2021H2

• Program Equivalence in an Untyped, Call-by-value Lambda Calculus with Uncurried
Recursive Functions

• Submitted to JLAMP

• Mechanizing Matching Logic In Coq

• Rejected at CPP’21, to be submitted to ITP’22

• Public repositories on GitHub

• https://github.com/harp-project

https://github.com/harp-project


High Assurance Refactoring Project

Horpácsi Dániel

daniel-h@elte.hu

Az Alkalmazásiterület-specifikus nagy megbízhatóságú informatikai megoldások című projekt a 
Nemzeti Kutatási Fejlesztési és Innovációs Alapból biztosított támogatással, a Tématerületi kiválósági 
program (TKP2020-NKA-06, Nemzeti Kihívások Alprogram) finanszírozásában valósult meg.


