
Test Design for Reliable Software
Prof. Dr. Attila Kovács

Dept. of Computer Algebra, Faculty of Informatics,
Eötvös Loránd University

attila.kovacs@inf.elte.hu

Motivation
I With the up-to-date test methodologies

we expect 1500 defects after release in
100 000 lines of Java code, where approx.
350 of them are show stoppers [1].

I For safety-critical software it is not
acceptable.

I We need better testing.

Challenges
I Customers expect problem-free software

experiences in their preferred channels.
I Business enterprises have to

continuously adapt, improve, and deliver
competitive, customer-centric solutions.

I IT companies should develop and
test with the rise of next-generation
technologies: AI, machine learning,
IoT testing, big data testing, QA test
automation, performance engineering,
cyber security testing, etc.

How can we save money and raise SW quality
at the same time?

Where to improve?

Fig. 1. The testing life-cycle [2].

We need to write more efficient and effective
test cases.

I The choice of the right test techniques is
critical to achieving a good return on the
test investment.

Fig. 2. The mostly used test design techniques [3].

[1] C. Jones and O. Bonsignour, The Economics of
Software Quality. Addison Wesley, Boston, MA, 2011.

[2] I. Forgács and A. Kovács, Practical Test Design:
Selection of traditional and automated test design
techniques. BCS, 2019.

[3] https://www.istqb.org/documents/, 2018.

[4] I. Forgács and A. Kovács, Paradigm Shift in Software
Testing. to appear, 2021.

Concentrate to the specification-based test design techniques
1. Business oriented

I Use-case testing
I Business rule-based: decision tables, cause-effect graphs

2. Data oriented
I EP, BVA, combinatorial methods

3. Behavior oriented
I State transition testing

General Predicate Testing [4]
I An extension of equivalance partitioning

and boundary value analysis.
I Combines business and data oriented

test techniques.

Fig. 3. General predicate testing (GPT).

Advantages:
I Can partly be automated.
I Finds the bugs made by developers or

testers.
I In case of a single predicate the number

of abstract test cases is linear in the
number of atomic predicates.

I In case of a predicate set the abstract
tests can efficiently be computed.

I Although the test case minimization
is NP-complete, the local optimum is
still reliable (has 100% bug revealing
capability).

I The resulting test set is not unique and
not necessary optimal.

I The method is programming language
independent.

I Regarding scalability, the test cases
rely strongly on the chosen data
decomposition.

I Knowing the software architecture for the
tester in advance (functional and data
decompositions) much fewer test cases
are sufficient.

Example NextDay (Jorgensen)
Given (Day, Month, Year) the next day should be
computed. For example,
Nextday(28, 2, 2021) = (1, 3, 2021).

I Pure data decomposition results in 18 test
cases assuming that only valid partitions are
considered and the library function LeapYear()
is correct.

I Knowing the functional decomposition first the
function MonthLength(Month,Year) should be
developed and tested. GPT results in 4 tests
(any month has 28, 29, 30, or 31 days).
Then, based on the MonthLength() method,
3 further valid equivalence partitions can be
determined. It means altogether 7 test cases
for the valid partitions.

GPT is highly recommended for testing logic in
safety-critical systems.

Action-state testing [4]
I An extension of use case testing and

state transition testing.
I Combines business and behavior

oriented test techniques.
I Overcomes the problems of transition

infeasibility and state-space explosion.
I It has a textual notation.
I The model building process has two

phases: creation and generation.
I Each action step has the form:

Action => Response STATE newState
Advantages:

I High (over 99%) bug revealing capability.
I Fast model building.
I Visual control with state transition graphs.

Example ATM authentication

Fig. 4. Action-state code for the ATM authentication
problem.

I For 0-switch coverage 3 tests are
generated, for 1-switch coverage 6 tests.

Together with the all-transition-transition
technique [2], the action-state testing is the
most effective and most cost efficient technique
for testing stateful applications.

Application Domain Specific Highly Reliable 
IT Solutions project has been implemented 
with the support provided from the National 
Research, Development and Innovation Fund of 
Hungary, financed under the Thematic Excellence 
Programme TKP2020-NKA-06 (National Challenges 
Subprogramme) funding scheme.




