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RefactorErl
I Compile-time analyses designed for Erlang:

I Lifetime, scope, visibility, reference analyses for semantic
entities (functions, records, variables, etc.)

I Side-effects, hidden dependencies
I Data-flow, control-flow, dynamic function call

I Main features are
I Understanding legacy code
I Refactoring/Application restructuring
I Code checking: complexity, quality, style, vulnerability, custom

properties

Code Checking with RefactorErl
Secure coding

I Find non-intentional software vulnerabilities
in Erlang

I Interoperability mechanism related
vulnerabilities

I Concurrent programming related
issues

I Distributed programming related
issues

I Injection
I Memory overload related attacks

I How it works?
I Determines the function call locations

which are associated with unsecure
operations.

I Selects the functions parameters that
potentialcan be associated with 

vulnerabilities.
I Runs data-flow analysis on the

sensitive parameters.
I Flags parameters with unknown

source.
I Filters out functions provided by the

users for input validation.
I Next improvements:

I Optimizations and selection heuristics
I False positive result reductions
I New checkers

Code checking
I Through the Semantic Query Language

I Helps also in debugging, grokking,
learning

I Built-in + custom
I Works with the units of the language
I mods.funs.unstable_calls
I mods.funs.unsecure_compile_

operations
I New DRC client

I Focuses on automatic code checking
I Easy to integrate and use
I Input config
I Connects to a running RefactorErl

server
I Custom output

Finding sources of runtime errors
I Control-flow based static execution paths

selection
I Combined with direct symbolic execution
I Using the Z3 SMT solver on the generated

constraints
I The runtime error compiled to a constraint
I Suggests execution path that leads to a

runtime error

Topics
I Semantic queries
I Software complexity metrics
I Bad smell detection
I Duplicated code detection and elimination
I Clustering - software restructuring
I Dependency visualisation

I Secure programming
I Communication/process analyses
I Decompilation
I Pattern candidate discovery and

parallelisation
I Program slicing for test case selection

I OTP behaviour analyses
I Distributed software analysis and

manipulation
I Improving the “functional style” of the code
I Merging static and dynamic analyses
I Green computing

Why to use it?
Key benefits for industrial partners

I Shorten learning term of a newcomer
I Shorten bug report solution time
I Make the possibility of a better team work
I Support software delivery product line

I Increase code quality through reducing
faults

I Shorten time-consuming daily jobs, such
as the source code checking

I Supports secure coding
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