
Chapter 6: Sorting algorithms and complexity

Sorting is one of the most thoroughly studied algorithms in computer science. There are dozens of different
sorting implementations, some applicable in general, others efficient in specific circumstances only.

Sorting can be used to solve a variety of problems, to mention a few basic ones:

Searching for an item on a list works much faster if the list is sorted.
Selecting items from a list based on their relationship to the rest of the items is easier with sorted data.
For example, finding the k -largest or smallest value, or finding the median value of the list, is much
easier when the values are in ascending or descending order.
Finding duplicate values in a list can be done very quickly when the list is sorted.
Analyzing the frequency distribution of items on a list is very fast if the list is sorted. For example,
finding the element that appears most or least often is relatively straightforward with a sorted list.

th

Generate a list of random numbers to sort:

In [1]:

import random 

originalNumbers = [random.randint(1, 100) for _ in range(20)] 
print(originalNumbers) 

Bubble sort
Bubble sort is a simple sorting algorithms that works by repeatedly swapping the adjacent elements if they
are in wrong order. In one iteration the largest element will be moved to the end of the array, thus reducting
the problem to a shorter array.

[26, 4, 52, 74, 88, 51, 32, 21, 98, 3, 18, 52, 62, 80, 16, 52, 43, 7
1, 90, 17] 



In [2]:

def swap(array, i, j): 
   temp = array[i] 
   array[i] = array[j] 
   array[j] = temp 

In [3]:

def bubbleSort(array): 
   for end in range(len(array), 1, -1): 
       for i in range(1, end): 
           if array[i-1] > array[i]: 
               swap(array, i-1, i) 
        
numbers = originalNumbers.copy() 
print("Unsorted: {0}".format(numbers)) 
bubbleSort(numbers) 
print("Sorted: {0}".format(numbers)) 

Insertion sort
Insertion sort is a simple sorting algorithm that maintains a sorted and an unsorted part of the array. Values
from the unsorted part are picked and placed at the correct position in the sorted part.

Unsorted: [26, 4, 52, 74, 88, 51, 32, 21, 98, 3, 18, 52, 62, 80, 16, 
52, 43, 71, 90, 17] 
Sorted: [3, 4, 16, 17, 18, 21, 26, 32, 43, 51, 52, 52, 52, 62, 71, 7
4, 80, 88, 90, 98] 



In [4]:

def insertionSort(array): 
   for i in range(1, len(array)): 
       value = array[i] 
       j = i - 1 
       while j >= 0 and array[j] > value: 
           array[j + 1] = array[j] 
           j -= 1 
       array[j + 1] = value 
        
numbers = originalNumbers.copy() 
print("Unsorted: {0}".format(numbers)) 
insertionSort(numbers) 
print("Sorted: {0}".format(numbers)) 

Maximum sort (a.k.a. Selection sort)

Maximum sort algorithm sorts an array of elements by repeatedly finding the maximum element (considering
ascending order) from an unsorted part and putting it at the end of it. Then the length of the unsorted part is
reduced by 1. 
The algorithm can also formulated as a Minimum sort and combined they often they named Selection sort.

Unsorted: [26, 4, 52, 74, 88, 51, 32, 21, 98, 3, 18, 52, 62, 80, 16, 
52, 43, 71, 90, 17] 
Sorted: [3, 4, 16, 17, 18, 21, 26, 32, 43, 51, 52, 52, 52, 62, 71, 7
4, 80, 88, 90, 98] 



In [5]:

def maximumSort(array): 
   for end in range(len(array), 1, -1): 
       maxIdx = end - 1 
       # maximum search algorithm 
       for i in range(end): 
           if array[i] > array[maxIdx]: 
               maxIdx = i 
       swap(array, end - 1, maxIdx) 
            

numbers = originalNumbers.copy() 
print("Unsorted: {0}".format(numbers)) 
maximumSort(numbers) 
print("Sorted: {0}".format(numbers)) 

Quicksort

Quicksort is a Divide and Conquer algorithm. It picks an element as pivot and partitions the given array
around the picked pivot. The partitioning is executed that the algorithm puts the smaller element to the left of
the pivot and the larger elements to the right of the pivot. Then the algorithm is executed recursively on the
partitions.

There are many different versions on how to pick a "good" pivot element, the simplest solution is to always
pick the first element.

Unsorted: [26, 4, 52, 74, 88, 51, 32, 21, 98, 3, 18, 52, 62, 80, 16, 
52, 43, 71, 90, 17] 
Sorted: [3, 4, 16, 17, 18, 21, 26, 32, 43, 51, 52, 52, 52, 62, 71, 7
4, 80, 88, 90, 98] 



Divide And Conquer algorithms in general works as follows:

Divide: Divide the problem into more sub problems.
Conquer: Solve the sub problems by calling recursively until sub problem solved is trivially solved.

In [6]:

# Quicksorting 
def quickSort(array): 
   n = len(array) 
   _quickSort(array, 0, n - 1) 

# Quicksorting (partial array) 
def _quickSort(array, u, v): 
   if u >= v: 
       return; 

   k = _partition(array, u, v) 
   _quickSort(array, u, k - 1) 
   _quickSort(array, k + 1, v) 

# Partinoning algorithm: move the pivot element to its position 
def _partition(array, u, v): 
   i = u + 1; 
   j = v; 
   while i <= j: 
       while i <= v and array[i] <= array[u]: 
           i += 1 
       while j >= u + 1 and array[j] >= array[u]: 
           j -= 1 

       if i < j: 
           swap(array, i , j) 
           i += 1 
           j -= 1 

   swap(array, u, i - 1) 
   return i - 1; 

# Swap 2 items in a list 
def swap(array, i, j): 
   temp = array[i] 
   array[i] = array[j] 
   array[j] = temp 
    
numbers = originalNumbers.copy() 
print("Unsorted: %s" % numbers) 
quickSort(numbers) 
print("Sorted: %s" % numbers) 

Unsorted: [26, 4, 52, 74, 88, 51, 32, 21, 98, 3, 18, 52, 62, 80, 16, 
52, 43, 71, 90, 17] 
Sorted: [3, 4, 16, 17, 18, 21, 26, 32, 43, 51, 52, 52, 52, 62, 71, 7
4, 80, 88, 90, 98] 



Merge sort
Two sorted lists of data can be merged together by iterating through their elements only once.



The Merge Sort is also a Divide and Conquer algorithm. It divides input array in two halves, calls itself for the
two halves and then merges the two sorted halves. (We assume that the sorting of 2 elements is trivial.)

Remark: h  denotes the (maximum) length of the sorted part of the array.



In [7]:

# Merge sort 
def mergeSort(array): 
   n = len(array) 
   _mergeSort(array, 0, n - 1) 

# Merge sort (partial array) 
def _mergeSort(array, left, right): 
   if left < right: 
       middle = (left + right) // 2 
  
       # Sort first and second halves 
       _mergeSort(array, left, middle) 
       _mergeSort(array, middle + 1, right) 
       # Merge 
       _merge(array, left, right, middle) 

# Merges sorted partial arrays 
def _merge(array, left, right, middle): 
   nLeft = middle - left + 1 
   nRight = right - middle 
  
   # create temp arrays 
   L = [0] * nLeft 
   R = [0] * nRight 
  
   # Copy data to temp arrays L[] and R[] 
   for i in range(0 , nLeft): 
       L[i] = array[left + i] 
  
   for j in range(0 , nRight): 
       R[j] = array[middle + 1 + j] 
  
   # Initialize index positions 
   i = 0 
   j = 0 
   k = left 
  
   # Merge the temp arrays back into array[left..right] 
   while i < nLeft and j < nRight: 
       if L[i] <= R[j]: 
           array[k] = L[i] 
           i += 1 
       else: 
           array[k] = R[j] 
           j += 1 
       k += 1 
  
   # Copy the remaining elements of L[] 
   while i < nLeft: 
       array[k] = L[i] 
       i += 1 
       k += 1 
  
   # Copy the remaining elements of R[] 
   while j < nRight: 
       array[k] = R[j] 
       j += 1 
       k += 1 



numbers = originalNumbers.copy() 
print("Unsorted: %s" % numbers) 
mergeSort(numbers) 
print("Sorted: %s" % numbers) 

Complexity analysis of algorithms
In computer science, the analysis of algorithms is the process of finding the computational complexity of
algorithms: the amount of time, storage, or other resources needed to execute them. Usually, this involves
determining a function that relates the length of an algorithm's input to the number of steps it takes (its time
complexity) or the number of storage locations it uses (its space complexity).

Now we will focus on time complexity. Let  and  represent the time complexity of 2 algorithms and we
would like to make statements on how they grow compared to each other. (E.g. the time complexity of the
bubble sort grows no faster than the  function.)

In theoretical analysis of algorithms it is common to estimate their complexity in the asymptotic sense, i.e., to
estimate the complexity function for arbitrarily large input. We are not concerned with small inputs or constant
factors. The following notations are used to this end:

Big O ( ) notation describes the asympthotic upper bound, meaning that , if such
positive constants  and  exists, that , for all .
Big-omega ( ) notation describes the asympthotic lower bound, meaning that , if
such positive constants  and  exists, that , for all .
Big-theta ( ) notation describes the asympthotic tight bound, meaning that , if such
positive constants ,  and  exists, that , for all .

In computer science in most cases we are interested in computing the Big O or the Big-theta notation, as a
lower bound alone would not state much about the complexity.

For the most common complexities, well-known names have also be assigned and used:

Asympthotic complexity Name

Constant time

Linear time

Quadratic time

Cubic time

Logarithmic time

Linearithmic time

Exponential time

Factorial time

f g

n2

O f(N) = O(g(N))

c N0 f(N) ≤ c ∗ g(N) N ≥ N0

Ω f(N) = O(g(N))

c N0 f(N) ≥ c ∗ g(N) N ≥ N0

Θ f(N) = O(g(N))

c1 c2 N0 c1 ∗ g(N) ≤ f(N) ≤ c2 ∗ g(N) N ≥ N0

Θ(1)

Θ(n)

Θ(n2)

Θ(n3)

Θ(log(n))

Θ(n ∗ log(n))

Θ(2n)

Θ(n!)

Unsorted: [26, 4, 52, 74, 88, 51, 32, 21, 98, 3, 18, 52, 62, 80, 16, 
52, 43, 71, 90, 17] 
Sorted: [3, 4, 16, 17, 18, 21, 26, 32, 43, 51, 52, 52, 52, 62, 71, 7
4, 80, 88, 90, 98] 



Question: what is the asymptotic computational complexity of the introduced sorting algoirhtms?

Bubbke sort, insertsion sort, maximum sort:  
Quicksort, merge sort: 

Θ(n2))

Θ(n ∗ log(n))

It can be proven that for a general case there is no better time complexity for sorting than . 
There are further algorithms with this complexity, see e.g. Heap sort (https://en.wikipedia.org/wiki/Heapsort)
or Tournament sort (https://en.wikipedia.org/wiki/Tournament_sort).

Θ(n ∗ log(n))

https://en.wikipedia.org/wiki/Heapsort
https://en.wikipedia.org/wiki/Tournament_sort

