
Semantic consistency behind ontology learning and schema
mapping for heterogeneous data integration

Molnár Bálint, Ma Chuangtao
Department of Information Systems, Faculty of Informatics,

Eötvös Loránd University (ELTE)
{molnarba, machuangtao}@inf.elte.hu

Introduction
I It is a common phenomenon that

some inconsistencies and semantic
conflicts will inevitably occur during
(semi-)automatic ontology learning [1].
Therefore, the issues of inconsistencies
and redundancies are becoming
the bottleneck in the scenario of
(semi-)automatic ontology learning
from relational database (RDB).

I How to efficiently identify the
inconsistencies between learned
ontologies and their original databases is
one of the critical tasks in the ontology
learning from RDB.

Method and Formalization
I To tackle above problem, a semantic

consistency method based on model
checking is presented in this wok. The
main workflow of the presented method is
depicted in Figure 1.

OntologiesOntologies

Kripke

Structure K

Model

Checker

Check K╞ φ Semantic

Specifications

(DLs)

CTL

(Computer

Tree Logic)

Formula φ

Relational

Database

(Semi-automatic) Ontology Learning

Intermediate Model

W-Graph

Formalization

TransformationFormalization

Encoding

Checking

Reverse

EngineeringModelling

Ontologies

Kripke

Structure K

Model

Checker

Check K╞ φ Semantic

Specifications

(DLs)

CTL

(Computer

Tree Logic)

Formula φ

Relational

Database

(Semi-automatic) Ontology Learning

Intermediate Model

W-Graph

Formalization

TransformationFormalization

Encoding

Checking

Reverse

EngineeringModelling

Fig. 1. Semantic consistency checking for learning
ontology from relational database.

I The Mini University ontology [2], and
its corresponding database, are selected
as an example to describe the specific
steps of presented method.

I We formalized the RDB with W-graph and
Kripke structure, thereby, the W-Instance
was transformed into a Kripke structure
(Figure 2).

n2

n4

n9

n10

n5

n1

n3

n8

n7

n6

Teacher_ID

{true, Teacher}

Teacher_ID-1

Name-1

Name

Age-1

Age
IDCode

IDCode-1

Teaches

Teaches-1

Get_Academic_Rank

Get_Academic_Rank-1

Name
Name-1

Rank_ID
Rank_ID-1

n11

n14

n15

n12

n13

n18

Name

Name-1

Course_ID
-1

Course_ID
Course_Type

Course_Type-1

Teacher_ID

Teacher_ID-1

Attends-1

Attends

n16

n17

Studen_ID

Student_ID-1

IDCode

IDCode-1 Name

Name-1

Includes
-1

Includes

n19

n20

Program_ID

Program_ID
-1

Name-1

Name

Enrolls

{true, 1}

{true, Program}{true, Student}

{true, Course}

τ

τ

τ

τ

τ

τ

τ

τ
τ τ

τ

τ

τ

τ

τ

{true, Academic_Rank}

{true, Professor}

{true, 1001}
{true, 201408}

{true, Marco}

{true, 35}
{true, 1}

{true, Mandatory}

{true, 2}{true, Dave}
{true, 20200801}

{true, 4}

{true, 2}

{true, Database}

{true, CSMSc}

Enrolls-1

Fig. 2. Kripke structure of Mini University data model.

Algorithm and Verification
I Considering that nuXmv [3] is an extended version of NuSMV, which provides a strong

verification based on advanced SAT-based algorithms, thereby the nuXmv is employed to
verify the presented method. The specific process of consistency checking based on graph
intermediate representation and model checking is shown in Algorithm 1.

Algorithm 1 Semantic Consistency Checking based on nuXmv Model Checker
Input:

KG : Kripke structure of original RDB represented based on W-Graph.
O: Ontologies generated from RDB schema and instance R.

Output:
RC : The result of consistency checking: true or false.

1: procedure CONSISTENCY CHECKING
2: Encoding Kripke structure KG with SMV program.
3: Translating semantics of ontologies to CTL formula ϕ(O,R).
4: Verifying if the ϕ(O,R) satisfies the KG .
5: if KG |= ϕ(O,R) then
6: RC=true.
7: else if KG 6|= ϕ(O,R) then
8: RC=false.
9: end if

10: return RC .
11: end procedure

Results and Conclusion
I Before running the nuXmv model checker,

it is necessary to check whether the
given specification satisfies the Kripke
structure. We checked if there exist
deadlock states by using check_fsm
command.

I We checked not only the specifications
that are consistent with the original
database but also the specifications
that are inconsistent with the original
database. Accordingly, the result is
shown in Figure 3.

Fig. 3. Result of consistency checking based on
nuXmv model checker.

I We can observe that there is no
deadlock state in the current Kripke
model. The results given by nuXmv
indicate whether the given specifications
satisfy the specific Kripke model.

I The results shown that this method could
correctly check and return the results of
whether the given semantic specification
of the learned ontology satisfies the
original RDB.

Publications
I On the basis of the above work, there are

two related publications:
1. C. Ma, B. Molnár, and A. Benczúr,

“A semi-automatic semantic consistency
checking method for learning ontology
from relational database,” Information,
vol. 12, no. 5, 2021.

2. C. Ma and B. Molnár, “Semantic
consistency behind ontology learning and
schema mapping for heterogeneous data
integration,” in Collection of Abstracts:
13th Joint Conference on Mathematics
and Informatics (MaCS2020), 2020, pp.
115–115

References

[1] L. Zhu, G. Hua, S. Zafar, and Y. Pan,
“Fundamental ideas and mathematical
basis of ontology learning algorithm,”
Journal of Intelligent & Fuzzy Systems,
vol. 35, no. 4, pp. 4503–4516, 2018.

[2] K. Čerāns and G. Būmans, “RDB2OWL:
A RDB-to-RDF/OWL mapping specification
language,” in Proceedings of the 2011
Conference on Databases and Information
Systems. IOS Press, 2011, p. 139–152.

[3] R. Cavada, A. Cimatti, M. Dorigatti,
A. Griggio, A. Mariotti, A. Micheli, S. Mover,
M. Roveri, and S. Tonetta, “The nuXmv
symbolic model checker,” in Computer
Aided Verification, A. Biere and R. Bloem,
Eds. Cham: Springer International
Publishing, 2014, pp. 334–342.

Application Domain Specific Highly Reliable IT Solutions project has
been implemented with the support provided from the National Research,
Development and Innovation Fund of Hungary, financed under the
Thematic Excellence Programme TKP2020-NKA-06 (National Challenges
Subprogramme) funding scheme.

