
Appendix 1: Strings

Advanced string operations

Concatenation: +

For string the + operator is used for concatenation, joining multiple strings together.

In [1]:

word1 = 'Hello'
word2 = 'Python'
greet = word1 + ' ' + word2 + '!'
print(greet)

Multiplication: *

The * operator is used for "multiplying" a string, repeating and concatenating it the given times.

In [2]:

greet3times = greet * 3
print(greet3times)

Length: len()

The len() statement returns the length of the string.

In [3]:

print(len(greet))

String indexing and slicing: []

A single charcter of a string can be access by indexing it, starting from zero:

Hello Python!

Hello Python!Hello Python!Hello Python!

13

In [4]:

print(greet[0])

Question: what will happen if we index with a negative number?

In [5]:

print(greet[-1])

Question: what will happen if we with a number larger than the length of the string?

In [6]:

print(greet[100])

We can also create substrings by fetching a slice of a string.
Note that the end index is exclusive, so if the slice is given as [4:6] , then the characters with the index 4
and 5 will be sliced.

In [7]:

print(greet[0:5])
print(greet[6:7])

The first (start) index can be omitted, by default it will be zero:

In [8]:

print(greet[:5])

The second (end) index can also be omitted, by default it will be the end of the string:

In [9]:

print(greet[6:])

H

!

--

IndexError Traceback (most recent cal
l last)
<ipython-input-6-eb8fbb2c6e43> in <module>
----> 1 print(greet[100])

IndexError: string index out of range

Hello
P

Hello

Python!

Question: what happens if we omit both the start and the end index?

In [10]:

print(greet[:])

Question: what happens if we use negative indices?

In [11]:

print(greet[-7:])
print(greet[1:-2])

Question: what happens if the end index is larger than the length of the string?

In [12]:

print(greet[6:100])

Built-in string functions

A comprehensive list of the built-in functions can be found in the 'string library'
(https://docs.python.org/3/library/stdtypes.html#string-methods) reference documentation.

These string functions are methods, which means they can be called on a string instance (value or variable)
in a form stringvar.method(parameters) . They do not modify the original string, but return a new
instance.

Lowercase: lower

Replace all letters to lowercase.

In [13]:

print(greet)
greet_lower=greet.lower()
print(greet_lower)

Uppercase: upper

Replace all letters to uppercase.

Hello Python!

Python!
ello Pytho

Python!

Hello Python!
hello python!

https://docs.python.org/3/library/stdtypes.html#string-methods

In [14]:

print(greet)
greet_upper=greet.upper()
print(greet_upper)

Capitalization: capitalize and title

Replace the very first letter or the first letter of each words to uppercase. The rest will be turned to lowecase.

In [15]:

print(greet_lower)
greet_capital=greet_lower.capitalize()
print(greet_capital)

greet_title=greet_lower.title()
print(greet_title)

Substring search: find

Looks up the first occurance of a character or a substring in a string. The result is the starting index position
of the first occurance as an integer . Keep in mind that the first index is 0 ! The returned value is -1 if
the substring was not found.

In [16]:

print(greet)
location = greet.find('Python')
print(location)

print(greet)
location = greet.find('java')
print(location)

The starting index of the search can also be passed to the function. This way multiple occurances of a
substring can be looked up.

Hello Python!
HELLO PYTHON!

hello python!
Hello python!
Hello Python!

Hello Python!
6
Hello Python!
-1

In [17]:

print(greet3times)
location = greet3times.find('Python')
print(location)

location = greet3times.find('Python', location + 1)
print(location)

This function is case-sensitive.
If you would like to search for both lower and uppercase variants, you may convert the string to lowercase
first!

In [18]:

print(greet)
location = greet.find('python')
print(location)

print(greet.lower())
location = greet.lower().find('python')
print(location)

Substring replace: replace

Replace all occurances of a substring to another substring.

This function is also case-sensitive.

In [19]:

greet_alternative = greet3times.replace('Hello', 'Hi')
print(greet_alternative)

Stripping: lstrip , rstrip , strip

All functions are used to trim unrequired whitespace characters (spaces, tabulators, newlines) from a string.

lstrip - remove whitespace characters from the lefthand side.
rstrip - remove whitespace characters from the righthand side.
stri - remove whitespace characters from both sides.

Hello Python!Hello Python!Hello Python!
6
19

Hello Python!
-1
hello python!
6

Hi Python!Hi Python!Hi Python!

In [20]:

greet_world = ' --== Hello World ==-- '
print(greet_world.lstrip())
print(greet_world.rstrip())
print(greet_world.strip())

The characters to remove can also be specified otherwise:

In [21]:

print(greet_world.strip(' -='))

Prefix and suffix check: startswith , endswith

These functions verifies whether a string starts or ends with the given substring. The result is a boolean value
(True or False .)

This function is also case-sensitive.

In [22]:

print(greet.startswith('Hello'))
print(greet.startswith('Hi'))

Splitting: split

Split a string into a list of substring by defining a so-called separator or delimiter character or string. The
separator is removed from the string.

In [23]:

print(greet3times)
words = greet3times.split('!')
print(words)

Question: why is there an empty string at the end of the result list?

Logical operations on strings

--== Hello World ==--
 --== Hello World ==--
--== Hello World ==--

Hello World

True
False

Hello Python!Hello Python!Hello Python!
['Hello Python', 'Hello Python', 'Hello Python', '']

Containment check: in

Verify whether a letter or a substring occures anywhere inside a string. The result is a boolean value (True
or False .)

In [24]:

print('p' in greet)
print('P' in greet)
print('Python' in greet)

In [25]:

if 'P' in greet:
 print('Contains a letter P!')

Equality check: ==

Perform a case-sensitive equality check between two strings.

In [26]:

if word2 == 'Python':
 print('It was Python.')
else:
 print('It was not Python.')

Summary exercise on strings

False
True
True

Contains a letter P!

It was Python.

Task: request the name, birth year, email address and spoken languages of the user. The spoken languages
are requested as a string, separated by commas.

Check whether the following validation rules are matched. If any of the data is invalid, display an error
message and request a repeated entry of the data.

The name must contain at least 2 parts. (There must be a space inside it.)
The birth year must be a number, between 1900 and 2019.
The email address must contain a @ letter and must end with a elte.hu domain.

When the data was given successfully, trim any unncceseary whitespaces and display it in a corrected
format:

The name shall be displayed with each part starting with a capital letter.
Beside the birth year, calculate the (possible) age of the current user.
The email address shall be lowercase.
The spoken languages shall be displayed as a list of languages instead of a single string.

In [27]:

import datetime

def valid_name(name):
 name = name.strip()
 return len(name.split(' ')) >= 2

def valid_birthyear(year):
 year = year.strip()
 try:
 year_num = int(year)
 return year_num >= 1900 and year_num <= 2019
 except:
 return False

def valid_email(email):
 email = email.strip()
 return '@' in email and email.endswith('elte.hu')

def format_name(name):
 return name.strip().title()

def format_age(year):
 now = datetime.datetime.now()
 age_max = now.year - int(year)
 age_min = max(age_max - 1, 0)
 if age_max != age_min:
 return str(age_min) + "/" + str(age_max)
 else:
 return str(age_max)

def format_email(email):
 return email.strip().lower()

def format_langs(langs):
 langs = langs.strip().split(',')
 langs = list(map(str.strip, langs))
 return langs

name = input("Name: ")
while not valid_name(name):
 print("Incorrect format for name.")
 name = input("Name: ")

birthyear = input("Birth year: ")
while not valid_birthyear(birthyear):
 print("Incorrect format for birth year.")
 birthyear = input("Birth year: ")

email = input("Email: ")
while not valid_email(email):
 print("Incorrect format for email.")
 email = input("Email: ")

langs = input("Spoken languages: ")

print("Name: %s" % format_name(name))
print("Birth year: %s (age: %s)" % (birthyear, format_age(birthyear)))
print("Email: %s" % format_email(email))
print("Languages: %s" % format_langs(langs))

Incorrect format for name.

Incorrect format for birth year.

Incorrect format for email.

Incorrect format for email.

Name: John Smith
Birth year: 1985 (age: 35/36)
Email: johnsmith@elte.hu
Languages: ['english', 'german', 'hungarian']

