
Staticsourcecodeanalysisand
manipulationofErlangprograms

Melinda Tóth and István Bozó
Department of Programming Languages and Compilers,

Eötvös Loránd University (ELTE)
{toth_m, bozo_i}@inf.elte.hu

RefactorErl
I Compile-time analyses designed for Erlang:

I Lifetime, scope, visibility, reference analyses for semantic
entities (functions, records, variables, etc.)

I Side-effects, hidden dependencies
I Data-flow, control-flow, dynamic function call

I Main features are
I Understanding legacy code
I Refactoring/Application restructuring
I Code checking: complexity, quality, style, vulnerability, custom

properties

Code Checking with RefactorErl
Secure coding

I Find non-intentional software vulnerabilities
in Erlang

I Interoperability mechanism related
vulnerabilities

I Concurrent programming related
issues

I Distributed programming related
issues

I Injection
I Memory overload related attacks

I How it works?
I Determines the function call locations

which are associated with unsecure
operations.

I Selects the functions parameters that
potentialcan be associated with 

vulnerabilities.
I Runs data-flow analysis on the

sensitive parameters.
I Flags parameters with unknown

source.
I Filters out functions provided by the

users for input validation.
I Next improvements:

I Optimizations and selection heuristics
I False positive result reductions
I New checkers

Code checking
I Through the Semantic Query Language

I Helps also in debugging, grokking,
learning

I Built-in + custom
I Works with the units of the language
I mods.funs.unstable_calls
I mods.funs.unsecure_compile_

operations
I New DRC client

I Focuses on automatic code checking
I Easy to integrate and use
I Input config
I Connects to a running RefactorErl

server
I Custom output

Finding sources of runtime errors
I Control-flow based static execution paths

selection
I Combined with direct symbolic execution
I Using the Z3 SMT solver on the generated

constraints
I The runtime error compiled to a constraint
I Suggests execution path that leads to a

runtime error

Topics
I Semantic queries
I Software complexity metrics
I Bad smell detection
I Duplicated code detection and elimination
I Clustering - software restructuring
I Dependency visualisation

I Secure programming
I Communication/process analyses
I Decompilation
I Pattern candidate discovery and

parallelisation
I Program slicing for test case selection

I OTP behaviour analyses
I Distributed software analysis and

manipulation
I Improving the “functional style” of the code
I Merging static and dynamic analyses
I Green computing

Why to use it?
Key benefits for industrial partners

I Shorten learning term of a newcomer
I Shorten bug report solution time
I Make the possibility of a better team work
I Support software delivery product line

I Increase code quality through reducing
faults

I Shorten time-consuming daily jobs, such
as the source code checking

I Supports secure coding

Application Domain Specific Highly Reliable IT Solutions project has been 
implemented with the support provided from the National Research, 
Development and Innovation Fund of Hungary, financed under the Thematic 
Excellence Programme TKP2020-NKA-06 (National Challenges 
Subprogramme) funding scheme.




