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Chapter 1: Python introduction

Compiled and interpreted languages

There are two major categories of programming languages: compiled and interpreted.

A compiled language is a language that is turned by a compiler into direct machine code that runs upon
the CPU. (Or it might run on a virtual machine stack like the JavaVM or the .NET runtime.)

An interpreted language is a language that is read in its raw form and executed a statement at a time
without being first compiled.

Python is an interpreted language.

How Jupyter Notebook works

A notebook contains cells, each cell is a logically separate and independent information.

There are 2 main type of cells:

Markdown cells
Write documentation and comments
Can be formatted with markdown syntax
See this tutorial on how to use markdown (https://guides.github.com/features/mastering-markdown/)

Code cells
Write code
Evaluate code on the fly

Note: you can find a User Interface Tour in the Help menu.

Let's get Python started! Hello world!

https://guides.github.com/features/mastering-markdown/


Literals

Literals are constants primitive values. They can be e.g. numbers or strings (texts). Strings are surrounded
with quotation marks or apostrophes.

In [1]:

"Hello World" 

In [2]:

'Hello Earth' 

In [3]:

42 

Print

Syntax: print  is a function, which has an argument. The argument is surrounded by parentheses.

The argument can be a string literal between quotation marks
Or a number literal
Or a variable (we will cover that later)

In [4]:

print('Hello World') 
print("Hello Earth") 
print(4) 

Task: what is the problem with the following codes?

Out[1]:

'Hello World'

Out[2]:

'Hello Earth'

Out[3]:

42

Hello World 
Hello Earth 
4 



In [5]:

print(Hello ELTE!) 

In [6]:

print "Hello Faculty of Informatics!" 

Handling outer Python files

Viewing the content of an external file

Lines starting with the %  symbol are not regular Python instructions, instead they are special commands for
the Jupyter Notebook.

We can load the content of an external file with the special %load  command:

In [7]:

# %load ../data/01_outerfile.py 
print('Great! This line was print from an external file!') 

Note that after the loading the original %load  command is commented out and instead the content of the
external file is loaded.

Executing an external file

We can execute the content of an external file with the special %run  command.

Specifying the -i  flag is important, so the file is executed in the same environment with the Jupyter
notebook. Therefore, if we e.g. declare a variable in the external script, it will be accessible in the code cells
of the notebook. If the -i  flag is not specified, the external Python file is evaluated in a separate
environment.

 File "<ipython-input-5-10f8028f182a>", line 1 
   print(Hello ELTE!) 
               ^ 
SyntaxError: invalid syntax 

 File "<ipython-input-6-015d2f017565>", line 1 
   print "Hello Faculty of Informatics!" 
         ^ 
SyntaxError: Missing parentheses in call to 'print'. Did you mean pr
int("Hello Faculty of Informatics!")? 

Great! This line was print from an external file! 



In [8]:

%run -i ../data/01_outerfile.py 

Variables

Variables can be considered containers. You can put anything inside a container, without specifying the
size or type, which would be needed in e.g. Java, C++ or C#. Note that Python is case-sensitive. Be careful
about using letters in different cases.

When assigning values, we put the variable to be assigned to on the left-hand side (LHS), while the value to
plug in on the right-hand side (RHS). LHS and RHS are connected by an equal sign ( = ), meaning
assignment.

In [9]:

x = 3  # integer 
y = 3.1 # floating point number 
z = "Hello!" # strings 
Z = "Wonderful!" # another string, stored in a variable upper-case z. 
print(x) 
print(y) 
print(z) 
print(Z) 

You can do operations on numeric values as well as strings.

In [10]:

sum_ = x + y # int + float = float 
print(sum_) 

In [11]:

v = "World!" 
sum_string = z + " " + v # concatenate strings 
print(sum_string) 

Naming convention

Great! This line was print from an external file! 

3 
3.1 
Hello! 
Wonderful! 

6.1 

Hello! World! 



There are two commonly used naming style in programming:

1. camelCase
2. snake_case or lower_case_with_underscore

All variable (function and class) names must start with a letter or underscore (_). You can include numbers.

In [12]:

myStringHere = 'my string' 
myStringHere 

In [13]:

x = 3 # valid 
x_3 = "xyz" # valid 

In [14]:

3_x = "456" # invalid. Numbers cannot be in the first position. 

You can choose either camel case or snake case. Always make sure you use one convention consistently
across one project.

Simple Data Structures

In this section, we go over some common primitive data types in Python. While the word primitive looks
obscure, we can think of it as the most basic data type that cannot be further decomposed into simpler ones.

Numbers

For numbers without fractional parts, we say they are integer. In Python, they are called int .

In [15]:

x = 3 
print(type(x)) 

Out[12]:

'my string'

 File "<ipython-input-14-520aa7218b05>", line 1 
   3_x = "456" # invalid. Numbers cannot be in the first position. 
    ^ 
SyntaxError: invalid decimal literal 

<class 'int'> 



For numbers with fractional parts, they are floating point numbers. They are named float  in Python.

In [16]:

y = 3.0 
print(type(y)) 

We can apply arithmetic to these numbers. However, one thing we need to be careful about is type
conversion. See the example below.

In [17]:

z = 2 * x 
print(type(z)) 

In [18]:

z = y + x 
print(type(z)) 

Text/Characters/Strings

In Python, we use str  type for storing letters, words, and any other characters.

To initialize a string variable, you can use either double or single quotes.

In [19]:

my_word = "see you" 
print(type(my_word)) 

Unlike numbers, str  is an iterable object, meaning that we can iterate through each individual character.
You can think of strings as a sequence of characters (or a list of characters, which we will cover later). In this
case, indices and bracket notations can be used to access specific ranges of characters.

In [20]:

print(my_word[1])   # character with index 1; Python starts with 0 NOT 1 
print(my_word[2:6]) # [start, end), end is exclusive 
print(my_word[-1])  # -1 means the last element 

We can also use +  to concatenate different strings

<class 'float'> 

<class 'int'> 

<class 'float'> 

<class 'str'> 

e 
e yo 
u 



In [21]:

my_word + ' tomorrow' 

Formatted strings

Print with formatting with the format()  function and using placeholders:

In [22]:

print("The sum of x and y is {0}".format(sum_)) 

In [23]:

print("The string `sum_string` is '{0}'".format(sum_string)) 

In [24]:

print("The sum of x and y is {0} and the string `sum_string` is '{1}''".format(s
um_, sum_string)) 

Boolean

Boolean type comes in handy when we need to check conditions. For example:

In [25]:

my_error = 1.6 
compare_result = my_error < 0.1 
print(compare_result) 

In [26]:

print(type(compare_result)) 

There are two and only two valid Boolean values: True  and False . We can also think of them as 1  and
0 , respectively.

Out[21]:

'see you tomorrow'

The sum of x and y is 6.1 

The string `sum_string` is 'Hello! World!' 

The sum of x and y is 6.1 and the string `sum_string` is 'Hello! Wor
ld!'' 

False 

<class 'bool'> 



In [27]:

print(my_error > 0) 

When we use Boolean values for arithmetic operations, they will become 1 / 0  implicitly.

In [28]:

print((my_error > 0) + 2) 

Type Conversion

Since variables in Python are dynamically typed, we need to be careful about type conversion.

When two variables share the same data type, there is not much to be worried about:

In [29]:

s1 = "no problem. " 
s2 = "talk to you later" 
s1 + s2 

But be careful when we are mixing variables up:

In [30]:

a = 3 # recall that this is an ____? 
b = 2.7 # how about this? 
c = a + b # what is the type of `c`? 

print(c) 
print(type(c)) 

To make things work between string and numbers, we can explicitly convert numbers into str :

True 

3 

Out[29]:

'no problem. talk to you later'

5.7 
<class 'float'> 



In [31]:

print(s1 + 3) 

In [32]:

print(s1 + str(3)) 

We may also convert strings to numbers:

In [33]:

s3 = "42" 
d = int(s3) 
print(type(s3), type(d)) 

User input

User input can be easily requested in Python:

k = input('Question') 

The question text is arbitrary. The user will see a console input prompt. The typed input will be stored in the 
k  variable by Python. Example:

In [34]:

k = input('What is your name? ') 
print('Hello ' + k) 

Question: what is the type of the value in variable k ?

In [35]:

print(type(k)) 

--------------------------------------------------------------------
------- 
TypeError                                 Traceback (most recent cal
l last) 
~/Repos/Lecture/elte_teralg/data/01_outerfile.py in <module> 
----> 1 print(s1 + 3) 

TypeError: can only concatenate str (not "int") to str

no problem. 3 

<class 'str'> <class 'int'> 

Hello John 

<class 'str'> 



Exercise

Task: Query the height of the user.

Print afterward that Your height is XXX centimeter.

Print the type of the variable storing the height of the user.

In [36]:

height = input("What is your height? ") 
print("Your height is {0} centimeters.".format(height)) 
print(type(height)) 

Variables assigned by the input function will always contain strings. (We will cover error handling later.)

Summary exercise on Python variables, data types and user
input

Task: Question the user for the amount of days he/she works a week and his/her gross salary per
hour (in euro).

Calculate and print the monthly gross salary of the user.

Calculate and print the monthly net salary of the user, assuming that the net salary is 65% of the gross
salary.

Assume that a month consists of 4 weeks and a working day consists of 8 working hours.

In [37]:

work_days = int(input("Number of work days per week? ")) 
salary_hour = int(input("Salary per hour? ")) 
salary_gross = 4 * work_days * 8 * salary_hour 
salary_net = salary_gross * 0.65 

print("Gross salary: {0} euros / month".format(salary_gross)) 
print("Net salary: {0} euros / month".format(salary_net)) 

Your height is 186 centimeters. 
<class 'str'> 

Gross salary: 2560 euros / month 
Net salary: 1664.0 euros / month 



Chapter 2: Basic operations and conditional
executions

Basic arithmetic operations

Mathematical operations are executed in an order as you get used to in mathematics.

See the precedence order of all Python operators
(https://docs.python.org/3/reference/expressions.html#operator-precedence) in the documentation.
Operations with the same precedence are evaluated from left to right. 
E.g. 1+2*3  is evaluated as 1+(2*3) .

Summation

Both numeric and string values can be added together.

For numeric values it works like the mathematical operation, e.g.: 1+2=3 .

For string values they are concatenated, e.g.: 'Hello '+'world'='Hello world' .

In [1]:

print(1+2) 
print('Hello '+'world') 

In [2]:

x=10 
y=20 
print(x+y) 

z='10' 
q='20' 
print(z+q) 

Subtraction

Works only for numeric values:

3 
Hello world 

30 
1020 

https://docs.python.org/3/reference/expressions.html#operator-precedence


In [3]:

print(10-7) 

x=20 
print(x-10) 

Multiplication

The multiplication operator can be applied both between 2 numeric values and between a string and a
numeric value.

For numeric values it works like the mathematical operation, e.g.: 9*4=36 .

For a string and an integer, the string is repeated and concatenated as many times as we defined, e.g.: 
'Hi'*5=HiHiHiHiHi .

In [4]:

print(9*4) 
print('Hi'*5) 

In [5]:

x=9 
y=x*4 
print(y) 

z='Hi' 
w=z*5 
print(w) 

Division with floating result

Works only for numeric values.

In [6]:

print(17/3) 

Question: what is the type of the dividend and the divisor? What is the type of the result?

Question: what will be the type of the result if the value is an integer?

3 
10 

36 
HiHiHiHiHi 

36 
HiHiHiHiHi 

5.666666666666667 



In [7]:

print(type(17)) 
print(type(3)) 
print(type(17/3)) 
print(type(18/3)) 

Division with integer result

Using the double division operator ( // ) means that the result of the division will be an integer number. If the
result has a fractional part, it is dropped.

In [8]:

print(18//3) 
print(17//3) 

Exponentiation

We can calculate the y  power of x by using the double star ( * ) operator: x**y .th

In [9]:

print(2**3) 

x=3 
y=4 
print(x**y) 

It is effectively the same as calling the pow  function (the name is short for power) with 2 arguments:

In [10]:

print(pow(x, y)) 

Remainder (modulo operator)

<class 'int'> 
<class 'int'> 
<class 'float'> 
<class 'float'> 

6 
5 

8 
81 

81 



In computing, the modulo operation finds the remainder after division of one number by another (called the
modulus of the operation).

E.g. 17%3=2 , since 15 is divisible by 3 and the remainder is therefore 2.

Useful scenarios:

check whether a number is divisible by another (the modulus must be 0);
get the last digit of a number by calculating the remainder by 10.

In [11]:

print(17%3) 

Summary exercises on basic operations

Exercise: Rectangle

Task: Calculate the area and the perimeter of a rectangle.

Get the width and the height of the rectangle from the user.

In [12]:

width = int(input("Width = ")) 
height = int(input("Height = ")) 
area = width * height 
perimeter = 2 * (width + height) 

print("Area = {0}".format(area)) 
print("Perimeter = {0}".format(perimeter)) 

Exercise: Circle

Task: Calculate the area and the perimeter of a circle.

Get the radius of circle from the user.

2 

Area = 840 
Perimeter = 118 



In [13]:

import math 

radius = float(input("Radius = ")) 
area = radius**2 * math.pi 
perimeter = 2 * radius * math.pi 

print("Area = {0}".format(area)) 
print("Perimeter = {0}".format(perimeter)) 

Note: we can get a (finite) representation of pi using the math.pi  constant after importing the math
module:

In [14]:

import math 
print(math.pi) 

Control structures

There are 3 basic control flows for all imperative programming languages: sequences, conditions and
loops.

Sequence

When operations are evaluated seqentially one after another, it is called a sequence statement.

Area = 50.26548245743669 
Perimeter = 25.132741228718345 

3.141592653589793 



In [15]:

print("First statement") 
print("Second statement") 

So far, we have worked with sequences.

Conditions

Conditions (or also called select statements):

define multiple branches of the program code;
it is decided based on logical tests that which branch should be executed.

Two-way conditions

First lets read a number from the user:

In [16]:

number = input("Give a number: ") 
print("Number is {0} with type of {1}".format(number, type(number))) 

Convert the number  to an integer:

In [17]:

number = int(number) 
print("Now number is now {0} with type of {1}".format(number, type(number))) 

Check whether the number is positive or not:

In [18]:

if number > 0: 
   print("number is positive, its value is " + str(number)) 
else: 
   print("number is non-positive, its value is " + str(number)) 

First statement 
Second statement 

Number is 42 with type of <class 'str'> 

Now number is now 42 with type of <class 'int'> 

number is positive, its value is 42 



IMPORTANT: in Python, the indentation of the code is crucial, because it defines the code blocks!

In [19]:

if number > 0: 
   print("number is positive, its value is " + str(number)) 
else: 
   print("number is non-positive, its value is " + str(number)) 
   print("Check when this line is printed") 

In [20]:

if number > 0: 
   print("number is positive, its value is " + str(number)) 
else: 
   print("number is non-positive, its value is " + str(number)) 
print("Check when this line is printed") 

Indentation is done with whitespace characters: spaces and tabs. You can either use spaces or tabs to indent
and you can decide how many of them you are using. (Typical values are indenting with 2 or 4 whitespaces.)

Note: a single tab is just 1 whitespace even if displayed as multiple in your text editor! Therefore you shall
not mix spaces and tabs when indenting, use only one of them!

Logical operations

Boolean values and expressions can also be combined with the logical, binary and  and or  operators.
Negation can be done with the unary not  operator.

number is positive, its value is 42 

number is positive, its value is 42 
Check when this line is printed 



In [21]:

print("True and False is {0}".format(True and False)) 
print("True or False is {0}".format(True or False)) 
print("not True is {0}".format(not True)) 

Just like with the arithmetic operators, there is also a precedence order for the logical operators: not , 
and , or . Use parentheses to "override" the default precedence order.

In [22]:

print("True or True and False is {0}".format(True or True and False)) 
print("(True or True) and False is {0}".format((True or True) and False)) 

Three (or more) way conditions

We can define multiple logical expression (elif) to test. These conditions are tested in the order they are
defined and the body for the first one to be True will be executed. We can still define an else branch in case
none of the conditions was True.

In [23]:

if number > 0: 
   print("number is positive, its value is " + str(number)) 
elif number < 0: 
   print("number is negative, its value is " + str(number)) 
else: 
   print("number is zero") 

True and False is False 
True or False is True 
not True is False 

True or True and False is True 
(True or True) and False is False 

number is positive, its value is 42 



Actually, there are no three (or more) way conditional statements, only two-way conditions. The elif
keyword is just a little "syntax sugar" to provide an easier understandable version of nested, 2-way
conditions.

Task: Can you write the above 3-way condition with just 2-way conditions?

In [24]:

if number > 0: 
   print("number is positive, its value is " + str(number)) 
else: 
   if number < 0: 
       print("number is negative, its value is " + str(number)) 
   else: 
       print("number is zero") 

One-way conditions

You do not have to use if-else  or if-elif-...-else . You can use if  without other clauses
following that. The else branch can be omitted if not required.

number is positive, its value is 42 



In [25]:

if number > 0: 
   print("number is positive, its value is " + str(number)) 

Comparison

Python syntax for comparison is the same as our hand-written convention:

1. Larger (or equal): >  ( >= )
2. Smaller (or equal): <  ( <= )
3. Equal to: ==  (Note here that there are double equal signs)
4. Not equal to: !=

In [26]:

print(3 == 5) 

In [27]:

print(72 >= 2) 

In [28]:

store_name = 'Auchan' 
#store_name = 'Tesco' 

number is positive, its value is 42 

False 

True 



In [29]:

print(store_name) 

In [30]:

print(store_name == "Tesco") # Will return a boolean value True or False 

In [31]:

if store_name == 'Auchan': 
   print("The store is an Auchan.") 
else: 
   print("The store is not an Auchan. It's " + store_name + ".") 

Floating point comparison

IMPORTANT: Note that floating point precision and therefore comparisons between floating point numbers
can be tricky.

What will these floating point mathematical operations result?

In [32]:

print(0.1 + 0.1 + 0.1) 
print(0.1 + 0.1 + 0.1 == 0.3) 

print(1.0 - 0.83) 
print(1.0 - 0.83 == 0.17) 

print(2.2 * 3.0) 
print(2.2 * 3.0 == 6.6) 

print(3.3 * 2.0) 
print(3.3 * 2.0 == 6.6) 

Auchan 

False 

The store is an Auchan. 

0.30000000000000004 
False 
0.17000000000000004 
False 
6.6000000000000005 
False 
6.6 
True 



In [33]:

a = 1000.0 
b = 0.000000001 
print(a + b == a) 

a = 100000000.0 
b = 0.000000001 
print(a + b == a) 

Therefore, calculated floating point numbers shall never be checked for precise equality, instead a small error
threshold shall be allowed.

In [34]:

a = 2.2 * 3.0 
b = 6.6 
print(abs(a - b) < 1e-5) # 1e-5 == 10^-5 == 0.00001 (scientific number notation) 

Theoretical background for floating point calculation errors (optional)

Signed integers representation

Signed integers are usually represented with the Two's complement interpretation
(https://en.wikipedia.org/wiki/Two%27s_complement):

00000000 -> 0 

00000001 -> 1 

00000010 -> 2 

00000101 -> 5 

... 

10000000 -> -128 

10000001 -> -127 

11111110 -> -2 

11111111 -> -1

False 
True 

True 

https://en.wikipedia.org/wiki/Two%27s_complement


Floating point representation

Floating point numbers are usually represented according to the standard IEEE-754
(https://en.wikipedia.org/wiki/IEEE_754).

Since hardware can only work with integers, numbers are represented in a form of 
[mantissa|exponent] , where . Both mantissa and exponent are a

two's complement interpretation of signed integers.

Example for converting a float representation to decimal value:

representation = [000000000101|11111100] 

value = 5 * 2^-2 = 1.25

Example for converting a decimal value to float representation:

value = 179.375 

binary value = 10110011.011 

normal form = 0.10110011011 * 2^8 

mantissa = 10110011011 

exponent = 1000 

representation = [010110011011|00001000]

Problem 1

The number base problem: not all numbers can be exactly represented in all bases. Neither 0.17 or 0.83 can
be represented in base 2, so:

0.1700000000000000122124532708767219446599483489990234375 -> 0.0010101110

000101000111101011100001010001111010111000011 

0.8299999999999999600319711134943645447492599487304687500 -> 0.1101010001

111010111000010100011110101110000101000111100 

1.0 - 0.83 = 0.0010101110000101000111101011100001010001111010111000011 

0.17       = 0.0010101110000101000111101011100001010001111010111000100

Problem 2

The floating point problem: all representations have restricted range by the exponent, performing operations
on numbers with very large and small exponents could result in the ignorance of the smaller one, as it would
be shifted out of range.

value = mantissa ∗ 2exponent

https://en.wikipedia.org/wiki/IEEE_754


decimal = 100000000 

binary  = 101111101011110000100000000 

normal  = 0.101111101011110000100000000 * 2^27 

decimal = 0.000000001 

binary ~= 0.000000000000000000000000000001 

Summary exercise on conditions

Exercise: Parity

Task: Decide whether an integer number is even or odd!

Request the number from the user.

In [35]:

number = int(input("Number to test: ")) 
if number % 2 == 0: 
   print("{0} is even".format(number)) 
else:     
   print("{0} is odd".format(number)) 

Exercise: Body Mass Index

Task: Calculate the Body Mass Index (BMI) of the user and categorize it.

The BMI is defined as the body mass (in kilogramms) divided by the square of the body height (in meters),
and is universally expressed in units of .

Request the weight and the height and calculate the BMI value for the user!

Categorize the user based on the BMI value:

Category BMI value

Underweight BMI < 18.5

Normal 18.5 <= BMI < 25

Overweight 25 <= BMI < 30

Obese 30 <= BMI

Note: this is just a simplified categorization.

kg/m2

BMI =
Weight

Height2

43 is odd 



In [36]:

weight_kg = int(input("Weight of the user (in kg): ")) 
height_cm = int(input("Height of the user (in cm): ")) 
height_m = height_cm / 100 
bmi = weight_kg / (height_m**2) 

print("BMI of the user is {0:.2f}".format(bmi)) 

if bmi < 18.5: 
   print("Category: underweight") 
elif bmi < 25: 
   print("Category: normal") 
elif bmi < 30: 
   print("Category: overweight") 
else: 
   print("Category: obese") 

Note how the conditions are tested in the order they are defined. The body of the first one to be True gets
executed and the further ones are omitted.

Exception handling: Try and Except

Python code raises so called exceptions in exceptional cases, typically when an error occurred. We can use
the try-except  block to handle these errors (exceptions), so our code will not stop and abort because of
the error.

E.g.: lets consider we would like to request a number from the user, but the user can type in any value, even
a string. Then converting this string to an integer with int()  would raise an exception. Not handling this
exception will abort the program. By handling the exception we can print out an error message, set a default
value or even request the number a second time.

Format:

TRY block: look for exception to be raised in the code block.
EXCEPT block: if an exception was detected, stop the execution of the TRY block at that point and
continue with the EXCEPT block.

Example without exception handling:

BMI of the user is 23.99 
Category: normal 



In [37]:

age = input('What is your age?') 
age = int(age) 
print("The given age is: {0}".format(age)) 

Test what will happen if you type in a string instead of a number? Will the value of the age  variable printed
out?

Example with exception handling:

In [38]:

age = input('What is your age?') 
try: 
   age = int(age) 
except: 
   age = -1 

print("The given age is: {0}".format(age)) 

Test again what will happen if you type in a string instead of a number? Will the value of the age  variable
printed out?

Modify the code above by displaying an error message if not a number was given on the first attempt. Also
request the age of the user a second time.

In [39]:

age = input('What is your age?') 
try: 
   age = int(age) 
except: 
   print('That was not a number, try again!') 
   age = input('What is your age?') 
   age = int(age) 

print("The given age is: {0}".format(age)) 

--------------------------------------------------------------------
------- 
ValueError                                Traceback (most recent cal
l last) 
<ipython-input-37-8b0cdbac8dc1> in <module> 
     1 age = input('What is your age?') 
----> 2 age = int(age) 
     3 print("The given age is: {0}".format(age)) 

ValueError: invalid literal for int() with base 10: 'Twenty'

The given age is: -1 

That was not a number, try again! 

The given age is: 20 



Both the TRY and the EXCEPT block can contain multiple statements. Test what will happen here if you
comment out the erroneous assignment of the y  variable?

In [40]:

x = 'Ten' 
try: 
   print('Line 1 in TRY block') 
   y = int(x) # this will raise an exception 
   print('Line 2 in TRY block') 
except: 
   print('Line in EXCEPT block') 
print('END') 

Multiple Except blocks

Different errors have different types which can be checked on the EXCEPT blocks.

IMPORTANT: EXCEPT blocks are tested in the order they are defined, so more specific error types MUST
precede more general types.

In [41]:

x = 'Ten' 
try: 
   print('Line 1 in TRY block') 
   y = int(x) # this will raise a ValueError 
   y = 10 / 0 # this will raise a ZeroDivisionError  
   print('Line 2 in TRY block') 
except ValueError as e: 
   print("ValueError was raised: " + str(e)) 
except ZeroDivisionError: 
   print("ZeroDivisionError was raised") 
except: 
   print("Unknown error was raised.") 
print('END') 

Line 1 in TRY block 
Line in EXCEPT block 
END 

Line 1 in TRY block 
ValueError was raised: invalid literal for int() with base 10: 'Ten' 
END 



Finally

The try-except  structure can be extended with a finally  block. The code inside this block is always
evaluated:

Even if the TRY block was executed without an exception.
Even if an exception was raised and handled by an EXCEPT block. (After the EXCEPT block.)
Even if an exception was raised, but not handled by any EXCEPT block.

In [42]:

x = 'Ten' 
try: 
   print('Line 1 in TRY block') 
   y = int(x) # this will raise a ValueError 
   y = 10 / 0 # this will raise a ZeroDivisionError  
   print('Line 2 in TRY block') 
except ValueError as e: 
   print("ValueError was raised: " + str(e)) 
finally: 
   print('This line always gets printed') 
print('END') 

The finally block can be especially when some operations must be performed in all cases; e.g. an opened file
must be closed even if an error occurred during its processing.

Summary exercise on exception handling and conditions

Task: Check whether a certain year is a leap year or not?

According to the Gregorian calendar, every year that is exactly divisible by 4 is a leap year, except for years
that are exactly divisible by 100, but these centurial years are leap years if they are exactly divisible by 400.

Also make sure that the user input is a positive number.

Line 1 in TRY block 
ValueError was raised: invalid literal for int() with base 10: 'Ten' 
This line always gets printed 
END 



In [43]:

try: 
   year = int(input('Which year to check? ')) 

   if year > 0: 
       if year % 4 == 0: 
           if year % 100 == 0: 
               if year % 400 == 0: 
                   print('{0} is a leap year'.format(year)) 
               else: 
                   print('{0} is NOT leap year'.format(year)) 
           else: 
               print('{0} is a leap year'.format(year)) 
       else: 
           print('{0} is NOT leap year'.format(year)) 
   else: 
       print('That was not a positive number!') 
except: 
   print('That was not an integer number!') 

The solution can be simplified by constructing a combined condition with the logical operators and  and 
or :

In [44]:

try: 
   year = int(input('Which year to check? ')) 
    
   if year > 0: 
       if year % 400 == 0 or year % 4 == 0 and year % 100 != 0: 
           print('{0} is a leap year'.format(year)) 
       else: 
           print('{0} is NOT leap year'.format(year)) 
   else: 
       print('That was not a positive number!')  
except: 
   print('That was not an integer number!')  

2000 is a leap year 

2020 is a leap year 



Chapter 3: Iterations and lists

Data structure: List

A list in Python is a heterogeneous container for multiple items.

Container means the list can store multiple values. In case of a list the items are also stored in an
ordered way.
Heterogeneous mean that the elements of a list can be of different types: numbers, strings, etc.

A list is a similar data structure like an array in many other languages (like C++, Java or C#), but since
Python does not support arrays, we have lists.

Let's define a list of neighbouring countries for Hungary. The initial items of a list are defined between
brackets.

In [59]:

neighbours = ['Austria', 'Slovakia', 'Ukraine', 'Romania', 'Serbia', 'Croatia', 
'Slovenia'] 
print(neighbours) 

Let's check the type of the neighbours  variable.

In [60]:

print(type(neighbours)) 

Reading lists

The items of a list can be accessed by the numerical indexes. (The first item is indexed with zero.)

In [61]:

print(neighbours[0]) 
print(neighbours[1]) 

We can also access a range of elements:

['Austria', 'Slovakia', 'Ukraine', 'Romania', 'Serbia', 'Croatia', 
'Slovenia'] 

<class 'list'> 

Austria 
Slovakia 



In [62]:

print(neighbours[2:5]) 

The end index is exclusive, which means that only the countries with index 2-4 was included in the result
above.

By leaving out the end index, the range will go on to the end of the list:

In [63]:

print(neighbours[2:]) 

By leaving out the start index, the range will start at the first item:

In [64]:

print(neighbours[:5]) 

By omitting both the start and the end index, the range will cover all elements:

In [65]:

print(neighbours[:]) 

Note: this is very similar like how we worked with strings, since strings can be treated like list of characters.

The number of items in a list (its length) can also be easily fetched:

In [66]:

print(len(neighbours)) 

Manipulating lists

Lists are mutable, meaning the items themselves and the number of items it contains can change
dynamically after its initial definition. We can remove elements:

['Ukraine', 'Romania', 'Serbia'] 

['Ukraine', 'Romania', 'Serbia', 'Croatia', 'Slovenia'] 

['Austria', 'Slovakia', 'Ukraine', 'Romania', 'Serbia'] 

['Austria', 'Slovakia', 'Ukraine', 'Romania', 'Serbia', 'Croatia', 
'Slovenia'] 

7 



In [67]:

neighbours.remove('Slovakia') 
print(neighbours) 

Add new ones:

In [68]:

neighbours.append('Czechoslovakia') 
print(neighbours) 

The elements can also be removed from or inserted to a specific location:

In [69]:

neighbours.pop(3) # removes Serbia, as its index is 3 
del neighbours[3] # removes Croatia, as its index is 3, after we removed Serbia 
neighbours.insert(3, 'Yugoslavia') # adds Yugoslavia on the 3rd index 
print(neighbours) 

Copying a list can be a bit tricky, because assigning a list to a new variable does not make a copy of a list,
instead the new variable will just be an alias to the original list.

To make a real copy of a list, we can either use the copy()  method of the list or use the range accessor to
select and copy all elements to a new list.

['Austria', 'Ukraine', 'Romania', 'Serbia', 'Croatia', 'Slovenia'] 

['Austria', 'Ukraine', 'Romania', 'Serbia', 'Croatia', 'Slovenia', 
'Czechoslovakia'] 

['Austria', 'Ukraine', 'Romania', 'Yugoslavia', 'Slovenia', 'Czechos
lovakia'] 



In [70]:

alias_list = neighbours # this is just an alias 
copied_list_1 = neighbours.copy() # this is a real copy 
copied_list_2 = neighbours[0:len(neighbours)] # this is also real copy 
copied_list_3 = neighbours[:] # this also copies all elements 

# Clear all elements from the original list 
neighbours.clear() 

print(neighbours) # this shall be empty 
print(alias_list) # this shall also be empty 
print(copied_list_1) # this shall contain the elements 
print(copied_list_2) # this too 
print(copied_list_3) # this too 

Lists have further useful methods, we can e.g. sort or reverse the elements of a list:

In [71]:

neighbours = ['Austria', 'Slovakia', 'Ukraine', 'Romania', 'Serbia', 'Croatia', 
'Slovenia'] 
print('Original list: {0}'.format(neighbours)) 
neighbours.sort() 
print('Sorted list: {0}'.format(neighbours)) 
neighbours.reverse() 
print('Reversed list: {0}'.format(neighbours)) 

See the documentation (https://docs.python.org/3/tutorial/datastructures.html) for a complete overview.

Control structure: Loops

The loop control flow is also called iteration or repetition statement and provides a way to execute the same
code block (call the core of the iteration) until a condition is meet.

[] 
[] 
['Austria', 'Ukraine', 'Romania', 'Yugoslavia', 'Slovenia', 'Czechos
lovakia'] 
['Austria', 'Ukraine', 'Romania', 'Yugoslavia', 'Slovenia', 'Czechos
lovakia'] 
['Austria', 'Ukraine', 'Romania', 'Yugoslavia', 'Slovenia', 'Czechos
lovakia'] 

Original list: ['Austria', 'Slovakia', 'Ukraine', 'Romania', 'Serbi
a', 'Croatia', 'Slovenia'] 
Sorted list: ['Austria', 'Croatia', 'Romania', 'Serbia', 'Slovakia', 
'Slovenia', 'Ukraine'] 
Reversed list: ['Ukraine', 'Slovenia', 'Slovakia', 'Serbia', 'Romani
a', 'Croatia', 'Austria'] 

https://docs.python.org/3/tutorial/datastructures.html


for  loop: Iterating through a sequence

When using a for  loop we introduce a new variable which will iterate over all elements of a list (or later
other data structures containing multiple items) and take the value of the next item in each iteration.

Let's iterate over the values of the europe  list with a variable country :

In [72]:

europe = ['Albania', 'Andorra', 'Austria', 'Belgium', 'Bosnia and Herzegovina', 
'Bulgaria', 'Czech Republic', 'Denmark', 'United Kingdom', 'Estonia', 'Belarus',
'Finland', 'France', 'Greece', 'Netherlands', 'Croatia', 'Ireland', 'Iceland', 
'Kosovo', 'Poland', 'Latvia', 'Liechtenstein', 'Lithuania', 'Luxembourg', 'Maced
onia', 'Hungary', 'Malta', 'Moldova', 'Monaco', 'Montenegro', 'Germany', 'Norwa
y', 'Italy', 'Portugal', 'Romania', 'San Marino', 'Spain', 'Switzerland', 'Swede
n', 'Serbia', 'Slovakia', 'Slovenia', 'Ukraine'] 

for country in europe: 
   print(country) 

This new variable introduced for iterating over the elements can be named anything. (Applying the same
rules of course for naming variables discussed in Chapter 1 (01_python_intro.pdf).)

In [73]:

for anything in europe: 
   print(anything) 

Albania 
Andorra 
Austria 
Belgium 
Bosnia and Herzegovina 
... 
Switzerland 
Sweden 
Serbia 
Slovakia 
Slovenia 
Ukraine 

Albania 
Andorra 
Austria 
Belgium 
Bosnia and Herzegovina 
... 
Switzerland 
Sweden 
Serbia 
Slovakia 
Slovenia 
Ukraine 

file:///converted/book/pdf/01_python_intro.pdf


Note the identation of the print  statement, which means that the print  statement is "inside" the for
loop and will be executed on each iteration.

In [74]:

for country in europe: 
   print(country) 
   print("This will be printed after each country") 
print("This will be printed only once after all countries are printed") 

The workflow diagram of the for loop:

Albania 
This will be printed after each country 
Andorra 
This will be printed after each country 
Austria 
This will be printed after each country 
Belgium 
This will be printed after each country 
Bosnia and Herzegovina 
... 
Switzerland 
This will be printed after each country 
Sweden 
This will be printed after each country 
Serbia 
This will be printed after each country 
Slovakia 
This will be printed after each country 
Slovenia 
This will be printed after each country 
Ukraine 
This will be printed after each country 
This will be printed only once after all countries are printed 



The range  function

range()  is a function to create integer sequences, which can be converted to lists. We give the start and
end value as arguments to the function. The end value is exclusive.

In [75]:

print(list(range(1, 10))) 

We may only give one argument to the function, which will be the end value. The start value will be 0 in such
a case.

In [76]:

print(list(range(8))) 

As an optional, third argument, the step value can be passed, which defines the incrementation between the
values of the resulted list.

In [77]:

print(list(range(1, 20, 2))) 

We can use the range()  function to print both the index and the name of each country:

In [78]:

print("Number of European countries: {0}".format(len(europe))) 
for index in range(len(europe)): # length of a sequence 
   print("The {0}th country in the list is: {1}".format(index, europe[index])) 

Remark: ranges are so called "lazy" objects, because they do not generate every number they contain when
we create them. Instead they only produce the contained numbers as we need them when looping over
them; or when we convert them to lists.

[1, 2, 3, 4, 5, 6, 7, 8, 9] 

[0, 1, 2, 3, 4, 5, 6, 7] 

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19] 

Number of European countries: 43 
The 0th country in the list is: Albania 
The 1th country in the list is: Andorra 
The 2th country in the list is: Austria 
The 3th country in the list is: Belgium 
The 4th country in the list is: Bosnia and Herzegovina 
... 
The 37th country in the list is: Switzerland 
The 38th country in the list is: Sweden 
The 39th country in the list is: Serbia 
The 40th country in the list is: Slovakia 
The 41th country in the list is: Slovenia 
The 42th country in the list is: Ukraine 



Exercise

Task: Print all the countries in the europe  list, which start with letter C :

In [79]:

for country in europe: 
   if country[0] == 'C': 
       print(country) 

Help: you have to place a conditional statement ( if ) inside an iterative statement ( for ) and combine
them.

while  loop: Keep doing until condition no longer holds

Use for  when you know the exact number of iterations; use while  when you do not (e.g., checking
convergence).

In [80]:

x = 123.0 
while x > 1: 
   print(x) 
   x = x / 2 
   #x /= 2 

The workflow diagram of the while loop:

Czech Republic 
Croatia 

123.0 
61.5 
30.75 
15.375 
7.6875 
3.84375 
1.921875 



Exercise

Task: write a program that requests some input from the user until the user types in: enough. Then the
execution of the program shall stop.

In [81]:

user_input = input('Type in something: ') 
while user_input != 'enough': 
   user_input = input('Type in something: ') 

Task: write a program that requests number from the user until the user types in: enough. Then the program
shall list all the previously inputted numbers in the same order. Invalid (not numeric) inputs shall be skipped,
also displaying a warning message that an incorrect value was typed in. Sample input and output:

Next number: 10 

Next number: 8 

Next number: apple tree 

It is not a number, skipped! 

Next number: 42 

Next number: -4 

Next number: enough 

Given numbers: [10, 8, 42, -4]



In [82]:

numbers = [] 
user_input = input('Next number: ') 

while user_input != 'enough': 
   try: 
       num = int(user_input) 
       numbers.append(num) 
   except: 
       print('It is not a number, skipped!') 
    
   user_input = input('Next number: ') 
    
print('Given numbers: {0}'.format(numbers)) 

Help: define an empty list before requesting user input iteratively. Add the user given numbers to the list
( append ). Then in the end you only need to display the items of the list.

break  and continue

break  means get out of the loop immediately. Any code after the break  will NOT be executed.

Compare the following 2 solutions for listing all divisors versus only the first divisor of a number:

In [83]:

number = int(input("Input an integer number: ")) 
for i in range(2, number+1): 
   if number % i == 0: 
       print("{0} is a divisor of {1}".format(i, number)) 
   else: 
       print("{0} is NOT a divisor of {1}".format(i, number)) 

It is not a number, skipped! 

Given numbers: [10, 8, 42, -4] 

2 is NOT a divisor of 15 
3 is a divisor of 15 
4 is NOT a divisor of 15 
5 is a divisor of 15 
6 is NOT a divisor of 15 
7 is NOT a divisor of 15 
8 is NOT a divisor of 15 
9 is NOT a divisor of 15 
10 is NOT a divisor of 15 
11 is NOT a divisor of 15 
12 is NOT a divisor of 15 
13 is NOT a divisor of 15 
14 is NOT a divisor of 15 
15 is a divisor of 15 



In [84]:

number = int(input("Input an integer number: ")) 
for i in range(2, number+1): 
   if number % i == 0: 
       print("The first divisor of {0} is {1}".format(number, i)) 
       break # NOTE the break statement here! 
   else: 
       print("{0} is NOT a divisor of {1}".format(i, number)) 

continue  means get to the next iteration of loop. It will stop the current iteration and continue to the next.

Compare the following 2 solutions for listing all divisors of a number:

In [85]:

number = int(input("Input an integer number: ")) 
for i in range(1, number+1): 
   if number % i == 0: 
       print("{0} is a divisor of {1}".format(i, number)) 

In [86]:

number = int(input("Input an integer number: ")) 
for i in range(1, number+1): 
   if number % i != 0: 
       continue # if i NOT a divisor of number, then we continue the iteration
with the next number 
   print("{0} is a divisor of {1}".format(i, number)) 

NOTE: break  and continue  can also be used within while  loops.

Summary exercise on iterations and loops

Task: Test whether a number is a prime

Request an integer number from the user.

Decide whether the number is a prime number or not and display your answer.

2 is NOT a divisor of 15 
The first divisor of 15 is 3 

1 is a divisor of 15 
3 is a divisor of 15 
5 is a divisor of 15 
15 is a divisor of 15 

1 is a divisor of 15 
3 is a divisor of 15 
5 is a divisor of 15 
15 is a divisor of 15 



In [87]:

import math 

number = int(input("Number to check: ")) 
is_prime = True 

if number < 2: 
   # Handle 0 and 1 as a special case 
   is_prime = False 
else: 
   # Numbers >= 2 are tested whether they have any divisors 
   for i in range(2, int(math.sqrt(number) + 1)): 
       print("Testing divisor {0}".format(i)) 
       if number % i == 0: 
           # If we found a divisor, we can stop checking, because the number is
NOT a prime 
           is_prime = False 
           break 
        
if is_prime: 
   print("{0} is a prime".format(number)) 
else: 
   print("{0} is NOT a prime".format(number)) 

Random generation

Random numbers can be generated with the random  module.

Execute the code cell below multiple times to get different results:

In [88]:

import random 
number = random.randint(1, 10) 
print(number) 

Generate 10 numbers between 1 and 100:

Testing divisor 2 
Testing divisor 3 
Testing divisor 4 
Testing divisor 5 
Testing divisor 6 
37 is a prime 

5 



In [89]:

numbers = [] 
for i in range(10): 
   numbers.append(random.randint(1, 100)) 
print(numbers) 

Advanced: pseudo-random numbers (optional)

This is advanced level remark, which is interesting, but not mandatory on this introductory course.

There is no real randomicity in computer science (unless you build a device which measures e.g. cosmic
radiation). These numbers generated are so called pseudo-random numbers. They are generated by a
deterministic mathematical algorithm along a uniform distribution.

The following algorithm will always generate the same numbers regardless how many times you execute it,
because we seed the algorithm a fix initial value before each random generation:

In [90]:

random.seed(42) 
numbers = [] 
for i in range(10): 
   numbers.append(random.randint(1, 100)) 
print(numbers) 

By default the algorithm is only seeded once, with a value related to the milliseconds passed since the start
of the computer. Hence it will look like real "random" numbers.

Exercise

Task: Dice roll

Write a loop which generates a dice roll (1-6) in every iteration. Run the loop 100 times and calculate the
average value of the dice rolls! What is the difference against the expected value? 
How does it change if you execute the dice roll 1000 times?

Hint: instead of adding the generated numbers together one-by-one, you may use the sum(my_list)
function to calculate the accumulated value of a list of numbers. 
Built-in functions like sum  will be further discussed in Chapter 4 (04_functions.pdf).

[76, 55, 40, 73, 80, 8, 79, 95, 13, 98] 

[82, 15, 4, 95, 36, 32, 29, 18, 95, 14] 

file:///converted/book/pdf/04_functions.pdf


In [91]:

import random 

numbers = [] 
for i in range(0, 1000): 
   dice_roll = random.randint(1, 6) 
   numbers.append(dice_roll) 
    
avg = sum(numbers) / len(numbers) 
print('Average value: {0}'.format(avg)) 
print('Expected value: 3.5') 

Average value: 3.519 
Expected value: 3.5 



Chapter 4: Functions

We have already used (called) functions multiple times, like print() , int() , len()  or randint() .

In [1]:

import random 

name = "James Bond" 
number = int("007") 
print(name) 
print(len(name)) 
print(number) 
print(random.randint(1, 100)) 

The concept of a function in programming is very close to the mathematical definition of a function. These
functions can:

accept 0, 1 or multiple parameters;
return a value or not;
meanwhile causing side-effects, like printing a message on the console output.

Defining custom functions

By defining custom functions, the redundancy in the code can be reduced. A custom function can be defined
with the def  keyword:

def function_name ( <parameter_list> ): 

   function_statement

By defining a function we are just "storing" it, be we are not executing it yet. For example:

In [2]:

def hello(): 
   print("Hello World!") 

Now we may call the function even multiple types to execute it:

James Bond 
10 
7 
67 



In [3]:

print("First line") 
hello() 
print("Second line") 
hello() 

What will be the type of a function?

In [4]:

print(type(hello)) 

Parameters

Functions may have zero, one or multiple parameters, which are given between parentheses as variables to
the function:

In [5]:

def greet(name): 
   print("Hello " + name + "!") 

In [6]:

greet("John") 
someName = "Jane" 
greet(someName) 

In the above example the variable name  is a parameter. The literal value John  and the variable 
someName  are the arguments of the function call. So parameters are the generalized variables in the

function definitions, while arguments are the actual, concrete values in a function call.

Return values

Functions can return a value with the return  statement. When a function reaches a return statement, the
execution of the function is stopped and the given value is returned. (A function can contain multiple return
statements when using conditions or iterations.)

Let's write the sum_list  function, which receives a list of numerical values as a parameter and returns the
sum of the numbers!

First line 
Hello World! 
Second line 
Hello World! 

<class 'function'> 

Hello John! 
Hello Jane! 



In [7]:

def sum_list(numbers): # numbers is assumed to be a list of numerical values 
   sum_value = 0 
   for num in numbers: 
       sum_value += num 
   return sum_value 
   print("This line will never get printed") 

Until now, we have only defined the function, now we can call it:

In [8]:

nums = [12, 8, 37, 21, 67, 42, 25] 
print(sum_list(nums)) 

A function can contain multiple return  statements. After the first return  statement reached, the
execution of the function is stopped.

Let's write the average  function, which receives a list of numerical values as a parameter and returns the
average of the numbers. If the list is empty, the returned value shall be None . Reuse the previous 
sum_list  function to produce the sum of the values.

In [9]:

def average(numbers): # numbers is assumed to be a list of numerical values 
   if len(numbers) == 0: 
       return None 
   else: 
       return sum_list(numbers) / len(numbers) 
   print("This line will never get printed") 

In [10]:

nums = [12, 8, 37, 21, 67, 42, 25] 
print(average(nums)) 

Remark: the None  keyword is used to define a no value at all (also called null value). 
None  is not the same as 0 , False , or an empty string. None  has a data type of its own ( NoneType )

and only None  can be None .

Functions returning a value are called fruitful functions. Functions without a return value are called void
functions. In that case the returned value is None.

212 

30.285714285714285 



In [11]:

greet("Matthew") 
result = greet("Andrew") 
print(result) 

Multiple parameters

Functions may have multiple parameters. In such a case the arguments are matched to the parameters in
the same order as they are listed.

In [12]:

def add(a, b): 
   print("Adding {0} and {1}".format(a,b)) 
   c = a + b 
   return c 

result = add(10, 32) 
print(result) 
result = add(-5, 8) 
print(result) 

Default arguments

Python allows function parameters to have default values. If the function is called without the argument, the
parameter gets its default value.

In [13]:

def power(base, exp = 10): 
   return base ** exp 

print(power(2, 6)) 
print(power(2, 10)) 
print(power(2)) 

Hello Matthew! 
Hello Andrew! 
None 

Adding 10 and 32 
42 
Adding -5 and 8 
3 

64 
1024 
1024 



IMPORTANT: if a parameter has a default value, all other parameters following it must have a default value
too! E.g. this is invalid:

def power(base = 2, exp): 

   return base ** exp 

Passing arguments by their position or name

In Python, we can either pass the arguments by their position - as we have seen it so far:

In [14]:

print(power(2, 6)) 
print(power(6, 2)) 

Alternatively arguments can be passed by the respective parameter name:

In [15]:

print(power(base = 2, exp = 6)) 
print(power(exp = 6, base = 2)) 
print(power(2, exp = 6)) 

Note: passing arguments by their name is especially useful when:

a function has many parameters and the function call is much more readable when the parameters are
passed by their name;
a function has many parameters with default values and we would like to override the default value for
only a few of them.

Built-in functions

There are many built-in functions in Python for common use cases, e.g. for looking up the
maximum/minimum value in a list, or to calculate the sum of a list:

64 
36 

64 
64 
64 



In [16]:

print("Maximum value in nums: {0}".format(max(nums))) 
print("Minimum value in nums: {0}".format(min(nums))) 
print("Sum of the values in nums: {0}".format(sum(nums))) 

A comprehensive list can be found in the documentation: 
https://docs.python.org/3/library/functions.html (https://docs.python.org/3/library/functions.html)

Note: defining a variable or function with the same of an existing (even builtin) function will hide it.

In [17]:

print("Maximum value in nums: {0}".format(max(nums))) 
max = 42 
print("Maximum value in nums: {0}".format(max(nums))) # yields error ,as max in
an integer now, not a function 

Modules

In Python a logical unit of definitions (variables, functions, classes) shall be put in a standalone file to support
the easy reuse of the code. Such a file is called a module; definitions from a module can be imported into
other modules or into the main module.

There are many built-in modules, we have already used the math  and the random  module for example.
By using modules we can access preinstalled libraries and use them, so our code will be shorter and more
compact.

In [18]:

import math 
print(math.pi) # using a variable definition from module math 
print(math.factorial(10)) # using a function definition from module math 

Maximum value in nums: 67 
Minimum value in nums: 8 
Sum of the values in nums: 212 

Maximum value in nums: 67 

--------------------------------------------------------------------
------- 
TypeError                                 Traceback (most recent cal
l last) 
<ipython-input-17-582e3602d77e> in <module> 
     1 print("Maximum value in nums: {0}".format(max(nums))) 
     2 max = 42 
----> 3 print("Maximum value in nums: {0}".format(max(nums))) # yiel
ds error ,as max in an integer now, not a function 

TypeError: 'int' object is not callable

3.141592653589793 
3628800 

https://docs.python.org/3/library/functions.html


You can easily get a documentation for a module, by either looking it up in the reference: 
https://docs.python.org/3/library/math.html (https://docs.python.org/3/library/math.html)

Or fetching it dynamically with the help  function:

https://docs.python.org/3/library/math.html


In [19]:

help(math) 

Help on built-in module math: 
 
NAME 
    math 
 
DESCRIPTION 
    This module provides access to the mathematical functions 
    defined by the C standard. 
 
FUNCTIONS 
    acos(x, /) 
        Return the arc cosine (measured in radians) of x. 
     
    acosh(x, /) 
        Return the inverse hyperbolic cosine of x. 
     
    asin(x, /) 
        Return the arc sine (measured in radians) of x. 
     
    asinh(x, /) 
        Return the inverse hyperbolic sine of x. 
     
    atan(x, /) 
        Return the arc tangent (measured in radians) of x. 
     
    ... 
     
    sqrt(x, /) 
        Return the square root of x. 
     
    tan(x, /) 
        Return the tangent of x (measured in radians). 
     
    tanh(x, /) 
        Return the hyperbolic tangent of x. 
     
    trunc(x, /) 
        Truncates the Real x to the nearest Integral toward 0. 
         
        Uses the __trunc__ magic method. 
 
DATA 
    e = 2.718281828459045 
    inf = inf 
    nan = nan 
    pi = 3.141592653589793 
    tau = 6.283185307179586 
 
FILE 
    (built-in) 
 
 



Summary exercises on functions

Task 1: Fahrenheit to Celsius

Write a function fahr2cels , which computes the temperature in Celcius from Fahrenheit. The formula is
the following:

Where  is the degree in Celsius and  is the degree in Fahrenheit.

Write a program which prints out the appropriate Celsius values for each degree in Fahrenheit between 0
and 100, using an incremental step of 10.

C = ∗ (F − 32)
5

9

C F

In [20]:

def fahr2cels(f): 
   c = 5 / 9 * (f - 32) 
   return c 

for fahr in range(0, 101, 10): 
   cels = fahr2cels(fahr) 
   print("Fahr = {0}, Cels = {1:.4f}".format(fahr, cels)) 

Task 2: Prime check

Write a function isPrime  which determines whether a number received as a parameter is a prime or not. 
(You may reuse your algorithm from the previous lecture.)

Wrtite a program which request a number from the user and tests whether it is a prime or not. Check whether
the user input is really an integer number or not.

Fahr = 0, Cels = -17.7778 
Fahr = 10, Cels = -12.2222 
Fahr = 20, Cels = -6.6667 
Fahr = 30, Cels = -1.1111 
Fahr = 40, Cels = 4.4444 
Fahr = 50, Cels = 10.0000 
Fahr = 60, Cels = 15.5556 
Fahr = 70, Cels = 21.1111 
Fahr = 80, Cels = 26.6667 
Fahr = 90, Cels = 32.2222 
Fahr = 100, Cels = 37.7778 



In [21]:

import math 

def isPrime(number): 
   # Handle 0 and 1 as a special case 
   if number < 2: 
       return False 
    
   # Numbers >= 2 are tested whether they have any divisors 
   for i in range(2, int(math.sqrt(number) + 1)): 
       #print("Testing divisor %d" % i) 
       if number % i == 0: 
           # If we found a divisor, we can stop checking, because the number is
NOT a prime 
           return False 
    
   # If no divisors were found, then the number is a prime 
   return True 

try: 
   num = int(input("Number to check: ")) 
   if isPrime(num): 
       print("{0} is a prime".format(num)) 
   else: 
       print("{0} is NOT a prime".format(num)) 
except: 
   print("That was not a number!") 

Task 3: Word count

Request a string input from the user (a sentence). Write a function wordCount  which count the words in
the sentence!

In [22]:

def wordCount(sentence): 
   spaceCount = 0 
   for char in sentence: 
       if char == ' ': 
           spaceCount += 1 
   return spaceCount + 1 

userInput = input('Say a sentence: ') 
print('Your sentence consisted of {0} words.'.format(wordCount(userInput))) 

Hint: count the spaces in the input string.

37 is a prime 

Your sentence consisted of 9 words. 



Task 4: Monotonity

A) Given a list a numbers, write a function isMonotonous  which decides whether the sequence is
monotically increasing or not?

Sample input:

In [23]:

list1 = [10, 20, 50, 400, 600] 
list2 = [10, 20, 50, 40, 600] 
list3 = [1000, 500, 200, 50, 10] 
list4 = [10, 20, 50, 50, 300] 

In [24]:

def isMonotonous(numbers): 
   # Assume that the list is monotically increasing and search for an index pai
r where it is not true! 
   for i in range(1, len(numbers)): 
       if numbers[i - 1] > numbers[i]: 
           return False 
   # If no such errornous index pair was found, then the list was really monoti
cally increasing. 
   return True 

print("List 1: {0}".format(isMonotonous(list1))) 
print("List 2: {0}".format(isMonotonous(list2))) 
print("List 3: {0}".format(isMonotonous(list3))) 
print("List 4: {0}".format(isMonotonous(list4))) 

B) Modify the previous function, so it decides whether the sequence is monotonous or not. (It can be either
increasing or decreasing.)

List 1: True 
List 2: False 
List 3: False 
List 4: True 



In [25]:

def isMonotonous(numbers): 
   # Check for monotically increasing 
   isIncreasing = True 
   for i in range(1, len(numbers)): 
       if numbers[i - 1] > numbers[i]: 
           isIncreasing = False 
           break 
    
   # Check for monotically decreasing 
   isDecreasing = True 
   for i in range(1, len(numbers)): 
       if numbers[i - 1] < numbers[i]: 
           isDecreasing = False 
           break 
    
   # Return whether either one of the 2 conditions were true! 
   return isIncreasing or isDecreasing 

print("List 1: {0}".format(isMonotonous(list1))) 
print("List 2: {0}".format(isMonotonous(list2))) 
print("List 3: {0}".format(isMonotonous(list3))) 
print("List 4: {0}".format(isMonotonous(list4))) 

List 1: True 
List 2: False 
List 3: True 
List 4: True 



Chapter 5: Basic algorithms

Initialize a list of random numbers to work with in the following exercises. Generate 10 numbers between 1
and 100:

In [1]:

import random 

random.seed(42) # to reproduce the same results 
data = [] 
for i in range(10): 
   data.append(random.randint(1, 100)) 
print(data) 

Same with using Python's list generator expressions:

In [2]:

random.seed(42) # to reproduce the same results 
data = [random.randint(1, 100) for i in range(10)] 
print(data) 

Help: given a list of numbers in variable numbers , produce the halves  list, which contains each number
divided by 2:

In [3]:

numbers = [10, 20, 30, 40, 50] 
print(numbers) 

# iteration 
halves = [] 
for x in numbers: 
   halves.append(x / 2) 
print(halves) 

# list generation 
halves = [x / 2 for x in numbers] 
print(halves) 

[82, 15, 4, 95, 36, 32, 29, 18, 95, 14] 

[82, 15, 4, 95, 36, 32, 29, 18, 95, 14] 

[10, 20, 30, 40, 50] 
[5.0, 10.0, 15.0, 20.0, 25.0] 
[5.0, 10.0, 15.0, 20.0, 25.0] 



Summation

Let  be a function. Let the addition operator  be defined over the elements of , which is
an associative operation with a left identity element . Our task is to summarize the values of  function over
the interval. Formally:

f : [m. .n] → H + H

0 f

s =
n

∑
i=m

f(i)

Theoretical way

In [4]:

result = 0 
for i in range(0, len(data)): 
   result += data[i] 
print("Sum: {0}".format(result)) 

Pythonic way

In [5]:

result = 0 
for value in data: 
   result += value 
print("Sum: {0}".format(result)) 

Built-in function

In [6]:

result = sum(data) 
print("Sum: {0}".format(result)) 

Counting

Sum: 420 

Sum: 420 

Sum: 420 



Given the  interval, count the number of items inside it. Formally:[m. .n]

s =
n

∑
i=m

1

Theoretical way

In [7]:

result = 0 
for i in range(0, len(data)): 
   result += 1 
print("Count: {0}".format(result)) 

Pythonic way

In [8]:

result = sum([1 for _ in data]) 
print("Count: {0}".format(result)) 

Remark: a single underscore ( _ ) is a valid variable name. We usually name a variable like this to
emphasize that this variable will not be used later.

Built-in function

In [9]:

result = len(data) 
print("Count: {0}".format(result)) 

Maximum search

Let  be a function, . Over the elements of  let a total ordering relation be defined
(reflexivity, antisymmetry, transitivity and connexity), with a symbol , for the strict version . Our task is to
determine the greatest value in the interval. Also determine an element of the interval, where function 
evaluates to this greatest value. Formally:

f : [m. .n] → H m ≤ n H

≤ <
f

max = f(ind) ∧ ∀i ∈ [m. .n] : f(i) ≤ f(ind)

Count: 10 

Count: 10 

Count: 10 



Theoretical way

In [10]:

result = data[0] 
index = 0 
for i in range(1, len(data)): # we don't need to compare the 0th element 
   if data[i] > result: 
       result = data[i] 
       index = i 
print("Max: {0}, Index: {1}".format(result, index)) 

Pythonic way

In [11]:

result = data[0] 
index = 0 
for idx, value in enumerate(data): 
   if value > result: 
       result = value 
       index = idx 
print("Max: {0}, Index: {1}".format(result, index)) 

Little optimization to skip the  element:0th

In [12]:

result = data[0] 
index = 0 
for idx, value in enumerate(data[1:], start = 1): 
   if value > result: 
       result = value 
       index = idx 
print("Max: {0}, Index: {1}".format(result, index)) 

Built-in function

In [13]:

result = max(data) 
print("Max: {0}".format(result)) 

If the index of the element is also needed:

Max: 95, Index: 3 

Max: 95, Index: 3 

Max: 95, Index: 3 

Max: 95 



In [14]:

result = max(data) 
index = data.index(result) 
print("Max: {0}, Index: {1}".format(result, index)) 

Note: this will iterate over the list twice, hence the computational cost is also doubled.

Linear search

Let  condition be defined. Determine the first element of the interval which fulfills the
condition (if any). Formally:

β : [m. .n] → L

l = (∃i ∈ [m. .n] : β(i))

l → (ind ∈ [m. .n] ∧ β(ind) ∧ ∀i ∈ [m. . ind − 1] : ¬β(i))

Beta condition

Introduce an is_odd  function which determines whether a number is odd or not:

In [15]:

def is_odd(number): 
   return number % 2 != 0 

Theoretical way

In [16]:

result = 0 
index = 0 
found = False 
i = 0 
while not found and i < len(data): 
   if is_odd(data[i]): 
       result = data[i] 
       index = i 
       found = True 
   i += 1 
if found: 
   print("Linear search: {0}, Index: {1}".format(result, index)) 
else: 
   print("Linear search did not found an appropriate item") 

Max: 95, Index: 3 

Linear search: 15, Index: 1 



Pythonic way

In [17]:

result = [x for x in data if is_odd(x)] 
if len(result) > 0: 
   print("Linear search: {0}".format(result)) 
else: 
   print("Linear search did not found an appropriate item") 

Built-in function

In [18]:

result = filter(is_odd, data) 
print("Linear search: {0}".format(list(result))) 

Here result  is a special filter object which can be either converted to a list to get all results (as above) or
dynamically evaluated and step to the next result with the next()  function:

In [19]:

result = filter(is_odd, data) 
print("Linear search: {0}".format(next(result, None))) # None is the default val
ue to use if no number was odd. 

Conditional summation

The algorithm of summation can be further generalized when a  condition is defined to
restrict the set of elements.

Let  be a function and  a condition. Let the addition operator  be
defined over the elements of , which is an associative operation with a left identity element . Our task is to
summarize the values of  function over the interval where the  condition is fulfilled. Formally:

β : [m. .n] → L

f : [m. .n] → H β : [m. .n] → L +

H 0
f β

s =

n

∑
i=m
β(i)

f(i)

Theoretical way

Linear search: [15, 95, 29, 95] 

Linear search: [15, 95, 29, 95] 

Linear search: 15 



In [20]:

result = 0 
for i in range(0, len(data)): 
   if is_odd(data[i]): 
       result += data[i] 
print("Sum: {0}".format(result)) 

Pythonic way

In [21]:

result = 0 
for value in data: 
   if is_odd(value): 
       result += value 
print("Sum: {0}".format(result)) 

Built-in function

In [22]:

result = sum(filter(is_odd, data)) 
print("Sum: {0}".format(result)) 

Conditional counting

Let  be a condition. Count how many items of the interval fulfills the condition! Formally:β : [m. .n] → L

s =
n

∑
i=m
β(i)

1

Theoretical way

Sum: 234 

Sum: 234 

Sum: 234 



In [23]:

result = 0 
for i in range(0, len(data)): 
   if is_odd(data[i]): 
       result += 1 
print("Count: {0}".format(result)) 

Pythonic way

In [24]:

result = sum([1 for x in data if is_odd(x)]) 
print("Count: {0}".format(result)) 

Built-in function

In [25]:

result = len(list(filter(is_odd, data))) 
print("Count: {0}".format(result)) 

Conditional maximum search

The algorithm of maximum search can be further generalized with combining the  condition
used in linear search as a restriction. Note that now the existence of a maximum value is not guaranteed.

Let  be a function and  a condition. Over the elements of  let a total
ordering relation be defined (reflexivity, antisymmetry, transitivity and connexity), with a symbol , for the
strict version . Our task is to determine the greatest value in the interval which fulfills the  condition. Also
determine an element of the interval, where function  evaluates to this greatest value. Formally:

β : [m. .n] → L

f : [m. .n] → H β : [m. .n] → L H

≤
< β

f

l = (∃i ∈ [m. .n] : β(i))

l → (β(ind) ∧ max = f(ind) ∧ ∀i ∈ [m. .n] : β(i) → f(i) ≤ f(ind))

Theoretical way

Count: 4 

Count: 4 

Count: 4 



In [26]:

found = False 
result = 0 
index = 0 
for i in range(0, len(data)): 
   if is_odd(data[i]) and (not found or data[i] > result): 
       found = True 
       result = data[i] 
       index = i 
print("Max: {0}, Index: {1}".format(result, index)) 

The found  variable can be omitted if initialize the result  variable with the special None  value and
compare to that:

In [27]:

result = None 
index = -1 
for i in range(0, len(data)): 
   if is_odd(data[i]) and (result == None or data[i] > result): 
       result = data[i] 
       index = i 
print("Max: {0}, Index: {1}".format(result, index)) 

Pythonic way

In [28]:

result = None 
index = -1 
for idx, value in enumerate(data): 
   if is_odd(value) and (result == None or value > result): 
       result = value 
       index = idx 
print("Max: {0}, Index: {1}".format(result, index)) 

Built-in function

In [29]:

result = max(filter(is_odd, data)) 
print("Max: {0}".format(result)) 

Max: 95, Index: 3 

Max: 95, Index: 3 

Max: 95, Index: 3 

Max: 95 



Exercise

Task: the name, area and population data for the neighbouring countries are given in the countries , 
areas  and popultions  lists below. Calculate the population density for each neighbouring country and

display it. Determine which country has the highest population density.

In [30]:

countries = ['Austria', 'Slovakia', 'Ukraine', 'Romania', 'Serbia', 'Croatia', 
'Slovenia'] 
areas = [83871, 49037, 603500, 238397, 88361, 56594, 20273] 
populations = [8877036, 5450017, 42010063, 19405156, 6963764, 4130304, 2084301] 

In [31]:

densities = [] 
for i in range(len(countries)): 
   densities.append(populations[i] / areas[i]) 
   print('{0}: {1:.2f} persons/km2'.format(countries[i], densities[i])) 

In [32]:

result = max(densities) 
index = densities.index(result) 
print("Max: {0}, Index: {1}, Country: {2}".format(result, index, countries[index
])) 

Logarithmic search (optional)

Also called binary search.

Let  be a monotonically increasing function. Over the elements of  let a total ordering
relation be defined (reflexivity, antisymmetry, transitivity and connexity), with a symbol , for the strict version

. Determine whether function  evaluates to a given value  at any location. If yes, specify such a
location. Formally:

f : [m. .n] → H H

≤
< f h ∈ H

l = (∃i ∈ [m. .n] : f(i) = h) ∧ l → f(ind) = h

Austria: 105.84 persons/km2 
Slovakia: 111.14 persons/km2 
Ukraine: 69.61 persons/km2 
Romania: 81.40 persons/km2 
Serbia: 78.81 persons/km2 
Croatia: 72.98 persons/km2 
Slovenia: 102.81 persons/km2 

Max: 111.14091400371149, Index: 1, Country: Slovakia 



In [33]:

def log_search(elements, value): 
   first = 0 
   last = len(elements) - 1 
   while first <= last: 
       i = (first + last) // 2 
       if elements[i] == value: 
           return i 
       elif elements[i] < value: 
           first = i + 1 
       else: 
           last = i - 1 
   return -1 

data_sorted = sorted(data) 
print("Sorted data: {0}".format(data_sorted)) 

index = log_search(data_sorted, data[0]) 
print("Logarithmic search: value={0}, index={1}".format(data[0], index)) 

Sorted data: [4, 14, 15, 18, 29, 32, 36, 82, 95, 95] 
Logarithmic search: value=82, index=7 



Chapter 6: Sorting algorithms and complexity

Sorting is one of the most thoroughly studied algorithms in computer science. There are dozens of different
sorting implementations, some applicable in general, others efficient in specific circumstances only.

Sorting can be used to solve a variety of problems, to mention a few basic ones:

Searching for an item on a list works much faster if the list is sorted.
Selecting items from a list based on their relationship to the rest of the items is easier with sorted data.
For example, finding the k -largest or smallest value, or finding the median value of the list, is much
easier when the values are in ascending or descending order.
Finding duplicate values in a list can be done very quickly when the list is sorted.
Analyzing the frequency distribution of items on a list is very fast if the list is sorted. For example,
finding the element that appears most or least often is relatively straightforward with a sorted list.

th

Generate a list of random numbers to sort:

In [1]:

import random 

originalNumbers = [random.randint(1, 100) for _ in range(20)] 
print(originalNumbers) 

Bubble sort
Bubble sort is a simple sorting algorithms that works by repeatedly swapping the adjacent elements if they
are in wrong order. In one iteration the largest element will be moved to the end of the array, thus reducting
the problem to a shorter array.

[26, 4, 52, 74, 88, 51, 32, 21, 98, 3, 18, 52, 62, 80, 16, 52, 43, 7
1, 90, 17] 



In [2]:

def swap(array, i, j): 
   temp = array[i] 
   array[i] = array[j] 
   array[j] = temp 

In [3]:

def bubbleSort(array): 
   for end in range(len(array), 1, -1): 
       for i in range(1, end): 
           if array[i-1] > array[i]: 
               swap(array, i-1, i) 
        
numbers = originalNumbers.copy() 
print("Unsorted: {0}".format(numbers)) 
bubbleSort(numbers) 
print("Sorted: {0}".format(numbers)) 

Insertion sort
Insertion sort is a simple sorting algorithm that maintains a sorted and an unsorted part of the array. Values
from the unsorted part are picked and placed at the correct position in the sorted part.

Unsorted: [26, 4, 52, 74, 88, 51, 32, 21, 98, 3, 18, 52, 62, 80, 16, 
52, 43, 71, 90, 17] 
Sorted: [3, 4, 16, 17, 18, 21, 26, 32, 43, 51, 52, 52, 52, 62, 71, 7
4, 80, 88, 90, 98] 



In [4]:

def insertionSort(array): 
   for i in range(1, len(array)): 
       value = array[i] 
       j = i - 1 
       while j >= 0 and array[j] > value: 
           array[j + 1] = array[j] 
           j -= 1 
       array[j + 1] = value 
        
numbers = originalNumbers.copy() 
print("Unsorted: {0}".format(numbers)) 
insertionSort(numbers) 
print("Sorted: {0}".format(numbers)) 

Maximum sort (a.k.a. Selection sort)

Maximum sort algorithm sorts an array of elements by repeatedly finding the maximum element (considering
ascending order) from an unsorted part and putting it at the end of it. Then the length of the unsorted part is
reduced by 1. 
The algorithm can also formulated as a Minimum sort and combined they often they named Selection sort.

Unsorted: [26, 4, 52, 74, 88, 51, 32, 21, 98, 3, 18, 52, 62, 80, 16, 
52, 43, 71, 90, 17] 
Sorted: [3, 4, 16, 17, 18, 21, 26, 32, 43, 51, 52, 52, 52, 62, 71, 7
4, 80, 88, 90, 98] 



In [5]:

def maximumSort(array): 
   for end in range(len(array), 1, -1): 
       maxIdx = end - 1 
       # maximum search algorithm 
       for i in range(end): 
           if array[i] > array[maxIdx]: 
               maxIdx = i 
       swap(array, end - 1, maxIdx) 
            

numbers = originalNumbers.copy() 
print("Unsorted: {0}".format(numbers)) 
maximumSort(numbers) 
print("Sorted: {0}".format(numbers)) 

Quicksort

Quicksort is a Divide and Conquer algorithm. It picks an element as pivot and partitions the given array
around the picked pivot. The partitioning is executed that the algorithm puts the smaller element to the left of
the pivot and the larger elements to the right of the pivot. Then the algorithm is executed recursively on the
partitions.

There are many different versions on how to pick a "good" pivot element, the simplest solution is to always
pick the first element.

Unsorted: [26, 4, 52, 74, 88, 51, 32, 21, 98, 3, 18, 52, 62, 80, 16, 
52, 43, 71, 90, 17] 
Sorted: [3, 4, 16, 17, 18, 21, 26, 32, 43, 51, 52, 52, 52, 62, 71, 7
4, 80, 88, 90, 98] 



Divide And Conquer algorithms in general works as follows:

Divide: Divide the problem into more sub problems.
Conquer: Solve the sub problems by calling recursively until sub problem solved is trivially solved.

In [6]:

# Quicksorting 
def quickSort(array): 
   n = len(array) 
   _quickSort(array, 0, n - 1) 

# Quicksorting (partial array) 
def _quickSort(array, u, v): 
   if u >= v: 
       return; 

   k = _partition(array, u, v) 
   _quickSort(array, u, k - 1) 
   _quickSort(array, k + 1, v) 

# Partinoning algorithm: move the pivot element to its position 
def _partition(array, u, v): 
   i = u + 1; 
   j = v; 
   while i <= j: 
       while i <= v and array[i] <= array[u]: 
           i += 1 
       while j >= u + 1 and array[j] >= array[u]: 
           j -= 1 

       if i < j: 
           swap(array, i , j) 
           i += 1 
           j -= 1 

   swap(array, u, i - 1) 
   return i - 1; 

# Swap 2 items in a list 
def swap(array, i, j): 
   temp = array[i] 
   array[i] = array[j] 
   array[j] = temp 
    
numbers = originalNumbers.copy() 
print("Unsorted: %s" % numbers) 
quickSort(numbers) 
print("Sorted: %s" % numbers) 

Unsorted: [26, 4, 52, 74, 88, 51, 32, 21, 98, 3, 18, 52, 62, 80, 16, 
52, 43, 71, 90, 17] 
Sorted: [3, 4, 16, 17, 18, 21, 26, 32, 43, 51, 52, 52, 52, 62, 71, 7
4, 80, 88, 90, 98] 



Merge sort
Two sorted lists of data can be merged together by iterating through their elements only once.



The Merge Sort is also a Divide and Conquer algorithm. It divides input array in two halves, calls itself for the
two halves and then merges the two sorted halves. (We assume that the sorting of 2 elements is trivial.)

Remark: h  denotes the (maximum) length of the sorted part of the array.



In [7]:

# Merge sort 
def mergeSort(array): 
   n = len(array) 
   _mergeSort(array, 0, n - 1) 

# Merge sort (partial array) 
def _mergeSort(array, left, right): 
   if left < right: 
       middle = (left + right) // 2 
  
       # Sort first and second halves 
       _mergeSort(array, left, middle) 
       _mergeSort(array, middle + 1, right) 
       # Merge 
       _merge(array, left, right, middle) 

# Merges sorted partial arrays 
def _merge(array, left, right, middle): 
   nLeft = middle - left + 1 
   nRight = right - middle 
  
   # create temp arrays 
   L = [0] * nLeft 
   R = [0] * nRight 
  
   # Copy data to temp arrays L[] and R[] 
   for i in range(0 , nLeft): 
       L[i] = array[left + i] 
  
   for j in range(0 , nRight): 
       R[j] = array[middle + 1 + j] 
  
   # Initialize index positions 
   i = 0 
   j = 0 
   k = left 
  
   # Merge the temp arrays back into array[left..right] 
   while i < nLeft and j < nRight: 
       if L[i] <= R[j]: 
           array[k] = L[i] 
           i += 1 
       else: 
           array[k] = R[j] 
           j += 1 
       k += 1 
  
   # Copy the remaining elements of L[] 
   while i < nLeft: 
       array[k] = L[i] 
       i += 1 
       k += 1 
  
   # Copy the remaining elements of R[] 
   while j < nRight: 
       array[k] = R[j] 
       j += 1 
       k += 1 



numbers = originalNumbers.copy() 
print("Unsorted: %s" % numbers) 
mergeSort(numbers) 
print("Sorted: %s" % numbers) 

Complexity analysis of algorithms
In computer science, the analysis of algorithms is the process of finding the computational complexity of
algorithms: the amount of time, storage, or other resources needed to execute them. Usually, this involves
determining a function that relates the length of an algorithm's input to the number of steps it takes (its time
complexity) or the number of storage locations it uses (its space complexity).

Now we will focus on time complexity. Let  and  represent the time complexity of 2 algorithms and we
would like to make statements on how they grow compared to each other. (E.g. the time complexity of the
bubble sort grows no faster than the  function.)

In theoretical analysis of algorithms it is common to estimate their complexity in the asymptotic sense, i.e., to
estimate the complexity function for arbitrarily large input. We are not concerned with small inputs or constant
factors. The following notations are used to this end:

Big O ( ) notation describes the asympthotic upper bound, meaning that , if such
positive constants  and  exists, that , for all .
Big-omega ( ) notation describes the asympthotic lower bound, meaning that , if
such positive constants  and  exists, that , for all .
Big-theta ( ) notation describes the asympthotic tight bound, meaning that , if such
positive constants ,  and  exists, that , for all .

In computer science in most cases we are interested in computing the Big O or the Big-theta notation, as a
lower bound alone would not state much about the complexity.

For the most common complexities, well-known names have also be assigned and used:

Asympthotic complexity Name

Constant time

Linear time

Quadratic time

Cubic time

Logarithmic time

Linearithmic time

Exponential time

Factorial time

f g

n2

O f(N) = O(g(N))

c N0 f(N) ≤ c ∗ g(N) N ≥ N0

Ω f(N) = O(g(N))

c N0 f(N) ≥ c ∗ g(N) N ≥ N0

Θ f(N) = O(g(N))

c1 c2 N0 c1 ∗ g(N) ≤ f(N) ≤ c2 ∗ g(N) N ≥ N0

Θ(1)

Θ(n)

Θ(n2)

Θ(n3)

Θ(log(n))

Θ(n ∗ log(n))

Θ(2n)

Θ(n!)

Unsorted: [26, 4, 52, 74, 88, 51, 32, 21, 98, 3, 18, 52, 62, 80, 16, 
52, 43, 71, 90, 17] 
Sorted: [3, 4, 16, 17, 18, 21, 26, 32, 43, 51, 52, 52, 52, 62, 71, 7
4, 80, 88, 90, 98] 



Question: what is the asymptotic computational complexity of the introduced sorting algoirhtms?

Bubbke sort, insertsion sort, maximum sort:  
Quicksort, merge sort: 

Θ(n2))

Θ(n ∗ log(n))

It can be proven that for a general case there is no better time complexity for sorting than . 
There are further algorithms with this complexity, see e.g. Heap sort (https://en.wikipedia.org/wiki/Heapsort)
or Tournament sort (https://en.wikipedia.org/wiki/Tournament_sort).

Θ(n ∗ log(n))

https://en.wikipedia.org/wiki/Heapsort
https://en.wikipedia.org/wiki/Tournament_sort


Chapter 7: Collection data structures

In Python, we have the following built-in data structures:

Lists
Dictionaries
Tuples
Sets

We have already introduced the list data structure in Chapter 3 (03_iterations_lists.pdf). Lists are
heterogeneous containers for multiple items in Python.

Dictionaries

Unlike sequences (like lists in Python), which are indexed by a range of numbers, dictionaries are indexed by
keys. It is best to think of a dictionary as a set of key: value pairs, with the requirement that the keys are
unique (within one dictionary). A pair of braces creates an empty dictionary: {} . Placing a comma-
separated list of key: value pairs within the braces adds initial key: value pairs to the dictionary; this is also
the way dictionaries are written on output.

Dictionaries are sometimes found in other languages as associative arrays.

Example: let's create a shopping list with the name of products as keys and quantities as values:

In [1]:

shopping_list = {'apple': 6, 'bread': 2, 'milk': 6, 'butter': 1} 
print(shopping_list) 

Example: let's create a dictionary with the name of countries as keys and their capital cities as values:

{'apple': 6, 'bread': 2, 'milk': 6, 'butter': 1} 

file:///converted/book/pdf/03_iterations_lists.pdf


In [2]:

capitals = { 
   'Aland Islands': 'Mariehamn', 
   'Albania': 'Tirana', 
   'Andorra': 'Andorra la Vella', 
   'Armenia': 'Yerevan', 
   'Austria': 'Vienna', 
   ... 
   'Switzerland': 'Bern', 
   'Turkey': 'Ankara', 
   'Ukraine': 'Kyiv', 
   'United Kingdom': 'London', 
   'Northern Cyprus': 'North Nicosia' 
} 
print(capitals) 

Elements of a dictionary can be accessed through their key:

In [3]:

print(capitals['Hungary']) 

Dictionaries are mutable, so the values can be modified:

{'Aland Islands': 'Mariehamn', 'Albania': 'Tirana', 'Andorra': 'Ando
rra la Vella', 'Armenia': 'Yerevan', 'Austria': 'Vienna', 'Azerbaija
n': 'Baku', 'Belarus': 'Minsk', 'Belgium': 'Brussels', 'Bosnia and H
erzegovina': 'Sarajevo', 'Bulgaria': 'Sofia', 'Croatia': 'Zagreb', 
'Cyprus': 'Nicosia', 'Czech Republic': 'Prague', 'Denmark': 'Copenha
gen', 'Estonia': 'Tallinn', 'Faroe Islands': 'Torshavn', 'Finland': 
'Helsinki', 'France': 'Paris', 'Georgia': 'Tbilisi', 'Germany': 'Ber
lin', 'Gibraltar': 'Gibraltar', 'Greece': 'Athens', 'Guernsey': 'Sai
nt Peter Port', 'Vatican City': 'Vatican City', 'Hungary': 'Budapes
t', 'Iceland': 'Reykjavik', 'Ireland': 'Dublin', 'Isle of Man': 'Dou
glas', 'Italy': 'Rome', 'Jersey': 'Saint Helier', 'Kosovo': 'Pristin
a', 'Latvia': 'Riga', 'Liechtenstein': 'Vaduz', 'Lithuania': 'Vilniu
s', 'Luxembourg': 'Luxembourg', 'Macedonia': 'Skopje', 'Malta': 'Val
letta', 'Moldova': 'Chisinau', 'Monaco': 'Monaco', 'Montenegro': 'Po
dgorica', 'Netherlands': 'Amsterdam', 'Norway': 'Oslo', 'Poland': 'W
arsaw', 'Portugal': 'Lisbon', 'Romania': 'Bucharest', 'Russia': 'Mos
cow', 'San Marino': 'San Marino', 'Serbia': 'Belgrade', 'Slovakia': 
'Bratislava', 'Slovenia': 'Ljubljana', 'Spain': 'Madrid', 'Svalbar
d': 'Longyearbyen', 'Sweden': 'Stockholm', 'Switzerland': 'Bern', 'T
urkey': 'Ankara', 'Ukraine': 'Kyiv', 'United Kingdom': 'London', 'No
rthern Cyprus': 'North Nicosia'} 

Budapest 



In [4]:

capitals['Hungary'] = 'Esztergom' # old capital city of Hungary between the 11-1
3th century 
print(capitals['Hungary']) 

capitals['Hungary'] = 'Budapest' 
print(capitals['Hungary']) 

Dictionaries can also be extended with new elements (key: value pairs):

In [5]:

capitals['USA'] = 'Washington' 
print(capitals['USA']) 

Removing or deleting existing elements is also possible:

In [6]:

del capitals['USA'] # deleting, because not in Europe 
print(capitals['USA']) 

Tuples

Tuples are a sequence of heterogeneous elements, similarly like lists. Its initial elements are defined as a
comma separated list, surrounded by parentheses.

Note: lists are surrounded by brackets!

Esztergom 
Budapest 

Washington 

--------------------------------------------------------------------
------- 
KeyError                                  Traceback (most recent cal
l last) 
<ipython-input-6-7e32e4eb21a0> in <module> 
     1 del capitals['USA'] # deleting, because not in Europe 
----> 2 print(capitals['USA']) 

KeyError: 'USA'



In [8]:

neighbours = ('Austria', 'Slovakia', 'Ukraine', 'Romania', 'Serbia', 'Croatia', 
'Slovenia') 
print(neighbours) 

The items of a list can be accessed by the numerical indexes. (The first item is indexed with zero.)

In [9]:

print(neighbours[0]) 
print(neighbours[2:5]) 
print(len(neighbours)) 

The elements of tuple can also be fetched by tuple unpacking, which means that the items of a tuple are
extracted into distinct variables:

In [10]:

a, b, c, d, e, f, g = neighbours 
print(a, b, c, d, e, f, g) 

Through tuple packing, we can create a new tuple with its elements defined:

In [11]:

neighbours2 = (a, b, c, d, e, f, g) 
print(neighbours == neighbours2) 

While lists are mutable, tuples are immutable, meaning that the elements cannot be modified:

In [12]:

neighbours[0] = 'Renamed country' 

New elements can neither be added to a tuple. Removing existing elements is also not possible.

('Austria', 'Slovakia', 'Ukraine', 'Romania', 'Serbia', 'Croatia', 
'Slovenia') 

Austria 
('Ukraine', 'Romania', 'Serbia') 
7 

Austria Slovakia Ukraine Romania Serbia Croatia Slovenia 

True 

--------------------------------------------------------------------
------- 
TypeError                                 Traceback (most recent cal
l last) 
<ipython-input-12-ee27e9767c8f> in <module> 
----> 1 neighbours[0] = 'Renamed country' 

TypeError: 'tuple' object does not support item assignment



In [13]:

neighbours.append('New country') 

Though tuples may seem similar to lists, they are often used in different situations and for different purposes.
Tuples are immutable, and usually contain a heterogeneous sequence of elements. Lists are mutable, and
their elements are usually homogeneous and are accessed by iterating over the list.

We could see that lists, tuples and even strings have many common properties, such as indexing and slicing
operations. They are sequence data types.

Dictionary as a list of tuples

The dict()  constructor builds dictionaries directly from sequences of key-value pairs. The dictionary in
this case is build from a list tuples, each tuple containing precisely two elements: a key and a value, in this
order.

--------------------------------------------------------------------
------- 
AttributeError                            Traceback (most recent cal
l last) 
<ipython-input-13-1f4e9477ed13> in <module> 
----> 1 neighbours.append('New country') 

AttributeError: 'tuple' object has no attribute 'append'



In [16]:

capitals = dict([ 
   ('Aland Islands', 'Mariehamn'), 
   ('Albania', 'Tirana'), 
   ('Andorra', 'Andorra la Vella'), 
   ('Armenia', 'Yerevan'), 
   ('Austria', 'Vienna'), 
   ... 
   ('Switzerland', 'Bern'), 
   ('Turkey', 'Ankara'), 
   ('Ukraine', 'Kyiv'), 
   ('United Kingdom', 'London'), 
   ('Northern Cyprus', 'North Nicosia') 
]) 
print(capitals) 

Tuple unpacking

Since we know that each tuple in a dictionary contains a key and a value, tuple unpacking can be very useful
to extract them into separate variables, e.g.:

In [17]:

pair = ('Hungary', 'Budapest') 
key, value = pair 
print("Key is {0}, value is {1}".format(key, value)) 

Iterating through a dictionary

Accessing the list of key-value tuples can be done with the items()  function of the dictionary:

{'Aland Islands': 'Mariehamn', 'Albania': 'Tirana', 'Andorra': 'Ando
rra la Vella', 'Armenia': 'Yerevan', 'Austria': 'Vienna', 'Azerbaija
n': 'Baku', 'Belarus': 'Minsk', 'Belgium': 'Brussels', 'Bosnia and H
erzegovina': 'Sarajevo', 'Bulgaria': 'Sofia', 'Croatia': 'Zagreb', 
'Cyprus': 'Nicosia', 'Czech Republic': 'Prague', 'Denmark': 'Copenha
gen', 'Estonia': 'Tallinn', 'Faroe Islands': 'Torshavn', 'Finland': 
'Helsinki', 'France': 'Paris', 'Georgia': 'Tbilisi', 'Germany': 'Ber
lin', 'Gibraltar': 'Gibraltar', 'Greece': 'Athens', 'Guernsey': 'Sai
nt Peter Port', 'Vatican City': 'Vatican City', 'Hungary': 'Budapes
t', 'Iceland': 'Reykjavik', 'Ireland': 'Dublin', 'Isle of Man': 'Dou
glas', 'Italy': 'Rome', 'Jersey': 'Saint Helier', 'Kosovo': 'Pristin
a', 'Latvia': 'Riga', 'Liechtenstein': 'Vaduz', 'Lithuania': 'Vilniu
s', 'Luxembourg': 'Luxembourg', 'Macedonia': 'Skopje', 'Malta': 'Val
letta', 'Moldova': 'Chisinau', 'Monaco': 'Monaco', 'Montenegro': 'Po
dgorica', 'Netherlands': 'Amsterdam', 'Norway': 'Oslo', 'Poland': 'W
arsaw', 'Portugal': 'Lisbon', 'Romania': 'Bucharest', 'Russia': 'Mos
cow', 'San Marino': 'San Marino', 'Serbia': 'Belgrade', 'Slovakia': 
'Bratislava', 'Slovenia': 'Ljubljana', 'Spain': 'Madrid', 'Svalbar
d': 'Longyearbyen', 'Sweden': 'Stockholm', 'Switzerland': 'Bern', 'T
urkey': 'Ankara', 'Ukraine': 'Kyiv', 'United Kingdom': 'London', 'No
rthern Cyprus': 'North Nicosia'} 

Key is Hungary, value is Budapest 



In [18]:

print("List of key-value pairs:") 
print(capitals.items()) 

Accessing ONLY the list of keys or values is also possible with the keys()  and values()  functions of
the dictionary:

In [19]:

print("List of keys:") 
print(capitals.keys()) 

List of key-value pairs: 
dict_items([('Aland Islands', 'Mariehamn'), ('Albania', 'Tirana'), 
('Andorra', 'Andorra la Vella'), ('Armenia', 'Yerevan'), ('Austria', 
'Vienna'), ('Azerbaijan', 'Baku'), ('Belarus', 'Minsk'), ('Belgium', 
'Brussels'), ('Bosnia and Herzegovina', 'Sarajevo'), ('Bulgaria', 'S
ofia'), ('Croatia', 'Zagreb'), ('Cyprus', 'Nicosia'), ('Czech Republ
ic', 'Prague'), ('Denmark', 'Copenhagen'), ('Estonia', 'Tallinn'), 
('Faroe Islands', 'Torshavn'), ('Finland', 'Helsinki'), ('France', 
'Paris'), ('Georgia', 'Tbilisi'), ('Germany', 'Berlin'), ('Gibralta
r', 'Gibraltar'), ('Greece', 'Athens'), ('Guernsey', 'Saint Peter Po
rt'), ('Vatican City', 'Vatican City'), ('Hungary', 'Budapest'), ('I
celand', 'Reykjavik'), ('Ireland', 'Dublin'), ('Isle of Man', 'Dougl
as'), ('Italy', 'Rome'), ('Jersey', 'Saint Helier'), ('Kosovo', 'Pri
stina'), ('Latvia', 'Riga'), ('Liechtenstein', 'Vaduz'), ('Lithuani
a', 'Vilnius'), ('Luxembourg', 'Luxembourg'), ('Macedonia', 'Skopj
e'), ('Malta', 'Valletta'), ('Moldova', 'Chisinau'), ('Monaco', 'Mon
aco'), ('Montenegro', 'Podgorica'), ('Netherlands', 'Amsterdam'), 
('Norway', 'Oslo'), ('Poland', 'Warsaw'), ('Portugal', 'Lisbon'), 
('Romania', 'Bucharest'), ('Russia', 'Moscow'), ('San Marino', 'San 
Marino'), ('Serbia', 'Belgrade'), ('Slovakia', 'Bratislava'), ('Slov
enia', 'Ljubljana'), ('Spain', 'Madrid'), ('Svalbard', 'Longyearbye
n'), ('Sweden', 'Stockholm'), ('Switzerland', 'Bern'), ('Turkey', 'A
nkara'), ('Ukraine', 'Kyiv'), ('United Kingdom', 'London'), ('Northe
rn Cyprus', 'North Nicosia')]) 

List of keys: 
dict_keys(['Aland Islands', 'Albania', 'Andorra', 'Armenia', 'Austri
a', 'Azerbaijan', 'Belarus', 'Belgium', 'Bosnia and Herzegovina', 'B
ulgaria', 'Croatia', 'Cyprus', 'Czech Republic', 'Denmark', 'Estoni
a', 'Faroe Islands', 'Finland', 'France', 'Georgia', 'Germany', 'Gib
raltar', 'Greece', 'Guernsey', 'Vatican City', 'Hungary', 'Iceland', 
'Ireland', 'Isle of Man', 'Italy', 'Jersey', 'Kosovo', 'Latvia', 'Li
echtenstein', 'Lithuania', 'Luxembourg', 'Macedonia', 'Malta', 'Mold
ova', 'Monaco', 'Montenegro', 'Netherlands', 'Norway', 'Poland', 'Po
rtugal', 'Romania', 'Russia', 'San Marino', 'Serbia', 'Slovakia', 'S
lovenia', 'Spain', 'Svalbard', 'Sweden', 'Switzerland', 'Turkey', 'U
kraine', 'United Kingdom', 'Northern Cyprus']) 



In [20]:

print("List of values:") 
print(capitals.values()) 

We can also use a for loop to iterate through the items of a dictionary:

In [21]:

for item in capitals.items(): 
   print(item) 

Here we iterate through the key: value tuples of a dictionary with the item  variable. 
The key is the element with the index 0, the value is the element with the index 1 in item :

In [22]:

for item in capitals.items(): 
   key = item[0] 
   value = item[1] 
   print("{0}: {1}".format(key, value)) 

List of values: 
dict_values(['Mariehamn', 'Tirana', 'Andorra la Vella', 'Yerevan', 
'Vienna', 'Baku', 'Minsk', 'Brussels', 'Sarajevo', 'Sofia', 'Zagre
b', 'Nicosia', 'Prague', 'Copenhagen', 'Tallinn', 'Torshavn', 'Helsi
nki', 'Paris', 'Tbilisi', 'Berlin', 'Gibraltar', 'Athens', 'Saint Pe
ter Port', 'Vatican City', 'Budapest', 'Reykjavik', 'Dublin', 'Dougl
as', 'Rome', 'Saint Helier', 'Pristina', 'Riga', 'Vaduz', 'Vilnius', 
'Luxembourg', 'Skopje', 'Valletta', 'Chisinau', 'Monaco', 'Podgoric
a', 'Amsterdam', 'Oslo', 'Warsaw', 'Lisbon', 'Bucharest', 'Moscow', 
'San Marino', 'Belgrade', 'Bratislava', 'Ljubljana', 'Madrid', 'Long
yearbyen', 'Stockholm', 'Bern', 'Ankara', 'Kyiv', 'London', 'North N
icosia']) 

('Aland Islands', 'Mariehamn') 
('Albania', 'Tirana') 
('Andorra', 'Andorra la Vella') 
('Armenia', 'Yerevan') 
('Austria', 'Vienna') 
... 
('Switzerland', 'Bern') 
('Turkey', 'Ankara') 
('Ukraine', 'Kyiv') 
('United Kingdom', 'London') 
('Northern Cyprus', 'North Nicosia') 

Aland Islands: Mariehamn 
Albania: Tirana 
Andorra: Andorra la Vella 
Armenia: Yerevan 
Austria: Vienna 
... 
Switzerland: Bern 
Turkey: Ankara 
Ukraine: Kyiv 
United Kingdom: London 
Northern Cyprus: North Nicosia 



By creating a list of tuples from the dictionary, we can fetch a single tuple by its numerical index and then
extract the key and the value into separate variables with tuple unpacking:

In [23]:

item_10 = list(capitals.items())[10] 
print(item_10) 
key, value = item_10 
print("Key is {0}, value is {1}".format(key, value)) 

We can also use a for loop to iterate through the key: value pairs in a dictionary with tuple unpacking:

In [24]:

for item in capitals.items(): 
   key, value = item 
   print("{0}: {1}".format(key, value)) 

We do not even need a temporary item  variable, the unpacking can be done directly in the for
statement:

In [25]:

for key, value in capitals.items(): 
   print("{0}: {1}".format(key, value)) 

('Croatia', 'Zagreb') 
Key is Croatia, value is Zagreb 

Aland Islands: Mariehamn 
Albania: Tirana 
Andorra: Andorra la Vella 
Armenia: Yerevan 
Austria: Vienna 
... 
Switzerland: Bern 
Turkey: Ankara 
Ukraine: Kyiv 
United Kingdom: London 
Northern Cyprus: North Nicosia 

Aland Islands: Mariehamn 
Albania: Tirana 
Andorra: Andorra la Vella 
Armenia: Yerevan 
Austria: Vienna 
... 
Switzerland: Bern 
Turkey: Ankara 
Ukraine: Kyiv 
United Kingdom: London 
Northern Cyprus: North Nicosia 



Now compare the 2 versions of iterating through the items of a dictionary and observe how tuple unpacking
makes accessing the key and the value easier:

for item in capitals.items(): 

   key = item[0] 

   value = item[1] 

   print("{0}: {1}".format(key, value)) 

for key, value in capitals.items(): 

   print("{0}: {1}".format(key, value)) 

Note: keys in a dictionary can be any immutable type; strings and numbers can always be keys. Tuples can
be used as keys if they contain only strings, numbers, or tuples; if a tuple contains any mutable object either
directly or indirectly, it cannot be used as a key. You can’t use lists as keys, since lists can be modified.

Note: the same tuple unpacking were utilized when using the enumerate()  function introduced in Chapter
5 (05_basic_algorithms.pdf#Maximum-search):

data = [ ... ] 

for idx, value in enumerate(data): 

   ... 

Summary exercise on dictionaries

The dictionaries population_2008  and population_2018  store the population of some European
countries in the according years (2008 and 2010):

file:///converted/book/pdf/05_basic_algorithms.pdf#Maximum-search


In [26]:

population_2008 = { 'Belgium': 10666866, 'Bulgaria': 7518002, 'Czechia': 1034342
2, 'Denmark': 5475791, 'Germany': 82217837, 'Estonia': 1338440, 'Ireland': 44577
65, 'Greece': 11060937, 'Spain': 45668939, 'France': 64007193, 'Croatia': 431196
7, 'Italy': 58652875, 'Cyprus': 776333, 'Latvia': 2191810, 'Lithuania': 3212605,
'Luxembourg': 483799, 'Hungary': 10045401, 'Malta': 407832, 'Netherlands': 1640
5399, 'Austria': 8307989, 'Poland': 38115641, 'Portugal': 10553339, 'Romania': 2
0635460, 'Slovenia': 2010269, 'Slovakia': 5376064, 'Finland': 5300484, 'Sweden':
9182927, 'United Kingdom': 61571647, 'Iceland': 315459, 'Liechtenstein': 35356,
'Norway': 4737171, 'Switzerland': 7593494, 'Montenegro': 615543, 'North Macedon
ia': 2045177, 'Albania': 2958266, 'Serbia': 7365507, 'Turkey': 70586256, 'Andorr
a': 83137, 'Belarus': 9689770, 'Bosnia and Herzegovina': 3843846, 'Kosovo': 2153
139, 'Moldova': 3572703, 'San Marino': 32054, 'Ukraine': 46192309, 'Armenia': 32
30086, 'Azerbaijan': 8629900, 'Georgia': 4382070 } 
population_2018 = { 'Belgium': 11398589, 'Bulgaria': 7050034, 'Czechia': 1061005
5, 'Denmark': 5781190, 'Germany': 82792351, 'Estonia': 1319133, 'Ireland': 48303
92, 'Greece': 10741165, 'Spain': 46658447, 'France': 66926166, 'Croatia': 410549
3, 'Italy': 60483973, 'Cyprus': 864236, 'Latvia': 1934379, 'Lithuania': 2808901,
'Luxembourg': 602005, 'Hungary': 9778371, 'Malta': 475701, 'Netherlands': 17181
084, 'Austria': 8822267, 'Poland': 37976687, 'Portugal': 10291027, 'Romania': 19
530631, 'Slovenia': 2066880, 'Slovakia': 5443120, 'Finland': 5513130, 'Sweden': 
10120242, 'United Kingdom': 66273576, 'Iceland': 348450, 'Liechtenstein': 38114,
'Norway': 5295619, 'Switzerland': 8484130, 'Montenegro': 622359, 'North Macedon
ia': 2075301, 'Albania': 2870324, 'Serbia': 7001444, 'Turkey': 80810525, 'Andorr
a': 74794, 'Belarus': 9491823, 'Bosnia and Herzegovina': 3502550, 'Kosovo': 1798
506, 'Moldova': 3547539, 'San Marino': 34453, 'Ukraine': 42386403, 'Armenia': 29
72732, 'Azerbaijan': 9898085, 'Georgia': 3729633 } 

print("Population of European countries in 2008:") 
print(population_2008) 

print() 
print("Population of European countries in 2018:") 
print(population_2018) 



Data source: EuroStat (https://ec.europa.eu/eurostat/)

Exercise 1

Task: What was the population of Hungary in 2008 and in 2018?

In [27]:

print("Population of Hungary in 2008: {0}".format(population_2008["Hungary"])) 
print("Population of Hungary in 2018: {0}".format(population_2018["Hungary"])) 

Exercise 2

Task: What was the population change between 2008 and 2018 in Hungary? What is the average change
per year?

Population of European countries in 2008: 
{'Belgium': 10666866, 'Bulgaria': 7518002, 'Czechia': 10343422, 'Den
mark': 5475791, 'Germany': 82217837, 'Estonia': 1338440, 'Ireland': 
4457765, 'Greece': 11060937, 'Spain': 45668939, 'France': 64007193, 
'Croatia': 4311967, 'Italy': 58652875, 'Cyprus': 776333, 'Latvia': 2
191810, 'Lithuania': 3212605, 'Luxembourg': 483799, 'Hungary': 10045
401, 'Malta': 407832, 'Netherlands': 16405399, 'Austria': 8307989, 
'Poland': 38115641, 'Portugal': 10553339, 'Romania': 20635460, 'Slov
enia': 2010269, 'Slovakia': 5376064, 'Finland': 5300484, 'Sweden': 9
182927, 'United Kingdom': 61571647, 'Iceland': 315459, 'Liechtenstei
n': 35356, 'Norway': 4737171, 'Switzerland': 7593494, 'Montenegro': 
615543, 'North Macedonia': 2045177, 'Albania': 2958266, 'Serbia': 73
65507, 'Turkey': 70586256, 'Andorra': 83137, 'Belarus': 9689770, 'Bo
snia and Herzegovina': 3843846, 'Kosovo': 2153139, 'Moldova': 357270
3, 'San Marino': 32054, 'Ukraine': 46192309, 'Armenia': 3230086, 'Az
erbaijan': 8629900, 'Georgia': 4382070} 

Population of European countries in 2018: 
{'Belgium': 11398589, 'Bulgaria': 7050034, 'Czechia': 10610055, 'Den
mark': 5781190, 'Germany': 82792351, 'Estonia': 1319133, 'Ireland': 
4830392, 'Greece': 10741165, 'Spain': 46658447, 'France': 66926166, 
'Croatia': 4105493, 'Italy': 60483973, 'Cyprus': 864236, 'Latvia': 1
934379, 'Lithuania': 2808901, 'Luxembourg': 602005, 'Hungary': 97783
71, 'Malta': 475701, 'Netherlands': 17181084, 'Austria': 8822267, 'P
oland': 37976687, 'Portugal': 10291027, 'Romania': 19530631, 'Sloven
ia': 2066880, 'Slovakia': 5443120, 'Finland': 5513130, 'Sweden': 101
20242, 'United Kingdom': 66273576, 'Iceland': 348450, 'Liechtenstei
n': 38114, 'Norway': 5295619, 'Switzerland': 8484130, 'Montenegro': 
622359, 'North Macedonia': 2075301, 'Albania': 2870324, 'Serbia': 70
01444, 'Turkey': 80810525, 'Andorra': 74794, 'Belarus': 9491823, 'Bo
snia and Herzegovina': 3502550, 'Kosovo': 1798506, 'Moldova': 354753
9, 'San Marino': 34453, 'Ukraine': 42386403, 'Armenia': 2972732, 'Az
erbaijan': 9898085, 'Georgia': 3729633} 

Population of Hungary in 2008: 10045401 
Population of Hungary in 2018: 9778371 

https://ec.europa.eu/eurostat/


In [28]:

diff = population_2018["Hungary"] - population_2008["Hungary"] 
print("Population difference for Hungary: {0}".format(diff)) 

diff_avg = diff // 10 
print("Average population change for Hungary per year: {0}".format(diff_avg)) 

Exercise 3

Task: Display for all countries the population change between 2008 and 2018!

In [29]:

for key in population_2008.keys(): 
   diff = population_2018[key] - population_2008[key] 
   print("{0}: {1}".format(key, diff)) 

Exercise 4

Task: Which country had the largest population growth in the given timespan? Which one had the largest
population decline?

Population difference for Hungary: -267030 
Average population change for Hungary per year: -26703 

Belgium: 731723 
Bulgaria: -467968 
Czechia: 266633 
Denmark: 305399 
Germany: 574514 
... 
San Marino: 2399 
Ukraine: -3805906 
Armenia: -257354 
Azerbaijan: 1268185 
Georgia: -652437 



In [30]:

max_country = "Hungary" 
max_diff = population_2018[max_country] - population_2008[max_country] 
min_country = "Hungary" 
min_diff = population_2018[min_country] - population_2008[min_country] 

for key in population_2008.keys(): 
   diff = population_2018[key] - population_2008[key] 
   if diff > max_diff: 
       max_diff = diff 
       max_country = key 
   if diff < min_diff: 
       min_diff = diff 
       min_country = key 
        
print("Largest growth: {0} ({1})".format(max_country, max_diff)) 
print("Largest decline: {0} ({1})".format(min_country, min_diff)) 

Sets

Python also includes a data type for sets. A set is an unordered collection with no duplicate elements. Basic
usage include membership testing and eliminating duplicate entries. Set objects also support mathematical
operations like union, intersection, difference, and symmetric difference.

Curly braces or the set()  function can be used to create sets. 
Note: to create an empty set you have to use set() , not {} ; the latter creates an empty dictionary and
not a set.

In [31]:

neighbours = {'Austria', 'Slovakia', 'Ukraine', 'Romania', 'Serbia', 'Croatia', 
'Slovenia'} 
print(neighbours) 

Since sets are unordered theoretically, Python does not support indexing for sets, meaning we cannot access
an item with a numerical index:

Largest growth: Turkey (10224269) 
Largest decline: Ukraine (-3805906) 

{'Slovakia', 'Romania', 'Austria', 'Ukraine', 'Croatia', 'Serbia', 
'Slovenia'} 



In [32]:

print(neighbours[0]) 

However, we can perform membership testing, evaluating whether an item is in the list or not:

In [33]:

print('Serbia' in neighbours) 
print('Germany' in neighbours) 

New element can be added with the add()  method to a set, existing element can be removed with the 
remove()  method from a set. Sets also guarantee to contain no duplicate entries:

In [34]:

neighbours.add('Ukraine') # already in the set 
print(neighbours) 

Demonstration of basic set operations:

In [35]:

german_speakers = {'Germany', 'Austria', 'Switzerland'} 

In [36]:

print("Union: {0}".format(neighbours | german_speakers)) 
print("Intersection: {0}".format(neighbours & german_speakers)) 
print("Difference: {0}".format(neighbours - german_speakers)) 
print("Symmetric difference: {0}".format(neighbours ^ german_speakers)) 

--------------------------------------------------------------------
------- 
TypeError                                 Traceback (most recent cal
l last) 
<ipython-input-32-a5f7753d713b> in <module> 
----> 1 print(neighbours[0]) 

TypeError: 'set' object is not subscriptable

True 
False 

{'Slovakia', 'Romania', 'Austria', 'Ukraine', 'Croatia', 'Serbia', 
'Slovenia'} 

Union: {'Slovakia', 'Romania', 'Switzerland', 'Austria', 'Ukraine', 
'Croatia', 'Serbia', 'Slovenia', 'Germany'} 
Intersection: {'Austria'} 
Difference: {'Slovakia', 'Romania', 'Ukraine', 'Croatia', 'Serbia', 
'Slovenia'} 
Symmetric difference: {'Slovakia', 'Romania', 'Switzerland', 'Ukrain
e', 'Croatia', 'Serbia', 'Slovenia', 'Germany'} 



Exercise 5

Task: Verify whether the dictionaries population_2008  and population_2018  contain exactly the
same countries as keys.

In [37]:

keyset_2008 = set(population_2008.keys()) 
keyset_2018 = set(population_2018.keys()) 
nomatch = keyset_2008 ^ keyset_2018 

if len(nomatch) == 0: 
   print("The 2 dictionaries contains the same countries.") 
else: 
   print("There are some countries only present in one of the dictionaries: {0}
".format(nomatch)) 

Stacks

A stack is an abstract data structure that follows the "last-in-first-out" or LIFO model: elements are added to
the top of the stack and only the top element of a stack can be removed. 
Some well-known real world examples for usage of stacks:

undoing the operations in a text editor;
going back to the previous web page in a browser.

The list methods make it very easy to use a list as a stack, where the last element added is the first element
retrieved (last-in, first-out). To add an item to the top of the stack, use append() . To retrieve an item from
the top of the stack, use pop()  without an explicit index.

The 2 dictionaries contains the same countries. 



In [38]:

stack = [1, 2, 3, 4, 5] 
stack.append(6) 
stack.append(7) 
print(stack) 
print(stack.pop()) 
print(stack.pop()) 
print(stack) 
stack.append(8) 
stack.append(9) 
print(stack) 

print("Process all the elements of the stack:") 
while len(stack) > 0: 
   print(stack.pop()) 

Queues

A queue is an abstract data structure that follows "first-in-first-out" or FIFO model: new elements are added
to the back of queue and only the front element of the queue can be removed. 
Some well-known real world examples for usage of queues:

waiting in a line (in a polite way);
a printer machine's queue of files to be printed.

[1, 2, 3, 4, 5, 6, 7] 
7 
6 
[1, 2, 3, 4, 5] 
[1, 2, 3, 4, 5, 8, 9] 
Process all the elements of the stack: 
9 
8 
5 
4 
3 
2 
1 



It is also possible to use a list as a queue, where the first element added is the first element retrieved (first-in,
first-out); however, lists are not efficient for this purpose. While appends and pops from the end of list are
fast, doing inserts or pops from the beginning of a list is slow (because all of the other elements have to be
shifted by one).

To implement a queue, use collections.deque  which was designed to have fast appends and pops
from both ends.

In [39]:

from collections import deque 

queue = deque([1, 2, 3, 4, 5]) 
queue.append(6) 
queue.append(7) 
print(queue) 
print(queue.popleft()) 
print(queue.popleft()) 
print(queue) 
queue.append(8) 
queue.append(9) 
print(queue) 

print("Process all the elements of the stack:") 
while len(queue) > 0: 
   print(queue.popleft()) 

Note: deque  is short for double ended queue, because we can manage both ends of the data structure
(add or remove elements).

deque([1, 2, 3, 4, 5, 6, 7]) 
1 
2 
deque([3, 4, 5, 6, 7]) 
deque([3, 4, 5, 6, 7, 8, 9]) 
Process all the elements of the stack: 
3 
4 
5 
6 
7 
8 
9 



Chapter 8: Object-oriented programming

Python is an object-oriented programming language (OOP). Objects are an encapsulation of variables and
functions into a single entity.

Let's assume we have a data type for rectangles. Without objects we could write the following code:

In [1]:

rec1_bl = (0, 2) # bl = bottom-left 
rec1_ur = (6, 8) # ur = upper-right 

rec2_bl = (4, 3) 
rec2_ur = (7, 5) 

def area(bl, ur): 
   width = ur[0] - bl[0] 
   height = ur[1] - bl[1] 
   return width * height 

print("Area of rectangle #1: {0}".format(area(rec1_bl, rec1_ur))) 
print("Area of rectangle #2: {0}".format(area(rec2_bl, rec2_ur))) 

As we can observe the data ( rec1_bl , rec1_ur , etc.) and the functions ( area()  and possible further
functions) are defined separately, not encapsulated together.

Classes and objects

Simply put, an object is a collection of data (variables) and methods (functions) that act on those data. A
class is a blueprint for the object. Classes introduce new data types in Python, describing real-world things
and situations. Objects are the instances of classes, the creation process of objects are also called
instantiation.

Let's create the Rectangle  class now:

Area of rectangle #1: 36 
Area of rectangle #2: 6 



In [2]:

class Rectangle(): 
   name = 'Rectangle' 
    
   def area(self): 
       width = self.ur[0] - self.bl[0] 
       height = self.ur[1] - self.bl[1] 
       return width * height 

rec1 = Rectangle() 
rec1.bl = (0, 2) 
rec1.ur = (6, 8) 
rec2 = Rectangle() 
rec2.bl = (4, 3) 
rec2.ur = (7, 5) 

print("Area of rectangle {0}".format(rec1.area())) 
print("Area of rectangle {0}".format(rec2.area())) 

In this example the Rectangle  class has 4 attributes: name , ur , bl  and area() . Attributes may be
data or method: the name  is a simple string, bl  and ur  are tuples while area()  is a function.
Functions in a class are called methods more specifically.

The rec1 = Rectangle()  statement creates a new instance object named rec1  from the class 
Rectangle . We can access the attributes of objects using the object name prefix, e.g. rec1.area() .

Remember how we used list and dictionary functions:

numbers = [1, 4, 5, -2, 8] 

numbers.sort() 

shopping_list = {'apple': 6, 'bread': 2, 'milk': 6, 'butter': 1} 

for item in shopping_list.items(): 

   print(item) 

This is the same syntax, we are calling methods on objects.

self  parameter

There is a self  parameter in the area()  function definition inside the Rectangle  class but, we called
the method simply as rec1.area() , without any arguments. It still worked.

This is because, whenever an object calls its method, the object itself is passed as the first argument. So, 
rec1.area()  translates into Rectangle.area(rec1) .

Area of rectangle 36 
Area of rectangle 6 



In [3]:

print("Area of rectangle #1: {0}".format(Rectangle.area(rec1))) 
print("Area of rectangle #2: {0}".format(Rectangle.area(rec2))) 
print("Name of all rectangles: {0}".format(Rectangle.name)) 

In general, calling a method with a list of arguments is equivalent to calling the corresponding function with
an argument list that is created by inserting the method's object before the first argument.

For these reasons, the first argument of the function in class must be the object itself. This is conventionally
called self . It can be named otherwise but it is highly discouraged to follow the convention.

Constructors

In our previous example we deliberately gave a value to the bl  and ur  attributes of rec1  and rec2
before calling the area()  method on them, so it can process those values. What happens if we e.g. forget
to initialize those attributes beforehand?

In [4]:

rec3 = Rectangle() 
print("Area of rectangle #3: {0}".format(rec3.area())) 

This issue can be addressed with a special constructor method, which is always executed when a new object
is instantiated from a class.

In Python, class functions that begins with double underscore ( __ ) are called special functions as they have
special meaning. The __init__()  function has particular interest for us now. This special function gets
called whenever a new object of that class is instantiated. This type of function is also called a constructor
in object-oriented programming. We normally use it to initialize all the variables.

Area of rectangle #1: 36 
Area of rectangle #2: 6 
Name of all rectangles: Rectangle 

--------------------------------------------------------------------
------- 
AttributeError                            Traceback (most recent cal
l last) 
<ipython-input-4-a77eecff7f61> in <module> 
     1 rec3 = Rectangle() 
----> 2 print("Area of rectangle #3: {0}".format(rec3.area())) 

<ipython-input-2-1afbe4a6155f> in area(self) 
     3  
     4     def area(self): 
----> 5         width = self.ur[0] - self.bl[0] 
     6         height = self.ur[1] - self.bl[1] 
     7         return width * height 

AttributeError: 'Rectangle' object has no attribute 'ur'



In [5]:

class Rectangle(): 
   name = 'Rectangle' 
    
   def __init__(self, bl_x, bl_y, ur_x, ur_y): 
       self.bl = (bl_x, bl_y) 
       self.ur = (ur_x, ur_y) 
        
   def area(self): 
       width = self.ur[0] - self.bl[0] 
       height = self.ur[1] - self.bl[1] 
       return width * height 

rec1 = Rectangle(0, 2, 6, 8) 
rec2 = Rectangle(4, 3, 7, 5) 

print("Area of rectangle #1: {0}".format(rec1.area())) 
print("Area of rectangle #2: {0}".format(rec2.area())) 

Now we cannot "forget" to pass all the required data to the object upon instatiation, because Python will raise
a TypeError .

In [6]:

rec3 = Rectangle() 
print("Area of rectangle #3: {0}".format(rec3.area())) 

Default arguments

Alternatively we could use default values for the parameters, so a Rectangle  could be constructed without
defining its dimensions, but still giving value to the instance attributes.

Area of rectangle #1: 36 
Area of rectangle #2: 6 

--------------------------------------------------------------------
------- 
TypeError                                 Traceback (most recent cal
l last) 
<ipython-input-6-a77eecff7f61> in <module> 
----> 1 rec3 = Rectangle() 
     2 print("Area of rectangle #3: {0}".format(rec3.area())) 

TypeError: __init__() missing 4 required positional arguments: 'bl_
x', 'bl_y', 'ur_x', and 'ur_y'



In [7]:

class Rectangle(): 
   name = 'Rectangle' 
    
   def __init__(self, bl_x = 0, bl_y = 0, ur_x = 0, ur_y = 0): 
       self.bl = (bl_x, bl_y) 
       self.ur = (ur_x, ur_y) 
        
   def area(self): 
       width = self.ur[0] - self.bl[0] 
       height = self.ur[1] - self.bl[1] 
       return width * height 

In [8]:

rec3 = Rectangle() 
print("Area of rectangle #3: {0}".format(rec3.area())) 

Class and instance attributes

Generally speaking, instance attributes are for data unique to each instance and class attributes are for
variables and methods shared by all instances of the class.

In the example Rectangle  class, the name  attribute is a class variable, because it is defined as an
attribute of the class.

In [9]:

print(Rectangle.name) 

The bl  and ur  are instance attributes (because they are accessed through the self  object). This
means that each rectangle can have its own bottom-left and upper-right position, but all rectangles share the
same name.

In [10]:

rec1.bl = (-2, 1) 
print(rec1.bl) # has no effect on rec2 
print(rec2.bl) 

String representation of an object

By default, the string representation of an object consists of the type name and memory address:

Area of rectangle #3: 0 

Rectangle 

(-2, 1) 
(4, 3) 



In [11]:

print(rec1) 

As we discussed, methods that begins with double underscore ( __ ) are called special functions in Python.
The __str__()  method is another special function, which can compute and return the "informal" or nicely
printable string representation of an object. The return value must be a string object.

In [12]:

class Rectangle(): 
   def __init__(self, bl_x, bl_y, ur_x, ur_y): 
       self.bl = (bl_x, bl_y) 
       self.ur = (ur_x, ur_y) 
        
   def __str__(self): 
       return "Rectangle ({0}, {1}, {2}, {3})".format(self.bl[0], self.bl[1], s
elf.ur[0], self.ur[1]) 
        
   def area(self): 
       width = self.ur[0] - self.bl[0] 
       height = self.ur[1] - self.bl[1] 
       return width * height 
    
rec1 = Rectangle(0, 2, 6, 8) 
rec2 = Rectangle(4, 3, 7, 5) 

print(rec1) 
print(rec2) 

Summary exercises on object-oriented programming

Task 1: Perimeter

Extend the Rectangle  class with a perimeter()  method.

Sample usage:

result = rec1.perimeter() 

# result is an integer value 

<__main__.Rectangle object at 0x7fbcfd0291f0> 

Rectangle (0, 2, 6, 8) 
Rectangle (4, 3, 7, 5) 



In [13]:

class Rectangle(): 
   def __init__(self, bl_x, bl_y, ur_x, ur_y): 
       self.bl = (bl_x, bl_y) 
       self.ur = (ur_x, ur_y) 
        
   def __str__(self): 
       return "Rectangle ({0}, {1}, {2}, {3})".format(self.bl[0], self.bl[1], s
elf.ur[0], self.ur[1]) 
        
   def area(self): 
       width = self.ur[0] - self.bl[0] 
       height = self.ur[1] - self.bl[1] 
       return width * height 
    
   def perimeter(self): 
       width = self.ur[0] - self.bl[0] 
       height = self.ur[1] - self.bl[1] 
       return 2 * (width + height) 

The computation of the width and height of the rectangle is now redundantly given in the area()  and the 
perimeters()  methods. Eliminate the redundancy by extracting a new width()  and height()

function in the Rectangle  class.

In [14]:

class Rectangle(): 
   def __init__(self, bl_x, bl_y, ur_x, ur_y): 
       self.bl = (bl_x, bl_y) 
       self.ur = (ur_x, ur_y) 

   def __str__(self): 
       return "Rectangle ({0}, {1}, {2}, {3})".format(self.bl[0], self.bl[1], s
elf.ur[0], self.ur[1]) 

   def width(self): 
       return self.ur[0] - self.bl[0] 

   def height(self): 
       return self.ur[1] - self.bl[1] 

   def area(self): 
       return self.width() * self.height() 

   def perimeter(self): 
       return 2 * (self.width() + self.height()) 



Task 2: Translation

Extend the Rectangle  class with a translate()  method, which moves it in the Euclidean space in the
given direction.

Sample usage:

print(rec1) 

rec1.translate(3, 4) 

print(rec1) 

In [15]:

class Rectangle(): 
   def __init__(self, bl_x, bl_y, ur_x, ur_y): 
       self.bl = (bl_x, bl_y) 
       self.ur = (ur_x, ur_y) 
        
   def __str__(self): 
       return "Rectangle ({0}, {1}, {2}, {3})".format(self.bl[0], self.bl[1], s
elf.ur[0], self.ur[1]) 
        
   def width(self): 
       return self.ur[0] - self.bl[0] 

   def height(self): 
       return self.ur[1] - self.bl[1] 

   def area(self): 
       return self.width() * self.height() 

   def perimeter(self): 
       return 2 * (self.width() + self.height()) 
    
   def translate(self, x, y): 
       self.bl = (self.bl[0] + x, self.bl[1] + y) 
       self.ur = (self.ur[0] + x, self.ur[1] + y) 

Task 3: Overlap

Extend the Rectangle  class with an overlap()  method, which can decide whether 2 rectangles
overlap each other.

Sample usage:

result = rec1.overlap(rec2) 

# result is a boolean value 



In [16]:

class Rectangle(): 
   def __init__(self, bl_x, bl_y, ur_x, ur_y): 
       self.bl = (bl_x, bl_y) 
       self.ur = (ur_x, ur_y) 
        
   def __str__(self): 
       return "Rectangle ({0}, {1}, {2}, {3})".format(self.bl[0], self.bl[1], s
elf.ur[0], self.ur[1]) 
        
   def width(self): 
       return self.ur[0] - self.bl[0] 

   def height(self): 
       return self.ur[1] - self.bl[1] 

   def area(self): 
       return self.width() * self.height() 

   def perimeter(self): 
       return 2 * (self.width() + self.height()) 
    
   def translate(self, x, y): 
       self.bl = (self.bl[0] + x, self.bl[1] + y) 
       self.ur = (self.ur[0] + x, self.ur[1] + y) 
    
   def overlap(self, other): 
       overlap_x = ((self.bl[0] < other.bl[0] and self.ur[0] > other.bl[0]) or  
                    (other.bl[0] < self.bl[0] and other.ur[0] > self.bl[0])) 
       overlap_y = ((self.bl[1] < other.bl[1] and self.ur[1] > other.bl[1]) or  
                    (other.bl[1] < self.bl[1] and other.ur[1] > self.bl[1])) 
        
       return overlap_x and overlap_y 

Hint: Two axis-parallel rectangles overlap if they overlap either by the X or Y dimensions. 
They overlap by the X dimension if A_X1 < B_X1  and A_X2 > B_X1 ; or B_X1 < A_X1  and B_X2 > 
A_X1 . 
Similar inequality condition apply on the Y dimension.

Data classes (optional)

A relatively new feature available since Python 3.7 (released in 2018) is the data class. A data class is a
class typically containing mainly data, although there aren’t really any restrictions. It is created using the 
@dataclass  decorator, as follows:



In [17]:

from dataclasses import dataclass 

@dataclass 
class Country: 
   name: str 
   capital: str 
   area: int 
   population: int 
   gdp: int 
   literacy: float 
   region: str = 'Unknown' 

   def population_density(self): 
       return self.population / self.area 

The benefit of using data classes is that some special methods, e.g. the __init__()  constructor method
will be automatically generated and added to the class, initiating all instance variables. The generated
constructor will look like:

def __init__(self, name, capital, area, population, gdp, literacy, region

= 'Unknown'): 

   self.name = name 

   self.capital = capital 

   self.area = area 

   self.population = population 

   self.gdp =gdp 

   self.literacy = literacy    

   self.region = region 

Since data classes is just a new syntactical approach in Python for defining classes, we can instantiate
objects from data classes and use them just like before:

In [18]:

hungary = Country('Hungary', 'Budapest', 93030, 9981334, 13900, 99.4, 'Central-E
urope') 

In [19]:

print(hungary.capital) 
print(hungary.population_density()) 

The string representational __str__()  method is also predefined for data classes:

Budapest 
107.29156186176502 



In [20]:

print(hungary) 

Type annotations

As you have may noticed we also defined the type of the instance variables in the data class, e.g. 
population: int . This is called type hinting or type annotations and is mandatory when defining a data

class. Type hinting is available in Python since version 3.5 and can also be used elsewhere: for local
variables, function parameters, return types, etc.

Note that the Python runtime does not enforce function and variable type annotations, so whether you use
them or not, they will not affect how your code is executed. However they can be used by third party tools
such as type checkers (see mypy (http://mypy-lang.org/)) or integrated development environments (IDEs), to
early detect potential errors in your code.

We will not use type hinting further in this course, as Jupyter Notebook itself does not perform type checking
based on them.

Inheritance (advanced, optional)

We do not always have to start from scratch when writing a class. If the class is a specialized version of
another already existing class, we can use inheritance.

When one class inherits from another, it automatically takes on all the attributes and methods of the first
class. The original class is called the parent class, and the new class is the child class. The child class
inherits every attribute and method from its parent class but is also free to define new attributes and methods
of its own.

Let's inherit the Square  class from the Rectangle  class:

In [21]:

class Square(Rectangle): 
   def __init__(self, bl_x, bl_y, width): 
       self.bl = (bl_x, bl_y) 
       self.ur = (bl_x + width, bl_y + width) 
        
s1 = Square(5, 10, 3) 
print("Area of square #1: {0}".format(s1.area())) 

The __init__()  function in the child class

Country(name='Hungary', capital='Budapest', area=93030, population=9
981334, gdp=13900, literacy=99.4, region='Central-Europe') 

Area of square #1: 9 

http://mypy-lang.org/


Often we would like to reuse the original __init__  function of the parent class in the child class.

This can be done with the super()  function inside the child class constructor. This is a special function
that helps Python make connections between the parent and child class.

Note: The name super comes from a convention of calling the parent class a superclass and the child class a
subclass.

In [22]:

class Square(Rectangle): 
   def __init__(self, bl_x, bl_y, width): 
       super().__init__(bl_x, bl_y, bl_x + width, bl_y + width) 
        
s1 = Square(5, 10, 3) 
print("Area of square #1: {0}".format(s1.area())) 

Overiding methods from the parent class

Let's see what happens if we print our s1  object:

In [23]:

print(s1) 

It shows the text "Rectangle", because the __str__()  special function was defined this way in the 
Rectangle  parent class and now the Square  child class inherited it.

We can override any method from the parent class that do not fit into the model of the child class. To achieve
this, we can simply redefine the method in the child class with the same name as the method we want to
override in the parent class. Python will disregard the parent class method and only pay attention to the
method you define in the child class.

In [24]:

class Square(Rectangle): 
   def __init__(self, bl_x, bl_y, width): 
       self.bl = (bl_x, bl_y) 
       self.ur = (bl_x + width, bl_y + width) 
    
   def __str__(self): 
       return "Square ({0}, {1}, width = {2})".format(self.bl[0], self.bl[1], s
elf.ur[0] - self.bl[0]) 
        
s1 = Square(5, 10, 3) 
print("Area of square #1: {0}".format(s1.area())) 
print(s1) 

Area of square #1: 9 

Rectangle (5, 10, 8, 13) 

Area of square #1: 9 
Square (5, 10, width = 3) 



Note: the super()  function can be used in any overriding child class methods.

Extend the functionality of the parent class

Child classes may also extend the functionality of their parent class by adding new methods to themselves.

In [25]:

class Square(Rectangle): 
   def __init__(self, bl_x, bl_y, width): 
       self.bl = (bl_x, bl_y) 
       self.ur = (bl_x + width, bl_y + width) 
    
   def __str__(self): 
       return "Square ({0}, {1}, width = {2})".format(self.bl[0], self.bl[1], s
elf.ur[0] - self.bl[0]) 
    
   def side(self): 
       return self.bl[1] - self.ur[0] 

In [26]:

s1 = Square(5, 10, 3) 
print(s1.side()) 

The Rectangle  class does not have this new side()  method:

In [27]:

print(rec1.side()) 

2 

--------------------------------------------------------------------
------- 
AttributeError                            Traceback (most recent cal
l last) 
<ipython-input-27-63985b0fc09e> in <module> 
----> 1 print(rec1.side()) 

AttributeError: 'Rectangle' object has no attribute 'side'



Chapter 9: Tabular data

The pandas package is a high-level data manipulation tool for Python.

The name pandas is derived from the term "panel data", an econometrics term for data sets that include
observations over multiple time periods for the same individuals.

How to install pandas?

If you have Anaconda installed, then pandas was already installed together with it.

If you have a standalone Python3 and Jupyter Notebook installation, open a command prompt / terminal and
type in:

pip3 install pandas xlrd openpyxl

The xlrd  and openpyxl  packages are required for managing Microsoft Excel files. 
If you have Anaconda installed, these packages were also included in the default installation.

Support OpenDocument format

The xlrd  package is used for older format MS Excel files ( .xls ), while openpyxl  is used for newer
format MS Excel files ( .xlsx ).

In case support for OpenDocument format is required ( .ods  files), e.g. for compatibility with OpenOffice or
LibreOffice, the odf  package can be used:

Install with Anaconda Command Prompt: conda install odf
Install with Python Package Installer: pip3 install odf

How to use pandas?

The pandas package is a module which you can simply import. It is usually aliased with the pd
abbreviation:

import pandas as pd 

Series and Dataframes



The primary two components of pandas are the Series and DataFrame.

A Series is essentially a column, and a DataFrame is a multi-dimensional table made up of a collection of
Series.

We can work with DataFrames and Series in a similar way, since many operations support both of them.
(E.g. calculating the mean value of a Series or a DataFrame.)

Create a DataFrame from scratch

A Python dictionary can easily be converted to a pandas DataFrame. Each (key, value)  tuple in the
dictionary corresponds to a column in the resulting DataFrame. The values in the rows for each column are
given as lists.

In [1]:

import pandas as pd 

data = { 
   'apples': [3, 2, 0, 1, 5, 0, 4],  
   'oranges': [0, 3, 7, 2, 1, 6, 2] 
} 

df = pd.DataFrame(data) 
display(df) 

apples oranges

0 3 0

1 2 3

2 0 7

3 1 2

4 5 1

5 0 6

6 4 2



By default the rows in the DataFrame are indexed numerically from 0, but we can set a custom Index:

In [2]:

df = pd.DataFrame(data, index = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 
'Friday', 'Saturday', 'Sunday']) 
display(df) 

Remark: the display()  function is a special Jupyter Notebook function to provide "prettier" output. Where
display()  is used, print()  could also be used.

In [3]:

print(df) 

Access the columns of a DataFrame

In [4]:

print('Apples purchased over the week:') 
print(df['apples']) # df is a DataFrame, df['apples'] is a Series 

apples oranges

Monday 3 0

Tuesday 2 3

Wednesday 0 7

Thursday 1 2

Friday 5 1

Saturday 0 6

Sunday 4 2

          apples  oranges 
Monday          3        0 
Tuesday         2        3 
Wednesday       0        7 
Thursday        1        2 
Friday          5        1 
Saturday        0        6 
Sunday          4        2 

Apples purchased over the week: 
Monday       3 
Tuesday      2 
Wednesday    0 
Thursday     1 
Friday       5 
Saturday     0 
Sunday       4 
Name: apples, dtype: int64 



Values of single cells can also be accessed:

In [5]:

print('Apples purchased on Monday:') 
print(df['apples']['Monday']) 
print(df['apples'][0]) 

Access the rows of a DataFrame

Rows can be accessed through the loc  property with their textual indexes:

In [6]:

print('Fruits purchased on Monday:') 
print(df.loc['Monday']) 

Rows can also be accessed through the iloc  property with ther numerical indexes:

In [7]:

print('Fruits purchased on Monday:') 
print(df.iloc[0]) 

Accessing single cells:

In [8]:

print('Apples purchased on Monday:') 
print(df.loc['Monday']['apples']) 
print(df.loc['Monday'][0]) 
print(df.iloc[0]['apples']) 
print(df.iloc[0][0]) 

Apples purchased on Monday: 
3 
3 

Fruits purchased on Monday: 
apples     3 
oranges    0 
Name: Monday, dtype: int64 

Fruits purchased on Monday: 
apples     3 
oranges    0 
Name: Monday, dtype: int64 

Apples purchased on Monday: 
3 
3 
3 
3 



Iterate over the rows of a DataFrame

Manually iterating through all the rows with the iterrows()  method:

In [9]:

for index, row in df.iterrows(): 
   print("Index: {0}, Apples: {1}, Oranges: {2}".format(index, row["apples"], r
ow["oranges"])) 

Alternatively, if only the index values are required, the df.index  list can be iterated:

In [10]:

print(df.index) 

Reading external files

The pandas library has a great support for reading (and writing) external data files, like CSV files, Excel files,
JSON files, etc.

Let's use the European countries datatset. The dataset contains the country name, capital city name, area (in
km ), population (in millions) and the region data for 43 European countries respectively. 
Data source: EuroStat (https://ec.europa.eu/eurostat/)

The dataset is given in the data/countries_europe.csv  file, which we can read with th read_csv()
method, passing the file path and the delimiter symbol (latter will be discussed soon).

2

Index: Monday, Apples: 3, Oranges: 0 
Index: Tuesday, Apples: 2, Oranges: 3 
Index: Wednesday, Apples: 0, Oranges: 7 
Index: Thursday, Apples: 1, Oranges: 2 
Index: Friday, Apples: 5, Oranges: 1 
Index: Saturday, Apples: 0, Oranges: 6 
Index: Sunday, Apples: 4, Oranges: 2 

Index(['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Satu
rday', 
      'Sunday'], 
     dtype='object') 

https://ec.europa.eu/eurostat/


In [11]:

import pandas as pd 

countries = pd.read_csv('../data/countries_europe.csv', delimiter = ';') 
display(countries) 

A comma-separated values (CSV) file is a delimited text file that uses a comma to separate values. The
separator (also called the delimiter) can be another character than a comma, often a semicolon is used. The
default delimiter is the comma, but we can easily configure it int the read_csv()  method call.

A CSV file stores tabular data (numbers and text) in plain text. Each line of the file is a data record. Each
record consists of one or more fields, separated by commas. The use of the comma as a field separator is
the source of the name for this file format.

For example:

Country;Capital;Area (km2);Population (millions);Region 

Albania;Tirana;28748;3.2;Southern 

Andorra;Andorra la Vella;468;0.07;Western 

Austria;Vienna;83857;7.6;Western 

Belgium;Brussels;30519;10;Western 

Bosnia and Herzegovina;Sarajevo;51130;4.5;Southern 

Bulgaria;Sofia;110912;9;Southern 

Czech Republic;Prague;78864;10.4;Central 

Denmark;Copenhagen;43077;5.1;Northern 

United Kingdom;London;244100;57.2;Western 

...

Overwrite the used column names:

Country Capital Area (km2) Population (millions) Region

0 Albania Tirana 28748 3.20 Southern

1 Andorra Andorra la Vella 468 0.07 Western

2 Austria Vienna 83857 7.60 Western

3 Belgium Brussels 30519 10.00 Western

4 Bosnia and Herzegovina Sarajevo 51130 4.50 Southern

... ... ... ... ... ...

38 Sweden Stockholm 449964 8.50 Northern

39 Serbia Belgrade 66577 7.20 Southern

40 Slovakia Bratislava 49035 5.30 Central

41 Slovenia Ljubljana 20250 2.00 Southern

42 Ukraine Kiev 603700 51.80 Eastern



In [12]:

countries.columns = ['country', 'capital', 'area', 'population', 'region'] 
display(countries) 

Use further reading functions, like read_excel , read_json  to easily load other file formats into a
pandas DataFrame.

The same European country dataset is given in the data/countries_europe.xls  and 
data/countries_europe.xlsx  MS Excel files:

In [13]:

countries = pd.read_excel('../data/countries_europe.xls') 
countries.columns = ['country', 'capital', 'area', 'population', 'region'] 
display(countries) 

country capital area population region

0 Albania Tirana 28748 3.20 Southern

1 Andorra Andorra la Vella 468 0.07 Western

2 Austria Vienna 83857 7.60 Western

3 Belgium Brussels 30519 10.00 Western

4 Bosnia and Herzegovina Sarajevo 51130 4.50 Southern

... ... ... ... ... ...

38 Sweden Stockholm 449964 8.50 Northern

39 Serbia Belgrade 66577 7.20 Southern

40 Slovakia Bratislava 49035 5.30 Central

41 Slovenia Ljubljana 20250 2.00 Southern

42 Ukraine Kiev 603700 51.80 Eastern

country capital area population region

0 Albania Tirana 28748 3.20 Southern

1 Andorra Andorra la Vella 468 0.07 Western

2 Austria Vienna 83857 7.60 Western

3 Belgium Brussels 30519 10.00 Western

4 Bosnia and Herzegovina Sarajevo 51130 4.50 Southern

... ... ... ... ... ...

38 Sweden Stockholm 449964 8.50 Northern

39 Serbia Belgrade 66577 7.20 Southern

40 Slovakia Bratislava 49035 5.30 Central

41 Slovenia Ljubljana 20250 2.00 Southern

42 Ukraine Kiev 603700 51.80 Eastern



In [14]:

countries = pd.read_excel('../data/countries_europe.xlsx') 
countries.columns = ['country', 'capital', 'area', 'population', 'region'] 
display(countries) 

Working with DataFrames

Query the row and column count of a DataFrame:

In [15]:

print('Number of rows: {0}'.format(len(countries))) 
print('Number of rows: {0}'.format(countries.shape[0])) 
print('Number of columns: {0}'.format(countries.shape[1])) 

In [16]:

print('Number of rows by columns:') 
print(countries.count()) 

country capital area population region

0 Albania Tirana 28748 3.20 Southern

1 Andorra Andorra la Vella 468 0.07 Western

2 Austria Vienna 83857 7.60 Western

3 Belgium Brussels 30519 10.00 Western

4 Bosnia and Herzegovina Sarajevo 51130 4.50 Southern

... ... ... ... ... ...

38 Sweden Stockholm 449964 8.50 Northern

39 Serbia Belgrade 66577 7.20 Southern

40 Slovakia Bratislava 49035 5.30 Central

41 Slovenia Ljubljana 20250 2.00 Southern

42 Ukraine Kiev 603700 51.80 Eastern

Number of rows: 43 
Number of rows: 43 
Number of columns: 5 

Number of rows by columns: 
country       43 
capital       43 
area          43 
population    43 
region        43 
dtype: int64 



Remark: if a column contains empty cells, we would see different numbers here.

The first or last few rows of a DataFrame can be fetched with the head(n)  and tail(n)  methods. They
are especially useful with large DataFrames.

In [17]:

display(countries.head(3)) 

In [18]:

display(countries.tail(3)) 

Add a new column to a DataFrame

Calculate the population density of each country and add it as a new column to the countries
DataFrame.

First, create a list of the density values:

country capital area population region

0 Albania Tirana 28748 3.20 Southern

1 Andorra Andorra la Vella 468 0.07 Western

2 Austria Vienna 83857 7.60 Western

country capital area population region

40 Slovakia Bratislava 49035 5.3 Central

41 Slovenia Ljubljana 20250 2.0 Southern

42 Ukraine Kiev 603700 51.8 Eastern



In [19]:

density = [] 
for i in range(len(countries)): 
   density.append(countries['population'][i] * 1e6 / countries['area'][i]) 
    
print(density) 

Then add a new column to the DataFrame:

In [20]:

countries['density'] = density 
display(countries) 

Calculating aggregated values

Summation, mean and median values:

[111.31209127591485, 149.57264957264957, 90.63047807577185, 327.6647
3344473934, 88.01095247408567, 81.14541257934218, 131.8725907892067
3, 118.39264572741834, 234.33019254403933, 35.47671840354767, 49.614
643545279385, 14.490824941962767, 103.3154706644729, 75.782262403661
8, 436.1535967936817, 83.1858407079646, 49.79867108689157, 2.9126213
59223301, 202.07587030403232, 120.88920728021671, 40.81632653061224
4, 187.5, 55.214723926380366, 154.67904098994586, 81.67075020417687, 
111.78468549808676, 949.367088607595, 130.56379821958458, 15000.0, 4
3.440486533449175, 220.14216814828507, 12.967885956705786, 190.85426
36842507, 113.6498933855762, 97.6842105263158, 491.8032786885246, 7
6.86486443652903, 162.25510377061488, 18.890400120898562, 108.145455
63783288, 108.08606097685326, 98.76543209876543, 85.80420738777539] 

country capital area population region density

0 Albania Tirana 28748 3.20 Southern 111.312091

1 Andorra Andorra la Vella 468 0.07 Western 149.572650

2 Austria Vienna 83857 7.60 Western 90.630478

3 Belgium Brussels 30519 10.00 Western 327.664733

4 Bosnia and Herzegovina Sarajevo 51130 4.50 Southern 88.010952

... ... ... ... ... ... ...

38 Sweden Stockholm 449964 8.50 Northern 18.890400

39 Serbia Belgrade 66577 7.20 Southern 108.145456

40 Slovakia Bratislava 49035 5.30 Central 108.086061

41 Slovenia Ljubljana 20250 2.00 Southern 98.765432

42 Ukraine Kiev 603700 51.80 Eastern 85.804207



In [21]:

print("Sum population: {0:.2f} million".format(countries["population"].sum())) 
print("Mean population: {0:.2f} million".format(countries["population"].mean())) 
print("Median population: {0:.2f} million".format(countries["population"].median
())) 

Maximum and minimum values and their indexes:

In [22]:

print("Max population:{0:.2f} million".format(countries["population"].max())) 
print("Max population index: {0}".format(countries["population"].idxmax())) 
print("Min population:{0:.2f} million".format(countries["population"].min())) 
print("Min population index: {0}".format(countries["population"].idxmin())) 

Standard deviation:

In [23]:

print("Standard deviation of population: {0:.2f} million".format(countries["popu
lation"].std())) 

Quantile calculation:

In [24]:

print("The 90% quantile for the European countries:") 
print(countries.quantile(0.9)) 

Which means that e.g. the top 5 countries (top 10%) has a higher population than 49.2 million.

Calculate all basic statistical data for all columns at once:

Sum population: 572.16 million 
Mean population: 13.31 million 
Median population: 5.10 million 

Max population:78.60 million 
Max population index: 30 
Min population:0.03 million 
Min population index: 21 

Standard deviation of population: 19.42 million 

The 90% quantile for the European countries: 
area          353262.600000 
population        49.200000 
density          308.997825 
Name: 0.9, dtype: float64 



In [25]:

display(countries.describe()) 

Sorting the DataFrame

A DataFrame can be sorted into a new DataFrame through the sort_values  function. The original
DataFrame remains intact.

In [26]:

bypopulation = countries.sort_values(by = 'population', ascending = False) 
display(bypopulation) 

Note that the row indices remained intact. 
Task: which countries will display the following code cell?

area population density

count 43.000000 43.000000 43.000000

mean 136551.162791 13.306047 489.478549

std 163143.708680 19.415679 2271.195151

min 2.000000 0.030000 2.912621

25% 29633.500000 2.150000 76.323563

50% 65200.000000 5.100000 108.086061

75% 222550.000000 10.400000 158.467072

max 603700.000000 78.600000 15000.000000

country capital area population region density

30 Germany Berlin 357042 78.60 Western 220.142168

32 Italy Rome 301277 57.50 Southern 190.854264

8 United Kingdom London 244100 57.20 Western 234.330193

12 France Paris 543965 56.20 Western 103.315471

42 Ukraine Kiev 603700 51.80 Eastern 85.804207

36 Spain Madrid 504782 38.80 Southern 76.864864

... ... ... ... ... ... ...

17 Iceland Reykjavik 103000 0.30 Northern 2.912621

1 Andorra Andorra la Vella 468 0.07 Western 149.572650

28 Monaco Monaco 2 0.03 Southern 15000.000000

35 San Marino San Marino 61 0.03 Southern 491.803279

21 Liechtenstein Vaduz 160 0.03 Western 187.500000



In [27]:

print(bypopulation.loc[0]) 
print() 
print(bypopulation.iloc[0]) 

Now we can e.g. verify that the top 5 countries (top 10%) has a higher population than 49.2 million:

In [28]:

print("Population of the 4th country: {0:.1f} million".format(bypopulation.iloc[
4]["population"])) 
print("Population of the 5th country: {0:.1f} million".format(bypopulation.iloc[
5]["population"])) 

Note: a DataFrame can be sorted by modifying it (and without creating a new one) by passing the inplace 
= True  argument to the sort_values()  method:

countries.sort_values(by = 'population', ascending = False, inplace = Tru

e) 

Sorting by multiple columns

A DataFrame can be sorted using multiple columns, by passing a list of columns to the by  parameter. (And
a list of boolean values to the ascending  parameter.)

country          Albania 
capital           Tirana 
area               28748 
population           3.2 
region          Southern 
density       111.312091 
Name: 0, dtype: object 

country          Germany 
capital           Berlin 
area              357042 
population          78.6 
region           Western 
density       220.142168 
Name: 30, dtype: object 

Population of the 4th country: 51.8 million 
Population of the 5th country: 38.8 million 



In [29]:

byregion = countries.sort_values(by = ['region', 'population'], ascending = [Tru
e, False]) 
display(byregion) 

Indexing the DataFrame

We can assign one of the columns as the index column. The indexer column must contain unique values.

In [30]:

countries_indexed = countries.set_index('country') 
display(countries_indexed) 

country capital area population region density

19 Poland Warsaw 312683 37.80 Central 120.889207

6 Czech Republic Prague 78864 10.40 Central 131.872591

25 Hungary Budapest 93036 10.40 Central 111.784685

40 Slovakia Bratislava 49035 5.30 Central 108.086061

42 Ukraine Kiev 603700 51.80 Eastern 85.804207

... ... ... ... ... ... ...

37 Switzerland Berne 41293 6.70 Western 162.255104

16 Ireland Dublin 70283 3.50 Western 49.798671

23 Luxembourg Luxembourg 2586 0.40 Western 154.679041

1 Andorra Andorra la Vella 468 0.07 Western 149.572650

21 Liechtenstein Vaduz 160 0.03 Western 187.500000

capital area population region density

country

Albania Tirana 28748 3.20 Southern 111.312091

Andorra Andorra la Vella 468 0.07 Western 149.572650

Austria Vienna 83857 7.60 Western 90.630478

Belgium Brussels 30519 10.00 Western 327.664733

Bosnia and Herzegovina Sarajevo 51130 4.50 Southern 88.010952

... ... ... ... ... ...

Sweden Stockholm 449964 8.50 Northern 18.890400

Serbia Belgrade 66577 7.20 Southern 108.145456

Slovakia Bratislava 49035 5.30 Central 108.086061

Slovenia Ljubljana 20250 2.00 Southern 98.765432

Ukraine Kiev 603700 51.80 Eastern 85.804207



In the indexed DataFrame, rows can be accessed through the values of the index column with the already
used loc  property:

In [31]:

print(countries_indexed.loc["Hungary"]) 

Remark: by default the set_index()  method call removes the indexer column. We can keep the indexer
column also as a "normal" column through setting the drop  parameter to False .

In [32]:

countries_indexed = countries.set_index('country', drop = False) 
display(countries_indexed) 

Filtering the DataFrame

Configure a condition as a boolean expression:

In [33]:

condition = countries["region"] == "Central" 
print(type(condition)) 

capital         Budapest 
area               93036 
population          10.4 
region           Central 
density       111.784685 
Name: Hungary, dtype: object 

country capital area population region density

country

Albania Albania Tirana 28748 3.20 Southern 111.312091

Andorra Andorra Andorra la
Vella 468 0.07 Western 149.572650

Austria Austria Vienna 83857 7.60 Western 90.630478

Belgium Belgium Brussels 30519 10.00 Western 327.664733

Bosnia and
Herzegovina

Bosnia and
Herzegovina Sarajevo 51130 4.50 Southern 88.010952

... ... ... ... ... ... ...

Sweden Sweden Stockholm 449964 8.50 Northern 18.890400

Serbia Serbia Belgrade 66577 7.20 Southern 108.145456

Slovakia Slovakia Bratislava 49035 5.30 Central 108.086061

Slovenia Slovenia Ljubljana 20250 2.00 Southern 98.765432

Ukraine Ukraine Kiev 603700 51.80 Eastern 85.804207

<class 'pandas.core.series.Series'> 



As we have seen, the result is a Series, so a new column! Evaluate it:

In [34]:

print(condition) 

The series in the condition  variable stores the boolean True  / False  value for each row, whether the
profit was positive for that row or not.

Now filter the DataFrame by the condition. As we can observe, only the rows with the logical True  value in
the condition  series remained:

In [35]:

centralEuropean = countries[condition] 
display(centralEuropean) 

The whole workflow can be achieved in a single statement:

In [36]:

display(countries[countries["region"] == "Central"]) 

0     False 
1     False 
2     False 
3     False 
4     False 
5     False 
6      True 
7     False 
... 
39    False 
40     True 
41    False 
42    False 
Name: region, dtype: bool 

country capital area population region density

6 Czech Republic Prague 78864 10.4 Central 131.872591

19 Poland Warsaw 312683 37.8 Central 120.889207

25 Hungary Budapest 93036 10.4 Central 111.784685

40 Slovakia Bratislava 49035 5.3 Central 108.086061

country capital area population region density

6 Czech Republic Prague 78864 10.4 Central 131.872591

19 Poland Warsaw 312683 37.8 Central 120.889207

25 Hungary Budapest 93036 10.4 Central 111.784685

40 Slovakia Bratislava 49035 5.3 Central 108.086061



Summary exercise on DataFrames

Task 1

Display the name of the countries which have a population of less than 1 million.

In [37]:

small_countries = countries[countries["population"] < 1] 
print(small_countries["country"]) 

Task 2

Write a program that calculates which Western-European country has the largest area?

In [38]:

max_index = countries[countries["region"] == "Western"]["area"].idxmax() 
print(countries.iloc[max_index]) 

1           Andorra 
17          Iceland 
21    Liechtenstein 
23       Luxembourg 
26            Malta 
28           Monaco 
29       Montenegro 
35       San Marino 
Name: country, dtype: object 

country           France 
capital            Paris 
area              543965 
population          56.2 
region           Western 
density       103.315471 
Name: 12, dtype: object 



Chapter 10: Plotting and diagram visualization

Matplotlib is the most popular 2D plotting library in Python. Using matplotlib, you can create pretty much any
type of plot.

Pandas has tight integration with matplotlib.

How to install matplotlib?

If you have Anaconda installed, then matplotlib was already installed together with it.

If you have a standalone Python3 and Jupyter Notebook installation, open a command prompt / terminal and
type in:

pip3 install matplotlib

How to use matplotlib?

We will use the pyplot module inside the matlplotlib package for plotting. You can simply import this module
as usual. It is usually aliased with the plt  abbreviation:

import matplotlib.pyplot as plt 

The dataset

Let's use the World Countries datatset. For each country the following information is given:

1. country name,
2. region name,
3. population,
4. area (in mi ),
5. GDP ($ per capita),
6. Literacy (%)

The dataset is given in the data/countries_world.csv  file. The used delimiter is the semicolon ( ; )
character.

2



In [1]:

import pandas as pd 
import matplotlib.pyplot as plt 

# Special Jupyter Notebook command, so the plots by matplotlib will be display i
nside the Jupyter Notebook 
%matplotlib inline 

countries = pd.read_csv('../data/countries_world.csv', delimiter = ';') 
countries.columns = ['country', 'region', 'population', 'area', 'gdp', 'literac
y'] 
display(countries) 

Data source: US Government (https://gsociology.icaap.org/dataupload.html)

Lets take just the top 50 countries by area, so visualization will be easier to overview in the following tasks:

country region population area gdp literacy

0 Afghanistan ASIA (EX. NEAR EAST) 31056997 647500 700.0 36.0

1 Albania EASTERN EUROPE 3581655 28748 4500.0 86.5

2 Algeria NORTHERN AFRICA 32930091 2381740 6000.0 70.0

3 American Samoa OCEANIA 57794 199 8000.0 97.0

4 Andorra WESTERN EUROPE 71201 468 19000.0 100.0

... ... ... ... ... ... ...

222 West Bank NEAR EAST 2460492 5860 800.0 NaN

223 Western Sahara NORTHERN AFRICA 273008 266000 NaN NaN

224 Yemen NEAR EAST 21456188 527970 800.0 50.2

225 Zambia SUB-SAHARAN AFRICA 11502010 752614 800.0 80.6

226 Zimbabwe SUB-SAHARAN AFRICA 12236805 390580 1900.0 90.7

227 rows × 6 columns

https://gsociology.icaap.org/dataupload.html


In [2]:

countries50 = countries.sort_values(by = 'area', ascending = False).head(50) 
display(countries50) 

Plotting

Plots can be generated with the plot()  function of a Pandas DataFrame (table) or Series (column). The
most important parameter of the function is the kind  parameter, which defines the type of plot to be
generated. Supported kinds are (non-exhaustive list):

line

bar  (vertical bar)
barh  (horizontal bar)
scatter

hist  (histogram)
box  (boxplot
pie

After a plot is generated, it can be displayed by the show()  function of the matplotlib.pyplot
module.

Vertical bar plot

Display a bar plot on the area of the selected 50 largest countries.

country region population area gdp literacy

169 Russia C.W. OF IND. STATES 142893540 17075200 8900.0 99.6

36 Canada NORTHERN AMERICA 33098932 9984670 29800.0 97.0

214 United States NORTHERN AMERICA 298444215 9631420 37800.0 97.0

42 China ASIA (EX. NEAR EAST) 1313973713 9596960 5000.0 90.9

27 Brazil LATIN AMER. & CARIB 188078227 8511965 7600.0 86.4

... ... ... ... ... ... ...

124 Madagascar SUB-SAHARAN AFRICA 18595469 587040 800.0 68.9

107 Kenya SUB-SAHARAN AFRICA 34707817 582650 1000.0 85.1

69 France WESTERN EUROPE 60876136 547030 27600.0 99.0

224 Yemen NEAR EAST 21456188 527970 800.0 50.2

201 Thailand ASIA (EX. NEAR EAST) 64631595 514000 7400.0 92.6



In [3]:

countries50.plot(kind='bar', x='country', y='area', figsize = [15, 3]) 
plt.show() # matplotlib.pyplot was imported as plt 

The size of the diagram can be configured with the figsize  parameter. The size is given in inches (1 inch
= 2.54 centimeters). 
The default size is [6.4, 4.8] .

The bar diagram can be created directly on the selected Series (column of data). In this case the Series will
be placed along axis Y, while the horizontal axis X will become the index of the DataFrame.

In [4]:

countries50['area'].plot(kind='bar', figsize = [15, 3]) 
plt.show() 

The index column can be modified through the set_index  function (see Chapter 7 for more details) of the
DataFrame and a new DataFrame is created so:



In [5]:

countries50_indexed = countries50.set_index('country') 
display(countries50_indexed) 

Creating the bar plot from the countries50_indexed  DataFrame will display the country names as
labels correctly.

In [6]:

countries50_indexed['area'].plot(kind='bar', figsize = [15, 3]) 
plt.show() 

Visual tuning

The color of the bars can be defined with the color  parameter. The width of the bars is set by the width
parameter, 1.0 meaning 100%.

region population area gdp literacy

country

Russia C.W. OF IND. STATES 142893540 17075200 8900.0 99.6

Canada NORTHERN AMERICA 33098932 9984670 29800.0 97.0

United States NORTHERN AMERICA 298444215 9631420 37800.0 97.0

China ASIA (EX. NEAR EAST) 1313973713 9596960 5000.0 90.9

Brazil LATIN AMER. & CARIB 188078227 8511965 7600.0 86.4

... ... ... ... ... ...

Madagascar SUB-SAHARAN AFRICA 18595469 587040 800.0 68.9

Kenya SUB-SAHARAN AFRICA 34707817 582650 1000.0 85.1

France WESTERN EUROPE 60876136 547030 27600.0 99.0

Yemen NEAR EAST 21456188 527970 800.0 50.2

Thailand ASIA (EX. NEAR EAST) 64631595 514000 7400.0 92.6



In [7]:

countries50_indexed['area'].plot(kind='bar', figsize = [15, 3], color = 'red', w
idth = 1.0) 
plt.show() 

Multiple colors can be passed in a list.

In [8]:

countries50_indexed['area'].plot(kind='bar', figsize = [15, 3], color = ['red', 
'green', 'yellow'], width = 1.0) 
plt.show() 

Horizontal bar plot

Display a horizontal bar plot on the population of the selected 50 largest countries.



In [9]:

countries50.plot(kind='barh', x='country', y='population', figsize = [10, 10]) 
plt.show() 

Note that for the horizontal bar plot, the axis X is the vertical axis, and axis Y is the horizontal axis. It is
defined by this was, so only the kind  parameter of the plot()  function has to be changed when
switching to a different type of diagram.

Before visualizing the data, sort it by the column population, instead of the default area.



In [10]:

countries50.sort_values(by = 'population').plot(kind='barh', x='country', y='pop
ulation', figsize = [10, 10]) 
plt.show() 

Scatter plot

Display a scatter plot on the correlation of the area and the population columns of the selected 50 largest
countries.

Question: What correlation can be expected between these 2 attributes of countries?



In [11]:

countries50.plot(kind='scatter', x='area', y='population', title='Area vs. Popul
ation of Top 50 Largest Countries') 
plt.show() 

A title can be given to be displayed above the generated diagram with the title  parameter.

Extend the scatter plot for all countries in the dataset.

In [12]:

countries.plot(kind='scatter', x='area', y='population', title='Area vs. Populat
ion correlation') 
plt.show() 



As we can observe there is a moderately strong correlation between area and population, which matches our
expectation.

The limits of the X and Y axes can be configured with the xlim  and ylim  parameters, so the outliers can
be excluded from the visualization. Both a minimum and a maximum boundary can be given, as a tuple.

In [13]:

countries.plot(kind='scatter', x='area', y='population', title='Area vs. Populat
ion correlation', xlim=(0, 1e6), ylim=(0, 1e8)) 
plt.show() 

Short outlook on correlation (optional)

The correlation matrix between Series of a Pandas DataFrame can be generated with the corr()  function:

In [14]:

display(countries.corr()) 

Or just for 2 selected Series:

In [15]:

print(countries['area'].corr(countries['population'])) 

population area gdp literacy

population 1.000000 0.469985 -0.039324 -0.043481

area 0.469985 1.000000 0.072185 0.035994

gdp -0.039324 0.072185 1.000000 0.513144

literacy -0.043481 0.035994 0.513144 1.000000

0.46998508371848174 



Every correlation has two qualities: strength and direction. The direction of a correlation is either positive or
negative. When two variables have a positive correlation, it means the variables move in the same direction.
This means that as one variable increases, so does the other one. In a negative correlation, the variables
move in inverse, or opposite, directions. In other words, as one variable increases, the other variable
decreases.

We determine the strength of a relationship between two correlated variables by looking at the numbers. A
correlation of 0 means that no relationship exists between the two variables, whereas a correlation of 1
indicates a perfect positive relationship. It is uncommon to find a perfect positive relationship in the real
world.

The further away from 1 that a positive correlation lies, the weaker the correlation. Similarly, the further a
negative correlation lies from -1, the weaker the correlation. The following guidelines are useful when
determining the strength of a positive correlation:

1: perfect positive correlation
.70 to .99: very strong positive relationship
.40 to .69: strong positive relationship
.30 to .39: moderate positive relationship
.20 to .29: weak positive relationship
.01 to .19: no or negligible relationship
0: no relationship exists

Question: which series of the dataframe show strong correlation?

Histogram

A histogram is an accurate representation of the distribution of numerical data. It differs from a bar graph, in
the sense that a bar graph relates two variables, but a histogram relates only one.

Display a histogram on the area of the selected 50 countries.



In [16]:

countries['area'].plot(kind='hist') 
plt.show() 

The number of columns (called bins or buckets) in the histrogram can be configured with the bins
parameter.

In [17]:

countries['area'].plot(kind='hist', bins=20) 
plt.show() 

Extend the histogram to cover all countries in the dataset. Apply a logarithmic scale with the logx  / logy
parameter.



In [18]:

countries['area'].plot(kind='hist', bins=20, logy=True) 
plt.show() 

Boxplot

In descriptive statistics, a boxplot is a method for graphically depicting groups of numerical data through their
quartiles.

Display a boxplot on the GDP of the selected 50 largest countries.

In [19]:

countries50['gdp'].plot(kind='box') 
plt.show() 



Explaining the graphical visualization of a boxplot:

Task: Display a boxplot on the literacy of all countries! What can we state based on the diagram?

In [20]:

countries['literacy'].plot(kind='box') 
plt.show() 

Pie chart

Display a pie chart on the area share of the selected 50 largest countries. Since we are creating this plot on
the area  Series, we use the countries50_indexed  DataFrame, which was indexed with the country
names, so the labels will contain them instead of numerical indices.



In [21]:

countries50_indexed['area'].plot(kind='pie', figsize=[10,10], label="", title="A
rea share of the top 50 largest countries") 
plt.show() 

Percentages for each slice can be displayed with the autopct  parameter:



In [22]:

countries50_indexed['area'].plot(kind='pie', figsize=[10,10], autopct='%.1f%%', 
label="", title="Area share of the top 50 largest countries") 
plt.show() 

Saving a plot to file

Intead of using the show()  function of the matplotlib.pyplot  module, the savefig()  function can
also be used to export and save a created plot to an external file.



In [23]:

countries50.plot(kind='bar', x='country', y='area', figsize = [15, 3]) 
plt.savefig('10_country_area.png') 

Hint: look for the created file right next this Jupyter Notebook file on your computer.

Time Series Analysis

Read the Population History dataset from the data/population_world.csv  file, which contains the
population data for all countries between the years 1950 and 2019. All together the dataset contains 239
countries (or territories), 70 years of data, so all together 16,730 rows of data.

Each row stores the following data:

1. location (country or region),
2. year,
3. male population,
4. female population,
5. total population,
6. population density.

The used delimiter is the semicolon ( ; ) character.



In [24]:

population_history = pd.read_csv('../data/population_history.csv', delimiter = 
';') 
display(population_history) 

Data source: United Nations (https://www.un.org/development/desa/pd/)

Display the countries in the dataset:

Country Year PopMale PopFemale PopTotal PopDensity

0 Afghanistan 1950 4099.243 3652.874 7752.117 11.874

1 Afghanistan 1951 4134.756 3705.395 7840.151 12.009

2 Afghanistan 1952 4174.450 3761.546 7935.996 12.156

3 Afghanistan 1953 4218.336 3821.348 8039.684 12.315

4 Afghanistan 1954 4266.484 3884.832 8151.316 12.486

... ... ... ... ... ... ...

16725 Zimbabwe 2015 6568.778 7245.864 13814.642 35.711

16726 Zimbabwe 2016 6674.206 7356.132 14030.338 36.268

16727 Zimbabwe 2017 6777.054 7459.545 14236.599 36.801

16728 Zimbabwe 2018 6879.119 7559.693 14438.812 37.324

16729 Zimbabwe 2019 6983.353 7662.120 14645.473 37.858

16730 rows × 6 columns

https://www.un.org/development/desa/pd/


In [25]:

print(population_history['Country'].unique()) 



['Afghanistan' 'Albania' 'Algeria' 'American Samoa' 'Andean Communit
y' 
'Andorra' 'Angola' 'Anguilla' 'Antigua and Barbuda' 'Argentina' 'Ar
menia' 
'Aruba' 'Australia' 'Australia/New Zealand' 'Austria' 'Azerbaijan' 
'Bahamas' 'Bahrain' 'Bangladesh' 'Barbados' 'Belarus' 'Belgium' 'Be
lize' 
'Benin' 'Bermuda' 'Bhutan' 'Bolivia (Plurinational State of)' 
'Bonaire, Sint Eustatius and Saba' 'Bosnia and Herzegovina' 'Botswa
na' 
'Brazil' 'British Virgin Islands' 'Brunei Darussalam' 'Bulgaria' 
'Burkina Faso' 'Burundi' "Côte d'Ivoire" 'Cabo Verde' 'Cambodia' 
'Cameroon' 'Canada' 'Cayman Islands' 'Central African Republic' 'Ch
ad' 
'Channel Islands' 'Chile' 'China' 'China, Hong Kong SAR' 
'China, Macao SAR' 'China, Taiwan Province of China' 'Colombia' 'Co
moros' 
'Congo' 'Cook Islands' 'Costa Rica' 'Croatia' 'Cuba' 'Curaçao' 'Cyp
rus' 
'Czechia' "Dem. People's Republic of Korea" 
'Democratic Republic of the Congo' 'Denmark' 'Djibouti' 'Dominica' 
'Dominican Republic' 'Ecuador' 'Egypt' 'El Salvador' 'Equatorial Gu
inea' 
'Eritrea' 'Estonia' 'Eswatini' 'Ethiopia' 'Falkland Islands (Malvin
as)' 
'Faroe Islands' 'Fiji' 'Finland' 'France' 'French Guiana' 
'French Polynesia' 'Gabon' 'Gambia' 'Georgia' 'Germany' 'Ghana' 
'Gibraltar' 'Greece' 'Greenland' 'Grenada' 'Guadeloupe' 'Guam' 
'Guatemala' 'Guinea' 'Guinea-Bissau' 'Guyana' 'Haiti' 'Holy See' 
'Honduras' 'Hungary' 'Iceland' 'India' 'Indonesia' 
'Iran (Islamic Republic of)' 'Iraq' 'Ireland' 'Isle of Man' 'Israe
l' 
'Italy' 'Jamaica' 'Japan' 'Jordan' 'Kazakhstan' 'Kenya' 'Kiribati' 
'Kuwait' 'Kyrgyzstan' "Lao People's Democratic Republic" 'Latvia' 
'Lebanon' 'Lesotho' 'Liberia' 'Libya' 'Liechtenstein' 'Lithuania' 
'Luxembourg' 'Madagascar' 'Malawi' 'Malaysia' 'Maldives' 'Mali' 'Ma
lta' 
'Marshall Islands' 'Martinique' 'Mauritania' 'Mauritius' 'Mayotte' 
'Melanesia' 'Mexico' 'Micronesia' 'Micronesia (Fed. States of)' 'Mo
naco' 
'Mongolia' 'Montenegro' 'Montserrat' 'Morocco' 'Mozambique' 'Myanma
r' 
'Namibia' 'Nauru' 'Nepal' 'Netherlands' 'New Caledonia' 'New Zealan
d' 
'Nicaragua' 'Niger' 'Nigeria' 'Niue' 'North Macedonia' 
'Northern Mariana Islands' 'Norway' 'Oman' 'Pakistan' 'Palau' 'Pana
ma' 
'Papua New Guinea' 'Paraguay' 'Peru' 'Philippines' 'Poland' 'Polyne
sia' 
'Portugal' 'Puerto Rico' 'Qatar' 'Réunion' 'Republic of Korea' 
'Republic of Moldova' 'Romania' 'Russian Federation' 'Rwanda' 
'Saint Barthélemy' 'Saint Helena' 'Saint Kitts and Nevis' 'Saint Lu
cia' 
'Saint Martin (French part)' 'Saint Pierre and Miquelon' 
'Saint Vincent and the Grenadines' 'Samoa' 'San Marino' 
'Sao Tome and Principe' 'Saudi Arabia' 'Senegal' 'Serbia' 'Seychell
es' 
'Sierra Leone' 'Singapore' 'Sint Maarten (Dutch part)' 'Slovakia' 
'Slovenia' 'Solomon Islands' 'Somalia' 'South Sudan' 'Spain' 'Sri L
anka' 
'State of Palestine' 'Sudan' 'Suriname' 'Sweden' 'Switzerland' 



Line plot

Line diagrams works best with a series of data, assuming continuous change between the known discrete
values. 
Let's visualize the total and male population of Hungary between the years 1950 an 2019.

First filter the rows based on the country for Hungary and set the year as the index column.

In [26]:

hungary = population_history[population_history['Country'] == 'Hungary'] 
hungary.set_index('Year', drop=False, inplace=True) 
display(hungary) 

Now a line plot on the total population change of Hungary between 1950 and 2019 can be displayed.

'Syrian Arab Republic' 'Tajikistan' 'Thailand' 'Timor-Leste' 'Togo' 
'Tokelau' 'Tonga' 'Trinidad and Tobago' 'Tunisia' 'Turkey' 'Turkmen
istan' 
'Turks and Caicos Islands' 'Tuvalu' 'Uganda' 'Ukraine' 
'United Arab Emirates' 'United Kingdom' 'United Republic of Tanzani
a' 
'United States of America' 'United States Virgin Islands' 'Uruguay' 
'Uzbekistan' 'Vanuatu' 'Venezuela (Bolivarian Republic of)' 'Viet N
am' 
'Wallis and Futuna Islands' 'Western Sahara' 'Yemen' 'Zambia' 'Zimb
abwe'] 

Country Year PopMale PopFemale PopTotal PopDensity

Year

1950 Hungary 1950 4494.406 4843.312 9337.718 103.145

1951 Hungary 1951 4573.710 4906.897 9480.607 104.723

1952 Hungary 1952 4637.570 4960.372 9597.942 106.019

1953 Hungary 1953 4687.602 5005.300 9692.902 107.068

1954 Hungary 1954 4725.599 5043.080 9768.679 107.905

... ... ... ... ... ... ...

2015 Hungary 2015 4646.716 5131.209 9777.925 108.008

2016 Hungary 2016 4636.375 5116.595 9752.970 107.732

2017 Hungary 2017 4626.816 5103.006 9729.822 107.476

2018 Hungary 2018 4617.623 5089.879 9707.502 107.230

2019 Hungary 2019 4608.250 5076.430 9684.680 106.978

70 rows × 6 columns



In [27]:

hungary['PopTotal'].plot(kind='line') 
plt.show() 

# same: 
#hungary.plot(kind='line', x='Year', y='PopTotal') 
#plt.show() 

Multiple column diagrams

Let's use multiple columns in the previous line plot, and add the male population to the diagram as a second
line.

Multiple plot data can be generated with the plot()  method of Pandas Series. Calling the show()
function of the matplotlib.pyplot  module will visualize them on a single diagram.

In [28]:

hungary['PopTotal'].plot(kind='line') 
hungary['PopMale'].plot(kind='line') 
plt.show() 

Add legend to the diagram:



In [29]:

hungary['PopTotal'].plot(kind='line', legend=True) 
hungary['PopMale'].plot(kind='line', legend=True) 
plt.show() 

The same can be done by calling the plot()  method of a Pandas DataFrame. Be aware though, that in
this case each plot will be displayed in an individual diagram:



In [30]:

hungary.plot(kind='line', x='Year', y='PopTotal', legend=True) 
hungary.plot(kind='line', x='Year', y='PopMale', legend=True) 
plt.show() 

This can be fixed by explicitly configuring matplotlib to use the same axis object for visualization for both
diagrams:



In [31]:

ca = plt.gca() # gca = get current axis configuration object 
hungary.plot(kind='line', x='Year', y='PopTotal', ax=ca, legend=True) # use the
ca axis configuration object 
hungary.plot(kind='line', x='Year', y='PopMale', ax=ca, legend=True) # use the c
a axis configuration object 
plt.show() 

Use a different, secondary scale for the male population.

In [32]:

hungary['PopTotal'].plot(kind='line', legend=True) 
hungary['PopMale'].plot(kind='line', secondary_y=True, legend=True) 
plt.show() 

Data grouping



Pandas supports the grouping of data by the given column(s), which then can be used also for visualization.

Select 10 countries by your choice.

In [33]:

selected_countries = pd.Series(['Hungary', 'Germany', 'France', 'United Kingdom'
, 'Romania', 'Oman', 'Libya', 'Turkey', 'Chile', 'Viet Nam']) 
display(selected_countries) 

Select the rows of the original DataFrame for these selected countries.

In [34]:

selected_history = population_history[population_history['Country'].isin(selecte
d_countries)] 
display(selected_history) 

The selected_history  DataFrame now contains all historical data for the selected 10 countries.

Visualize the population change of the selected 10 countries for the time period 1950-2019 in a line diagram. 
To achieve this, we first group the selected_history  DataFrame by the Country  Series:

0           Hungary 
1           Germany 
2            France 
3    United Kingdom 
4           Romania 
5              Oman 
6             Libya 
7            Turkey 
8             Chile 
9          Viet Nam 
dtype: object

Country Year PopMale PopFemale PopTotal PopDensity

3150 Chile 1950 3335.670 3262.848 6598.518 8.875

3151 Chile 1951 3398.318 3331.262 6729.580 9.051

3152 Chile 1952 3465.497 3404.217 6869.714 9.239

3153 Chile 1953 3535.877 3480.588 7016.465 9.437

3154 Chile 1954 3608.433 3559.476 7167.909 9.640

... ... ... ... ... ... ...

16375 Viet Nam 2015 46197.466 46479.616 92677.082 298.891

16376 Viet Nam 2016 46696.272 46944.163 93640.435 301.998

16377 Viet Nam 2017 47193.015 47407.628 94600.643 305.094

16378 Viet Nam 2018 47680.864 47865.095 95545.959 308.143

16379 Viet Nam 2019 48151.352 48310.756 96462.108 311.098

700 rows × 6 columns



In [35]:

selected_history.groupby('Country') 

We have got a DataFrameGroupBy  object, which can be converted to a list:

In [36]:

grouped_history = list(selected_history.groupby('Country')) 
print("Length: {0}".format(len(grouped_history))) 

Each item of the list contains all records for a given country (the column used for groupping):

In [37]:

print(grouped_history[0]) 

Question: what happens if we group by the year column?

Based on the grouped DataFrame, we select the PopTotal  Series and create a line plot. First the Year
column is set as an index to be used for the X axis.

Out[35]:

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x7f148327a2
80>

Length: 10 

('Chile',      Country  Year   PopMale  PopFemale   PopTotal  PopDen
sity 
3150   Chile  1950  3335.670   3262.848   6598.518       8.875 
3151   Chile  1951  3398.318   3331.262   6729.580       9.051 
3152   Chile  1952  3465.497   3404.217   6869.714       9.239 
3153   Chile  1953  3535.877   3480.588   7016.465       9.437 
3154   Chile  1954  3608.433   3559.476   7167.909       9.640 
...      ...   ...       ...        ...        ...         ... 
3215   Chile  2015  8844.800   9124.556  17969.356      24.168 
3216   Chile  2016  8965.258   9243.814  18209.072      24.490 
3217   Chile  2017  9097.252   9373.183  18470.435      24.841 
3218   Chile  2018  9228.416   9500.750  18729.166      25.189 
3219   Chile  2019  9341.774   9610.261  18952.035      25.489 

[70 rows x 6 columns]) 



In [38]:

selected_history.set_index('Year', inplace=True, drop=False) 
selected_history.groupby('Country')['PopTotal'].plot( 
   kind='line', logy=True,  
   figsize=[15, 6], legend=True, 
   title='Population history of 10 selected countries 1950-2019') 
plt.show() 

Aggregate functions

Aggregate functions ( min , max , mean , median , sum , etc.) transforms a group of values to a single
value. By calling on aggregate function on a grouped DataFrame, the aggregated value of each group is
calculated.

Let's calculate the largest population for each country they ever had between 1950 and 2019.



In [39]:

population_history.groupby('Country').max() 

Sort the result by the PopTotal  and only display the PopTotal :

In [40]:

largest_pop = population_history.groupby('Country').max().sort_values(by = 'PopT
otal')['PopTotal'] 
display(largest_pop) 

Out[39]:

Year PopMale PopFemale PopTotal PopDensity

Country

Afghanistan 2019 19529.727 18512.030 38041.757 58.269

Albania 2019 1682.757 1611.474 3286.070 119.930

Algeria 2019 21749.666 21303.388 43053.054 18.076

American Samoa 2019 NaN NaN 59.684 298.420

Andean Community 2019 55331.532 56405.132 111736.664 30.027

... ... ... ... ... ...

Wallis and Futuna Islands 2019 NaN NaN 15.098 107.843

Western Sahara 2019 304.755 277.703 582.458 2.190

Yemen 2019 14692.284 14469.638 29161.922 55.234

Zambia 2019 8843.214 9017.820 17861.034 24.026

Zimbabwe 2019 6983.353 7662.120 14645.473 37.858

239 rows × 5 columns

Country 
Holy See                             0.909 
Tokelau                              1.953 
Falkland Islands (Malvinas)          3.372 
Niue                                 5.242 
Saint Pierre and Miquelon            6.435 
                                 ...      
Pakistan                        216565.317 
Indonesia                       270625.567 
United States of America        329064.917 
India                          1366417.756 
China                          1433783.692 
Name: PopTotal, Length: 239, dtype: float64



Summary exercises on plotting

Exercise 1

Task: Use the World Countries dataset defined in the countries  variable. That dataset contained the
region for each country. Compute for each region how many countries belong to them. Visualize the results in
a pie a chart.

Hint: use groupping.

In [41]:

countries_by_region = countries.groupby('region').count()['country'] 
display(countries_by_region) 

region 
ASIA (EX. NEAR EAST)                   28 
BALTICS                                 3 
C.W. OF IND. STATES                    12 
EASTERN EUROPE                         12 
LATIN AMER. & CARIB                    45 
NEAR EAST                              16 
NORTHERN AFRICA                         6 
NORTHERN AMERICA                        5 
OCEANIA                                21 
SUB-SAHARAN AFRICA                     51 
WESTERN EUROPE                         28 
Name: country, dtype: int64



In [42]:

countries_by_region.plot(kind='pie', figsize=[10,10], autopct='%.1f%%', label=""
,  
                        title="Region distribution among countries") 
plt.show() 

Exercise 2

Task: Calculate the accumulated population of the world for each year between 1950 and 2019 based on the
Population History dataset stored in the population_history  variable. 
Create a bar diagram visualizing how the aggregated population changed over the years.



In [43]:

aggregated_by_year = population_history.groupby('Year').sum() 
display(aggregated_by_year) 

In [44]:

aggregated_by_year.plot(kind='bar', y='PopTotal', figsize=[15, 4], width=0.8, co
lor='orange') 
plt.show() 

PopMale PopFemale PopTotal PopDensity

Year

1950 1278875.631 1282748.044 2562089.503 42672.546

1951 1303179.841 1306685.514 2610335.875 42728.190

1952 1327130.022 1330216.610 2657822.039 42972.585

1953 1351073.239 1353698.802 2705252.614 43345.374

1954 1375294.431 1377424.036 2753204.644 43831.847

... ... ... ... ...

2015 3764759.824 3703476.149 7469342.451 106178.776

2016 3807875.525 3745887.267 7554873.938 107422.436

2017 3850938.612 3788132.946 7640187.980 108633.385

2018 3893745.012 3830090.171 7724957.236 109803.197

2019 3936030.563 3871616.311 7808774.650 110916.555

70 rows × 4 columns



Chapter 11: Spatial data management - vector
formats

Shapely

Shapely (https://shapely.readthedocs.io/en/stable/manual.html) is a Python package for manipulation and
analysis of planar geometric objects. While Shapely is not concerned with data formats or coordinate
systems, it can be readily integrated with packages that are. Indeed, Shapely is a central and essential
package to any geometry/geography related work, and many higher abstraction level packages like
GeoPandas use Shapely under the hood.

How to install Shapely?

We need to install the shapely  package.

Anaconda - Platform independent

If you have Anaconda installed, open the Anaconda Prompt and type in:

conda update --all 

conda install -c conda-forge shapely

Note: updating the currently installed packages to their most recent version can be required to avoid
dependency issues. Note: we install from the conda-forge channel, as it contains more recent versions of
these packages compared to the default channel of Anaconda.

Python Package Installer (pip) - Linux

If you have standalone Python3 and Jupyter Notebook install on Linux, open a command prompt / terminal
and type in:

pip3 install shapely

Python Package Installer (pip) - Windows

The installation of these packages is much more complicated with pip on Windows, because several library
binaries must be installed separately or compiled from source. (E.g. the shapely package highly depends on
the GEOS library.) An easier approach is to install these packages from Python binary wheel files
(https://www.lfd.uci.edu/~gohlke/pythonlibs/).

Due to its complexity these options are only recommended for advanced Python users; and instead it is
strongly advised to use Anaconda on Windows.

How to use shapely?

https://shapely.readthedocs.io/en/stable/manual.html
https://www.lfd.uci.edu/~gohlke/pythonlibs/


We can either import the complete shapely module or just some parts of it which will be used, e.g.:

from shapely import geometry 

Now we can simply refer to e.g. the shapely.geometry.Point  type simply as geometry.Point .

Basic usage of shapely

The fundamental types of geometric objects implemented by Shapely are points, line string, polygons and
their collections.

Creation of Shapely objects

Elementary planar geometries can be created from scratch.

Let's define a new point with the coordinate (5,6) .

In [1]:

from shapely import geometry 

point = geometry.Point(5,6) 
print(point) 

Line strings can be defined through the list of their vertices.

In [2]:

line = geometry.LineString([(6,6), (7,7), (8,9)]) 
print(line) 

Polygons are closed line strings (optionally with holes). The line string is automatically closed. The
coordinates can be given with either tuples or lists.

In [3]:

rectangle1 = geometry.Polygon([[0,0], [10,0], [10,10], [0,10]]) 
rectangle2 = geometry.Polygon([(-4,-4), (4,-4), (4,4), (-4,4)]) 
print(rectangle1) 
print(rectangle2) 

A holed polygon can be defined as an exterior shell with a list of inner shells as the holes.

POINT (5 6) 

LINESTRING (6 6, 7 7, 8 9) 

POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0)) 
POLYGON ((-4 -4, 4 -4, 4 4, -4 4, -4 -4)) 



In [4]:

rectangle3 = geometry.Polygon([(0,0), (10,0), (10,10), (0,10)], 
                             [[(2,2), (2,3), (3,3), (3,2)], 
                              [(5,5), (5,7), (7,7), (7,5)]]) 
print(rectangle3) 

Manage Shapely objects

For points and line strings the sequence of coordinates can be accessed through the coords  property,
while the separate list of X and Y coordinates can be accessed through the xy  property of the Shapely
objects.

In [5]:

print("Coords: {0}".format(list(point.coords))) 
x, y = point.xy 
print("X coords: {0}".format(x)) 
print("Y coords: {0}".format(y)) 

In [6]:

print("Coords: {0}".format(list(line.coords))) 
x, y = line.xy 
print("X coords: {0}".format(x)) 
print("Y coords: {0}".format(y)) 

For polygons, the outer shell can be accessed as the exterior . Note: the exterior is also available for
points and line strings.

In [7]:

print("Coords: {0}".format(list(rectangle1.exterior.coords))) 
x, y = rectangle1.exterior.xy 
print("X coords: {0}".format(x)) 
print("Y coords: {0}".format(y)) 

The holes of a polygon can be accessed through the interiors  list of the object.

POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0), (2 2, 2 3, 3 3, 3 2, 2 2), 
(5 5, 5 7, 7 7, 7 5, 5 5)) 

Coords: [(5.0, 6.0)] 
X coords: array('d', [5.0]) 
Y coords: array('d', [6.0]) 

Coords: [(6.0, 6.0), (7.0, 7.0), (8.0, 9.0)] 
X coords: array('d', [6.0, 7.0, 8.0]) 
Y coords: array('d', [6.0, 7.0, 9.0]) 

Coords: [(0.0, 0.0), (10.0, 0.0), (10.0, 10.0), (0.0, 10.0), (0.0, 
0.0)] 
X coords: array('d', [0.0, 10.0, 10.0, 0.0, 0.0]) 
Y coords: array('d', [0.0, 0.0, 10.0, 10.0, 0.0]) 



In [8]:

print("Coords: {0}".format(list(rectangle3.exterior.coords))) 
x, y = rectangle3.exterior.xy 
print("X coords: {0}".format(x)) 
print("Y coords: {0}".format(y)) 

print("Holes:") 
for hole in rectangle2.interiors: 
   print(hole) 

Various geometric properties can be easily computed through Shapely:

In [9]:

print('Area of Rectangle1: {0:.2f}'.format(rectangle1.area)) 
print('Area of Rectangle2: {0:.2f}'.format(rectangle2.area)) 
print('Area of Rectangle2: {0:.2f}'.format(rectangle3.area)) 
print('Length of Line: {0:.2f}'.format(line.length)) 

In [10]:

print(point.distance(rectangle2)) 
print(line.distance(rectangle2)) 

In [11]:

print('Rectangle1 contains Point: {0}'.format(rectangle1.contains(point))) 
print('Rectangle2 contains Point: {0}'.format(rectangle2.contains(point))) 
print('Rectangle1 contains Rectangle2: {0}'.format(rectangle1.contains(rectangle
2))) 
print('Rectangle1 intersects Rectangle2: {0}'.format(rectangle1.intersects(recta
ngle2))) 

Read WKT strings into Shapely objects

Coords: [(0.0, 0.0), (10.0, 0.0), (10.0, 10.0), (0.0, 10.0), (0.0, 
0.0)] 
X coords: array('d', [0.0, 10.0, 10.0, 0.0, 0.0]) 
Y coords: array('d', [0.0, 0.0, 10.0, 10.0, 0.0]) 
Holes: 

Area of Rectangle1: 100.00 
Area of Rectangle2: 64.00 
Area of Rectangle2: 95.00 
Length of Line: 3.65 

2.23606797749979 
2.8284271247461903 

Rectangle1 contains Point: True 
Rectangle2 contains Point: False 
Rectangle1 contains Rectangle2: False 
Rectangle1 intersects Rectangle2: True 



Geometries can also be loaded using the well-known text (WKT) (https://en.wikipedia.org/wiki/Well-
known_text_representation_of_geometry) format.

Well-known text (WKT) is a text markup language for representing vector geometry objects. It is a human-
readable, but verbose format. A binary equivalent, known as well-known binary (WKB) is used to transfer and
store the same information in a more compact form convenient for computer processing but that is not
human-readable.

WKT and WKB are understood by many applications and software libraries, including Shapely.

In [12]:

from shapely import wkt 

rectangle2 = wkt.loads('POLYGON ((-4 -4, 4 -4, 4 4, -4 4, -4 -4))') 
print(rectangle2) 

Note: Shapely also displays geometries as a WKT as the default string representation.

GeoPandas

GeoPandas (https://geopandas.org/) is an open source project to make working with geospatial data in
Python easier. GeoPandas extends the datatypes used by pandas to allow spatial operations on geometric
types.

POLYGON ((-4 -4, 4 -4, 4 4, -4 4, -4 -4)) 

https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry
https://geopandas.org/


Install geopandas

The following Python packages are required to be installed:

geopandas
descartes (for visualization)
mapclassify (for classification of data)
rtree (spatial indexing of data)

Anaconda - Platform independent

If you have Anaconda installed, open the Anaconda Prompt and type in:

conda update --all 

conda install -c conda-forge geopandas descartes mapclassify rtree

Note: updating the currently installed packages to their most recent version can be required to avoid
dependency issues. 
Note: we install from the conda-forge channel, as it contains more recent versions of these packages
compared to the default channel of Anaconda.

Python Package Installer (pip) - Linux

If you have standalone Python3 and Jupyter Notebook install on Linux, open a command prompt / terminal
and type in:

pip3 install geopandas descartes mapclassify rtree

For the rtree Python package you must also install the libspatialindex-dev system package, which will require
administrative priviliges:

sudo apt-get install libspatialindex-dev

Python Package Installer (pip) - Windows

The installation of these packages is much more complicated with pip on Windows, because several library
binaries must be installed separately or compiled from source. (E.g. the geopandas package highly depends
on the GDAL library.) 
An easier approach is to install these packages from Python binary wheel files
(https://www.lfd.uci.edu/~gohlke/pythonlibs/).

Due to its complexity these options are only recommended for advanced Python users and it is strongly
advised to use Anaconda on Windows.

How to use geopandas?

The geopandas package is also a module which you can simply import. It is usually aliased with the gpd
abbreviation.

import geopandas as gpd 

Read spatial data

https://www.lfd.uci.edu/~gohlke/pythonlibs/


Geopandas can read many vector-based spatial data format including Shapefiles, GeoJSON files and much
more. Only the read_file()  function has to be called. The result is a geopandas dataframe, a
GeoDataFrame.

Read the data/ne_10m_admin_0_countries.shp  shapefile located in the data  folder. This dataset
contains both scalar and spatial data of the countries all over the world. 
Source: Natural Earth (https://www.naturalearthdata.com/downloads/10m-cultural-vectors/)

In [13]:

import geopandas as gpd 
import matplotlib.pyplot as plt 
%matplotlib inline 

countries_gdf = gpd.read_file('../data/ne_10m_admin_0_countries.shp') 
display(countries_gdf) 

GeoPandas uses Shapely to represent geometries. Observe the geometry  column (the last one), which
contains the Shapely geometry objects of the row, displayed as a string (in WKT format) in the table.

Basic usage of GeoDataFrames

Since this GeoDataFrame has quite a number of columns, some of them are hidden by the display. Let's list
all the columns:

https://www.naturalearthdata.com/downloads/10m-cultural-vectors/


In [14]:

print(countries_gdf.columns) 

With a lot of columns it can be useful to select only a few columns to make the displayed results more
human-readable. This can be done by in a similar way when selecting a single Series from a DataFrame, but
now we shall define a list of Series to select. 
Remark: this makes a copy of the dataframe.

Index(['featurecla', 'scalerank', 'LABELRANK', 'SOVEREIGNT', 'SOV_A
3', 
      'ADM0_DIF', 'LEVEL', 'TYPE', 'ADMIN', 'ADM0_A3', 'GEOU_DIF', 
'GEOUNIT', 
      'GU_A3', 'SU_DIF', 'SUBUNIT', 'SU_A3', 'BRK_DIFF', 'NAME', 'N
AME_LONG', 
      'BRK_A3', 'BRK_NAME', 'BRK_GROUP', 'ABBREV', 'POSTAL', 'FORMA
L_EN', 
      'FORMAL_FR', 'NAME_CIAWF', 'NOTE_ADM0', 'NOTE_BRK', 'NAME_SOR
T', 
      'NAME_ALT', 'MAPCOLOR7', 'MAPCOLOR8', 'MAPCOLOR9', 'MAPCOLOR1
3', 
      'POP_EST', 'POP_RANK', 'GDP_MD_EST', 'POP_YEAR', 'LASTCENSU
S', 
      'GDP_YEAR', 'ECONOMY', 'INCOME_GRP', 'WIKIPEDIA', 'FIPS_10_', 
'ISO_A2', 
      'ISO_A3', 'ISO_A3_EH', 'ISO_N3', 'UN_A3', 'WB_A2', 'WB_A3', 
'WOE_ID', 
      'WOE_ID_EH', 'WOE_NOTE', 'ADM0_A3_IS', 'ADM0_A3_US', 'ADM0_A3
_UN', 
      'ADM0_A3_WB', 'CONTINENT', 'REGION_UN', 'SUBREGION', 'REGION_
WB', 
      'NAME_LEN', 'LONG_LEN', 'ABBREV_LEN', 'TINY', 'HOMEPART', 'MI
N_ZOOM', 
      'MIN_LABEL', 'MAX_LABEL', 'NE_ID', 'WIKIDATAID', 'NAME_AR', 
'NAME_BN', 
      'NAME_DE', 'NAME_EN', 'NAME_ES', 'NAME_FR', 'NAME_EL', 'NAME_
HI', 
      'NAME_HU', 'NAME_ID', 'NAME_IT', 'NAME_JA', 'NAME_KO', 'NAME_
NL', 
      'NAME_PL', 'NAME_PT', 'NAME_RU', 'NAME_SV', 'NAME_TR', 'NAME_
VI', 
      'NAME_ZH', 'geometry'], 
     dtype='object') 



In [15]:

countries_gdf = countries_gdf[['NAME', 'POP_EST', 'POP_YEAR', 'GDP_MD_EST', 'GDP
_YEAR', 'REGION_UN', 'geometry']] 
display(countries_gdf) 

NAME POP_EST POP_YEAR GDP_MD_EST GDP_YEAR REGION_UN ge

0 Indonesia 260580739 2017 3028000.0 2016 Asia

MULTIPO
(((117

4
117.70

1 Malaysia 31381992 2017 863000.0 2016 Asia

MULTIPO
(((117

4
117.69

2 Chile 17789267 2017 436100.0 2016 Americas

MULTIPO
(((-69

-17
-69.5

3 Bolivia 11138234 2017 78350.0 2016 Americas

PO
((-69
-17
-69

4 Peru 31036656 2017 410400.0 2016 Americas

MULTIPO
(((-69

-17
-69.6

... ... ... ... ... ... ...

250 Macao 601969 2017 63220.0 2016 Asia

MULTIPO
(((113

22
113.5

251
Ashmore

and Cartier
Is.

0 2017 0.0 2016 Oceania

PO
((123

-12
123

252 Bajo Nuevo
Bank 0 2017 0.0 2016 Americas

PO
((-79

15
-79

1

253 Serranilla
Bank 0 0 0.0 0 Americas

PO
((-78

15
-78

1

254 Scarborough
Reef 0 2012 0.0 2016 Asia

PO
((117

15
117

1

255 rows × 7 columns



Geopandas extends the capabilties of the pandas library, which means we can use all what we have learned
with pandas.

Let's sort the GeoDataFrame by the name of the countries:

In [16]:

display(countries_gdf.sort_values(by='NAME')) 

Filter the dataframe to contain only the European countries:

In [17]:

condition = countries_gdf['REGION_UN'] == 'Europe' 
europe_gdf = countries_gdf[condition] 
display(europe_gdf) 

Sort the European countries by their population in a descending order:

In [18]:

display(europe_gdf.sort_values(by = 'POP_EST', ascending = False)) 

Spatial data management in GeoDataFrames

We can fetch the CRS (coordinate reference system) of the geometry  column in the GeoDataFrame:

In [19]:

print(countries_gdf.crs) 

In [20]:

display(countries_gdf.crs) 

As we can observe the spatial data are in WGS 84 (EPSG:4326). Since that is a geographic CRS, it would
be unsuitable to calculate the area of the countries.

The geometries can be transformed on-the-fly to a different CRS with GeoPandas. Let's select a projected
CRS, Mercator (EPSG:3857).

epsg:4326 

<Geographic 2D CRS: EPSG:4326> 
Name: WGS 84 
Axis Info [ellipsoidal]: 
- Lat[north]: Geodetic latitude (degree) 
- Lon[east]: Geodetic longitude (degree) 
Area of Use: 
- name: World. 
- bounds: (-180.0, -90.0, 180.0, 90.0) 
Datum: World Geodetic System 1984 
- Ellipsoid: WGS 84 
- Prime Meridian: Greenwich



In [21]:

countries_mercator = countries_gdf.to_crs('epsg:3857') 

Now the area of each geometry can be calculated in  units:km
2

In [22]:

countries_mercator['AREA'] = countries_mercator.area / 10**6 
display(countries_mercator) 

Use the round()  function to limit the number decimal digits, hence we can get rid of the scientific notation:

In [23]:

countries_mercator['AREA'] = countries_mercator['AREA'].round(2) 
display(countries_mercator) 

Since the Mercator projection applies is azimuthal (meaning the angles are correct), but not equal-area,
areas inflate with distance from the equator such that the polar regions are grossly exaggerated. Therefore
there are great territorial distortion int calculated values, e.g. for Hungary the area is more than twice of the
real value.

In [24]:

display(countries_mercator[countries_mercator['NAME'] == 'Hungary']) 

Let's use the Mollweide (ESRI:54009) equal-area projection instead to calculate the proper area of the
countries.

In [25]:

countries_mollweide = countries_gdf.to_crs('esri:54009') 
countries_mollweide['AREA'] = countries_mollweide.area / 10**6 
countries_mollweide['AREA'] = countries_mollweide['AREA'].round(2) 
display(countries_mollweide[countries_mollweide['NAME'] == 'Hungary']) 

NAME POP_EST POP_YEAR GDP_MD_EST GDP_YEAR REGION_UN geometr

75 Hungary 9850845 2017 267600.0 2016 Europe

POLYGO
((2546722.84
6097998.60

2544893.518

NAME POP_EST POP_YEAR GDP_MD_EST GDP_YEAR REGION_UN geometr

75 Hungary 9850845 2017 267600.0 2016 Europe

POLYGO
((1785929.91
5656787.62

1784927.965



Remark: EPSG (European Petroleum Survey Group) and ESRI (American company Environmental Systems
Research Institute) are two authorities providing well-known identifiers (WKID) for CRS. 
However these numbers don’t overlap for avoiding confusion.

Task: When working with local spatial data for Hungary often the Uniform National Projection named EOV
(abbreviation of Egységes Országos Vetület) is utilizied. It is an azimuthal projected CRS, and while not
equal-area, only applies a minimal distortion on the region of Hungary. 
Calculate the area of Hungary in EOV!

In [26]:

countries_eov = countries_gdf.to_crs('EPSG:23700') # EOV is EPSG:23700  
countries_eov.set_index('NAME', drop=False, inplace=True) 
countries_eov['AREA'] = countries_eov.area / 10**6 
display(countries_eov.loc['Hungary']) 

Map making

Geopandas provides a high-level interface to the matplotlib library for making maps. Mapping shapes is as
easy as using the plot()  method on a GeoDataFrame (or GeoSeries).

In [27]:

countries_gdf.plot(figsize=[20,10]) 
plt.show() 

NAME                                                    Hungary 
POP_EST                                                 9850845 
POP_YEAR                                                   2017 
GDP_MD_EST                                             267600.0 
GDP_YEAR                                                   2016 
REGION_UN                                                Europe 
geometry      POLYGON ((936017.8110286188 296237.7384604304,... 
AREA                                               93200.728333 
Name: Hungary, dtype: object



The plot()  function call on a GeoDataFrame (or a regular pandas DataFrame) will return an axis
configuration object, which we can use to further customize our plot (map in this case). E.g. we can hide the
axes with the set_axis_off()  function:

In [28]:

ax = countries_gdf.plot(figsize=[20,10]) 
ax.set_axis_off() 
plt.show() 

Choropleth maps

Geopandas makes it easy to create so called choropleth maps (maps where the color of each shape is
based on the value of an associated variable). Simply use the plot()  method with the column  argument
set to the column whose values you want used to assign colors.

In [29]:

countries_gdf.plot(column='POP_EST', figsize=[20,10]) 
plt.show() 



Add a legend to the map.

In [30]:

countries_gdf.plot(column='POP_EST', legend=True, figsize=[20,10]) 
plt.show() 

We can choose from various available color maps. A complete list can be found on the matplotlib website
(https://matplotlib.org/tutorials/colors/colormaps.html).

In [31]:

countries_gdf.plot(column='GDP_MD_EST', legend=True, cmap='YlOrRd', figsize=[20,
10]) 
plt.show() 

https://matplotlib.org/tutorials/colors/colormaps.html


The way color maps are scaled can also be manipulated with the scheme  option (the mapclassify Python
library must be installed).

A full list of schemes are available on the project's GitHub page (https://github.com/pysal/mapclassify) and
some examples of result on the package's website (https://pysal.org/mapclassify/index.html).

In [32]:

countries_gdf.plot(column='GDP_MD_EST', legend=True, cmap='YlOrRd', figsize=[20,
10], scheme='quantiles') 
plt.show() 

With the user_defined  scheme, a custom classification can be defined.

In [33]:

countries_gdf.plot(column='GDP_MD_EST', legend=True, cmap='YlOrRd', figsize=[20,
10],  
                  scheme='user_defined', classification_kwds={'bins':[1500, 600
00, 300000]}) 
plt.show() 

https://github.com/pysal/mapclassify
https://pysal.org/mapclassify/index.html


Multiple layers

We can easily combine the data of multiple GeoDataFrames and even visualize them as multiple layers with
geopandas.

Open and read a second data source defined in the data/World_Cities.shp  shapefile, containing
scalar and spatial data about major cities all around the world. 
Source: ArcGIS (https://hub.arcgis.com/datasets/6996f03a1b364dbab4008d99380370ed_0)

In [34]:

cities_gdf = gpd.read_file('../data/World_Cities.shp') 
display(cities_gdf) 

Reduce the number of columns, by selecting only the most important ones:

FID ObjectID CITY_NAME GMI_ADMIN ADMIN_NAME FIPS_CNTRY CNTRY_NAM

0 1001 1500 Koszalin POL-KSZ Koszalin PL Polan

1 1002 1200 Erzurum TUR-ERR Erzurum TU Turke

2 1003 1000 Jendouba TUN-JND Jundubah TS Tunis

3 1004 1501 Szczecin POL-SZC Szczecin PL Polan

4 1005 1600 Rimnicu
Vilcea ROM-VIL Vilcea RO Roman

... ... ... ... ... ... ... .

2535 996 395 St. Anns Bay JAM-SAN Saint Ann JM Jamaic

2536 997 396 Port Maria JAM-SMA Saint Mary JM Jamaic

2537 998 397 Port Antonio JAM-PRT Portland JM Jamaic

2538 999 398 Spanish
Town JAM-SCT Saint

Catherine JM Jamaic

2539 1000 399 May Pen JAM-CLR Clarendon JM Jamaic

2540 rows × 14 columns

https://hub.arcgis.com/datasets/6996f03a1b364dbab4008d99380370ed_0


In [35]:

cities_gdf = cities_gdf[['CITY_NAME', 'CNTRY_NAME', 'STATUS', 'POP', 'geometry'
]] 
display(cities_gdf) 

Plot the cities:

In [36]:

cities_gdf.plot(color='red', markersize=3, figsize=[20,10]) 
plt.show() 

Verify whether both datasets use the same coordinate reference system:

In [37]:

print(cities_gdf.crs) 
print(countries_gdf.crs) 

CITY_NAME CNTRY_NAME STATUS POP geometry

0 Koszalin Poland Provincial capital 107450 POINT (16.18500 54.18600)

1 Erzurum Turkey Provincial capital 420691 POINT (41.29200 39.90400)

2 Jendouba Tunisia Provincial capital 51408 POINT (8.75000 36.50000)

3 Szczecin Poland Provincial capital 407811 POINT (14.53100 53.43800)

4 Rimnicu Vilcea Romania Provincial capital 107558 POINT (24.38300 45.11000)

... ... ... ... ... ...

2535 St. Anns Bay Jamaica Provincial capital -999 POINT (-77.19952 18.43264)

2536 Port Maria Jamaica Provincial capital 7906 POINT (-76.90000 18.37700)

2537 Port Antonio Jamaica Provincial capital -999 POINT (-76.38000 18.15900)

2538 Spanish Town Jamaica Provincial capital 145018 POINT (-76.95200 17.99500)

2539 May Pen Jamaica Provincial capital 44755 POINT (-77.24300 17.96900)

2540 rows × 5 columns

epsg:4326 
epsg:4326 



Would be they different, geopandas would also be capable to transform one of the dataframes to the other
CRS:

cities_gdf = cities_gdf.to_crs(countries_gdf.crs) 

Create a combined visualization of multiple layers, by simply calling the plot()  method on all
GeoDataFrames, but drawing them on the same axis object.

In [38]:

base = countries_gdf.plot(color='white', edgecolor='black', figsize=[20, 10]) 
cities_gdf.plot(ax=base, color='red', markersize=3) 
plt.show() 

Basemaps (optional)

Contextily (https://contextily.readthedocs.io/en/latest/) is a Python package to retrieve tile maps from the
internet. It can add those tiles as basemap to matplotlib figures.

How to install contextily?

conda install -c conda-forge contextily

How to install contextily?

The contextily package is also a module which you can simply import. It is usually aliased with the ctx
abbreviation.

import contextily as ctx 

The basemap tiles are in the Web Mercator (EPSG:3857) projection. To use them, we must convert our
dataset to this CRS first.

https://contextily.readthedocs.io/en/latest/


In [39]:

import contextily as ctx 

# Convert dataset to Web Mercator (EPSG:3857) 
cities_mercator = cities_gdf.to_crs('epsg:3857') 

ax = cities_mercator.plot(figsize=[20, 10], color='red', markersize=3) 
ctx.add_basemap(ax) 
ax.set_axis_off() 
plt.show() 

The same journey can be travelled in the opposite direction by leaving your data untouched and warping the
tiles coming from the web.

In [40]:

import contextily as ctx 

ax = cities_gdf.plot(figsize=[20, 10], color='red', markersize=3) 
ctx.add_basemap(ax, crs=cities_gdf.crs) 
ax.set_axis_off() 
plt.show() 

Note: it is also possible to convert both dataset and the basemap tiles into a different, third CRS.



Clipping operation

Geopandas offers a coordinate indexer ( cx ), which can be used to select only the records which geometry
overlaps with the selected region.

Let's select and plot the countries in the northern hemisphere.

In [41]:

northern_gdf = countries_gdf.cx[:, 0:] 
northern_gdf.plot(figsize=[20, 10]) 
plt.show() 

Note: with this approach countries overlapping both the northern and southern hemispheres are not clipped.

We can perform real clipping with the clip()  function of geopandas. As a showcase let's clip the countries
and country parts inside the bounding box of Europe; defined with the following polygon (given in WKT
format): 
POLYGON ((-10 35, 40 35, 40 70, -10, 70, -10, 35)) .

Geopandas uses the Shapely library in the background to represent and manipulate vector data. Therefore,
first we define a regular pandas DataFrame named europe_df , where the Coordinates column will contain
a polygon defined with Shapely.



In [42]:

import pandas as pd 
from shapely.geometry import Polygon 

europe_df = pd.DataFrame({ 
   'Name': ['Europe'], 
   'Coordinates': [Polygon([(-10, 35), (40, 35), (40, 70), (-10, 70), (-10, 35
)])] 
   # the polygon is defined as a closed line 
}) 
display(europe_df) 

Now our GeoDataFrame can be constructed from the DataFrame stored in europe_df , by defining which
Series (column) contains the geometries and the CRS. (Use the CRS of the countries dataset.)

In [43]:

europe_gdf = gpd.GeoDataFrame(europe_df, geometry='Coordinates', crs=countries_g
df.crs) 
display(europe_gdf) 

Finally, we can perform the clipping operation between the GeoDataFrames:

Name Coordinates

0 Europe POLYGON ((-10 35, 40 35, 40 70, -10 70, -10 35))

Name Coordinates

0 Europe POLYGON ((-10.00000 35.00000, 40.00000 35.0000...



In [44]:

clipped_gdf = gpd.clip(countries_gdf, europe_gdf) 
clipped_gdf.plot(figsize=[10, 10]) 
plt.show() 



Attribute join

In an attribute join, a GeoDataFrame (or a GeoSeries) is combined with a regular pandas DataFrame or
Series based on a common variable. (This is analogous to normal merging or joining in pandas.)

Let's read the European countries datatset from the data/countries_europe.csv  file, which we used
in Chapter 9 (09_tabular.pdf). The dataset contains the country name, capital city name, area (in km ),
population (in millions) and the region data for 43 European countries respectively. 
Data source: EuroStat (https://ec.europa.eu/eurostat/)
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In [45]:

countries_europe = pd.read_csv('../data/countries_europe.csv', delimiter = ';') 
display(countries_europe) 

The attribute join can be performed with the merge()  method, defining the columns used for merging. (Or
alternatively left_index  and right_index .)

In [46]:

countries_merged = countries_gdf.merge(countries_europe, left_on='NAME', right_o
n='Country') 
display(countries_merged) 

Spatial join

The spatial join ( sjoin() ) function of geopandas performs a spatial intersection check between the
records of one or two GeoDataFrames. (The rtree package must be installed for spatial indexing support.)

Let's match the countries and cities based on their spatial location:

Country Capital Area (km2) Population (millions) Region

0 Albania Tirana 28748 3.20 Southern

1 Andorra Andorra la Vella 468 0.07 Western

2 Austria Vienna 83857 7.60 Western

3 Belgium Brussels 30519 10.00 Western

4 Bosnia and Herzegovina Sarajevo 51130 4.50 Southern

... ... ... ... ... ...

38 Sweden Stockholm 449964 8.50 Northern

39 Serbia Belgrade 66577 7.20 Southern

40 Slovakia Bratislava 49035 5.30 Central

41 Slovenia Ljubljana 20250 2.00 Southern

42 Ukraine Kiev 603700 51.80 Eastern

file:///converted/book/pdf/09_tabular.pdf
https://ec.europa.eu/eurostat/


In [47]:

display(gpd.sjoin(countries_gdf, cities_gdf)) 

Limit the number of columns displayed to get an output easier to interpret:

In [48]:

display(gpd.sjoin(countries_gdf, cities_gdf)[['NAME', 'CITY_NAME']]) 

Select the cities inside Hungary for a quick verification of the results:

NAME CITY_NAME

0 Indonesia Jayapura

0 Indonesia Kupang

0 Indonesia Denpasar

0 Indonesia Mataram

0 Indonesia Yogyakarta

... ... ...

246 Bahrain Sitrah

246 Bahrain Ar Rifa

246 Bahrain Jidd Hafs

246 Bahrain Manama

250 Macao Macau

2487 rows × 2 columns



In [49]:

condition = countries_gdf['NAME'] == 'Hungary' 
hungary_gdf = countries_gdf[condition] 
display(gpd.sjoin(hungary_gdf, cities_gdf)[['NAME', 'CITY_NAME']]) 

Perform a spatial intersection check between the dataframe containing only Hungary ( hungary_gdf ) and
the dataframe containing all countries ( countries_gdf ). The result shall be the neighbouring countries of
Hungary.

NAME CITY_NAME

75 Hungary Pecs

75 Hungary Szeged

75 Hungary Szekszard

75 Hungary Kaposvar

75 Hungary Bekescsaba

75 Hungary Zalaegerszeg

75 Hungary Kecskemet

75 Hungary Veszprem

75 Hungary Szolnok

75 Hungary Szekesfehervar

75 Hungary Szombathely

75 Hungary Budapest

75 Hungary Debrecen

75 Hungary Tatabanya

75 Hungary Gyor

75 Hungary Eger

75 Hungary Nyiregyhaza

75 Hungary Salgotarjan

75 Hungary Miskolc



In [50]:

display(gpd.sjoin(hungary_gdf, countries_gdf)[['NAME_left', 'NAME_right']]) 

Remark: the NAME  column was renamed to NAME_left  and NAME_right  automatically, since column
names must be unique.

Writing spatial data

GeoDataFrames can be easily persisted with the to_file()  function. As when reading files, various file
formats are supported again.

In [51]:

clipped_gdf.to_file('11_clipped.shp') 
#clipped_gdf.to_file('11_clipped2.geojson', driver='GeoJSON') 

Summary exercises on vector data management

Beside the countries_gdf  GeoDataFrame, read the 
data/ne_10m_rivers_lake_centerlines.shp  shapefile located in the data  folder. This dataset

contains both scalar and spatial data of the larger rivers and lakes around the world. 
Source: Natural Earth (https://www.naturalearthdata.com/downloads/10m-physical-vectors/)

NAME_left NAME_right

75 Hungary Romania

75 Hungary Ukraine

75 Hungary Serbia

75 Hungary Croatia

75 Hungary Slovenia

75 Hungary Hungary

75 Hungary Austria

75 Hungary Slovakia

https://www.naturalearthdata.com/downloads/10m-physical-vectors/


In [52]:

rivers_gdf = gpd.read_file('../data/ne_10m_rivers_lake_centerlines.shp') 
display(rivers_gdf) 

Exercise 1

Visualize the country boundaries and the river/lake layers on the same map. (Rivers and lakes shall be blue.)

dissolve scalerank featurecla name name_alt rivernum note min_zoom n

0 0River 1.0 River Irrawaddy
Delta None 0 None 2.0 I

1 1001Lake
Centerline 9.0 Lake

Centerline
Tonle

Sap None 1001 None 7.1

2 1001River 9.0 River Tonle
Sap None 1001 None 7.1

3 1002Lake
Centerline 9.0 Lake

Centerline Sheksna None 1002 None 7.1

4 1002River 9.0 River Sheksna None 1002 None 7.1

... ... ... ... ... ... ... ... ...

1449 2050Lake
Centerline 10.0 Lake

Centerline Tekapo None 2050 None 7.2

1450 2049Lake
Centerline 10.0 Lake

Centerline Ohau None 2049 None 7.2

1451 219River 6.0 River Po None 219 Version
4 edit 5.0

1452 178River 5.0 River Loire None 178 Changed
in 4.0 4.7

1453 303Drau 7.0 River Drau Drava 303 None 6.0

1454 rows × 35 columns



In [53]:

base = countries_gdf.plot(color='white', edgecolor='black', figsize=[20, 10]) 
rivers_gdf.plot(ax=base, color='blue') 
plt.show() 

Exercise 2

Visualize only Hungary (on any preferred country) and the rivers flowing through it.

In [54]:

hungary_gdf = countries_gdf[countries_gdf['NAME'] == 'Hungary'] 
hungary_rivers = gpd.sjoin(rivers_gdf, hungary_gdf) 

base = hungary_gdf.plot(color='white', edgecolor='black', figsize=[20, 10]) 
hungary_rivers.plot(ax=base, color='blue') 
plt.show() 

With clipping to country boundaries:



In [55]:

hungary_rivers = gpd.clip(hungary_rivers, hungary_gdf) 

base = hungary_gdf.plot(color='white', edgecolor='black', figsize=[20, 10]) 
hungary_rivers.plot(ax=base, color='blue') 
plt.show() 

Exercise 3

Determine for the river Danube (or any major river) that which countries it flows through.

Hint: the river might consist of multiple line segments in the river dataset, but you can filter all of them by e.g.
the name_en  field.



In [56]:

danube_gdf = rivers_gdf[rivers_gdf['name_en'] == 'Danube'] 
display(danube_gdf) 

danube_countries = gpd.sjoin(danube_gdf, countries_gdf) 
display(danube_countries[['NAME']]) 

Process the Shapely objects in a GeoDataFrame

The data/hungary_admin_8.shp  shapefile contains the city level administrative boundaries of Hungary. 
Data source: OpenStreetMap (https://data2.openstreetmap.hu/hatarok/)

Load the dataset into a GeoDataFrame, set the NAME  column as index and convert it to the EOV coordinate
reference system.

NAME

389 Bulgaria

389 Romania

389 Ukraine

389 Serbia

389 Croatia

389 Hungary

389 Slovakia

566 Slovakia

566 Austria

566 Germany

dissolve scalerank featurecla name name_alt rivernum note min_zoom name_e

389 25River 2.0 River Danube None 25 None 2.1 Danub

566 38River 2.0 River Donau Danube 38 None 2.1 Danub

2 rows × 35 columns

https://data2.openstreetmap.hu/hatarok/


In [57]:

import geopandas as gpd 

cities_admin = gpd.read_file('../data/hungary_admin_8.shp') 
print("Initial CRS: {0}".format(cities_admin.crs)) 

cities_admin.set_index('NAME', inplace=True) 
cities_admin.to_crs('epsg:23700', inplace=True) # EOV 
print("Converted CRS: {0}".format(cities_admin.crs)) 

display(cities_admin) 

Process all the rows in the GeoDataFrame and display only the counties with an area larger than 200 km :2

Initial CRS: epsg:3857 
Converted CRS: epsg:23700 

ADMIN_LEVE geometry

NAME

Murakeresztúr 8 POLYGON ((480939.034 114618.287, 480958.625 11...

Tótszerdahely 8 POLYGON ((473882.976 118474.207, 474009.733 11...

Molnári 8 POLYGON ((477975.454 117130.010, 478008.561 11...

Semjénháza 8 POLYGON ((480316.699 120040.067, 480358.723 12...

Felsőszölnök 8 POLYGON ((426404.582 173622.019, 426532.558 17...

... ... ...

Milota 8 POLYGON ((924402.526 310431.812, 924402.529 31...

Tiszabecs 8 POLYGON ((927957.308 311701.481, 928042.039 31...

Garbolc 8 POLYGON ((933756.183 296547.014, 933798.205 29...

Magosliget 8 POLYGON ((931597.406 308102.976, 931640.122 30...

Beregdaróc 8 POLYGON ((904890.259 323808.371, 905059.726 32...

3174 rows × 2 columns



In [58]:

for name, row in cities_admin.iterrows(): 
   geom = row['geometry'] 
   if geom.area / 1e6 >= 200: 
       print('{0}, Area: {1:.1f} km2, Centroid: {2}'.format(name, geom.area / 1
e6, geom.centroid)) 

The EOV coordinates (653812, 239106)  are inside the territory of Budapest. Check whether really on
this administrative unit contains this location.

In [59]:

pos_budapest = geometry.Point(653812, 239106) 
for name, row in cities_admin.iterrows(): 
   geom = row['geometry'] 

   if geom.contains(pos_budapest): 
       print(name) 

Kiskunhalas, Area: 227.6 km2, Centroid: POINT (682217.376155288 1208
89.7788700489) 
Kecskemét, Area: 321.2 km2, Centroid: POINT (698210.8659972923 17416
4.1829904111) 
Budapest, Area: 526.1 km2, Centroid: POINT (654536.6170633805 23778
9.4103324989) 
Szeged, Area: 281.1 km2, Centroid: POINT (734457.1375727949 101202.7
389595481) 
Makó, Area: 229.2 km2, Centroid: POINT (764616.0567523418 105196.522
2338889) 
... 
Hajdúböszörmény, Area: 370.7 km2, Centroid: POINT (830010.1918890307 
265122.9472381996) 
Debrecen, Area: 461.5 km2, Centroid: POINT (847107.7868464794 24624
5.2987919257) 
Miskolc, Area: 236.6 km2, Centroid: POINT (773057.0858664612 306776.
8422291108) 
Hajdúnánás, Area: 259.6 km2, Centroid: POINT (824141.1866937836 2813
10.831795416) 
Nyíregyháza, Area: 274.5 km2, Centroid: POINT (848770.9471192813 291
701.487003606) 

Budapest 



Chapter 12: Spatial data management - raster
formats

Rasterio (https://rasterio.readthedocs.io/en/latest/) is a highly useful module for raster processing which you
can use for reading and writing several raster formats in Python.

How to install rasterio?
We need to install the rasterio  package.

Anaconda - Platform independent

If you have Anaconda installed, open the Anaconda Prompt and type in:

conda install -c conda-forge rasterio

Python Package Installer (pip) - Linux

If you have standalone Python3 and Jupyter Notebook install on Linux, open a command prompt / terminal
and type in:

pip3 install rasterio

Python Package Installer (pip) - Windows

The installation of rasterio is much more complicated with pip on Windows, because it depends on the GDAL
library, for which the binaries must be installed separately or compiled from source. An easier approach is to
install these packages from Python binary wheel files (https://www.lfd.uci.edu/~gohlke/pythonlibs/).

Due to its complexity these options are only recommended for advanced Python users and it is strongly
advised to use Anaconda on Windows.

How to use rasterio?
The rasterio package is also a module which you can simply import.

import rasterio 

Opening a dataset

The open()  function takes a path string or path-like object and returns an opened dataset object. The path
may point to a file of any supported raster format.

https://rasterio.readthedocs.io/en/latest/
https://www.lfd.uci.edu/~gohlke/pythonlibs/


The data/LC08_L1TP_188027_20200420_20200508_01_T1_Szekesfehervar.tif  file is a
segment of a Landsat 8 satellite image of Székesfehérvár city, Lake Velence and their surroundings,
acquired on 2020 April 20.

In [1]:

import rasterio 
szfv_2020 = rasterio.open('../data/LC08_L1TP_188027_20200420_20200508_01_T1_Szek
esfehervar.tif') 

Dataset objects have some attributes regarding the opened file:

In [2]:

print(szfv_2020.name) 
print(szfv_2020.mode) # by default the file is opened in read mode 
print(szfv_2020.closed) # will be True after closed() called 

Properties of the raster data stored in the example GeoTIFF can be accessed through attributes of the
opened dataset object.

In [3]:

print(szfv_2020.count) # band count 
print(szfv_2020.width) # dimensions 
print(szfv_2020.height) 

Dataset georeferencing

A GIS raster dataset is different from an ordinary image; its elements (or “pixels”) are mapped to regions on
the earth’s surface. All pixels of a dataset is contained within a spatial bounding box.

In [4]:

print(szfv_2020.bounds) 

Our example covers the world from 296745 meters to 328455 meters left to right, and 5221185 meters to
5240535 meters bottom to top. Therefore, it covers a region 31.71 kilometers wide by 19.35 kilometers high.

The value of bounds  attribute is derived from a more fundamental attribute: the dataset’s geospatial
transform.

../data/LC08_L1TP_188027_20200420_20200508_01_T1_Szekesfehervar.tif 
r 
False 

11 
1057 
645 

BoundingBox(left=296745.0, bottom=5221185.0, right=328455.0, top=524
0535.0) 



In [5]:

print(szfv_2020.transform) 

A dataset’s transform  is an affine transformation matrix that maps pixel locations in (row, col) coordinates
to (x, y) spatial positions. The product of this matrix and (0, 0) , the row and column coordinates of the
upper left corner of the dataset, is the spatial position of the upper left corner.

In [6]:

print(szfv_2020.transform * (0, 0)) 

The position of the lower right corner is obtained similarly.

In [7]:

print(szfv_2020.transform * (szfv_2020.width, szfv_2020.height)) 

But what do these numbers mean? 296745 meters from where? These coordinate values are relative to the
origin of the dataset’s coordinate reference system (CRS).

In [8]:

print(szfv_2020.crs) 

All metadata for the whole raster dataset can be displayed easily if desired:

In [9]:

print(szfv_2020.meta) 

Reading raster data

Data from a raster band can be accessed by the band’s index number. Following the GDAL (https://gdal.org/)
convention (on which library Rasterio depends on), bands are indexed from 1.

| 30.00, 0.00, 296745.00| 
| 0.00,-30.00, 5240535.00| 
| 0.00, 0.00, 1.00| 

(296745.0, 5240535.0) 

(328455.0, 5221185.0) 

EPSG:32634 

{'driver': 'GTiff', 'dtype': 'uint16', 'nodata': None, 'width': 105
7, 'height': 645, 'count': 11, 'crs': CRS.from_epsg(32634), 'transfo
rm': Affine(30.0, 0.0, 296745.0, 
      0.0, -30.0, 5240535.0)} 

https://gdal.org/


In [10]:

print(szfv_2020.indexes) 

Landsat 8 satellite images contain 11 bands, in the following order:

Band Number Description Wavelength Resolution

Band 1 Coastal / Aerosol 0.433 to 0.453 µm 30 meter

Band 2 Visible blue 0.450 to 0.515 µm 30 meter

Band 3 Visible green 0.525 to 0.600 µm 30 meter

Band 4 Visible red 0.630 to 0.680 µm 30 meter

Band 5 Near-infrared 0.845 to 0.885 µm 30 meter

Band 6 Short wavelength infrared 1.56 to 1.66 µm 30 meter

Band 7 Short wavelength infrared 2.10 to 2.30 µm 60 meter

Band 8 Panchromatic 0.50 to 0.68 µm 15 meter

Band 9 Cirrus 1.36 to 1.39 µm 30 meter

Band 10 Long wavelength infrared 10.3 to 11.3 µm 100 meter

Band 11 Long wavelength infrared 11.5 to 12.5 µm 100 meter

We can read the bands of a dataset with the read()  method:

In [11]:

red = szfv_2020.read(4) 
green = szfv_2020.read(3) 
blue = szfv_2020.read(2) 

Bands are simply 2D mathematical matrices stored as multi-dimensional NumPy arrays. NumPy
(https://numpy.org/) is a first-rate library for numerical programming. It is widely used in academia, finance
and also in the industry.

Not only Rasterio, but the already introduced Pandas library (see Chapter 9 (09_tabular.pdf)) is also built on
top of NumPy, providing high-performance, easy-to-use data structures and data analysis tools, making data
manipulation and visualization more convenient.

In [12]:

print(type(red)) 
print(red) 

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) 

<class 'numpy.ndarray'> 
[[10341 11341 11207 ...  9396 10034  9787] 
[10870  9897  8611 ...  9519  9783 10904] 
[ 9462  8245  7742 ...  9874  9893 10182] 
... 
[ 8764  9336  9138 ...  9509  9379  9034] 
[ 7363  8361  9568 ... 10178 10898  8784] 
[ 7153  7760  9294 ...  9827 10491  8794]] 

https://numpy.org/
file:///converted/book/pdf/09_tabular.pdf


For a NumPy array we can easily get the range and the mean of the values:

In [13]:

print(red.min()) 
print(red.max()) 
print(red.mean()) 

Values from the array can be addressed by their row, column index.

In [14]:

print(red[500, 500]) # random position 

Plotting

Since Rasterio reads raster data into mathematical matrices (numpy arrays), plotting a single band as two-
dimensional data can be accomplished directly with matplotlib, as it also strongly depends on NumPy. For
detailed information on Numpy, see Appendix 2 (AX02_math.pdf).

In [15]:

import matplotlib.pyplot as plt 
%matplotlib inline 

plt.imshow(red) 
plt.colorbar() 
plt.show() 

In our case the data is not evenly distributed in the range , most values are below 16000. The
maximum and minimum value for visualization can be overridden with the vmax  and vmin  parameters.

[0, 65535]

6304 
55987 
8493.439567886295 

10245 

file:///converted/book/pdf/AX02_math.pdf


In [16]:

plt.imshow(red, vmax=16000) 
plt.colorbar() 
plt.show() 

Instead of using a static value (16000), calculate the 99.9% percentile of each bands to remove only the few
outliers (0.1%) from visualization.

In [17]:

import numpy as np 

red_max = np.percentile(red, 99.9) 
blue_max = np.percentile(blue, 99.9) 
green_max = np.percentile(green, 99.9) 
print(red_max) 
print(blue_max) 
print(green_max) 

Remark: here we use the numpy package directly to calculate the 99.9% percentile. NumPy is a module
which can be imported as usual and is aliased with the np  abbreviation in most cases.

The vmax  parameter can be defined as a dynamic value for the now:

16310.472000000067 
14844.236000000034 
15248.0 



In [18]:

plt.imshow(red, vmax=red_max) 
plt.colorbar() 
plt.show() 

Color maps can also be used with the cmap  parameter (see Chapter 11 (11_spatial_vector.pdf) for more
details).

In [19]:

plt.imshow(red, vmax=red_max, cmap='Reds') 
plt.colorbar() 
plt.show() 

Histogram

Create a histogram of the visible bands of the Landsat satellite image.

file:///converted/book/pdf/11_spatial_vector.pdf


First, create a pandas DataFrame from the 3 bands. The DataFrame shall contain 3 Series: one for each
band. The DataFrame shall contain as many rows as many pixels are in the image. To achieve this we flatten
the 2D matrices into 1D vectors. (For NumPy both of them are arrays, regardless of their dimensions.)

In [20]:

print("2D array:") 
print(red) 
print("Type: {0}, Size: {1}".format(type(red), red.size)) 
print() 
print("1D array:") 
red_vector = red.flatten() 
print(red_vector) 
print("Type: {0}, Size: {1}".format(type(red), red.size)) 

2D array: 
[[10341 11341 11207 ...  9396 10034  9787] 
[10870  9897  8611 ...  9519  9783 10904] 
[ 9462  8245  7742 ...  9874  9893 10182] 
... 
[ 8764  9336  9138 ...  9509  9379  9034] 
[ 7363  8361  9568 ... 10178 10898  8784] 
[ 7153  7760  9294 ...  9827 10491  8794]] 
Type: <class 'numpy.ndarray'>, Size: 681765 

1D array: 
[10341 11341 11207 ...  9827 10491  8794] 
Type: <class 'numpy.ndarray'>, Size: 681765 



In [21]:

import pandas as pd 

szfv_df = pd.DataFrame({ 
   'red': red.flatten(),     
   'blue': blue.flatten(),     
   'green': green.flatten() 
}) 
display(szfv_df) 
display(szfv_df.iloc[100000]) # random row 

Now we can create the histograms for the Series (or for the DataFrame to display it on a single plot), as we
have learned it in Chapter 10 (10_plotting.pdf).

red blue green

0 10341 10086 10072

1 11341 10607 10728

2 11207 10433 10688

3 8566 9440 9005

4 7705 8955 8736

... ... ... ...

681760 8517 9096 8383

681761 8338 9026 8247

681762 9827 9842 9359

681763 10491 10163 9789

681764 8794 9314 8599

681765 rows × 3 columns

red      7363 
blue     8577 
green    8090 
Name: 100000, dtype: uint16

file:///converted/book/pdf/10_plotting.pdf


In [22]:

szfv_df['red'].plot(kind='hist', bins=50, color='red', title='Histogram of the v
isible red band') 
plt.show() 
szfv_df['blue'].plot(kind='hist', bins=50, color='blue', title='Histogram of the
visible blue band') 
plt.show() 
szfv_df['green'].plot(kind='hist', bins=50, color='green', title='Histogram of t
he visible green band') 
plt.show() 

This visually verifies our previous conclusion that most values for the visible colour bands are below 16000.



Get the histogram of the "interesting" part:

In [23]:

szfv_df['red'].plot(kind='hist', bins=100, xlim=(0, 16000), color='red', title=
'Histogram of the visible red band') 
plt.show() 
szfv_df['blue'].plot(kind='hist', bins=100, xlim=(0, 16000), color='blue', title
='Histogram of the visible blue band') 
plt.show() 
szfv_df['green'].plot(kind='hist', bins=100, xlim=(0, 16000), color='green', tit
le='Histogram of the visible green band') 
plt.show() 

Multi-band plotting



Rasterio also provides rasterio.plot.show()  to perform common tasks such as displaying multi-band
images as RGB and labeling the axes with proper geo-referenced extents.

It can be used for a single band:

In [24]:

from rasterio.plot import show 

show(red, vmax=red_max) 
plt.show() 

For multiple bands to visualize in a true-color image, the values must be in the range of  or in the
float range of .

[0, 255]

[0, 1]

In [25]:

# astype('f4') is a numpy function to convert to float (4 byte) 
redf = red.astype('f4') / red_max 
bluef = blue.astype('f4') / blue_max 
greenf = green.astype('f4') / green_max 
rgb = [redf, greenf, bluef] 

In [26]:

show(rgb) 
plt.show() 

Clipping input data to the valid range for imshow with RGB data 
([0..1] for floats or [0..255] for integers). 



Increase the figure size:

In [27]:

plt.figure(figsize=[10,10]) 
show(rgb) 
plt.show() 

Example computation: NDVI

The Normalized Difference Vegetation Index
(https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index) is a simple indicator that can be used
to assess whether the target includes healthy vegetation. This calculation uses two bands of a multispectral
image dataset, the Red and Near-Infrared (NIR) bands.

Clipping input data to the valid range for imshow with RGB data 
([0..1] for floats or [0..255] for integers). 

https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index


In [28]:

nir = szfv_2020.read(5) 
plt.imshow(nir, vmax=2**15) 
plt.colorbar() 
plt.show() 

In [29]:

nir_max = np.percentile(nir, 99.9) 
print(nir_max) 
nirf = nir.astype('f4') / nir_max 

The value of NDVI can be calculated with a simple mathematical formula:

NDV I =
NIR − Red

NIR + Red

With Rasterio we can perform the computation on the bands themselves, which will apply the computation to
each pixel-pairs.

28102.0 



In [30]:

def calc_ndvi(nir, red): 
   ndvi = (nir - red) / (nir + red) 
   return ndvi 

ndvi = calc_ndvi(nirf, redf) 
plt.figure(figsize=[20, 20]) 
plt.imshow(ndvi, cmap='RdYlGn') 
plt.colorbar() 
plt.show() 

The value range of an NDVI is -1 to 1. Negative values of NDVI (values approaching -1) correspond to water.
Values close to zero (-0.1 to 0.1) generally correspond to barren areas of rock, sand, or snow. Low, positive
values represent shrub and grassland (approximately 0.2 to 0.4), while high values indicate temperate and
tropical rainforests (values approaching 1).

Summary exercise on raster data management

Exercise 1: NDVI change tracking

The data/LC08_L1TP_188027_20180501_20180516_01_T1_Szekesfehervar.tif  file is a
Landsat 8 satellite image from the same territory as the previous image, but acquired on 2018 May 1, so ca.
2 years earlier.



In [31]:

szfv_2018 = rasterio.open('../data/LC08_L1TP_188027_20180501_20180516_01_T1_Szek
esfehervar.tif') 

Task 1: Calculate the NDVI for the 2018 Landsat satellite image.

In [32]:

import numpy as np 
red2 = szfv_2018.read(4) 
red2_max = np.percentile(red2, 99.9) 
redf2 = red2.astype('f4') / red2_max 

nir2 = szfv_2018.read(5) 
nir2_max = np.percentile(nir2, 99.9) 
nirf2 = nir2.astype('f4') / nir2_max 

ndvi2 = calc_ndvi(nirf2, redf2) 
plt.figure(figsize=[20, 20]) 
plt.imshow(ndvi2, cmap='RdYlGn') 
plt.colorbar() 
plt.show() 

Task 2: Compute the NDVI difference of the time interval and visaulize it.

Display the metadata of the 2 satellite images to compare them.



In [33]:

print(szfv_2020.meta) 
print(szfv_2018.meta) 

Compute and visualize the NDVI difference:

In [34]:

ndvi_diff = ndvi - ndvi2 
plt.figure(figsize=[20, 20]) 
plt.imshow(ndvi_diff, cmap='bwr') 
plt.colorbar() 
plt.show() 

Exercise 2: Processing larger images

{'driver': 'GTiff', 'dtype': 'uint16', 'nodata': None, 'width': 105
7, 'height': 645, 'count': 11, 'crs': CRS.from_epsg(32634), 'transfo
rm': Affine(30.0, 0.0, 296745.0, 
      0.0, -30.0, 5240535.0)} 
{'driver': 'GTiff', 'dtype': 'uint16', 'nodata': None, 'width': 105
7, 'height': 645, 'count': 11, 'crs': CRS.from_epsg(32634), 'transfo
rm': Affine(30.0, 0.0, 296745.0, 
      0.0, -30.0, 5240535.0)} 



The LC08_L1TP_188027_20200420_20200508_01_T1  file is a complete Landsat 8 satellite image tile,
containing Budapest and parts of Western-Hungary, acquired on 2020 April 20. 
Download: https://gis.inf.elte.hu/files/public/landsat-budapest-2020 (https://gis.inf.elte.hu/files/public/landsat-
budapest-2020) (1.4 GB)

Task 1: create and RGB visualization for the complete satellite image.

In [35]:

bp_2020 = rasterio.open('LC08_L1TP_188027_20200420_20200508_01_T1.tif') 

bp_red = bp_2020.read(4) 
bp_green = bp_2020.read(3) 
bp_blue = bp_2020.read(2) 

bp_red_max = np.percentile(bp_red, 99.9) 
bp_blue_max = np.percentile(bp_blue, 99.9) 
bp_green_max = np.percentile(bp_green, 99.9) 

bp_redf = bp_red.astype('f4') / bp_red_max 
bp_bluef = bp_blue.astype('f4') / bp_blue_max 
bp_greenf = bp_green.astype('f4') / bp_green_max 
bp_rgb = [bp_redf, bp_greenf, bp_bluef] 

plt.figure(figsize=[10,10]) 
show(bp_rgb) 
plt.show() 

Clipping input data to the valid range for imshow with RGB data 
([0..1] for floats or [0..255] for integers). 

https://gis.inf.elte.hu/files/public/landsat-budapest-2020


Task 2: calculate the NDVI for the complete satellite image.

In [36]:

bp_nir = bp_2020.read(5) 
bp_nir_max = np.percentile(bp_nir, 99.99) 
bp_nirf = bp_nir.astype('f4') / bp_nir_max 

bp_ndvi = calc_ndvi(bp_nirf, bp_redf) 
plt.figure(figsize=[20, 20]) 
plt.imshow(bp_ndvi, cmap='RdYlGn') 
plt.colorbar() 
plt.show() 

<ipython-input-30-43374d61fc32>:2: RuntimeWarning: invalid value enc
ountered in true_divide 
 ndvi = (nir - red) / (nir + red) 



Chapter 13: Graph construction and management in
Python

NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and
functions of complex networks. It is usually imported with the nx abbreviation.

How to install networkx?

We need to install the networkx package. 
Note: if you have installed geopandas, you most likely also installed networkx already, as one of its
dependency.

Anaconda - Platform independent

If you have Anaconda installed, open the Anaconda Prompt and type in:

conda install -c conda-forge networkx

Python Package Installer (pip) - Linux

If you have standalone Python3 and Jupyter Notebook install on Linux, open a command prompt / terminal
and type in:

pip3 install networkx

How to use networkx?

The netwrokx package is a module which you can simply import. It is usually aliased with the nx
abbreviation:

import networkx as nx 

Graph creation
NetworkX supports 4 type of graphs:

undirected, simple graphs: Graph
directed simple graphs: DiGraph
undirected graph with parallel edges: MultiGraph
directed graph with parallel edges: MultiDiGraph



Creation of a new, empty graph is straightforward:

In [1]:

import networkx as nx 
graph = nx.Graph() # undirected, simple graph 

Representation

To represent the graphs, two data structures as very common practices are well-known. One has a purely
arithmetic representation (adjacency matrix), and the other has a mixed arithmetic and chain representation
(edge list or neighborhood list).

Adjacency matrix representation

In graph theory and computer science, an adjacency matrix is a square matrix. Its elements indicate whether
pairs of vertices are adjacent in the graph or not.



Edge list representation

The edge list is a data structure used to represent a graph as a list of its edges for each vertices. The internal
data structures of NetworkX is based on the adjacency list representation and implemented using Python
dictionary data structures.

Building a graph from scratch

We can add nodes and edges to a graph:

In [2]:

graph.add_node(1) 
graph.add_node(2) 
graph.add_node(3) 
graph.add_node(4) 
graph.add_node(5) 
graph.add_node(6) 
graph.add_node(7) 
graph.add_node(8) 



In [3]:

graph.add_edge(1, 2) 
graph.add_edge(1, 3) 
graph.add_edge(1, 4) 
graph.add_edge(2, 3) 
graph.add_edge(2, 5) 
graph.add_edge(2, 6) 
graph.add_edge(3, 6) 
graph.add_edge(4, 5) 
graph.add_edge(4, 7) 

Adding an edge to a non-existing node will also create that particular node:

In [4]:

graph.add_edge(1, 9) 

Graph visualization with Matplotlib

NetworkX has tight integration with matplotlib, therefore visualization of a graph can be done easily.

In [5]:

import matplotlib.pyplot as plt 

# Special Jupyter Notebook command, so the plots by matplotlib will be displayed
inside the Jupyter Notebook 
%matplotlib inline 

nx.draw_networkx(graph) 
plt.show() 

Building a graph from a pandas DataFrame



Let's use the following basic dataset of airroutes flight data:

1. From city
2. To city
3. Distance

The dataset is given in the flights.csv  file in the data  folder. The used delimiter is the semicolon ( ; )
character.

Parse the CSV file into a pandas DataFrame:

In [6]:

import pandas as pd 

flight_table = pd.read_csv('../data/flights.csv', delimiter = ';') 
display(flight_table) 

NetworkX has a from and to conversion for pandas DataFrames. Assuming all airroutes are bi-directional,
build an undirected graph:

From city To city Distance

0 London Paris 342

1 London Berlin 932

2 London Oslo 1153

3 Paris Zurich 488

4 Paris Budapest 1244

... ... ... ...

27 Athens Istanbul 562

28 Kiev Istanbul 1056

29 Istanbul Moscow 1755

30 Rome Athens 1051

31 Kiev Moscow 755



In [7]:

flight_graph = nx.from_pandas_edgelist(flight_table, 'From city', 'To city') 
plt.figure(figsize=[15,8]) 
nx.draw_networkx(flight_graph, node_color = 'lightgreen') 
plt.show() 

You can define the type of the graph with the optional create_using  parameter. Its default value is 
Graph .

nx.from_pandas_edgelist(flight_table, 'From city', 'To city', create_usin

g = nx.DiGraph) 

Building a graph from a CSV file (optional)

As an alternative solution a CSV file can be processed line-by-line with the built-in csv Python package:



In [8]:

import csv 

flight_graph = nx.Graph() 

csv_file = open('../data/flights.csv') 
csv_reader = csv.reader(csv_file, delimiter=';') 
next(csv_reader, None) # skip header line 
for row in csv_reader: 
   print('Reading flight {0} <=> {1}, distance: {2}km'.format(row[0], row[1], r
ow[2])) 
   flight_graph.add_edge(row[0], row[1]) 
csv_file.close() 

plt.figure(figsize=[15,8]) 
nx.draw_networkx(flight_graph, node_color = 'lightgreen') 
plt.show() 

Closing an opened file is easy to forget and a common programmer mistake. Use the with  statement,
which will automatically close the file (if it was successfully opened):

Reading flight London <=> Paris, distance: 342km 
Reading flight London <=> Berlin, distance: 932km 
Reading flight London <=> Oslo, distance: 1153km 
Reading flight Paris <=> Zurich, distance: 488km 
Reading flight Paris <=> Budapest, distance: 1244km 
... 
Reading flight Athens <=> Istanbul, distance: 562km 
Reading flight Kiev <=> Istanbul, distance: 1056km 
Reading flight Istanbul <=> Moscow, distance: 1755km 
Reading flight Rome <=> Athens, distance: 1051km 
Reading flight Kiev <=> Moscow, distance: 755km 



In [9]:

flight_graph = nx.Graph() 

with open('../data/flights.csv') as csv_file: 
   csv_reader = csv.reader(csv_file, delimiter=';') 
   next(csv_reader, None) # skip header line 
   for row in csv_reader: 
       #print('Reading flight {0} <=> {1}, distance: {2}km'.format(row[0], row
[1], row[2])) 
       flight_graph.add_edge(row[0], row[1]) 

plt.figure(figsize=[15,8]) 
nx.draw_networkx(flight_graph, node_color = 'lightgreen') 
plt.show() 

Analyzing the graph

Querying the size and degree information

In [10]:

print('Number of nodes: {0}'.format(flight_graph.order())) 
print('Number of edges:{0}'.format(flight_graph.size())) 
print('Degrees of the nodes: {0}'.format(flight_graph.degree())) 

Number of nodes: 18 
Number of edges:32 
Degrees of the nodes: [('London', 3), ('Paris', 5), ('Berlin', 5), 
('Oslo', 2), ('Zurich', 3), ('Budapest', 5), ('Rome', 4), ('Madrid', 
3), ('Athens', 3), ('Stockholm', 4), ('Helsinki', 3), ('Moscow', 5), 
('Prague', 3), ('Hamburg', 4), ('Munchen', 3), ('Wien', 3), ('Istanb
ul', 4), ('Kiev', 2)] 



For directed graphs, there is also in_degree  and out_degree  defined.

Iterate through the nodes

In [11]:

for node in flight_graph.nodes: 
   print(node) 

Note: iterating through the graph itself ( flight_graph ) is the same.

Iterate through the edges

In [12]:

for from_node, to_node in flight_graph.edges: 
   print("{0} <=> {1}".format(from_node, to_node)) 

Query the neighbors of a node

London 
Paris 
Berlin 
Oslo 
Zurich 
Budapest 
Rome 
Madrid 
Athens 
Stockholm 
Helsinki 
Moscow 
Prague 
Hamburg 
Munchen 
Wien 
Istanbul 
Kiev 

London <=> Paris 
London <=> Berlin 
London <=> Oslo 
Paris <=> Zurich 
Paris <=> Budapest 
... 
Moscow <=> Istanbul 
Moscow <=> Kiev 
Hamburg <=> Munchen 
Munchen <=> Wien 
Istanbul <=> Kiev 



In [13]:

for neighbor in flight_graph.neighbors('Budapest'): 
   print(neighbor) 

Pay attention that it is written as neighbors  (American English) and NOT neighbours  (British English).

Check node and edge existence

In [14]:

if flight_graph.has_node('Budapest'): 
   print('The Budapest node exists.') 
if flight_graph.has_edge('Budapest', 'Paris'): 
   print('The Budapest <=> Paris edge exists.') 

Weighted graphs

Attributes (metadata) can be assigned to the nodes and edges of a graph.

Building weighted graphs

When creating the graph from a pandas DataFrame, the 4  parameter of the from_pandas_edgelist
function defines which Series (columns) of the DataFrame shall be added to the edges as attributes. If 
True , all the remaining columns will be added. If None , no edge attributes are added to the graph. Its

default value is None .

th

Paris 
Berlin 
Wien 
Prague 
Moscow 

The Budapest node exists. 
The Budapest <=> Paris edge exists. 



In [15]:

flight_graph = nx.from_pandas_edgelist(flight_table, 'From city', 'To city', ['D
istance']) 
plt.figure(figsize=[15,8]) 
nx.draw_networkx(flight_graph, node_color = 'lightgreen') 
plt.show() 

Optional: when building a graph "manually", the node and edge attributes can be passed to the add_node
an add_edge  methods.

In [16]:

flight_graph = nx.Graph() 

with open('../data/flights.csv') as csv_file: 
   csv_reader = csv.reader(csv_file, delimiter=';') 
   next(csv_reader, None) # skip header line 
   for row in csv_reader: 
       print('Reading flight {0} <=> {1}, distance: {2}km'.format(row[0], row[1
], row[2])) 
       flight_graph.add_edge(row[0], row[1], dist = row[2]) 

Reading flight London <=> Paris, distance: 342km 
Reading flight London <=> Berlin, distance: 932km 
Reading flight London <=> Oslo, distance: 1153km 
Reading flight Paris <=> Zurich, distance: 488km 
Reading flight Paris <=> Budapest, distance: 1244km 
... 
Reading flight Athens <=> Istanbul, distance: 562km 
Reading flight Kiev <=> Istanbul, distance: 1056km 
Reading flight Istanbul <=> Moscow, distance: 1755km 
Reading flight Rome <=> Athens, distance: 1051km 
Reading flight Kiev <=> Moscow, distance: 755km 



Query the edge metadata

The metadata, called the weight of an edge can be queried then:

In [17]:

print('Metadata for the Budapest <=> Paris edge: {0}'.format(flight_graph['Budap
est']['Paris'])) 
print('Metadata for all edges from Budapest: {0}'.format(flight_graph['Budapest'
])) 

Further readings
Check out the official NetworkX tutorial (https://networkx.github.io/documentation/stable/tutorial.html).
Browse the official NetworkX reference
(https://networkx.github.io/documentation/stable/reference/index.html).

Metadata for the Budapest <=> Paris edge: {'dist': '1244'} 
Metadata for all edges from Budapest: {'Paris': {'dist': '1244'}, 'B
erlin': {'dist': '688'}, 'Wien': {'dist': '214'}, 'Prague': {'dist': 
'444'}, 'Moscow': {'dist': '1569'}} 

https://networkx.github.io/documentation/stable/tutorial.html
https://networkx.github.io/documentation/stable/reference/index.html


Breadth-first search
Breadth-first search (BFS) is an algorithm for traversing or searching a graph. It starts at some arbitrary node
of a graph, and explores all the neighbour nodes at the present depth prior to moving on to the nodes at the
next depth level.

The breadth-first search traversal can be implemented with a queue data structure (see Chapter 7
(07_collections.pdf#Queues)). 
As a showcase, let's request a starting city from the user and a number of maximum flights. Calculate which
cities can be reached! Handle the case of a not existing starting city.

file:///converted/book/pdf/07_collections.pdf#Queues


In [18]:

from collections import deque 

start_city = input('Start city: ') 
flight_count = int(input('Max number of flights: ')) 

# Check existence of start city 
if flight_graph.has_node(start_city): 
   ready_list = [] 
   process_queue = deque([(start_city, 0)]) 
    
   # Process until queue is empty 
   while len(process_queue) > 0: 
       # Move first item of process queue to ready list 
       process_item = process_queue.popleft() 
       process_city, process_dist = process_item  
       ready_list.append(process_item) 
        
       # NOTE: if process_dist > flight_count, we can halt the algorithm here,  
       # all reachable cities are in the ready list 
       #if process_dist > flight_count: 
       #    break 
        
       # "Expand" the processed node: add its neighbors to the process queue 
       for neighbor_city in flight_graph.neighbors(process_city): 
           # Only add neighbors which are not already in the ready list or the
process_queue 
           found = (neighbor_city in [city for city, dist in process_queue] or  
                    neighbor_city in [city for city, dist in ready_list]) 
            
           if not found: 
               process_queue.append((neighbor_city, process_dist + 1)) 
    
   # Display results 
   for city, dist in ready_list: 
       if dist <= flight_count: 
           print(city) 
else: 
   print('{0} city is unknown' % start_city) 

Budapest 
Paris 
Berlin 
Wien 
Prague 
... 
Stockholm 
Istanbul 
Kiev 
Oslo 
Athens 



NetworkX contains several traversal algorithms
(https://networkx.github.io/documentation/stable/reference/algorithms/traversal.html) out of the box, so we
don't need to reimplement them.

In [19]:

start_city = input('Start city: ') 
flight_count = int(input('Max number of flights: ')) 

# Check existence of start city 
if flight_graph.has_node(start_city): 
   reachable_cities = [ start_city ] 

   # Do breadth first search 
   successors = nx.bfs_successors(flight_graph, start_city, flight_count - 1) 
   for item in successors: 
       print('{0} -> {1}'.format(item[0], item[1])) 
       reachable_cities += item[1] 

   print('Reachable cities: {0}'.format(reachable_cities)) 
else: 
   print('{0} city is unknown'.format(start_city)) 

Budapest -> ['Paris', 'Berlin', 'Wien', 'Prague', 'Moscow'] 
Paris -> ['London', 'Zurich', 'Rome', 'Madrid'] 
Berlin -> ['Hamburg', 'Munchen'] 
Prague -> ['Helsinki'] 
Moscow -> ['Stockholm', 'Istanbul', 'Kiev'] 
Reachable cities: ['Budapest', 'Paris', 'Berlin', 'Wien', 'Prague', 
'Moscow', 'London', 'Zurich', 'Rome', 'Madrid', 'Hamburg', 'Munche
n', 'Helsinki', 'Stockholm', 'Istanbul', 'Kiev'] 

https://networkx.github.io/documentation/stable/reference/algorithms/traversal.html


Chapter 14: Graph algorithms I. - shortest path

The sample dataset for this lecture is given in the airports.csv  and airroutes.csv  files in the 
data  folder. (The column separator is the ;  character.)

The airports.csv  file contains information about (larger) airports all over the world:

1. IATA code (International Air Transport Association code, e.g. BUD for the Budapest Airport)
2. ICAO code (International Civil Aviation Organization code, e.g. LHBP for the Budapest Airport)
3. Name
4. Number of runways
5. Longest runway length (in foots)
6. Elevation (in foots)
7. Country
8. Country region
9. City

10. Latitude
11. Longitude

The airroutes.csv  consists of the direct flight relations between the airports, identifying them with
their IATA code. The distance of the airports / length of the flight route is also given (in miles). The flights
are directed, if there is a flight between both directions of two airports, then there will be two records in
the file, with opposite direction.

Reading the dataset

Read the airport data

First read the airports data into a pandas DataFrame.



In [1]:

import pandas as pd 

airports = pd.read_csv('../data/airports.csv', delimiter = ';') 
display(airports) 

Note: the length of the longest runway and the elevation is given in foots.

Lets set the column iata  as the index column, so each row of data will be accessible later by indexing the
airports with their IATA code.

iata icao name runways longest elevation country region city

0 ATL KATL

Hartsfield -
Jackson
Atlanta

International
Air...

5 12390 1026 US US-
GA Atlanta 33

1 ANC PANC Anchorage
Ted Stevens 3 12400 151 US US-AK Anchorage 61

2 AUS KAUS

Austin
Bergstrom

International
Airport

2 12250 542 US US-TX Austin 30

3 BNA KBNA
Nashville

International
Airport

4 11030 599 US US-TN Nashville 36

4 BOS KBOS Boston
Logan 6 10083 19 US US-

MA Boston 42

... ... ... ... ... ... ... ... ... ...

3459 LNL ZLLN Cheng Xian
Airport 1 9186 3707 CN CN-62 Longnan 33

3460 XAI ZHXY
Xinyang

Minggang
Airport

1 8858 4528 CN CN-41 Xinyang 32

3461 YYA ZGYY Sanhe
Airport 1 8530 230 CN CN-43 Yueyang 29

3462 BQJ UEBB Batagay
Airport 2 6562 699 RU RU-

SA Batagay 67

3463 DPT UEBD Deputatskij
Airport 1 7021 920 RU RU-

SA Deputatskij 69

3464 rows × 11 columns



In [2]:

airports.set_index('iata', inplace=True) 
display(airports) 

Reminder: the set_index  function can be configured to modify the index in place or return a new
Dataframe with the inplace  parameter (defaults to False ). It can also be configured to drop or keep the
index column with the drop  parameter (defaults to True ).

The information of the Budapest Airport can now be accessed both by numerical and associative (string)
indexing:

icao name runways longest elevation country region city la

iata

ATL KATL

Hartsfield -
Jackson
Atlanta

International
Air...

5 12390 1026 US US-
GA Atlanta 33.63670

ANC PANC Anchorage
Ted Stevens 3 12400 151 US US-AK Anchorage 61.17440

AUS KAUS

Austin
Bergstrom

International
Airport

2 12250 542 US US-TX Austin 30.19450

BNA KBNA
Nashville

International
Airport

4 11030 599 US US-TN Nashville 36.12450

BOS KBOS Boston
Logan 6 10083 19 US US-

MA Boston 42.36430

... ... ... ... ... ... ... ... ... .

LNL ZLLN Cheng Xian
Airport 1 9186 3707 CN CN-62 Longnan 33.78972

XAI ZHXY
Xinyang

Minggang
Airport

1 8858 4528 CN CN-41 Xinyang 32.54055

YYA ZGYY Sanhe
Airport 1 8530 230 CN CN-43 Yueyang 29.31250

BQJ UEBB Batagay
Airport 2 6562 699 RU RU-

SA Batagay 67.64777

DPT UEBD Deputatskij
Airport 1 7021 920 RU RU-

SA Deputatskij 69.39250

3464 rows × 10 columns



In [3]:

print('The Budapest airport by the numerical index:') 
print(airports.iloc[111]) 
print() 
print('The Budapest airport by the associative index:') 
print(airports.loc['BUD']) 

The number of runways the Budapest Airport can be fetched (or modified) now 4 possible ways:

In [4]:

print(airports.iloc[111]['runways']) 
print(airports.loc['BUD']['runways']) 
print(airports['runways'][111]) 
print(airports['runways']['BUD']) 

Read the airroutes data

The Budapest airport by the numerical index: 
icao                                                LHBP 
name         Budapest Ferenc Liszt International Airport 
runways                                                2 
longest                                            12162 
elevation                                            495 
country                                               HU 
region                                             HU-PE 
city                                            Budapest 
lat                                            47.436901 
lon                                              19.2556 
Name: BUD, dtype: object 

The Budapest airport by the associative index: 
icao                                                LHBP 
name         Budapest Ferenc Liszt International Airport 
runways                                                2 
longest                                            12162 
elevation                                            495 
country                                               HU 
region                                             HU-PE 
city                                            Budapest 
lat                                            47.436901 
lon                                              19.2556 
Name: BUD, dtype: object 

2 
2 
2 
2 



In [5]:

airroutes = pd.read_csv('../data/airroutes.csv', delimiter = ';') 
display(airroutes) 

Note: the distance is given in miles.

Build a graph

NetworkX has an integrated conversion for pandas DataFrames which can be used. 
Lets create a directed graph ( networkx.DiGraph ) from the flights. The edges shall be weighted with the
distance of the routes.

In [6]:

import networkx as nx 

flight_graph = nx.from_pandas_edgelist(airroutes, 'from', 'to', ['distance'], cr
eate_using = nx.DiGraph) 

print('Metadata for the BUD -> JFK edge: {0}'.format(flight_graph['BUD']['JFK'
])) 

Reminder: The 4  parameter defines which Series (columns) of the DataFrame shall be added to the edges
as attributes. If True , all of the remaining columns will be added. If None , no edge attributes are added to
the graph. Its default value is None .

th

from to distance

0 ATL AUS 811

1 ATL BNA 214

2 ATL BOS 945

3 ATL BWI 576

4 ATL DCA 546

... ... ... ...

50225 NRR CPX 23

50226 LNL PKX 708

50227 XAI PKX 498

50228 YYA PKX 726

50229 BQJ DPT 178

50230 rows × 3 columns

Metadata for the BUD -> JFK edge: {'distance': 4356} 



Calculating the shortest path

NetworkX supports various shortest path algorithms
(https://networkx.org/documentation/stable/reference/algorithms/shortest_paths.html):

Dijkstra and Bellman-Ford algorithm to compute shortest path between source and all other reachable
nodes;
Floyd-Warshall algorithm to find the shortest path between all node pairs.

Beside the algorithm-specific functions, NetworkX also provides a uniform interface to calculate the shortest
paths from a starting point to a target (or to all):

nx.shortest_path(graph, source, target, weight, method) 

The default algorithm is Dijsktra.

Example

Calculate the path between 2 user given airports with the minimal number of transfers.

In [7]:

from_airport = input("From airport: ") 
to_airport = input("To airport: ") 

if flight_graph.has_node(from_airport) and flight_graph.has_node(to_airport): 
   route = nx.shortest_path(flight_graph, from_airport, to_airport) 
   print("Route: {0}".format(route)) 
    
   length = 0 
   for i in range(1, len(route)): 
       length += flight_graph[route[i-1]][route[i]]['distance'] 
   print("Length: {0} mi".format(length)) 
else: 
   print("Source or destination airport was not found.") 

Calculate the shortest path by distance between 2 user given airports.

Route: ['BUD', 'JFK', 'CAN', 'PKX', 'YYA'] 
Length: 14194 mi 

https://networkx.org/documentation/stable/reference/algorithms/shortest_paths.html


In [8]:

from_airport = input("From airport: ") 
to_airport = input("To airport: ") 

if flight_graph.has_node(from_airport) and flight_graph.has_node(to_airport): 
   route = nx.dijkstra_path(flight_graph, from_airport, to_airport, 'distance') 
   length = nx.dijkstra_path_length(flight_graph, from_airport, to_airport, 'di
stance') 
   print("Route: {0} ({1} mi)".format(route, length)) 
else: 
   print("Source or destination airport was not found.") 

Calculate the shortest between 2 user given airports by distance, but with the following additional conditions:

airports with no longer runway than 8000 feets cannot be used;
airports with only 1 runway has a 50% penalty of the distance.

In [9]:

def custom_distance(from_node, to_node, edge_attr): 
   if airports.loc[to_node]['longest'] < 8000: 
       return None 
   if airports.loc[to_node]['runways'] == 1: 
       return edge_attr['distance'] * 1.5 
   return edge_attr['distance'] 

from_airport = input("From airport: ") 
to_airport = input("To airport: ") 

if flight_graph.has_node(from_airport) and flight_graph.has_node(to_airport): 
   route = nx.dijkstra_path(flight_graph, from_airport, to_airport, custom_dist
ance) 
   length = nx.dijkstra_path_length(flight_graph, from_airport, to_airport, cus
tom_distance) 
   print("Route: {0} ({1} mi)".format(route, length)) 
else: 
   print("Source airport was not found.") 

Calculate which airports can be reached from a starting, user given airport within a reach of also user given
distance (in miles). Also compute the shorthest path by distance to each of them.

Route: ['BUD', 'SVO', 'HET', 'PKX', 'YYA'] (5339 mi) 

Route: ['BUD', 'SVO', 'HET', 'PKX', 'YYA'] (5702.0 mi) 



In [12]:

from_airport = input("From airport: ") 
max_distance = int(input("Max distance: ")) 

if flight_graph.has_node(from_airport): 
   lengths, routes = nx.single_source_dijkstra(flight_graph, from_airport, None
, max_distance, 'distance') 
   for to_airport in routes.keys(): 
       print("{0} -> {1}: {2} ({3} mi)".format(from_airport, to_airport, routes
[to_airport], lengths[to_airport])) 
else: 
   print("Source airport was not found.") 

Calculate which cities can be reached from a starting, user given city within a reach of also user given
distance (in miles).

JFK -> JFK: ['JFK'] (0 mi) 
JFK -> BOS: ['JFK', 'BOS'] (186 mi) 
JFK -> BWI: ['JFK', 'BWI'] (184 mi) 
JFK -> DCA: ['JFK', 'DCA'] (213 mi) 
JFK -> IAD: ['JFK', 'IAD'] (227 mi) 
JFK -> PHL: ['JFK', 'PHL'] (93 mi) 
JFK -> PWM: ['JFK', 'PWM'] (273 mi) 
JFK -> ROC: ['JFK', 'ROC'] (263 mi) 
JFK -> ORF: ['JFK', 'ORF'] (290 mi) 
JFK -> BUF: ['JFK', 'BUF'] (300 mi) 
JFK -> RIC: ['JFK', 'RIC'] (288 mi) 
JFK -> SYR: ['JFK', 'SYR'] (208 mi) 
JFK -> BTV: ['JFK', 'BTV'] (266 mi) 
JFK -> ORH: ['JFK', 'ORH'] (149 mi) 
JFK -> ACK: ['JFK', 'ACK'] (198 mi) 
JFK -> HYA: ['JFK', 'HYA'] (195 mi) 
JFK -> LGA: ['JFK', 'PHL', 'LGA'] (187 mi) 
JFK -> HPN: ['JFK', 'PHL', 'HPN'] (207 mi) 
JFK -> EWR: ['JFK', 'PHL', 'EWR'] (172 mi) 
JFK -> MDT: ['JFK', 'PHL', 'MDT'] (176 mi) 
JFK -> BDL: ['JFK', 'PHL', 'EWR', 'BDL'] (287 mi) 
JFK -> ISP: ['JFK', 'PHL', 'ISP'] (222 mi) 
JFK -> SWF: ['JFK', 'PHL', 'SWF'] (220 mi) 
JFK -> ABE: ['JFK', 'PHL', 'ABE'] (148 mi) 
JFK -> AVP: ['JFK', 'PHL', 'AVP'] (197 mi) 
JFK -> PHF: ['JFK', 'PHL', 'PHF'] (294 mi) 
JFK -> ELM: ['JFK', 'PHL', 'ELM'] (273 mi) 
JFK -> SCE: ['JFK', 'PHL', 'SCE'] (246 mi) 
JFK -> BGM: ['JFK', 'PHL', 'BGM'] (259 mi) 
JFK -> ITH: ['JFK', 'PHL', 'ITH'] (285 mi) 
JFK -> HVN: ['JFK', 'PHL', 'HVN'] (249 mi) 
JFK -> IPT: ['JFK', 'PHL', 'IPT'] (222 mi) 
JFK -> SBY: ['JFK', 'PHL', 'SBY'] (200 mi) 
JFK -> LEB: ['JFK', 'BOS', 'LEB'] (295 mi) 
JFK -> MVY: ['JFK', 'ACK', 'MVY'] (228 mi) 
JFK -> PVC: ['JFK', 'BOS', 'PVC'] (231 mi) 
JFK -> EWB: ['JFK', 'ACK', 'EWB'] (253 mi) 
JFK -> HGR: ['JFK', 'IAD', 'HGR'] (282 mi) 



In [13]:

from_city = input("From city: ") 
max_distance = int(input("Max distance: ")) 

from_airports = airports[airports['city'] == from_city].index 
result = [] 
for from_airport in from_airports: 
   routes = nx.single_source_dijkstra_path(flight_graph, from_airport, max_dist
ance, 'distance') 
   to_airports = routes.keys() 
   to_cities = [airports.loc[ap]['city'] for ap in to_airports] 
   result += to_cities 

result_unique = set(result) # remove duplicates 
print(sorted(result_unique)) # sort the printed result 

['Allentown', 'Baltimore', 'Binghamton', 'Boston', 'Buffalo', 'Burli
ngton', 'Elmira/Corning', 'Hagerstown', 'Harrisburg', 'Hartford', 'H
yannis', 'Islip', 'Ithaca', 'Lebanon', 'Manchester', "Martha's Viney
ard", 'Nantucket', 'New Bedford', 'New Haven', 'New York', 'Newark', 
'Newburgh', 'Newport News', 'Norfolk', 'Philadelphia', 'Portland', 
'Provincetown', 'Richmond', 'Rochester', 'Salisbury', 'State Colleg
e', 'Syracuse', 'Washington D.C.', 'White Plains', 'Wilkes-Barre/Scr
anton', 'Williamsport', 'Worcester'] 



Chapter 15: Graph algorithms II. - minimum spanning
tree

Read the hungary_cities.shp  shapefile located in the data  folder. This dataset contains both scalar
and spatial data of the Hungarian cities:

1. City Id
2. City Name
3. County Name
4. Status (town, city, independent city, national capital, capital district)
5. KSH code (unique statistical code for the city)

Source: ELTE FI, Institute of Cartography and Geoinformatics

In [1]:

import geopandas as gpd 

cities = gpd.read_file('../data/hungary_cities.shp') 
display(cities) 

Id County City Status KSH geometry

0 1 FEJÉR Aba town 17376 POINT (610046.800
187639.000)

1 2 BARANYA Abaliget town 12548 POINT (577946.100
89280.800)

2 3 HEVES Abasár town 24554 POINT (721963.700
273880.300)

3 4 BORSOD-ABAUJ-ZEMPLÉN Abaújalpár town 15662 POINT (812129.200
331508.200)

4 5 BORSOD-ABAUJ-ZEMPLÉN Abaújkér town 26718 POINT (809795.600
331138.300)

... ... ... ... ... ... ...

3142 3143 GYÕR-MOSON-SOPRON Zsira town 04622 POINT (471324.200
237577.200)

3143 3144 CSONGRÁD Zsombó town 17765 POINT (721098.100
109690.000)

3144 3145 BORSOD-ABAUJ-ZEMPLÉN Zsujta town 11022 POINT (815027.400
353143.100)

3145 3146 SZABOLCS-SZATMÁR-
BEREG Zsurk town 13037 POINT (884847.700

344952.800)

3146 3147 BORSOD-ABAUJ-ZEMPLÉN Zubogy town 19105 POINT (763123.300
338338.600)

3147 rows × 6 columns



The correct encoding of the file should be automatically detected. In case the Hungarian characters are
displayed incorrectly, you may specify the encoding manually:

cities = gpd.read_file('../data/hungary_cities.shp', encoding='latin1') 

Visualize the GeoDataFrame

Plot the location of all Hungarian cities:

In [2]:

import matplotlib.pyplot as plt 
%matplotlib inline 

cities.plot(figsize=[15,10], color='red', markersize=4) 
plt.show() 

Add a raster base map to it with the contextily package:



In [3]:

import contextily as ctx 

# Display the CRS 
print(cities.crs) 

# Set the CRS to EOV projection (EPSG:23700) if None 
if(cities.crs == None): 
   cities.set_crs('epsg:23700', inplace=True) 

# Display the CRS 
print(cities.crs) 

# Transform the GeoDataFrame to Web Mercator projection (EPSG:3857) to display c
orrectly with the base map 
ax = cities.to_crs('epsg:3857').plot(figsize=[15,10], color='red', markersize=4) 
ax.set_axis_off() 
ctx.add_basemap(ax) 
plt.show() 

Create a minimum spanning tree

NetworkX supports both the Prim and the Kruskal algorithm for building a minimum / maximum spanning tree
(https://networkx.org/documentation/stable/reference/algorithms/tree.html#module-
networkx.algorithms.tree.mst), with a uniform interface. The default is Kruskal.

nx.minimum_spanning_tree(graph, weight, algorithm) 

None 
epsg:23700 

https://networkx.org/documentation/stable/reference/algorithms/tree.html#module-networkx.algorithms.tree.mst


Example

Step 1: Create an undirected graph with the towns as the nodes.

In [4]:

import networkx as nx 

# Create empty, undirected graph 
graph = nx.Graph() 

for index, row in cities.iterrows(): 
    graph.add_node(row['City'],  
       county = row['County'], 
       status = row['Status'], 
       ksh_code = row['KSH'], 
       location = row['geometry'] 
   ) 
        
# Check results 
print(graph.nodes['Esztergom']) 

Display the location in WKT format:

In [5]:

print(graph.nodes['Esztergom']['location'].wkt) 

Fetch the (X,Y) coordinates form the location:

In [6]:

print(graph.nodes['Esztergom']['location'].x) 
print(graph.nodes['Esztergom']['location'].y) 

Calculate the location between 2 cities with the Pythagoras theorem:

{'county': 'KOMÁROM-ESZTERGOM', 'status': 'city', 'ksh_code': '2513
1', 'location': <shapely.geometry.point.Point object at 0x7f45966344
c0>} 

POINT (627140 272097.8) 

627140.0 
272097.8 



In [7]:

import math 

def dist(loc_a, loc_b): 
   return math.sqrt(math.pow(loc_a.x - loc_b.x, 2) +  
                    math.pow(loc_a.y - loc_b.y, 2)) 
    

print(dist(graph.nodes['Esztergom']['location'], graph.nodes['Budapest']['locati
on'])) 

The Point type has a built-in distance()  method to do that:

In [8]:

print(graph.nodes['Esztergom']['location'].distance(graph.nodes['Budapest']['loc
ation'])) 

Step 2: Create a complete graph (add all possible edges).

In [9]:

import math 

for city_from in graph.nodes: 
   location_from = graph.nodes[city_from]['location'] 
   for city_to in graph.nodes: 
       location_to = graph.nodes[city_to]['location'] 
       if city_from < city_to: # we do not need to add all edges twice 
           # Add edge to the graph with distance as its cost 
           graph.add_edge(city_from, city_to,  
               distance = graph.nodes[city_from]['location'].distance(graph.nod
es[city_to]['location'])) 

# Check results 
print(graph['Esztergom']['Debrecen']) 

Step 3: Calculate the minimum spanning tree as a new graph.

39476.19752399673 

39476.19752399673 

{'distance': 218626.45554703576} 



In [10]:

print('Number of nodes in original graph: {0}'.format(graph.order())) 
print('Number of edges in original graph: {0}'.format(graph.size())) 

spanning_tree = nx.minimum_spanning_tree(graph, weight = 'distance') 

print('Number of nodes in spanning tree: {0}'.format(spanning_tree.order())) 
print('Number of edges in spanning tree: {0}'.format(spanning_tree.size())) 

Step 4: Visualize results.

Number of nodes in original graph: 3147 
Number of edges in original graph: 4950231 
Number of nodes in spanning tree: 3147 
Number of edges in spanning tree: 3146 



In [11]:

# Start new plot figure 
plt.figure(figsize=[15,10]) 

# Plot all edges as black lines in the MST 
for edge in spanning_tree.edges: 
   city_from = edge[0] 
   city_to   = edge[1] 

   location_from = spanning_tree.nodes[city_from]['location'] 
   location_to   = spanning_tree.nodes[city_to]['location'] 
   plt.plot([location_from.x, location_to.x], [location_from.y, location_to.y],
color='black') 

# Plot all cities as red dots 
for city in spanning_tree.nodes: 
   location = spanning_tree.nodes[city]['location'] 
   plt.plot(location.x, location.y, color='red', marker='o', markersize=2) 

# Display plot 
plt.show() 

Alternative approach: use NetworkX to draw the plot.



In [12]:

# Add all city coordinates a tuples to the nodes of the graph. 
for node in spanning_tree.nodes: 
   spanning_tree.nodes[node]['coords'] = spanning_tree.nodes[node]['location'].
coords[0] 

# Visualize the spanning tree, using the positions in the coords field. 
plt.figure(figsize=[15,10]) 
nx.draw_networkx(spanning_tree, nx.get_node_attributes(spanning_tree, 'coords'),
with_labels=False, node_size=0) 
plt.show() 



Chapter 16: Spatial indexing

Package installation
This chapter covers spatial indexing with KD-trees, Quadtrees and R-trees. The package requirement for
these spatial indexes are the scipy.spatial , pyqtree  and rtree  modules respectively.

Anaconda

If you have Anaconda installed, the scipy  package was installed together with, you only need to install 
pyqtree  and rtree . Open the Anaconda Prompt and type in:

conda install -c conda-forge pyqtree rtree

Python Package Installer (pip)

If you have standalone Python3 and Jupyter Notebook install, open a command prompt / terminal and type
in:

pip3 install scipy pyqtree rtree

You most likely have already installed rtree , as it was an optional dependency for geopandas  in
Chapter 11 (11_spatial_vector.pdf).

Process the dataset

Read the hungary_cities.shp  shapefile located in the data  folder. This dataset contains both scalar
and spatial data of the Hungarian cities, and should be familiar from Chapter 15
(15_graph_spanning_tree.pdf).

file:///converted/book/pdf/11_spatial_vector.pdf
file:///converted/book/pdf/15_graph_spanning_tree.pdf


In [1]:

import geopandas as gpd 

cities = gpd.read_file('../data/hungary_cities.shp') 
display(cities) 

Minimal bounding box

Calculate the minimal bounding box for all the points! (We will use it later.)

Id County City Status KSH geometry

0 1 FEJÉR Aba town 17376 POINT (610046.800
187639.000)

1 2 BARANYA Abaliget town 12548 POINT (577946.100
89280.800)

2 3 HEVES Abasár town 24554 POINT (721963.700
273880.300)

3 4 BORSOD-ABAUJ-ZEMPLÉN Abaújalpár town 15662 POINT (812129.200
331508.200)

4 5 BORSOD-ABAUJ-ZEMPLÉN Abaújkér town 26718 POINT (809795.600
331138.300)

... ... ... ... ... ... ...

3142 3143 GYÕR-MOSON-SOPRON Zsira town 04622 POINT (471324.200
237577.200)

3143 3144 CSONGRÁD Zsombó town 17765 POINT (721098.100
109690.000)

3144 3145 BORSOD-ABAUJ-ZEMPLÉN Zsujta town 11022 POINT (815027.400
353143.100)

3145 3146 SZABOLCS-SZATMÁR-
BEREG Zsurk town 13037 POINT (884847.700

344952.800)

3146 3147 BORSOD-ABAUJ-ZEMPLÉN Zubogy town 19105 POINT (763123.300
338338.600)

3147 rows × 6 columns



In [2]:

def get_x(point): 
   return point.x 

def get_y(point): 
   return point.y 

# Calculating the minimal bounding box 
min_x = min(cities['geometry'], key = get_x).x # or cities.geometry 
max_x = max(cities['geometry'], key = get_x).x 
min_y = min(cities['geometry'], key = get_y).y 
max_y = max(cities['geometry'], key = get_y).y 

print("Bounding box: ({0:.1f}, {1:.1f}) - ({2:.1f}, {3:.1f})".format(min_x, min_
y, max_x, max_y)) 

Lambda functions (optional)

Python lambdas are little, anonymous functions, subject to a more restrictive but more concise syntax than
regular Python functions.

Lambda functions can have any number of arguments but only one expression. The evaluated expression is
the return value of the function.

A lambda function in python has the following syntax:

lambda arguments: expression 

Lambda functions can be used wherever function objects are required.

In [3]:

# Calculating the minimal bounding box 
min_x = min(cities['geometry'], key = lambda p: p.x).x 
max_x = max(cities['geometry'], key = lambda p: p.x).x 
min_y = min(cities['geometry'], key = lambda p: p.y).y 
max_y = max(cities['geometry'], key = lambda p: p.y).y 

print("Bounding box: ({0:.1f}, {1:.1f}) - ({2:.1f}, {3:.1f})".format(min_x, min_
y, max_x, max_y)) 

Bounding box: (431339.2, 48431.5) - (934944.4, 359044.9) 

Bounding box: (431339.2, 48431.5) - (934944.4, 359044.9) 



KdTree
A kdTree (https://en.wikipedia.org/wiki/K-d_tree) (short for k-dimensional tree) is a space-partitioning data
structure for organizing points in a k-dimensional space. KdTrees are especially useful for searches involving
a multidimensional search key, e.g. nearest neighbor searches and range searches.

Example KdTree: 

Representation: 

Select a random city and create a point which we will query later.

https://en.wikipedia.org/wiki/K-d_tree


In [4]:

import random 
random.seed(42) # for reproducibility 

idx = random.randint(0, len(cities) - 1) 
city = cities.iloc[idx] 
print(city) 

Create the query point, by slightly distorting the location of the selected city.

In [5]:

from shapely.geometry import Point 

city_point = city.geometry 
query_point = Point(city_point.x + 1, city_point.y + 2) 

print("City location: {0}".format(city_point)) 
print("Query location: {0}".format(query_point)) 

Construct the KD-Tree

The scipy  module can construct KD-Tree from a list of points, where each point is represented by a 2
element list or tuple.

In [6]:

points = [(p.x, p.y) for p in cities['geometry']] 
print(points[:10]) 

Now the KD-Tree can be constructed.

In [7]:

import scipy.spatial 
kdtree = scipy.spatial.KDTree(points) 

Pointwise query

Id                               2620 
County                           PEST 
City                      Szigethalom 
Status                           town 
KSH                             13277 
geometry    POINT (646998.8 219076.5) 
Name: 2619, dtype: object 

City location: POINT (646998.8 219076.5) 
Query location: POINT (646999.8 219078.5) 

[(610046.8, 187639.0), (577946.1, 89280.8), (721963.7, 273880.3), (8
12129.2, 331508.2), (809795.6, 331138.3), (791113.0, 341953.5), (808
664.6, 328230.8), (792853.4, 338292.6), (817486.0, 356056.1), (76721
4.3, 237868.5)] 



Query the closest neighbor to the query point.

In [8]:

print("City location: {0}".format(city_point)) 
print("Query location: {0}".format(query_point)) 

dist, idx = kdtree.query(query_point) 

print("Closest neighbor: distance = {0:.4f}, index = {1}, point = {2}".format(di
st, idx, points[idx])) 
print("Closest neighbor city: {0}".format(cities.iloc[idx]['City'])) 

Query the 3 closest neighbors to the query point.

In [9]:

distances, indices = kdtree.query(query_point, k = 3) 

print("Query location: {0}".format(query_point)) 
print("3 closest neighbors:") 
for i in range(len(indices)):     
   idx = indices[i] 
   dist = distances[i] 
   print("{0}. neighbor: distance = {1:.4f}, index = {2}, point = {3}, city = 
{4}".format(i+1, dist, idx, points[idx], cities.iloc[idx]['City'])) 

Query the 50 closest neighbors to the query point within 10km.

City location: POINT (646998.8 219076.5) 
Query location: POINT (646999.8 219078.5) 
Closest neighbor: distance = 2.2361, index = 2619, point = (646998.
8, 219076.5) 
Closest neighbor city: Szigethalom 

Query location: POINT (646999.8 219078.5) 
3 closest neighbors: 
1. neighbor: distance = 2.2361, index = 2619, point = (646998.8, 219
076.5), city = Szigethalom 
2. neighbor: distance = 3087.9825, index = 2864, point = (643968.9, 
219669.5), city = Tököl 
3. neighbor: distance = 3250.9858, index = 2622, point = (649095.2, 
221564.1), city = Szigetszentmiklós 



In [10]:

distances, indices = kdtree.query(query_point, k = 50, distance_upper_bound = 10
000) 
print("Distance list: %s" % distances) 
print("Index list: %s" % indices) 

Most likely will only find less than 50 neighbors in a 10km range, but the index list has still 50 elements. For
the invalid elements the indices[i]  is not a valid index, but instead equals to len(cities) . So with a
simple check we can detect the end of the valid results.

In [11]:

valid_indices = [idx for idx in indices if idx < len(cities)] 
print(valid_indices) 

Distance list: [2.23606798e+00 3.08798248e+03 3.25098578e+03 4.37588
711e+03 
5.82197378e+03 5.82989477e+03 6.07146723e+03 6.09635922e+03 
6.88039701e+03 7.86611138e+03 8.30077594e+03 8.36841190e+03 
9.92969764e+03            inf            inf            inf 
           inf            inf            inf            inf 
           inf            inf            inf            inf 
           inf            inf            inf            inf 
           inf            inf            inf            inf 
           inf            inf            inf            inf 
           inf            inf            inf            inf 
           inf            inf            inf            inf 
           inf            inf            inf            inf 
           inf            inf] 
Index list: [2619 2864 2622 2678 1619  971  660 2618 2547  646  733  
586   95 3147 
3147 3147 3147 3147 3147 3147 3147 3147 3147 3147 3147 3147 3147 31
47 
3147 3147 3147 3147 3147 3147 3147 3147 3147 3147 3147 3147 3147 31
47 
3147 3147 3147 3147 3147 3147 3147 3147] 

[2619, 2864, 2622, 2678, 1619, 971, 660, 2618, 2547, 646, 733, 586, 
95] 



In [12]:

print("50 closest neighbors within 10km:") 
for i in range(len(valid_indices)): 
   idx = valid_indices[i] 
   dist = distances[i] 
   print("{0}. neighbor: distance = {1:.1f}, index = {2}, location = {3}, city
= {4}".format(i+1, dist, idx, points[idx], cities.iloc[idx]['City'])) 

Exercise

Task 1: Implement a linear search for the closest point instead of using a KD-Tree!

50 closest neighbors within 10km: 
1. neighbor: distance = 2.2, index = 2619, location = (646998.8, 219
076.5), city = Szigethalom 
2. neighbor: distance = 3088.0, index = 2864, location = (643968.9, 
219669.5), city = Tököl 
3. neighbor: distance = 3251.0, index = 2622, location = (649095.2, 
221564.1), city = Szigetszentmiklós 
4. neighbor: distance = 4375.9, index = 2678, location = (651262.9, 
220065.6), city = Taksony 
5. neighbor: distance = 5822.0, index = 1619, location = (646007.0, 
213341.8), city = Majosháza 
6. neighbor: distance = 5829.9, index = 971, location = (644860.0, 2
24501.5), city = Halásztelek 
7. neighbor: distance = 6071.5, index = 660, location = (651533.1, 2
15039.7), city = Dunavarsány 
8. neighbor: distance = 6096.4, index = 2618, location = (643902.1, 
213827.8), city = Szigetcsép 
9. neighbor: distance = 6880.4, index = 2547, location = (640127.5, 
218744.8), city = Százhalombatta 
10. neighbor: distance = 7866.1, index = 646, location = (653626.9, 
223316.1), city = Dunaharaszti 
11. neighbor: distance = 8300.8, index = 733, location = (640833.1, 
224635.0), city = Érd 
12. neighbor: distance = 8368.4, index = 586, location = (651301.4, 
211900.3), city = Délegyháza 
13. neighbor: distance = 9929.7, index = 95, location = (647222.5, 2
09151.3), city = Áporka 



In [13]:

def find_closest(points, query): 
   min_dist = None 
   min_point = None 
   for point in points: 
       dist = point.distance(query) 
       if min_dist is None or dist < min_dist: 
           min_dist = dist 
           min_point = point 
   return min_point 
            
print("City location: {0}".format(city_point)) 
print("Query location: {0}".format(query_point)) 
closest_point = find_closest(cities['geometry'], query_point) 
print("Closest location: {0}".format(closest_point)) 

Task 2: Compare the execution time of the linear search and the spatial index query (logarithmic asymptotic
complexity) approach!

Hint: import the time  module to record the timestamp before and after the execution of the desired
algorithm:

start = time.time() 

# ... measured code ... 

end = time.time() 

print("Execution time: {0:.6f}s".format(end-start)) 

In [14]:

import time 

start = time.time() 
find_closest(cities['geometry'], query_point) 
end = time.time() 
print("Linear search execution time: {0:.6f}s".format(end-start)) 

start = time.time() 
kdtree.query(query_point) 
end = time.time() 
print("KD-tree search execution time: {0:.6f}s".format(end-start)) 

City location: POINT (646998.8 219076.5) 
Query location: POINT (646999.8 219078.5) 
Closest location: POINT (646998.8 219076.5) 

Linear search execution time: 0.018702s 
KD-tree search execution time: 0.000258s 



Quadtree
A quadtree (https://en.wikipedia.org/wiki/Quadtree) is a tree data structure in which each internal node has
exactly four children. The 3 dimensional analog of quadtree is the octree
(https://en.wikipedia.org/wiki/Octree).

Quadtree example: 

Create a 10x10km query area around a point.

In [15]:

query_area_size = 10000 
query_area = ( 
   query_point.x - query_area_size/2, 
   query_point.y - query_area_size/2, 
   query_point.x + query_area_size/2, 
   query_point.y + query_area_size/2 
) 
print("Query area: {0}, side length = {1:.1f} km".format(query_area, query_area_
size / 1000)) 

Construct the Quad-tree

Query area: (641999.8, 214078.5, 651999.8, 224078.5), side length = 
10.0 km 

https://en.wikipedia.org/wiki/Quadtree
https://en.wikipedia.org/wiki/Octree


In [16]:

import pyqtree 

quadtree = pyqtree.Index(bbox=(min_x, min_y, max_x, max_y)) 
for i in range(len(points)): 
   obj = { "id": i, "point": points[i] } 
   quadtree.insert(obj, points[i]) # object, bbox 

Note: for a polygon, the first argument should be the indexed object (e.g. the polygon itself), and the second
argument should be the bounding box of the polygon.

Areawise query

In [17]:

matches = quadtree.intersect(query_area) 
print("Matches: {0}".format(matches)) 

In [18]:

for obj in matches: 
   print("Index: {0}, Location: {1}, City: {2}".format(obj['id'], obj['point'],
cities.iloc[obj['id']]['City'])) 

Matches: [{'id': 660, 'point': (651533.1, 215039.7)}, {'id': 2619, 
'point': (646998.8, 219076.5)}, {'id': 2622, 'point': (649095.2, 221
564.1)}, {'id': 2678, 'point': (651262.9, 220065.6)}, {'id': 2864, 
'point': (643968.9, 219669.5)}] 

Index: 660, Location: (651533.1, 215039.7), City: Dunavarsány 
Index: 2619, Location: (646998.8, 219076.5), City: Szigethalom 
Index: 2622, Location: (649095.2, 221564.1), City: Szigetszentmiklós 
Index: 2678, Location: (651262.9, 220065.6), City: Taksony 
Index: 2864, Location: (643968.9, 219669.5), City: Tököl 



R-Tree
Inspired by the B-tree (https://en.wikipedia.org/wiki/B-tree) for scalara data, he key idea of the R-tree
(https://en.wikipedia.org/wiki/R-tree) index structure is to group nearby objects and represent them with their
minimum bounding rectangle in the next higher level of the tree, The "R" in R-tree stands for rectangle.

R-tree for 2 dimensional data: 

We will use the same query_area  for demonstration, as before with the Quadtree.

Construct the R-Tree

https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/R-tree


In [19]:

from rtree import index as rtree_index 

rtree = rtree_index.Index() 
for i in range(len(points)): 
   rtree.insert(i, points[i]) # index, bbox 

Areawise query

In [20]:

matches = rtree.intersection(query_area) 
print("Matches: {0}".format(list(matches))) 

In [21]:

matches = rtree.intersection(query_area) 
for idx in matches: 
   city = cities.iloc[idx] 
   print("Index: {0}, Location: {1}, City: {2}".format(idx, city['geometry'], c
ity['City'])) 

GeoPandas integration

If the rtree  module is installed, the geopandas  module utilizes an R-tree in the background to spatially
index the spatial objects in a GeoDataFrame.

This spatial index can be accessed directly as the sindex  property of the GeoDataFrame:

In [22]:

print(cities.sindex) 
matches = cities.sindex.intersection(query_area) 
print("Matches: {0}".format(list(matches))) 

The R-Tree spatial index is also used by the sjoin()  and clip()  function of geopandas.

Matches: [2622, 2678, 2619, 2864, 660] 

Index: 2622, Location: POINT (649095.2 221564.1), City: Szigetszentm
iklós 
Index: 2678, Location: POINT (651262.9 220065.6), City: Taksony 
Index: 2619, Location: POINT (646998.8 219076.5), City: Szigethalom 
Index: 2864, Location: POINT (643968.9 219669.5), City: Tököl 
Index: 660, Location: POINT (651533.1 215039.7), City: Dunavarsány 

rtree.index.Index(bounds=[431339.156, 48431.5, 934944.4, 359044.9], 
size=3147) 
Matches: [660, 2619, 2864, 2678, 2622] 



Chapter 17: Geometric algorithms - Convex Hull
The convex hull of a set of points, is the smallest convex polygon for which each point in the set is either on
the boundary of the polygon or in its interior.

We can visualize what the convex hull looks like by imagining that the points are nails sticking out of the
plane. Take an elastic rubber band, stretch it around the nails and let it go. It will snap around the nails and
assume a shape that minimizes its length. The area enclosed by the rubber band is called the convex hull of
the points. This leads to an alternative definition of the convex hull of a finite set of points in the plane: it is
the unique convex polygon whose vertices are points from and which contains all points.

Jarvis's march
Jarvis’s march computes the convex hull of a set Q of points by a technique also known as the gift wrapping
algorithm. The algorithm was named after R. A. Jarvis, who published it in 1973.

The algorithm simulates wrapping a piece of paper around the set of points. We start by taping the end of the
paper to the lowest point in the set, that is, the point with the lowest Y-coordinate, picking the leftmost such
point in case of a tie. We know that this point must be a vertex of the convex hull. We pull the paper to the
right to make it wrapping "tight" and then we pull it higher until it touches a point. This point must also be a
vertex of the convex hull. Keeping the paper "tight", we continue in this way around the set of vertices until
we come back to our original starting point.

The algoirhtm has an  asymptotic complexity, where  is the number of points and  is the number
of points on the convex hull.

O(n ∗ h) n h



Orientation

Given line (A, B) and point M, check whether M is left or right from the line, more precisely whether A -> B ->
M is a closckwise or counter-clockwise turn?

if : counter-clockwise
if : clockwise
if : collinear

det := (Bx − Ax) ∗ (My − Ay) − (By − Ay) ∗ (Mx − Ax)

det > 0
det < 0
det = 0

Graham's scan
Graham’s scan solves the convex-hull problem by maintaining a stack of candidate points. It pushes each
point of the input set onto the stack one time, and it eventually pops from the stack each point that is not a
vertex of the convex hull. When the algorithm terminates, the stack contains exactly the vertices of the
convex hull, in counter-clockwise order of their appearance on the boundary. The algorithm is named after
Ronald Graham, who published the original version in 1972.

The algorithm consists of 3 steps:

1. Find the point with the lowest Y-coordinate, picking the leftmost such point in case of a tie. Call this point 
.

2. The set of points must be sorted in increasing order of the angle they and the point  make with the X-
axis. (Sorting algorithm were discussed in Chapter 6 (06_sorting.pdf).)

3. Initiate an empty stack. Then consider each points in the sorted list in sequence iteratively. For each
point, it is first determined whether traveling from the two points immediately preceding this point
constitutes making a left turn or a right turn in orientation.

If a left turn, push the point onto the stack.
If a right turn, the second-to-last point is not part of the convex hull (lies inside it), and is therefore
removed from the stack. The same determination is then made for the set of the latest point, and the
two points that immediately precede the point found to have been inside the hull, and is repeated
until a left turn set is encountered, at which point the algorithm moves on to the next point in the set
of points in the sorted list.

The algorithm has an  asymptotic complexity. Thus, this algorithm is not output-sensitive
(compare to Jarvis's march).

P

P

O(n ∗ log(n)

file:///converted/book/pdf/06_sorting.pdf


Quickhull
The Quickhull method uses the divide and conquer approach similar to that of Quicksort
(06_sorting.pdf#Quicksort), from which its name derives. The original algorithm was described by Scott
Greenfield in 1990. The algorithm was later extended to work in n-dimensional space.

The algorithm contains the following steps:

1. Find the points with minimum and maximum X-coordinates, as these will always be part of the convex
hull. If case of a tie, pick the ones with minimum/maximum Y-coordinates correspondingly.

2. Use the line formed by these two points to divide the set in two subsets of points, which will be
processed recursively ("divide and conquer").

3. For both sides, determine the point with the maximum distance from the line. This point forms a triangle
with those of the line. The points lying inside of that triangle cannot be part of the convex hull and can
therefore be ignored in the next steps.

4. Repeat the previous step on the two lines formed by the triangle.
5. Continue the recursion until no more points are left. In the end, all points selected constitute the convex

hull.

The asymptotic complexity of the algorithm is , where  is the number of processed points.O(n ∗ log(r)) r

Chan's algorithm
Chan's algorithm is an optimal output-sensitive algorithm to compute the convex hull. It was named after
Timothy M. Chan, who published the algorithm in 1996.

The algorithm combines Graham's scan (or other algorithm with  complexity) with Jarvis's
march ( ), in order to obtain an optimal  complexity, where  is the number of points
and  is the number of vertices of the output (the convex hull).

O(n ∗ log(n))

O(n ∗ h) O(n ∗ log(h)) n

h

file:///converted/book/pdf/06_sorting.pdf#Quicksort


QuickHull with Shapely

Read the hungary_cities.shp  shapefile located in the data  folder. This dataset contains both scalar
and spatial data of the Hungarian cities, and should be familiar from Chapter 15
(15_graph_spanning_tree.pdf).

In [1]:

import geopandas as gpd 
from scipy.spatial import ConvexHull 

cities_gdf = gpd.read_file('../data/hungary_cities.shp') 
display(cities_gdf) 

Shapely can compute the convex hull of any geometry through the convex_hull  attribute.

The geometry  column of the GeoDataFrame contains Shapely points (see Chapter 11
(11_spatial_vector.pdf)), but we need to create a MultiPoint of all cities to calculate their aggregated concex
hull.

Id County City Status KSH geometry

0 1 FEJÉR Aba town 17376 POINT (610046.800
187639.000)

1 2 BARANYA Abaliget town 12548 POINT (577946.100
89280.800)

2 3 HEVES Abasár town 24554 POINT (721963.700
273880.300)

3 4 BORSOD-ABAUJ-ZEMPLÉN Abaújalpár town 15662 POINT (812129.200
331508.200)

4 5 BORSOD-ABAUJ-ZEMPLÉN Abaújkér town 26718 POINT (809795.600
331138.300)

... ... ... ... ... ... ...

3142 3143 GYÕR-MOSON-SOPRON Zsira town 04622 POINT (471324.200
237577.200)

3143 3144 CSONGRÁD Zsombó town 17765 POINT (721098.100
109690.000)

3144 3145 BORSOD-ABAUJ-ZEMPLÉN Zsujta town 11022 POINT (815027.400
353143.100)

3145 3146 SZABOLCS-SZATMÁR-
BEREG Zsurk town 13037 POINT (884847.700

344952.800)

3146 3147 BORSOD-ABAUJ-ZEMPLÉN Zubogy town 19105 POINT (763123.300
338338.600)

3147 rows × 6 columns

file:///converted/book/pdf/15_graph_spanning_tree.pdf
file:///converted/book/pdf/11_spatial_vector.pdf


In [2]:

from shapely import geometry 

multipoint = geometry.MultiPoint(cities_gdf.geometry) 
hull = multipoint.convex_hull 
print(hull) 

Plot figure:

In [3]:

import matplotlib.pyplot as plt 
%matplotlib inline 

plt.figure(figsize=[15, 10]) 

# Add all points to plot 
for point in cities_gdf.geometry: 
   plt.plot(point.x, point.y, color='black', marker='o', markersize=1) 

# Fetch the list of X and Y coordinates of the convex hull 
line_x, line_y = hull.exterior.xy 
# Plot linestring 
plt.plot(line_x, line_y, color='red') 
  
# Display plot 
plt.show() 

POLYGON ((599595.6 48431.5, 560116.5 52448.8, 554768.8 53926, 54516
1.9 57103.6, 526519.8 69931.67999999999, 514301.4 78648.89999999999, 
487965.5 104677.9, 461349.736 131087.715, 458840.1 133907.4, 448204.
1 146147.2, 431339.156 174384.3, 459598.524 263436.1, 512056.1 29642
9.8, 778249.4 359044.9, 830043.1 358431.7, 884847.7 344952.8, 93100
5.4 312885.6, 933862.3 309972.7, 934499.7 307908.4, 934944.4 296041.
6, 818003.3 122843.7, 810002.9 112845.9, 801928.9 107279.7, 778496.3 
93680, 602643.7 48962.9, 599595.6 48431.5)) 



Quickhull with SciPy (optional)
As an alternative approach, we can use SciPy to cimpute the convex hull.

SciPy (pronounced "Sigh Pie") is library used for scientific computing and technical computing for
mathematics, science, and engineering. SciPy is built on top of NumPy, Matplotlib and Pandas and are tightly
integrated with them. It is one of the most widely used Python package in the scientific community.

How to install SciPy?

If you have Anaconda installed, then scipy  was already installed together with it.

If you have a standalone Python3 and Jupyter Notebook installation, open a command prompt / terminal and
type in:

pip3 install scipy

How to use SciPy?

SciPy consists of sub-packages for various scientific areas. For us the spatial  package is in focus, which
contains spatial algorithms, like the QuickHull or the KdTree (see Chapter 16 (16_spatial_indexing.pdf)).

import scipy.spatial 

Fetch points for cities:

In [4]:

points = [(geom.x, geom.y) for geom in cities_gdf.geometry] 
print("Number of points: {0}".format(len(points))) 

Calculate convex hull:

In [5]:

hull = ConvexHull(points) 
print("Number of vertices on hull: {0}".format(len(hull.vertices))) 
print("Hull vertices: {0}".format(hull.vertices)) 

Number of points: 3147 

Number of vertices on hull: 25 
Hull vertices: [  93  783  853 2847 1289 3115  334  198  782  635 31
08 1245  257 1845 
 204  601 1575  849 1589 2892 2769 3145 2222 2844 2247] 

file:///converted/book/pdf/16_spatial_indexing.pdf


Plot figure:

In [6]:

import matplotlib.pyplot as plt 
%matplotlib inline 

plt.figure(figsize=[15, 10]) 

# Add all points to plot 
for point in points: 
   plt.plot(point[0], point[1], color='black', marker='o', markersize=1) 

# Calculate convex hull linestring 
line_x = [points[idx][0] for idx in hull.vertices] 
line_y = [points[idx][1] for idx in hull.vertices] 
# Add first point of hull to the end, so the linestring will be closed. 
line_x.append(points[hull.vertices[0]][0])  
line_y.append(points[hull.vertices[0]][1])  
# Plot linestring 
plt.plot(line_x, line_y, color='red') 
  
# Display plot 
plt.show() 



Chapter 18: Clustering and classification

The method of determining the properties of the thematic classes directly from the reference data is called
supervised classification, because the analyst actually “supervises” how the discriminant functions of the
classes are formed by providing the reference data.

Unsupervised classification methods on the other hand group data points (e.g. pixels) together based on
their similarities, with no information from the user about which ones belong together. The user selects the
independent or predictor variables of interest, and the chosen algorithm does the rest. This doesn’t mean that
you don’t need to know what you’re classifying, however. Once a classification is produced, it’s up to the user
to interpret it and decide which types of features correspond to which generated classes, or if they even do
correspond nicely.

Unsupervised classification is also called clustering.

K-Means clustering algorithm

The K-Means method is one of the most common unsupervised classification approach.

The algorithm requires an arbitrarily specified initial cluster centres that are represented by the means of the
data points assigned to them. As a naïve solution, the user only defines the number of clusters and random
data points are selected as their initial centers.

This will generate a very crude set of clusters. The data points are then reassigned to the cluster with the
closest center, and the centers are recomputed. The process is repeated as many times as necessary such
that there is no further movement of the data points between clusters. In practice, with large data sets, the
process is not run to completion and some other stopping rule is used.

Considering the squared distance between each data point and the respective cluster center as the squared
error, the sum of squared errors (SSE) progressively reduces with each iteration. If the Euclidean distance is
used as a metric, this simply means to accumulate the squared distances for all points and their respective
cluster center.

Although no general proof of convergence exists for this algorithm, it can be expected to yield acceptable
results when the data exhibit characteristic pockets which are relatively far from each other. In most practical
cases the application of this algorithm will require experimenting with various values of inital clusters (the
value of ), as well as different choices of starting configurations.

Clustering raster data

The K-Means method can be use with an arbitrary distance function. For raster imagery the distance is
computed as if the pixel values were coordinates. For example, if the insensity values of two RGB pixels
were  and , the squared distance would be 

 in the 3 dimensional spectral space, no matter where the
pixels were in relation to each other spatially.

k

(25, 42, 37) (31, 40, 32)

(25 − 31)2 + (42 − 40)2 + (37 − 32)2 = 65



Elbow method

One of the most challenging tasks in the K-Means clustering algorithm is to choose the right value of the
clusters (the value of ). What should be the right value of  and how to choose it?

The Elbow Method is one of the most popular methods to determine the optimal value of . The idea is to run
K-Means clustering on the dataset for a range of values of  (e.g. from 1 to 10), and for each value of 
calculate the sum of squared errors (SSE).

Then, visualize a line chart of the SSE for each value of . If the line chart looks like an arm, then the "elbow"
on the arm is the value of  that is the best. The idea is that we want a small SSE, but that the SSE tends to
decrease toward 0 as we increase . (The SSE is  when  is equal to the number of data points in the
dataset, because then each data point has its own cluster, and there is no error between it and the center of
its cluster.) Hence we select the value of  at the “elbow”, i.e. the point after which the line chart starts
decreasing in a linear fashion.

k k

k

k k

k

k

k 0 k

k



K-Means clustering in Python
Scikit-learn (also known as sklearn) is a machine learning library for Python. It features various classification,
regression and clustering algorithms including k-means.

How to install scikit-learn?

If you have Anaconda installed, then scikit-learn  was already installed together with it.

If you have a standalone Python3 and Jupyter Notebook installation, open a command prompt / terminal and
type in:

pip3 install scikit-learn

Clustering vector data

Read the hungary_cities.shp  shapefile located in the data  folder. This dataset contains both scalar
and spatial data of the Hungarian cities, and should be familiar from Chapter 15
(15_graph_spanning_tree.pdf).

file:///converted/book/pdf/15_graph_spanning_tree.pdf


In [1]:

import geopandas as gpd 
from sklearn.cluster import KMeans 

cities_gdf = gpd.read_file('../data/hungary_cities.shp') 
display(cities_gdf) 

Fetch points for cities:

In [2]:

points = [(geom.x, geom.y) for geom in cities_gdf.geometry] 
print("Number of points: {0}".format(len(points))) 

Cluster the points using the K-Means algorithm:

In [3]:

pred = KMeans(n_clusters=19).fit_predict(points) 
print(pred) 
print(len(pred)) 

Id County City Status KSH geometry

0 1 FEJÉR Aba town 17376 POINT (610046.800
187639.000)

1 2 BARANYA Abaliget town 12548 POINT (577946.100
89280.800)

2 3 HEVES Abasár town 24554 POINT (721963.700
273880.300)

3 4 BORSOD-ABAUJ-ZEMPLÉN Abaújalpár town 15662 POINT (812129.200
331508.200)

4 5 BORSOD-ABAUJ-ZEMPLÉN Abaújkér town 26718 POINT (809795.600
331138.300)

... ... ... ... ... ... ...

3142 3143 GYÕR-MOSON-SOPRON Zsira town 04622 POINT (471324.200
237577.200)

3143 3144 CSONGRÁD Zsombó town 17765 POINT (721098.100
109690.000)

3144 3145 BORSOD-ABAUJ-ZEMPLÉN Zsujta town 11022 POINT (815027.400
353143.100)

3145 3146 SZABOLCS-SZATMÁR-
BEREG Zsurk town 13037 POINT (884847.700

344952.800)

3146 3147 BORSOD-ABAUJ-ZEMPLÉN Zubogy town 19105 POINT (763123.300
338338.600)

3147 rows × 6 columns

Number of points: 3147 

[ 8  3 18 ... 13  2  6] 
3147 



Plot figure:

In [4]:

import matplotlib.pyplot as plt 
%matplotlib inline 

plt.figure(figsize=(12, 8)) 

# Fetch list of X and Y coordinates 
xs = [point[0] for point in points] 
ys = [point[1] for point in points] 

# Put the cluster points on the plot 
plt.scatter(xs, ys, c=pred) 

# Display plot 
plt.title("Cluster map of the Hungarian cities") 
plt.show() 

Clustering raster images

Read the dataset

The data/LC08_L1TP_188027_20200420_20200508_01_T1_Szekesfehervar.tif  file is a
segment of a Landsat 8 satellite image of Székesfehérvár city, Lake Velence and their surroundings,
acquired on 2020 April 20. It should be familiar from Chapter 12 (12_spatial_raster.pdf).

file:///converted/book/pdf/12_spatial_raster.pdf


In [5]:

import rasterio 
szfv_2020 = rasterio.open('../data/LC08_L1TP_188027_20200420_20200508_01_T1_Szek
esfehervar.tif') 
print(szfv_2020.count) # band count 
print(szfv_2020.width) # dimensions 
print(szfv_2020.height) 

Read the red, green blue and NIR bands:

In [6]:

blue = szfv_2020.read(2) 
green = szfv_2020.read(3) 
red = szfv_2020.read(4) 
nir = szfv_2020.read(5) 

Single-band clustering

Cluster the satellite image based on the near-infrared band.

In [7]:

nir_1d = nir.reshape(nir.shape[0] * nir.shape[1], 1) 
print(nir_1d.shape) 

In [20]:

pred = KMeans(n_clusters=5).fit_predict(nir_1d) 
img_clusters = pred.reshape(nir.shape) 

11 
1057 
645 

(681765, 1) 



In [24]:

import matplotlib.colors as mc 
cmap = mc.LinearSegmentedColormap.from_list('', ['purple', 'red', 'green', 'beig
e', 'blue']) 

plt.figure(figsize=[12,12]) 
plt.imshow(img_clusters, cmap=cmap) 
plt.axis('off') 
plt.show() 

Multi-band clustering

Cluster the satellite image based on the RGBN (red, blue, green NIR) bands.



In [10]:

red_1d   = red.reshape(red.shape[0] * red.shape[1], 1) 
green_1d = green.reshape(green.shape[0] * green.shape[1], 1) 
blue_1d  = blue.reshape(blue.shape[0] * blue.shape[1], 1) 

rgbn_1d = [(0, 0, 0, 0)] * (red.shape[0] * red.shape[1]) 
for i in range(red.shape[0] * red.shape[1]): 
   rgbn_1d[i] = (red_1d[i, 0], green_1d[i, 0], blue_1d[i, 0], nir_1d[i, 0]) 
    
print(rgbn_1d[10000]) # print random item 

In [28]:

pred = KMeans(n_clusters=6).fit_predict(rgbn_1d) 
img_clusters = pred.reshape(red.shape) 

In [32]:

cmap = mc.LinearSegmentedColormap.from_list('', ['blue', 'red', 'green', 'brown'
, 'beige', 'purple']) 

plt.figure(figsize=[15,15]) 
plt.imshow(img_clusters, cmap=cmap) 
plt.axis('off') 
plt.show() 

(8434, 8678, 9156, 15104) 



Downsampling

The LC08_L1TP_188027_20200420_20200508_01_T1  file is a complete Landsat 8 satellite image tile,
containing Budapest and parts of Western-Hungary, acquired on 2020 April 20. 
Download: https://gis.inf.elte.hu/files/public/landsat-budapest-2020 (https://gis.inf.elte.hu/files/public/landsat-
budapest-2020) (1.4 GB)

In [13]:

import rasterio 
bp_2020 = rasterio.open('LC08_L1TP_188027_20200420_20200508_01_T1.tif') 
print(bp_2020.count) # band count 
print(bp_2020.width) # dimensions 
print(bp_2020.height) 

To speed up processing larger raster files, we may downsample them for the price of reducing the accuracy
of the result.

First, define the resampling function:

In [14]:

from rasterio.enums import Resampling 

def read_resampled_band(dataset, band, resample_factor):    
   data = dataset.read(band, 
       out_shape=( 
           1, 
           int(dataset.height * resample_factor), 
           int(dataset.width * resample_factor) 
       ), 
       resampling=Resampling.bilinear 
   ) 
   return data 

Read the blue, green, read and near-infrared bands into Numpy arrays. Resample them to a smaller size to
make further processing (clustering especially) faster.

In [15]:

bp = {} 
bp['blue'] = read_resampled_band(bp_2020, 2, 1/4) 
bp['green'] = read_resampled_band(bp_2020, 3, 1/4) 
bp['red'] = read_resampled_band(bp_2020, 4, 1/4) 
bp['nir'] = read_resampled_band(bp_2020, 5, 1/4) 

print(bp['red'].shape) 

Display the near-infrared band for verification:

11 
7981 
8071 

(2017, 1995) 

https://gis.inf.elte.hu/files/public/landsat-budapest-2020


In [16]:

plt.figure(figsize=[10,10]) 
plt.imshow(bp['nir'], cmap='Reds') 
plt.axis('off') 
plt.colorbar() 
plt.show() 

Display the RGB image for verification:



In [17]:

from rasterio.plot import show 
import numpy as np 

bp['red_max'] = np.percentile(bp['red'], 99.99) 
bp['blue_max'] = np.percentile(bp['blue'], 99.99) 
bp['green_max'] = np.percentile(bp['green'], 99.99) 

# astype('f4') is a numpy function to convert to float (4 byte) 
bp['redf'] = bp['red'].astype('f4') / bp['red_max'] 
bp['bluef'] = bp['blue'].astype('f4') / bp['blue_max'] 
bp['greenf'] = bp['green'].astype('f4') / bp['green_max'] 
bp['rgb'] = [bp['redf'], bp['greenf'], bp['bluef']] 

plt.figure(figsize=[10,10]) 
show(bp['rgb']) 
plt.show() 

Summary exercise on clustering

Clipping input data to the valid range for imshow with RGB data 
([0..1] for floats or [0..255] for integers). 



Implement a functions which performs single band clustering on a rasterio band (NumPy array). Execute it on
the NIR band of the complete satellite image.

Example on how it shall work:

single_band_clustering(bp['nir'], ['red', 'black', 'gray', 'green', 'whit

e', 'blue']) # 6 clusters with these colors 

In [18]:

def single_band_clustering(band, clusters=['red', 'black', 'gray', 'green', 'whi
te', 'blue']): 
   band_1d = band.reshape(band.shape[0] * band.shape[1], 1) 
    
   pred = KMeans(n_clusters=len(clusters)).fit_predict(band_1d) 
   img_clusters = pred.reshape(band.shape) 
    
   cmap = mc.LinearSegmentedColormap.from_list('', clusters) 

   plt.figure(figsize=[12,12]) 
   plt.imshow(img_clusters, cmap=cmap) 
   plt.axis('off') 
   plt.show() 

In [19]:

single_band_clustering(bp['nir']) 



Appendix 1: Strings

Advanced string operations

Concatenation: +

For string the +  operator is used for concatenation, joining multiple strings together.

In [1]:

word1 = 'Hello' 
word2 = 'Python' 
greet = word1 + ' ' + word2 + '!' 
print(greet) 

Multiplication: *

The *  operator is used for "multiplying" a string, repeating and concatenating it the given times.

In [2]:

greet3times = greet * 3 
print(greet3times) 

Length: len()

The len()  statement returns the length of the string.

In [3]:

print(len(greet)) 

String indexing and slicing: []

A single charcter of a string can be access by indexing it, starting from zero:

Hello Python! 

Hello Python!Hello Python!Hello Python! 

13 



In [4]:

print(greet[0]) 

Question: what will happen if we index with a negative number?

In [5]:

print(greet[-1]) 

Question: what will happen if we with a number larger than the length of the string?

In [6]:

print(greet[100]) 

We can also create substrings by fetching a slice of a string. 
Note that the end index is exclusive, so if the slice is given as [4:6] , then the characters with the index 4
and 5 will be sliced.

In [7]:

print(greet[0:5]) 
print(greet[6:7]) 

The first (start) index can be omitted, by default it will be zero:

In [8]:

print(greet[:5]) 

The second (end) index can also be omitted, by default it will be the end of the string:

In [9]:

print(greet[6:]) 

H 

! 

--------------------------------------------------------------------
------- 
IndexError                                Traceback (most recent cal
l last) 
<ipython-input-6-eb8fbb2c6e43> in <module> 
----> 1 print(greet[100]) 

IndexError: string index out of range

Hello 
P 

Hello 

Python! 



Question: what happens if we omit both the start and the end index?

In [10]:

print(greet[:]) 

Question: what happens if we use negative indices?

In [11]:

print(greet[-7:]) 
print(greet[1:-2]) 

Question: what happens if the end index is larger than the length of the string?

In [12]:

print(greet[6:100]) 

Built-in string functions

A comprehensive list of the built-in functions can be found in the 'string library'
(https://docs.python.org/3/library/stdtypes.html#string-methods) reference documentation.

These string functions are methods, which means they can be called on a string instance (value or variable)
in a form stringvar.method(parameters) . They do not modify the original string, but return a new
instance.

Lowercase: lower

Replace all letters to lowercase.

In [13]:

print(greet) 
greet_lower=greet.lower() 
print(greet_lower) 

Uppercase: upper

Replace all letters to uppercase.

Hello Python! 

Python! 
ello Pytho 

Python! 

Hello Python! 
hello python! 

https://docs.python.org/3/library/stdtypes.html#string-methods


In [14]:

print(greet) 
greet_upper=greet.upper() 
print(greet_upper) 

Capitalization: capitalize  and title

Replace the very first letter or the first letter of each words to uppercase. The rest will be turned to lowecase.

In [15]:

print(greet_lower) 
greet_capital=greet_lower.capitalize() 
print(greet_capital) 

greet_title=greet_lower.title() 
print(greet_title) 

Substring search: find

Looks up the first occurance of a character or a substring in a string. The result is the starting index position
of the first occurance as an integer . Keep in mind that the first index is 0 ! The returned value is -1  if
the substring was not found.

In [16]:

print(greet) 
location = greet.find('Python') 
print(location) 

print(greet) 
location = greet.find('java') 
print(location) 

The starting index of the search can also be passed to the function. This way multiple occurances of a
substring can be looked up.

Hello Python! 
HELLO PYTHON! 

hello python! 
Hello python! 
Hello Python! 

Hello Python! 
6 
Hello Python! 
-1 



In [17]:

print(greet3times) 
location = greet3times.find('Python') 
print(location) 

location = greet3times.find('Python', location + 1) 
print(location) 

This function is case-sensitive. 
If you would like to search for both lower and uppercase variants, you may convert the string to lowercase
first!

In [18]:

print(greet) 
location = greet.find('python') 
print(location) 

print(greet.lower()) 
location = greet.lower().find('python') 
print(location) 

Substring replace: replace

Replace all occurances of a substring to another substring.

This function is also case-sensitive.

In [19]:

greet_alternative = greet3times.replace('Hello', 'Hi') 
print(greet_alternative) 

Stripping: lstrip , rstrip , strip

All functions are used to trim unrequired whitespace characters (spaces, tabulators, newlines) from a string.

lstrip  - remove whitespace characters from the lefthand side.
rstrip  - remove whitespace characters from the righthand side.
stri  - remove whitespace characters from both sides.

Hello Python!Hello Python!Hello Python! 
6 
19 

Hello Python! 
-1 
hello python! 
6 

Hi Python!Hi Python!Hi Python! 



In [20]:

greet_world = '   --== Hello World  ==-- ' 
print(greet_world.lstrip()) 
print(greet_world.rstrip()) 
print(greet_world.strip()) 

The characters to remove can also be specified otherwise:

In [21]:

print(greet_world.strip(' -=')) 

Prefix and suffix check: startswith , endswith

These functions verifies whether a string starts or ends with the given substring. The result is a boolean value
( True  or False .)

This function is also case-sensitive.

In [22]:

print(greet.startswith('Hello')) 
print(greet.startswith('Hi')) 

Splitting: split

Split a string into a list of substring by defining a so-called separator or delimiter character or string. The
separator is removed from the string.

In [23]:

print(greet3times) 
words = greet3times.split('!') 
print(words) 

Question: why is there an empty string at the end of the result list?

Logical operations on strings

--== Hello World  ==--  
   --== Hello World  ==-- 
--== Hello World  ==-- 

Hello World 

True 
False 

Hello Python!Hello Python!Hello Python! 
['Hello Python', 'Hello Python', 'Hello Python', ''] 



Containment check: in

Verify whether a letter or a substring occures anywhere inside a string. The result is a boolean value ( True
or False .)

In [24]:

print('p' in greet) 
print('P' in greet) 
print('Python' in greet) 

In [25]:

if 'P' in greet: 
   print('Contains a letter P!') 

Equality check: ==

Perform a case-sensitive equality check between two strings.

In [26]:

if word2 == 'Python': 
   print('It was Python.') 
else: 
   print('It was not Python.') 

Summary exercise on strings

False 
True 
True 

Contains a letter P! 

It was Python. 



Task: request the name, birth year, email address and spoken languages of the user. The spoken languages
are requested as a string, separated by commas.

Check whether the following validation rules are matched. If any of the data is invalid, display an error
message and request a repeated entry of the data.

The name must contain at least 2 parts. (There must be a space inside it.)
The birth year must be a number, between 1900 and 2019.
The email address must contain a @  letter and must end with a elte.hu  domain.

When the data was given successfully, trim any unncceseary whitespaces and display it in a corrected
format:

The name shall be displayed with each part starting with a capital letter.
Beside the birth year, calculate the (possible) age of the current user.
The email address shall be lowercase.
The spoken languages shall be displayed as a list of languages instead of a single string.



In [27]:

import datetime 

def valid_name(name): 
   name = name.strip() 
   return len(name.split(' ')) >= 2 

def valid_birthyear(year): 
   year = year.strip() 
   try: 
       year_num = int(year) 
       return year_num >= 1900 and year_num <= 2019 
   except: 
       return False 

def valid_email(email): 
   email = email.strip() 
   return '@' in email and email.endswith('elte.hu') 

def format_name(name): 
   return name.strip().title() 

def format_age(year): 
   now = datetime.datetime.now() 
   age_max = now.year - int(year) 
   age_min = max(age_max - 1, 0) 
   if age_max != age_min: 
       return str(age_min) + "/" + str(age_max) 
   else: 
       return str(age_max) 

def format_email(email): 
   return email.strip().lower() 

def format_langs(langs): 
   langs = langs.strip().split(',') 
   langs = list(map(str.strip, langs)) 
   return langs 

name = input("Name: ") 
while not valid_name(name): 
   print("Incorrect format for name.") 
   name = input("Name: ") 
    
birthyear = input("Birth year: ") 
while not valid_birthyear(birthyear): 
   print("Incorrect format for birth year.") 
   birthyear = input("Birth year: ") 
    
email = input("Email: ") 
while not valid_email(email): 
   print("Incorrect format for email.") 
   email = input("Email: ") 
    
langs = input("Spoken languages: ") 

print("Name: %s" % format_name(name)) 
print("Birth year: %s (age: %s)" % (birthyear, format_age(birthyear))) 
print("Email: %s" % format_email(email)) 
print("Languages: %s" % format_langs(langs)) 



Incorrect format for name. 

Incorrect format for birth year. 

Incorrect format for email. 

Incorrect format for email. 

Name: John Smith 
Birth year: 1985 (age: 35/36) 
Email: johnsmith@elte.hu 
Languages: ['english', 'german', 'hungarian'] 



Appendix 2: Mathematical operations

NumPy (https://numpy.org/) is a first-rate library for numerical programming. It is widely used in academia,
finance and also in the industry.

The Pandas library introduced in Chapter 9 (09_tabular.pdf) is also built on top of NumPy, providing high-
performance, easy-to-use data structures and data analysis tools, making data manipulation and
visualization more convinient.

How to install numpy?

If you have Anaconda installed, then numpy was already installed together with it.

If you have a standalone Python3 and Jupyter Notebook installation, open a command prompt / terminal and
type in:

pip3 install numpy

How to use numpy?

The numpy package is a module which you can simply import. It is usually aliased with the np  abbreviation:

import numpy as np 

NumPy Arrays

The most important structure that NumPy defines is an array data type formally called a numpy.ndarray
(https://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html) - for N dimensional array.

In [1]:

import numpy as np 

a = np.zeros(3) 
a 

Out[1]:

array([0., 0., 0.])

https://numpy.org/
file:///converted/book/pdf/09_tabular.pdf
https://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html


In [2]:

type(a) 

NumPy arrays are somewhat like native Python lists, except that:

data must be homogeneous (all elements of the same type);
these types must be one of the data types (dtypes) provided by NumPy.;

The most important of these dtypes are:

float64 : 64 bit floating-point number
int64 : 64 bit integer
bool : 8 bit True or False There are also dtypes to represent complex numbers, unsigned integers, etc.

The default dtype for arrays is float64 :

In [3]:

a = np.zeros(3) 
type(a[0]) 

If we want to use integers we can specify it:

In [4]:

a = np.zeros(3, dtype=int) 
type(a[0]) 

Shape and Dimension

Here b  is a flat array with no dimension - neither row nor column vector.

The dimension is recorded in the shape  attribute, which is a tuple.

Out[2]:

numpy.ndarray

Out[3]:

numpy.float64

Out[4]:

numpy.int64



In [5]:

b = np.zeros(10) 
b.shape 

To give it dimension, we can change the shape  attribute:

In [6]:

b.shape = (10, 1) 
b 

Make it a 2 by 2 array:

In [7]:

b = np.zeros(4) 
b.shape = (2, 2) 
b 

Dimension can also be specified initially when using the np.zeros()  function.

In [8]:

b = np.zeros((2, 2)) 
b 

You can probably guess what np.ones  creates.

Out[5]:

(10,)

Out[6]:

array([[0.], 
      [0.], 
      [0.], 
      [0.], 
      [0.], 
      [0.], 
      [0.], 
      [0.], 
      [0.], 
      [0.]])

Out[7]:

array([[0., 0.], 
      [0., 0.]])

Out[8]:

array([[0., 0.], 
      [0., 0.]])



In [9]:

b = np.ones(10) 
b 

Creating Arrays

We have already discussed np.zeros()  and np.ones() .

Set up a grid of evenly spaced numbers.

In [10]:

b = np.linspace(2, 4, 5) 
b 

Create an identity matrix.

In [11]:

b = np.identity(3) 
b 

NumPy arrays can be created from Python lists, tuples, etc.

In [12]:

b = np.array([10, 20]) 
b 

The data type can also be configured, here float  is equivalent to np.float64 :

Out[9]:

array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

Out[10]:

array([2. , 2.5, 3. , 3.5, 4. ])

Out[11]:

array([[1., 0., 0.], 
      [0., 1., 0.], 
      [0., 0., 1.]])

Out[12]:

array([10, 20])



In [13]:

b = np.array((10, 20), dtype=float) 
b 

Create a 2 dimensional, 2 by 2 array:

In [14]:

b = np.array([[1, 2], [3, 4]]) 
b 

Array indexing

For a flat array, indexing is the same as Python sequences.

In [15]:

c = np.linspace(1, 2, 5) 
c 

In [16]:

c[0] 

In [17]:

c[1:3] 

Out[13]:

array([10., 20.])

Out[14]:

array([[1, 2], 
      [3, 4]])

Out[15]:

array([1.  , 1.25, 1.5 , 1.75, 2.  ])

Out[16]:

1.0

Out[17]:

array([1.25, 1.5 ])



In [18]:

c[-1] 

For 2D arrays we use an index position for each dimension.

In [19]:

d = np.array([[1, 2], [3, 4]]) 
d 

In [20]:

d[0, 1] 

Note that indices are still zero-based, to maintain compatibility with Python sequences.

Columns and rows can be extracted as follows:

In [21]:

d[0, :] 

In [22]:

d[:, 1] 

NumPy arrays of integers can also be used to extract elements.

In [23]:

indices = np.array((0, 2, 3)) 
c[indices] 

Out[18]:

2.0

Out[19]:

array([[1, 2], 
      [3, 4]])

Out[20]:

2

Out[21]:

array([1, 2])

Out[22]:

array([2, 4])

Out[23]:

array([1.  , 1.5 , 1.75])



A NumPy array of boolean values can be used to filter elements at the True  locations.

In [24]:

e = np.array([0, 1, 1, 0, 0], dtype=bool) 
e 

In [25]:

c[e] 

Array Methods

Numpy arrays have useful methods, many of them should be familiar from previous lectures.

In [26]:

f = np.array((3, 2, 4, 1)) 
f 

In [27]:

f.sort() # Sorts a in place 
f 

In [28]:

f.sum() # Sum 

Out[24]:

array([False,  True,  True, False, False])

Out[25]:

array([1.25, 1.5 ])

Out[26]:

array([3, 2, 4, 1])

Out[27]:

array([1, 2, 3, 4])

Out[28]:

10



In [29]:

f.mean() # Mean 

In [30]:

f.max() # Max 

In [31]:

f.argmax() # Returns the index of the maximal element 

In [32]:

f.cumsum() # Cumulative sum of the elements 

In [33]:

f.cumprod() # Cumulative product of the elements 

In [34]:

f.var() # Variance 

In [35]:

f.std() # Standard deviation 

Out[29]:

2.5

Out[30]:

4

Out[31]:

3

Out[32]:

array([ 1,  3,  6, 10])

Out[33]:

array([ 1,  2,  6, 24])

Out[34]:

1.25

Out[35]:

1.118033988749895



In [36]:

f.shape = (2, 2) 
f 

In [37]:

f.transpose() # or simpy f.T 

Many of the methods discussed above have equivalent functions in the NumPy namespace, e.g.:

In [38]:

print("Sum: {0}".format(np.sum(f))) 
print("Mean: {0:.2f}".format(np.mean(f))) 

Arithmetic Operations

The operators + , - , * , /  and **  all act elementwise on NumPy arrays.

In [39]:

a = np.array([1, 2, 3, 4]) 
b = np.array([5, 6, 7, 8]) 
a + b 

In [40]:

a * b 

Out[36]:

array([[1, 2], 
      [3, 4]])

Out[37]:

array([[1, 3], 
      [2, 4]])

Sum: 10 
Mean: 2.50 

Out[39]:

array([ 6,  8, 10, 12])

Out[40]:

array([ 5, 12, 21, 32])



In [41]:

a + 10 

In [42]:

a * 10 

Multi dimensional arrays follow the same general rules.

In [43]:

a.shape = (2, 2) 
b.shape = (2, 2) 
a + b 

In [44]:

a + 10 

In [45]:

a * b 

Calculate the dot product of two NumPy arrays.

In [46]:

np.dot(a, b) 

The @  operator does the same thing.

Out[41]:

array([11, 12, 13, 14])

Out[42]:

array([10, 20, 30, 40])

Out[43]:

array([[ 6,  8], 
      [10, 12]])

Out[44]:

array([[11, 12], 
      [13, 14]])

Out[45]:

array([[ 5, 12], 
      [21, 32]])

Out[46]:

array([[19, 22], 
      [43, 50]])



In [47]:

a @ b 

Calculate the cross product of two NumPy arrays.

In [48]:

np.cross(a, b) 

Random generation

Generate random numbers of the standard normal distribution:

In [49]:

g = np.random.randn(3) 
g 

Generate random integers between a lower (inclusive) and a higher (exclusive) bound:

In [50]:

g = np.random.randint(0, 100, 5) 
g 

Mutability and Copying Arrays

Out[47]:

array([[19, 22], 
      [43, 50]])

Out[48]:

array([-4, -4])

Out[49]:

array([-0.04562699, -0.7312714 , -0.37247379])

Out[50]:

array([51, 57, 89, 13,  5])



NumPy arrays are mutable data types, like Python lists. In other words, their contents can be altered
(mutated) in memory after initialization.

To make an independent copy of a NumPy array, the np.copy()  function can be used.

In [51]:

h = g 
i = g.copy() 
h[0] = 42 

print(g) 
print(h) 
print(i) 

Vectorized Functions

The np.vectorize()  creates a vectorized function, which can be performed on a NumPy array in an
elementwise manner.

In [52]:

# is_even() can be called on an integer number 
def is_even(x): return x % 2 == 0 

# is_even_vectorized() can be called on an array of integers 
is_even_vectorized = np.vectorize(is_even) 
is_even_vectorized(g) 

The NumPy function np.where()  provides a vectorized alternative.

In [53]:

np.where(g % 2 == 0, 1, 0) 

Comparisons

[42 57 89 13  5] 
[42 57 89 13  5] 
[51 57 89 13  5] 

Out[52]:

array([ True, False, False, False, False])

Out[53]:

array([1, 0, 0, 0, 0])



As a rule, comparisons on arrays are done elementwise.

In [54]:

z = np.array([2, 3]) 
y = np.array([2, 3]) 
z == y 

In [55]:

y[0] = 5 
z == y 

In [56]:

z != y 

The situation is similar for > , < , >=  and <= .

We can also do comparisons against scalars:

In [57]:

x = np.linspace(0, 10, 5) 
x 

In [58]:

x > 3 

This is particularly useful for conditional extraction:

Out[54]:

array([ True,  True])

Out[55]:

array([False,  True])

Out[56]:

array([ True, False])

Out[57]:

array([ 0. ,  2.5,  5. ,  7.5, 10. ])

Out[58]:

array([False, False,  True,  True,  True])



In [59]:

cond = x > 3 
x[cond] 

Of course we can - and frequently do - perform this in one step:

In [60]:

x[x > 3] 

Linear algebra

In [61]:

k = np.array([[1, 2], [3, 4]]) 
k 

Compute the determinant:

In [62]:

np.linalg.det(k)   

Compute the inverse:

In [63]:

np.linalg.inv(k) 

Out[59]:

array([ 5. ,  7.5, 10. ])

Out[60]:

array([ 5. ,  7.5, 10. ])

Out[61]:

array([[1, 2], 
      [3, 4]])

Out[62]:

-2.0000000000000004

Out[63]:

array([[-2. ,  1. ], 
      [ 1.5, -0.5]])



Interpolation

Generate 20 evenly distributed number between 0 and 10 into x . Generate the sine function value into y
for each elements in x .

In [64]:

x = np.linspace(0, 10, 20) 
y = np.sin(x) 
print(x) 
print(y) 

Generate 100 evenly distributed number between 0 and 10 into xvals . Calculate the interpolated values
into yinterp  for each elements in xvals , based on x  and y .

In [65]:

xvals = np.linspace(0, 10, 100) 
yinterp = np.interp(xvals, x, y) 
print(xvals) 
print(yinterp) 

Visualize the results on a plot. (For plotting, see Chapter 10 (10_plotting.pdf).)

[ 0.          0.52631579  1.05263158  1.57894737  2.10526316  2.6315
7895 
 3.15789474  3.68421053  4.21052632  4.73684211  5.26315789  5.7894
7368 
 6.31578947  6.84210526  7.36842105  7.89473684  8.42105263  8.9473
6842 
 9.47368421 10.        ] 
[ 0.          0.50235115  0.86872962  0.99996678  0.86054034  0.4881
8921 
-0.01630136 -0.5163796  -0.87668803 -0.99970104 -0.85212237 -0.4738
9753 
 0.03259839  0.53027082  0.88441346  0.99916962  0.84347795  0.4594
799 
-0.04888676 -0.54402111] 

[ 0.          0.1010101   0.2020202   0.3030303   0.4040404   0.5050
5051 
 0.60606061  0.70707071  0.80808081  0.90909091  1.01010101  1.1111
1111 
 ... 
 9.09090909  9.19191919  9.29292929  9.39393939  9.49494949  9.5959
596 
 9.6969697   9.7979798   9.8989899  10.        ] 
[ 0.          0.09641083  0.19282166  0.28923248  0.38564331  0.4820
5414 
 0.55786304  0.6281781   0.69849316  0.76880822  0.83912328  0.8833
1152 
 ... 
 0.32083445  0.22326913  0.12570381  0.0281385  -0.06889218 -0.1639
1797 
-0.25894376 -0.35396954 -0.44899533 -0.54402111] 

file:///converted/book/pdf/10_plotting.pdf


In [66]:

import matplotlib.pyplot as plt 
%matplotlib inline 

plt.plot(x, y, 'o') 
plt.plot(xvals, yinterp, '-x') 
plt.show() 



Exercise Book 1
Covering the materials of Chapters 1-4. 
Topics: control structures, user input, exception handling, random generation, lists, function definition

Task 1: Armstrong numbers

Produce all Armstrong numbers smaller than . The value of  is given by the user. Validate the user input!

A number is an Armstrong number (https://en.wikipedia.org/wiki/Narcissistic_number), if it is the sum of its
own digits, each raised to the power of the number of digits. For example 153 is an Armstrong number,
because . The first few Armstrong numbers are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370,
371, 407, 1634, etc.

N N

13 + 53 + 33 = 153

In [1]:

valid_input = False 
while not valid_input: 
   try: 
       N = int(input("N := ")) 
       valid_input = True 
   except: 
       print("That is not a number.") 

print('Armstrong numbers smaller than %d:' % N) 
for number in range(0, N): 
   orig_number = number 
   digits = len(str(number)) 
   result = 0 
   while number > 0: 
       last_digit = number % 10 
       number = number // 10 
       result += last_digit ** digits 
   if result == orig_number: 
       print(orig_number) 

Armstrong numbers smaller than 10000: 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
153 
370 
371 
407 
1634 
8208 
9474 

https://en.wikipedia.org/wiki/Narcissistic_number


Task 2: Perfect numbers

Produce the first  Perfect numbers. The value of  is given by the user. Validate the user input!

In number theory, a perfect number (https://en.wikipedia.org/wiki/Perfect_number) is a positive integer that is
equal to the sum of its positive divisors, excluding the number itself. For instance, 6 has divisors 1, 2 and 3
(excluding itself), and , so 6 is a perfect number. The first few perfect numbers are: 6, 28,
496, etc.

N N

1 + 2 + 3 = 6

In [2]:

valid_input = False 
while not valid_input: 
   try: 
       N = int(input("N := ")) 
       valid_input = True 
   except: 
       print("That is not a number.") 

print('The first %d perfect numbers:' % N) 
found_numbers = 0 
number = 1 
while found_numbers < N: 
   result = 0 
   for div in range(1, number): 
       if number % div == 0: 
           result += div 
   if result == number: 
       print(number) 
       found_numbers += 1 
   number += 1 

Task 3: Greatest common divisor

Calculate the greatest common divisor of 2 numbers!

Request 2 integer numbers from the user and calculate their greatest common divisor. E.g. for 30 and 105
their greatest common divisor is 15. Do not use the math.gcd()  built-in function to solve the task.

Hint: use the Euclidean algorithm (https://en.wikipedia.org/wiki/Euclidean_algorithm)

The first 4 perfect numbers: 
6 
28 
496 
8128 

https://en.wikipedia.org/wiki/Perfect_number
https://en.wikipedia.org/wiki/Euclidean_algorithm


In [3]:

def gcd(a, b): 
   while a != b: 
       if a > b: 
           a -= b 
       else: 
           b -= a 
   return a 

num1 = int(input('First number: ')) 
num2 = int(input('Second number: ')) 

print('The greatest common divisor of %d and %d is %d' %(num1, num2, gcd(num1, n
um2))) 

Task 4: Rock–paper–scissors

Implement the popular rock–paper–scissors
(https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) game, where the user can play
against the computer! The human player can type in rock, paper or scissors. Handle incorrect input and
request the input again if it does not match one of the three previous options. The computer player randomly
chooses one of the options. The game finishes when one of the players won. (It continues with another round
upon a draw.)

The greatest common divisor of 30 and 105 is 15 

https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors


In [4]:

import random 
options = ['rock', 'paper', 'scissors'] 
computer = random.choice(options) 

# Read user input with validation 
def read_user_input(): 
   user_input = input("Please type in 'rock', 'paper' or 'scissors': ") 
   while not user_input in options: 
       print("There must have been a typo. Please try again: ") 
       user_input = input("Please type in 'rock', 'paper' or 'scissors': ") 
   return user_input 

user_input = read_user_input() 
while user_input == computer: 
   print("There is a tie!") 
   computer = random.choice(options) 
   user_input = read_user_input() 

if user_input == "rock": 
   if computer == "paper": 
       print ("Paper beats rock. The computer won.") 
   else: 
       print("Rock beats scissors. You won!") 
elif user_input == "paper": 
   if computer == "rock": 
       print("Paper beats rock. You won!") 
   else: 
       print("Scissors beat paper. The computer won.") 
elif user_input == "scissors": 
   if computer == "rock": 
       print("Rock beats scissors. The computer won.") 
   else: 
       print ("Scissors beats paper. You won.") 

Task 5: Guess a number

Write a program which can think a of number between 1 and 100, randomly. The task of the user is to guess
that number. In each round the user can make a guess, and the program replies whether the guess is correct
or it was too small or too large. The game ends when the user succefully guesses the number.

Rock beats scissors. You won! 



In [5]:

import random 
number = random.randint(1, 100) 

guess = int(input("Guess my number between 1 and 100: ")) 
while guess != number: 
   if guess > number: 
       print("Your number is too large. Try again. ") 
       guess = int(input("Guess a number: ")) 
   elif guess < number: 
       print("Your number is too small. Try again.") 
       guess = int(input("Guess a number: ")) 
else: 
   print("This is the correct number!") 

Question: if the human player is smart, what is the minimum number of guesses, which is always enough?

Task 6: Separation by parity

Given a list of numbers, write a program, which separates the odd and even integers in separate lists. E.g.:

Input: [45, 83, 90, 11, 24, 98, 87, 39, 9, 6] 

Even numbers: [90, 24, 98, 6] 

Odd numbers: [45, 83, 11, 87, 39, 9]

Here is a list of 20 random numbers between 1 and 100:

In [6]:

import random 

numbers = [] 
for i in range(20): 
   numbers.append(random.randint(1, 100)) 
print(numbers) 

Now write a program which separates them:

Your number is too large. Try again.  

Your number is too small. Try again. 

Your number is too small. Try again. 

Your number is too large. Try again.  

Your number is too small. Try again. 

This is the correct number! 

[68, 48, 82, 81, 37, 41, 96, 8, 95, 96, 97, 20, 54, 52, 28, 17, 76, 
54, 6, 23] 



In [7]:

even_numbers=[] 
odd_numbers=[] 
for i in numbers: 
   if i%2==0: 
       even_numbers.append(i) 
   else: 
       odd_numbers.append(i) 
print('The even numbers are: %s' % even_numbers) 
print('The odd numbers are: %s' % odd_numbers) 

Task 7: Pyramid

Write the pyramid(height)  function, which displays a pattern like a pyramid with an asterisk. The height
of the pyramid can be defined by the user.

E.g. for , the pyramid would look like:

  * 

 *** 

***** 

*******

height = 4

In [8]:

def pyramid(height): 
   for i in range(height): 
       print(' '*(height-i-1) + '*'*(2*i+1)) 

h=int(input('Height of the pyramid: ')) 
pyramid(h) 

Task 8: Collatz sequence

The even numbers are: [68, 48, 82, 96, 8, 96, 20, 54, 52, 28, 76, 5
4, 6] 
The odd numbers are: [81, 37, 41, 95, 97, 17, 23] 

     * 
    *** 
   ***** 
  ******* 
 ********* 
*********** 



Write a function which produces the Collatz sequence and returns it as a list. The function receives the
starting value for the sequence. Request the starting value from the user, call the function and display the
generated Collatz sequence.

The Collatz sequence (https://en.wikipedia.org/wiki/Collatz_conjecture) has a starting value and the next item
of the sequence is always calculated from the previous one, defined as follows:

if the number is even, divide it by two;
if the number is odd, triple it and add one.

More formally: 

The sequence stops upon reaching 1. For instance, starting with , one gets the sequence 12, 6, 3,
10, 5, 16, 8, 4, 2, 1.

f(n) = {n/2 n ≡ 0 (mod 2)

3n + 1 n ≡ 1 (mod 2)

n = 12

In [9]:

def collatz(number): 
   sequence=[number] 
   while number>1: 
       if number%2==0: 
           number=number//2 
           sequence.append(number) 
       else: 
           number=3*number+1 
           sequence.append(number) 
   return sequence 

number=int(input('Starting number of Collatz sequence: ')) 
print(collatz(number)) 

Task 9: Anagram

An anagram is a word or phrase formed by rearranging the letters of a different word or phrase. For example
the words spear and pears are anagrams. Write a function, which decides whether two words are anagrams
or not and returns a boolean value accordingly (True or False).

Hint: pay attention that a single letter may accour multiple times in a word.

[123, 370, 185, 556, 278, 139, 418, 209, 628, 314, 157, 472, 236, 11
8, 59, 178, 89, 268, 134, 67, 202, 101, 304, 152, 76, 38, 19, 58, 2
9, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 
1] 

https://en.wikipedia.org/wiki/Collatz_conjecture


In [11]:

def is_anagram(word1, word2): 
   # If the size does not match, they cannot be anagrams 
   if len(word1) != len(word2): 
       return False 

   # Check for each character in word1 whether it is also in word2 
   for ch in word1: 
       if not ch in word2: 
           return False 
   return True 

a=input('First word: ') 
b=input('Second word: ') 
print('Are they anagrams? %s' % is_anagram(a, b)) 

Task 10: Circularly identical lists

A list is called circular if we consider the first element as next of the last element. Circularly identical lists
contain the same elements in the same order, given that two lists that can be obtained from each other if one
or more of the elements in one of the lists are rotated/displaced from their original index and placed at the
beginning. E.g. the lists [10, 20, 30, 40, 50]  and [40, 50, 10, 20, 30]  are circularly
identical, but not with [50, 40, 10, 20, 30] .

Write a function which decides whether the given 2 parameter lists are circularly identical or not and returns a
boolean value accordingly (True or False).

Are they anagrams? True 



In [18]:

def is_circularly_identical(listA, listB): 
   listA2 = listA + listA 
   for i in range(len(listA2)): 
       if listA2[i] == listB[0]: 
           n = 1 
           while (n < len(listB)) and (i + n < len(listA2)) and (listA2[i+n] ==
listB[n]): 
               n += 1                 
               if n == len(listB): 
                   return True 
                    
   return False 
    

list1 = [10, 20, 30, 40, 50] 
list2 = [40, 50, 10, 20, 30] 
list3 = [50, 40, 10, 20, 30] 

print('list1 is circularly identical with list2: {0}'.format(is_circularly_ident
ical(list1, list2))) 
print('list1 is circularly identical with list3: {0}'.format(is_circularly_ident
ical(list1, list3))) 
print('list2 is circularly identical with list3: {0}'.format(is_circularly_ident
ical(list2, list3))) 

list1 is circularly identical with list2: True 
list1 is circularly identical with list3: False 
list2 is circularly identical with list3: False 



Exercise Book 2
Covering the materials of Chapters 7-8. 
Topics: collection data structures, object oriented programming

In the following 4 lists you will find the country name, capital city name, area (in km ) and population (in
millions) data for 43 European countries respectively.

2

In [1]:

countries = ['Albania', 'Andorra', 'Austria', 'Belgium', 'Bosnia and Herzegovin
a', 'Bulgaria', 'Czech Republic', 'Denmark', 'United Kingdom', 'Estonia', 'Belar
us', 'Finland', 'France', 'Greece', 'Netherlands', 'Croatia', 'Ireland', 'Icelan
d', 'Kosovo', 'Poland', 'Latvia', 'Liechtenstein', 'Lithuania', 'Luxembourg', 'M
acedonia', 'Hungary', 'Malta', 'Moldova', 'Monaco', 'Montenegro', 'Germany', 'No
rway', 'Italy', 'Portugal', 'Romania', 'San Marino', 'Spain', 'Switzerland', 'Sw
eden', 'Serbia', 'Slovakia', 'Slovenia', 'Ukraine'] 
capitals = ['Tirana', 'Andorra la Vella', 'Vienna', 'Brussels', 'Sarajevo', 'Sof
ia', 'Prague', 'Copenhagen', 'London', 'Tallin', 'Minsk', 'Helsinki', 'Paris', 
'Athens', 'Hague', 'Zagreb', 'Dublin', 'Reykjavik', 'Prishtina', 'Warsaw', 'Rig
a', 'Vaduz', 'Vilnius', 'luxembourg', 'Skopje', 'Budapest', 'Valletta', 'Chisina
u', 'Monaco', 'Podgorica', 'Berlin', 'Oslo', 'Rome', 'Lisbon', 'Bucharest', 'San
Marino', 'Madrid', 'Berne', 'Stockholm', 'Belgrade', 'Bratislava', 'Ljubljana',
'Kiev'] 
areas = [28748, 468, 83857, 30519, 51130, 110912, 78864, 43077, 244100, 45100, 2
07600, 338145, 543965, 131957, 33933, 56500, 70283, 103000, 10887, 312683, 63700
, 160, 65200, 2586, 25713, 93036, 316, 33700, 2, 13812, 357042, 323877, 301277, 
92389, 237500, 61, 504782, 41293, 449964, 66577, 49035, 20250, 603700] 
populations = [3.2, 0.07, 7.6, 10.0, 4.5, 9.0, 10.4, 5.1, 57.2, 1.6, 10.3, 4.9, 
56.2, 10.0, 14.8, 4.7, 3.5, 0.3, 2.2, 37.8, 2.6, 0.03, 3.6, 0.4, 2.1, 10.4, 0.3,
4.4, 0.03, 0.6, 78.6, 4.2, 57.5, 10.5, 23.2, 0.03, 38.8, 6.7, 8.5, 7.2, 5.3, 2.
0, 51.8] 

Let's display the data stored in all lists:



In [2]:

print("Countries:") 
print(countries) 
print("----------") 
print("Capitals:") 
print(capitals) 
print("----------") 
print("Areas (in km2):") 
print(areas) 
print("----------") 
print("Populations (in millions):") 
print(populations) 

The index position of the elements in the lists ties the information for each country together:

Countries: 
['Albania', 'Andorra', 'Austria', 'Belgium', 'Bosnia and Herzegovin
a', 'Bulgaria', 'Czech Republic', 'Denmark', 'United Kingdom', 'Esto
nia', 'Belarus', 'Finland', 'France', 'Greece', 'Netherlands', 'Croa
tia', 'Ireland', 'Iceland', 'Kosovo', 'Poland', 'Latvia', 'Liechtens
tein', 'Lithuania', 'Luxembourg', 'Macedonia', 'Hungary', 'Malta', 
'Moldova', 'Monaco', 'Montenegro', 'Germany', 'Norway', 'Italy', 'Po
rtugal', 'Romania', 'San Marino', 'Spain', 'Switzerland', 'Sweden', 
'Serbia', 'Slovakia', 'Slovenia', 'Ukraine'] 
---------- 
Capitals: 
['Tirana', 'Andorra la Vella', 'Vienna', 'Brussels', 'Sarajevo', 'So
fia', 'Prague', 'Copenhagen', 'London', 'Tallin', 'Minsk', 'Helsink
i', 'Paris', 'Athens', 'Hague', 'Zagreb', 'Dublin', 'Reykjavik', 'Pr
ishtina', 'Warsaw', 'Riga', 'Vaduz', 'Vilnius', 'luxembourg', 'Skopj
e', 'Budapest', 'Valletta', 'Chisinau', 'Monaco', 'Podgorica', 'Berl
in', 'Oslo', 'Rome', 'Lisbon', 'Bucharest', 'San Marino', 'Madrid', 
'Berne', 'Stockholm', 'Belgrade', 'Bratislava', 'Ljubljana', 'Kiev'] 
---------- 
Areas (in km2): 
[28748, 468, 83857, 30519, 51130, 110912, 78864, 43077, 244100, 4510
0, 207600, 338145, 543965, 131957, 33933, 56500, 70283, 103000, 1088
7, 312683, 63700, 160, 65200, 2586, 25713, 93036, 316, 33700, 2, 138
12, 357042, 323877, 301277, 92389, 237500, 61, 504782, 41293, 44996
4, 66577, 49035, 20250, 603700] 
---------- 
Populations (in millions): 
[3.2, 0.07, 7.6, 10.0, 4.5, 9.0, 10.4, 5.1, 57.2, 1.6, 10.3, 4.9, 5
6.2, 10.0, 14.8, 4.7, 3.5, 0.3, 2.2, 37.8, 2.6, 0.03, 3.6, 0.4, 2.1, 
10.4, 0.3, 4.4, 0.03, 0.6, 78.6, 4.2, 57.5, 10.5, 23.2, 0.03, 38.8, 
6.7, 8.5, 7.2, 5.3, 2.0, 51.8] 



In [3]:

for idx in range(len(countries)): 
   print("Name: %s, Capital: %s, Area: %d km2, Population: %.2f millions" % (co
untries[idx], capitals[idx], areas[idx], populations[idx])) 

Task 1: List of dictionaries

Storing the data in 4 separate lists is not comfortable. Construct a list of dictionaries programatically:

each item in the list is a dictionary;
each dictionary contains the relevant information for a single country.

The result should be like the following:

[ 

   { 

       'country': 'Albania', 

       'capital': 'Tirana', 

       'area': 28748, 

       'population': 3.2 

   }, 

   ... 

   { 

       'country': 'Ukraine', 

       'capital': 'Kiev', 

       'area': 603700, 

       'population': 51.8 

   } 

]

Name: Albania, Capital: Tirana, Area: 28748 km2, Population: 3.20 mi
llions 
Name: Andorra, Capital: Andorra la Vella, Area: 468 km2, Population: 
0.07 millions 
Name: Austria, Capital: Vienna, Area: 83857 km2, Population: 7.60 mi
llions 
... 
Name: Slovakia, Capital: Bratislava, Area: 49035 km2, Population: 5.
30 millions 
Name: Slovenia, Capital: Ljubljana, Area: 20250 km2, Population: 2.0
0 millions 
Name: Ukraine, Capital: Kiev, Area: 603700 km2, Population: 51.80 mi
llions 



In [4]:

dataset = [] 
for idx in range(len(countries)): 
   dataset.append({ 
       'country': countries[idx], 
       'capital': capitals[idx], 
       'area': areas[idx], 
       'population': populations[idx] 
   }) 
print(dataset) 

Task 2: Population density

Calculate the population density for each country (in people / km  unit) and extends each country with this
information.

The result should be like the following:

[ 

   { 

       'country': 'Albania', 

       'capital': 'Tirana', 

       'area': 28748, 

       'population': 3.2, 

       'density': 111.31209127591485 

   }, 

   ... 

   { 

       'country': 'Ukraine', 

       'capital': 'Kiev', 

       'area': 603700, 

       'population': 51.8, 

       'density': 85.80420738777539 

   } 

]

2

[{'country': 'Albania', 'capital': 'Tirana', 'area': 28748, 'populat
ion': 3.2}, {'country': 'Andorra', 'capital': 'Andorra la Vella', 'a
rea': 468, 'population': 0.07}, {'country': 'Austria', 'capital': 'V
ienna', 'area': 83857, 'population': 7.6}, 
..., 
{'country': 'Slovakia', 'capital': 'Bratislava', 'area': 49035, 'pop
ulation': 5.3}, {'country': 'Slovenia', 'capital': 'Ljubljana', 'are
a': 20250, 'population': 2.0}, {'country': 'Ukraine', 'capital': 'Ki
ev', 'area': 603700, 'population': 51.8}] 



In [5]:

for item in dataset: 
   item['density'] = item['population'] * 1e6 / item['area'] 
print(dataset) 

Task 3: Highest density

Find the country with the highest population density.

In [6]:

max_idx = 0 

for idx in range(1, len(dataset)): 
   if dataset[idx]['density'] > dataset[max_idx]['density']: 
       max_idx = idx 
        
print(dataset[max_idx]) 

Task 4: Object oriented approach

Task A): define a class named Country , which can store a country's name, capitaly city, area and
population. Construct a list of objects, where each object is an instance of the Country  class.

Task B): add a density()  method to the Country  class, which calculates the population density for
that country dynamically. Find the country with the highest population density.

[{'country': 'Albania', 'capital': 'Tirana', 'area': 28748, 'populat
ion': 3.2, 'density': 111.31209127591485}, {'country': 'Andorra', 'c
apital': 'Andorra la Vella', 'area': 468, 'population': 0.07, 'densi
ty': 149.57264957264957}, {'country': 'Austria', 'capital': 'Vienn
a', 'area': 83857, 'population': 7.6, 'density': 90.63047807577185},
 
..., 
{'country': 'Slovakia', 'capital': 'Bratislava', 'area': 49035, 'pop
ulation': 5.3, 'density': 108.08606097685326}, {'country': 'Sloveni
a', 'capital': 'Ljubljana', 'area': 20250, 'population': 2.0, 'densi
ty': 98.76543209876543}, {'country': 'Ukraine', 'capital': 'Kiev', 
'area': 603700, 'population': 51.8, 'density': 85.80420738777539}] 

{'country': 'Monaco', 'capital': 'Monaco', 'area': 2, 'population': 
0.03, 'density': 15000.0} 



In [7]:

class Country(): 
   def __init__(self, name, capital, area, population): 
       self.name = name 
       self.capital = capital 
       self.area = area 
       self.population = population 
    
   def density(self): 
       return self.population * 1e6 / self.area 

dataset2 = [] 
for idx in range(len(countries)): 
   dataset2.append(Country(countries[idx], capitals[idx], areas[idx], populatio
ns[idx])) 
    
max_idx = 0 
for idx in range(1, len(dataset2)): 
   if dataset2[idx].density() > dataset2[max_idx].density(): 
       max_idx = idx 
        
print(dataset2[max_idx].name) 

Monaco 



Exercise Book 3
Covering the materials of Chapters 9-10. 
Topics: tabular data, plotting and diagram visualization

Open and read the attached data/airports.csv  file, containing information about (larger) airports all
over the world:

1. IATA code (International Air Transport Association code, e.g. BUD for the Budapest Airport)
2. ICAO code (International Civil Aviation Organization code, e.g. LHBP for the Budapest Airport)
3. Name
4. Number of runways
5. Longest runway length (in foots)
6. Elevation (in foots)
7. Country
8. Country region
9. City

10. Latitude
11. Longitude

The columns in each row are delimited with ;  characters (instead of the default , ).



In [1]:

import pandas as pd 

airports = pd.read_csv('../data/airports.csv', delimiter=';') 
display(airports) 

Task 1

Write a program that calculates and prints for each country the number of airports in that country. Sort the list
by the number of airports.

iata icao name runways longest elevation country region city

0 ATL KATL

Hartsfield -
Jackson
Atlanta

International
Air...

5 12390 1026 US US-
GA Atlanta 33

1 ANC PANC Anchorage
Ted Stevens 3 12400 151 US US-AK Anchorage 61

2 AUS KAUS

Austin
Bergstrom

International
Airport

2 12250 542 US US-TX Austin 30

3 BNA KBNA
Nashville

International
Airport

4 11030 599 US US-TN Nashville 36

4 BOS KBOS Boston
Logan 6 10083 19 US US-

MA Boston 42

... ... ... ... ... ... ... ... ... ...

3459 LNL ZLLN Cheng Xian
Airport 1 9186 3707 CN CN-62 Longnan 33

3460 XAI ZHXY
Xinyang

Minggang
Airport

1 8858 4528 CN CN-41 Xinyang 32

3461 YYA ZGYY Sanhe
Airport 1 8530 230 CN CN-43 Yueyang 29

3462 BQJ UEBB Batagay
Airport 2 6562 699 RU RU-

SA Batagay 67

3463 DPT UEBD Deputatskij
Airport 1 7021 920 RU RU-

SA Deputatskij 69

3464 rows × 11 columns



In [2]:

display(airports.groupby('country').count()['iata'].sort_values(ascending=False
)) 

Task 2

Write a program that calculates and prints which city has the highest elevation. If a city has multiple airports,
calculate the average (mean) elevation of the airports in that city.

In [3]:

display(airports.groupby('city').mean()['elevation'].idxmax()) 

Task 3

Write a program that displays the city names which has at least 5 runways accumulated. Sort the city list by
the number of runways decreasing and also display the number of runway in each city.

Note: keep in mind that a city might have multiple airports!

country 
US    583 
CN    217 
CA    205 
AU    130 
RU    126 
    ...  
GM      1 
NR      1 
GN      1 
GP      1 
KW      1 
Name: iata, Length: 231, dtype: int64

'Daocheng'



In [4]:

airports_city = airports.groupby('city').sum() 
display(airports_city[airports_city['runways'] >= 5].sort_values(by='runways', a
scending=False)['runways']) 

Task 4

Create a bar plot, displaying length of the longest runway for each airport. The aiports shall be sorted by the
longest runway length (ascending). Visualize only the top 100 aiports, so the diagram will be readable. Set an
appropriate figure size, so all bars and labels are readable.

In [5]:

import matplotlib.pyplot as plt 
%matplotlib inline 

airports.sort_values(by='longest').tail(100).plot(kind='bar', x='iata', y='longe
st', figsize=[20,4], width=0.7, label='longest runway') 
plt.show() 

Task 5

Create a bar plot, displaying length of the longest runway for each city. The cities shall be sorted by the
longest runway length (ascending). Visualize only the top 100 cities, so the diagram will be readable. Set an
appropriate figure size, so all bars and labels are readable.

city 
Chicago            12 
Dallas             10 
Houston             9 
London              9 
Denver              9 
Hamilton            8 
... 
Carlsbad            5 
Barcelona           5 
Atlanta             5 
Alexandria          5 
Wilmington          5 
Name: runways, dtype: int64



In [6]:

airports.groupby('city').max()['longest'].sort_values().tail(100).plot(kind='ba
r', figsize=[20,4], width=0.7, label='longest runway') 
plt.show() 



Exercise Book 4
Covering the materials of Chapter 11. 
Topics: vector spatial data management with geopandas

In the attached data  folder the following attached datasets are given for this assignment:

hungary_admin_8.shp , containing the city level administrative boundaries of Hungary. (Data source:
OpenStreetMap (https://data2.openstreetmap.hu/hatarok/))
hungary_population_2020.csv , containing the population of Hungarian cities on 2020 January 1.

(Data source: Hungarian Government (https://www.nyilvantarto.hu/hu/statisztikak))
hungary_population_2011.csv , containing the population of Hungarian cities on 2011 January 1.

(Data source: Hungarian Government (https://www.nyilvantarto.hu/hu/statisztikak))

Note: in the CSV files the columns are delimited with ;  characters (instead of the default , ).

Task 1

Write a program that creates a thematic map for Hungary based on the adminstrative boundaries of the cities
and their population in 2020. 
(Use the All population field from the CSV file.)

In [1]:

import pandas as pd 
import geopandas as gpd 

# Read the datasets 
cities = gpd.read_file('../data/hungary_admin_8.shp') 
cities = cities[['NAME', 'geometry']] 
cities.set_index('NAME', inplace=True) 

population_2020 = pd.read_csv('../data/hungary_population_2020.csv', delimiter =
';') 
population_2020.set_index('City', inplace=True) 

https://data2.openstreetmap.hu/hatarok/
https://www.nyilvantarto.hu/hu/statisztikak
https://www.nyilvantarto.hu/hu/statisztikak


In [2]:

# Add the population DataSeries to the cities "manually" 
df = cities.copy() 
df['All population'] = [None] * len(cities) 

# Get the indexes which are present in both DataFrames 
indexes = set(cities.index) & set(population_2020.index) 
for index in indexes: 
   df.loc[index, 'All population'] = population_2020.loc[index]['All populatio
n'] 

display(df) 

geometry All population

NAME

Murakeresztúr POLYGON ((1875811.200 5837364.810, 1875829.320... 1712

Tótszerdahely POLYGON ((1865447.010 5842664.860, 1865626.780... 1081

Molnári POLYGON ((1871422.780 5840886.420, 1871468.690... 689

Semjénháza POLYGON ((1874690.000 5845206.400, 1874749.090... 566

Felsőszölnök POLYGON ((1793789.650 5920727.330, 1793969.030... 578

... ... ...

Milota POLYGON ((2530430.020 6120050.180, 2530441.900... 998

Tiszabecs POLYGON ((2535824.870 6121698.150, 2535957.370... 1550

Garbolc POLYGON ((2543379.140 6098625.170, 2543444.730... 150

Magosliget POLYGON ((2540997.680 6116051.390, 2541064.470... 332

Beregdaróc POLYGON ((2502185.370 6141427.990, 2502438.910... 1038

3174 rows × 2 columns



In [3]:

# This can be done in an easier and more efficient way with pandas' merge() func
tion 
df = cities.merge(population_2020, left_index=True, right_index=True) 
display(df) 

geometry County Male
population

Female
population

All
population

Aba POLYGON ((2053298.230
5953037.810, 2053422.400... FEJ 2286 2359 4645

Abaliget POLYGON ((2010640.140
5804436.120, 2010699.370... BAR 351 334 685

Abasár POLYGON ((2223181.920
6072744.320, 2223372.480... HEV 1168 1297 2465

Abaújalpár POLYGON ((2362488.130
6156262.020, 2362552.180... BOR 37 32 69

Abaújkér POLYGON ((2354110.960
6161271.720, 2354200.650... BOR 290 314 604

... ... ... ... ... ...

Őrimagyarósd POLYGON ((1837790.790
5925016.100, 1837832.070... VAS 117 113 230

Őriszentpéter POLYGON ((1821634.850
5916224.320, 1821691.900... VAS 568 589 1157

Őrtilos POLYGON ((1878544.010
5830691.040, 1878570.100... SOM 250 230 480

Ősagárd POLYGON ((2132697.110
6082877.080, 2132823.710... NOG 149 183 332

Ősi POLYGON ((2020338.210
5965613.320, 2020523.530... VES 1048 1027 2075

3174 rows × 5 columns



In [4]:

import matplotlib.pyplot as plt 
%matplotlib inline 

# Create the plot 
df.plot(column='All population', figsize=[20,10], legend=True, cmap='YlOrRd', sc
heme='quantiles', k=7) 
plt.show() 

Task 2

Write a program that adds the population data for 2011 and 2020 to the Shapefile as new scalar fields to
each city; and save it as a new Shapefile.



In [5]:

population_2011 = pd.read_csv('../data/hungary_population_2011.csv', delimiter =
';') 
population_2011.set_index('City', inplace=True) 

df = df.merge(population_2011, left_index=True, right_index=True, suffixes=[' 20
20', ' 2011']) 
df.rename(columns={'County 2020':'County'}, inplace=True) 
del df['County 2011'] 
display(df) 

geometry County
Male

population
2020

Female
population

2020

All
population

2020

Male
population

2011

Fem
popula

2

Aba

POLYGON
((2053298.230
5953037.810,

2053422.400...

FEJ 2286 2359 4645 2273 2

Abaliget

POLYGON
((2010640.140
5804436.120,

2010699.370...

BAR 351 334 685 315

Abasár

POLYGON
((2223181.920
6072744.320,

2223372.480...

HEV 1168 1297 2465 1191 1

Abaújalpár

POLYGON
((2362488.130
6156262.020,

2362552.180...

BOR 37 32 69 46

Abaújkér

POLYGON
((2354110.960
6161271.720,

2354200.650...

BOR 290 314 604 329

... ... ... ... ... ... ...

Őrimagyarósd

POLYGON
((1837790.790
5925016.100,

1837832.070...

VAS 117 113 230 114

Őriszentpéter

POLYGON
((1821634.850
5916224.320,

1821691.900...

VAS 568 589 1157 571

Őrtilos

POLYGON
((1878544.010
5830691.040,

1878570.100...

SOM 250 230 480 285

Ősagárd

POLYGON
((2132697.110
6082877.080,

2132823.710...

NOG 149 183 332 148

Ősi

POLYGON
((2020338.210
5965613.320,

2020523.530...

VES 1048 1027 2075 1086 1

3173 rows × 8 columns



In [6]:

# Save it to file 
df.to_file('hungary_population.shp') 

Task 3

Write a program that creates a thematic map for Hungary based on the adminstrative boundaries of the cities
and their population change between 2011 and 2020.

In [7]:

df['Population difference'] = df['All population 2020'] - df['All population 201
1'] 

ax = df.plot(column='Population difference', figsize=[20,10], legend=True, cmap=
'bwr', vmin=-5000, vmax=5000) 
ax.set_facecolor("lightgray") # background color 
plt.show() 

Optional: add a raster basemap with contextily.

<ipython-input-6-ac2d3a3b95d7>:2: UserWarning: Column names longer t
han 10 characters will be truncated when saved to ESRI Shapefile. 
 df.to_file('hungary_population.shp') 



In [8]:

# How to install: conda install -c conda-forge contextily 
# How to use: https://contextily.readthedocs.io/en/latest/ 
import contextily as ctx 

# Verify CRS, must be Web Mercator (EPSG:3857) to add a base map with the contex
tily module. 
print(df.crs) 
if df.crs == 'epsg:3857': 
   ax = df.plot(column='Population difference', figsize=[20,10], legend=True, c
map='bwr', vmin=-5000, vmax=5000, alpha=0.85) 
   ctx.add_basemap(ax) 
   ax.set_axis_off() 
   plt.show() 
else: 
   print('CRS must be EPSG:3857, instead {0} was given'.format(df.crs)) 

Task 4

Write a program that creates a thematic map for Hungary based on the adminstrative boundaries of the cities
and their population density in 2020.

epsg:3857 



In [9]:

df_eov = df.to_crs('EPSG:23700') # EOV is EPSG:23700  
df['Area'] = df_eov.area / 10**6 
df['Density 2020'] = df['All population 2020'] / df['Area']  
display(df) 

geometry County
Male

population
2020

Female
population

2020

All
population

2020

Male
population

2011

Fem
popula

2

Aba

POLYGON
((2053298.230
5953037.810,

2053422.400...

FEJ 2286 2359 4645 2273 2

Abaliget

POLYGON
((2010640.140
5804436.120,

2010699.370...

BAR 351 334 685 315

Abasár

POLYGON
((2223181.920
6072744.320,

2223372.480...

HEV 1168 1297 2465 1191 1

Abaújalpár

POLYGON
((2362488.130
6156262.020,

2362552.180...

BOR 37 32 69 46

Abaújkér

POLYGON
((2354110.960
6161271.720,

2354200.650...

BOR 290 314 604 329

... ... ... ... ... ... ...

Őrimagyarósd

POLYGON
((1837790.790
5925016.100,

1837832.070...

VAS 117 113 230 114

Őriszentpéter

POLYGON
((1821634.850
5916224.320,

1821691.900...

VAS 568 589 1157 571

Őrtilos

POLYGON
((1878544.010
5830691.040,

1878570.100...

SOM 250 230 480 285

Ősagárd

POLYGON
((2132697.110
6082877.080,

2132823.710...

NOG 149 183 332 148

Ősi

POLYGON
((2020338.210
5965613.320,

2020523.530...

VES 1048 1027 2075 1086 1

3173 rows × 11 columns



In [10]:

df.plot(column='Density 2020', figsize=[20,10], legend=True, cmap='YlOrRd', sche
me='quantiles', k=7) 
plt.show() 



Exercise Book 5
Covering the materials of Chapters 12-14. 
Topics: graph algorithms and spatial indexing

In the attached data  folder the following shapefiles are available for this assignment

osm_roads_hungary.shp , containing the road network of Hungary as linestrings. (Data source:
OpenStreetMap (https://download.geofabrik.de/europe/hungary.html))
hungary_cities.shp , containing the Hungarian cities as points. (Data source: ELTE FI, Institute of

Cartography and Geoinformatics)

The osm_roads_hungary.shp  file is in WGS 84 (EPSG:4326) coordinate reference system. The
projection of the hungary_cities.shp  file is not defined, but the data is in EOV (EPSG:23700), which
you have to set it manually.

Task 1
Read the input data from the Shapefiles. 
Display the cities and the road network on a map using the matplotlib library. (Roads shall be colored black
and cities shall be red dots.)

Among the roads filter only the more significant types. In all the following tasks you will only have to work
with these type of roads. 
More significant type of roads are where the fclass  column of the GeoDataFrame is among the following
values: 
motorway , primary , secondary , tertiary , motorway_link , primary_link , 
secondary_link , tertiary_link .

Hint: reproject the roads to EOV before displaying the GeoDataFrame.

https://download.geofabrik.de/europe/hungary.html


In [1]:

import geopandas as gpd 

# Read the shapefiles 
roads = gpd.read_file('../data/osm_roads_hungary.shp') 
cities = gpd.read_file('../data/hungary_cities.shp') 

# Set the CRS to EOV projection (EPSG:23700) if None for cities 
if cities.crs == None: 
   cities.set_crs('epsg:23700', inplace=True) 

# Display road types 
print(roads['fclass'].unique()) 

In [2]:

# Filter roads by their type 
roads = roads[roads['fclass'].isin(['motorway', 'primary', 'secondary', 'tertiar
y',  
                                   'motorway_link', 'primary_link', 'secondary_
link', 'tertiary_link'])] 

In [3]:

print("Cities CRS: {0}, Roads CRS: {1}".format(cities.crs, roads.crs)) 

# Convert CRS to EOV 
if cities.crs != 'epsg:23700': 
   cities.to_crs('epsg:23700', inplace=True) 
    
if roads.crs != 'epsg:23700': 
   roads.to_crs('epsg:23700', inplace=True) 

print("Cities CRS: {0}, Roads CRS: {1}".format(cities.crs, roads.crs)) 

['residential' 'secondary' 'primary' 'tertiary' 'service' 'unclassif
ied' 
'footway' 'primary_link' 'track' 'pedestrian' 'steps' 'secondary_li
nk' 
'path' 'cycleway' 'motorway_link' 'motorway' 'tertiary_link' 'trunk
_link' 
'living_street' 'track_grade2' 'trunk' 'track_grade4' 'track_grade
1' 
'track_grade5' 'track_grade3' 'bridleway' 'unknown'] 

Cities CRS: epsg:23700, Roads CRS: epsg:4326 
Cities CRS: epsg:23700, Roads CRS: epsg:23700 



In [4]:

import matplotlib.pyplot as plt 
%matplotlib inline 

# Plot roads and cities 
base = roads.plot(figsize=[15,10], color='black') 
cities.plot(ax=base, color='red', markersize=4) 

# Display plot 
plt.show() 

Task 2
Display the road network of Hungary, but with a different coloring based on their class:

motorways should be red;
primary roads should be black;
secondary roads should be gray;
tertiary roads should be green.



In [5]:

base = roads[roads['fclass'].isin(['motorway', 'motorway_link'])].plot(figsize=[
15,10], color='red') 
roads[roads['fclass'].isin(['primary', 'primary_link'])].plot(ax=base, color='bl
ack') 
roads[roads['fclass'].isin(['secondary', 'seondary_link'])].plot(ax=base, color=
'gray') 
roads[roads['fclass'].isin(['tertiary', 'tertiary_link'])].plot(ax=base, color=
'green') 

# Display plot 
plt.show() 

Task 3
Build a graph of the road network and compute the shorthest path (based on distance) between Győr and
Debrecen. 
Display the complete road network (with black color) on a map and overlay the found shorthest path wirh red
color.

Pairs of EOV X and Y coordinates of the cities are given below, which shall be precisely on the roads.

Győr: (261414.51778597923, 544944.4764306903)
Debrecen: (247370.13702113688, 842839.3118560591)

Hint: the coordinates in the Shapefiles are in a switched (Y, X) order.



In [6]:

import math 
import networkx as nx 

# Create empty, undirected graph 
graph = nx.Graph() 

# Iterate through all linestrings 
for idx, row in roads.iterrows(): 
   line = row['geometry'] 
   for i in range(1, len(line.coords)): 
       p1 = line.coords[i-1] 
       p2 = line.coords[i] 
        
       # Since the file is in the EOV CRS, we can calulate the distance in SI 
       # based on the Pythagoras theorem 
       dist = math.sqrt(pow(p1[0] - p2[0], 2) + pow(p1[1] - p2[1], 2)) / 1000 
        
       # Add it to the graph 
       graph.add_edge(p1, p2, distance = dist, road_class = row['fclass']) 



In [7]:

# Given positions 
pos_gyor = (544944.4764306903, 261414.51778597923) 
pos_debrecen = (842839.3118560591, 247370.13702113688) 

# Calculate the shortest distance between Berlin and Budapest 
path = nx.shortest_path(graph, pos_gyor, pos_debrecen, weight = 'distance') 

# Draw roads 
roads.plot(figsize=[15,10], color='black') 

# Draw path function 
def draw_path(path): 
   # Get the X an Y positions into separate lists for the shortest path 
   xs = [coord[0] for coord in path] 
   ys = [coord[1] for coord in path] 
   # Add it to the plot 
   plt.plot(xs, ys, color='red') 

# Draw path 
draw_path(path) 

# Display plot 
plt.show()  



Alternative approach: draw the graph with networkx

In [8]:

# Add the position to the nodes as attributes 
for idx, row in roads.iterrows(): 
   line = row['geometry'] 
   for i in range(len(line.coords)): 
       p = line.coords[i] 
       graph.nodes[p]['position'] = p 

# Draw the graph 
plt.figure(figsize=[15,10]) 
nx.draw_networkx(graph, nx.get_node_attributes(graph, 'position'), with_labels=F
alse, node_size=0) 
plt.show() 



In [9]:

# Add default color and width attributes to all edges 
for source, target in graph.edges: 
   graph[source][target]['color'] = 'black' 
   graph[source][target]['width'] = 1.0 

# Modify the color and width attributes for the edges on the shorthest path 
for i in range(1, len(path)): 
   source = path[i-1] 
   target = path[i] 
   graph[source][target]['color'] = 'red' 
   graph[source][target]['width'] = 2.0 

# Compute list of edge colors and widths 
edge_color_list = [graph[source][target]['color'] for source, target in graph.ed
ges] 
edge_width_list = [graph[source][target]['width'] for source, target in graph.ed
ges] 

# Draw the graph 
plt.figure(figsize=[15,10]) 
nx.draw_networkx(graph, nx.get_node_attributes(graph, 'position'), with_labels=F
alse, node_size=0,  
                edge_color = edge_color_list, width = edge_width_list) 
plt.show() 



Task 4
Let the user define the start and target coordinates for the shorthest path search. (Input validation is not
required.) 
Since the user given coordinates are not necessarily on any of the roads, it is required to find the nearest
vertices in the graph (both for the start and the goal).

Test data:

Győr: (261473, 545052)
Debrecen: (247367, 842842)

Hint: build a Kd-tree form the vertices of the graph.

In [10]:

import scipy.spatial # for Kd-Tree support 

# Put all points on road network into list 
all_points = [] 

for line in roads.geometry: 
   for coord in line.coords: 
       all_points.append(coord) 

all_points = list(set(all_points)) 

# Build a Kd-tree 
kdtree = scipy.spatial.KDTree(all_points)     



In [13]:

# Read user input 
from_x = float(input('Start X coordinate: ')) 
from_y = float(input('Start Y coordinate: ')) 
to_x = float(input('Target X coordinate: ')) 
to_y = float(input('Target Y coordinate: ')) 

def closest_point(point): 
   dist, idx = kdtree.query(point) 
   return all_points[idx] 

# Find closest points in road network 
from_point = closest_point((from_y, from_x)) 
to_point = closest_point((to_y, to_x)) 

# Calculate the shortest distance between the given coordinates 
path = nx.shortest_path(graph, from_point, to_point, weight = 'distance') 

# Draw roads 
roads.plot(figsize=[20, 10], color='black') 

# Draw path 
draw_path(path) 

# Display plot 
plt.show() 

Task 5
Let the user define the name of the start and the target city instead of coordinates. 
The Hungarian cities and their location is given in the hungary_cities.shp  Shapefile. (These locations
marks the centorid of the cities are not necessarily on any of the roads.)

Validate the user input whether the given cities exist. Show an error message if not.



In [14]:

# Set index in cities GeoDataFrame 
cities.set_index('City', inplace=True) 
display(cities) 

Id County Status KSH geometry

City

Aba 1 FEJÉR town 17376 POINT (610046.800
187639.000)

Abaliget 2 BARANYA town 12548 POINT (577946.100 89280.800)

Abasár 3 HEVES town 24554 POINT (721963.700
273880.300)

Abaújalpár 4 BORSOD-ABAUJ-ZEMPLÉN town 15662 POINT (812129.200
331508.200)

Abaújkér 5 BORSOD-ABAUJ-ZEMPLÉN town 26718 POINT (809795.600
331138.300)

... ... ... ... ... ...

Zsira 3143 GYÕR-MOSON-SOPRON town 04622 POINT (471324.200
237577.200)

Zsombó 3144 CSONGRÁD town 17765 POINT (721098.100
109690.000)

Zsujta 3145 BORSOD-ABAUJ-ZEMPLÉN town 11022 POINT (815027.400
353143.100)

Zsurk 3146 SZABOLCS-SZATMÁR-
BEREG town 13037 POINT (884847.700

344952.800)

Zubogy 3147 BORSOD-ABAUJ-ZEMPLÉN town 19105 POINT (763123.300
338338.600)

3147 rows × 5 columns



In [15]:

# Read user input 
from_city = input('Start city: ') 
to_city = input('Target city: ') 

# Check whether the given cities exist in the dataset 
if from_city in cities.index and to_city in cities.index: 
   # Find coordinates for cities 
   from_x = cities.loc[from_city].geometry.y 
   from_y = cities.loc[from_city].geometry.x 
   to_x = cities.loc[to_city].geometry.y 
   to_y = cities.loc[to_city].geometry.x 
    
   # Find closest points in road network 
   from_point = closest_point((from_y, from_x)) 
   to_point = closest_point((to_y, to_x)) 
    
   # Calculate the shortest distance between the given cities 
   path = nx.shortest_path(graph, from_point, to_point, weight = 'distance') 
    
   # Draw roads 
   roads.plot(figsize=[20, 10], color='black') 

   # Draw path 
   draw_path(path) 

   # Display plot 
   plt.show() 
else: 
   print('Start or target city not found!') 



Task 6
Instead of calculating the shortest path based on geographical distance between two user given cities,
calculate the shorthest path based on the travel time! Let's define the following speed limits for the various
classes of roads:

motorway: 130 km/h
primary road: 90 km/h
secondary road: 70 km/h (since their condition is degraded)
tertiary road: 50 km/h

We assume the that user an drive with the speed limit on all roads.

Test data: the Budapest - Békéscsaba path should be different when the shortest path based on
geographical distance between and shortest path based on travel time is calculated.



In [16]:

def custom_distance(from_node, to_node, edge_attr): 
   speed_limit = 50 
   if edge_attr['road_class'] in ['motorway', 'motorway_link']: 
       speed_limit = 130 
   if edge_attr['road_class'] in ['primary', 'primary_link']: 
       speed_limit = 90 
   if edge_attr['road_class'] in ['secondary', 'secondary_link']: 
       speed_limit = 70 
   return edge_attr['distance'] / speed_limit 

# Read user input 
from_city = input('Start city: ') 
to_city = input('Target city: ') 

# Check whether the given cities exist in the dataset 
if from_city in cities.index and to_city in cities.index: 
   # Find coordinates for cities 
   from_x = cities.loc[from_city].geometry.y 
   from_y = cities.loc[from_city].geometry.x 
   to_x = cities.loc[to_city].geometry.y 
   to_y = cities.loc[to_city].geometry.x 
    
   # Find closest points in road network 
   from_point = closest_point((from_y, from_x)) 
   to_point = closest_point((to_y, to_x)) 
    
   # Calculate the shortest distance  between the given cities 
   path = nx.shortest_path(graph, from_point, to_point, weight = custom_distanc
e) 
    
   # Draw roads 
   roads.plot(figsize=[20, 10], color='black') 

   # Draw path 
   draw_path(path) 

   # Display plot 
   plt.show() 
else: 
   print('Start or target city not found!') 




