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Introduction
I It is a common phenomenon that

some inconsistencies and semantic
conflicts will inevitably occur during
(semi-)automatic ontology learning [1].
Therefore, the issues of inconsistencies
and redundancies are becoming
the bottleneck in the scenario of
(semi-)automatic ontology learning
from relational database (RDB).

I How to efficiently identify the
inconsistencies between learned
ontologies and their original databases is
one of the critical tasks in the ontology
learning from RDB.

Method and Formalization
I To tackle above problem, a semantic

consistency method based on model
checking is presented in this wok. The
main workflow of the presented method is
depicted in Figure 1.
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Fig. 1. Semantic consistency checking for learning
ontology from relational database.

I The Mini University ontology [2], and
its corresponding database, are selected
as an example to describe the specific
steps of presented method.

I We formalized the RDB with W-graph and
Kripke structure, thereby, the W-Instance
was transformed into a Kripke structure
(Figure 2).
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Fig. 2. Kripke structure of Mini University data model.

Algorithm and Verification
I Considering that nuXmv [3] is an extended version of NuSMV, which provides a strong

verification based on advanced SAT-based algorithms, thereby the nuXmv is employed to
verify the presented method. The specific process of consistency checking based on graph
intermediate representation and model checking is shown in Algorithm 1.

Algorithm 1 Semantic Consistency Checking based on nuXmv Model Checker
Input:

KG : Kripke structure of original RDB represented based on W-Graph.
O: Ontologies generated from RDB schema and instance R.

Output:
RC : The result of consistency checking: true or false.

1: procedure CONSISTENCY CHECKING
2: Encoding Kripke structure KG with SMV program.
3: Translating semantics of ontologies to CTL formula ϕ(O,R).
4: Verifying if the ϕ(O,R) satisfies the KG .
5: if KG |= ϕ(O,R) then
6: RC=true.
7: else if KG 6|= ϕ(O,R) then
8: RC=false.
9: end if

10: return RC .
11: end procedure

Results and Conclusion
I Before running the nuXmv model checker,

it is necessary to check whether the
given specification satisfies the Kripke
structure. We checked if there exist
deadlock states by using check_fsm
command.

I We checked not only the specifications
that are consistent with the original
database but also the specifications
that are inconsistent with the original
database. Accordingly, the result is
shown in Figure 3.

Fig. 3. Result of consistency checking based on
nuXmv model checker.

I We can observe that there is no
deadlock state in the current Kripke
model. The results given by nuXmv
indicate whether the given specifications
satisfy the specific Kripke model.

I The results shown that this method could
correctly check and return the results of
whether the given semantic specification
of the learned ontology satisfies the
original RDB.
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