Chapter 2: Basic operations and conditional
executions

Basic arithmetic operations

Mathematical operations are executed in an order as you get used to in mathematics.

See the precedence order of all Python operators
(https://docs.python.org/3/reference/expressions.html#operator-precedence) in the documentation.
Operations with the same precedence are evaluated from left to right.

E.g. 1+2*3 isevaluated as 1+(2*3) .

Summation

Both numeric and string values can be added together.
For numeric values it works like the mathematical operation, e.g.: 1+2=3 .

For string values they are concatenated, e.g.: 'Hello '+'world'='Hello world' .

In [1]:

print(1+2)
print('Hello '+'world'")

3

Hello world
In [2]:
X=10

y=20
print(x+y)
z='10"
g='20"
print(z+q)

30
1020

Subtraction

Works only for numeric values:

https://docs.python.org/3/reference/expressions.html#operator-precedence

In [3]:

print(10-7)

X=20
print(x-10)

3
10

Multiplication

The multiplication operator can be applied both between 2 numeric values and between a string and a
numeric value.

For numeric values it works like the mathematical operation, e.g.: 9*4=36 .

For a string and an integer, the string is repeated and concatenated as many times as we defined, e.g.:
'"Hi'*5=HiHiHiHiHi .
In [4]:

print(9*4)
print('Hi'*5)

36
HiHiHiHiHi
In [5]:
X=9

y=X*4
print(y)
z="Hi'
w=z*5
print(w)

36
HiHiHiHiHi

Division with floating result

Works only for numeric values.

In [6]:
print(17/3)

5.666666666666667

Question: what is the type of the dividend and the divisor? What is the type of the result?

Question: what will be the type of the result if the value is an integer?

In [7]:

print(type(17))

print(type(3))
print(type(17/3))
print(type(18/3))

<class 'int'>
<class 'int'>
<class 'float'>
<class 'float'>

Division with integer result

Using the double division operator (//) means that the result of the division will be an integer number. If the
result has a fractional part, it is dropped.

In [8]:

print(18//3)
print(17//3)

6
5

Exponentiation
We can calculate the y power of x by using the double star (*) operator: x**y .

In [9]:
print(2**3)
X=3

y=4
print(x**y)
8

81

It is effectively the same as calling the pow function (the name is short for power) with 2 arguments:

In [10]:
print(pow(x, y))
81

Remainder (modulo operator)

In computing, the modulo operation finds the remainder after division of one number by another (called the
modulus of the operation).

E.g. 17%3=2 , since 15 is divisible by 3 and the remainder is therefore 2.
Useful scenarios:

« check whether a number is divisible by another (the modulus must be 0);
» get the last digit of a number by calculating the remainder by 10.

In [11]:
print(17%3)

2

Summary exercises on basic operations

Exercise: Rectangle

Task: Calculate the area and the perimeter of a rectangle.

Get the width and the height of the rectangle from the user.

In [12]:

width = int(input("width = "))
height = int(input("Height = "))
area = width * height

perimeter = 2 * (width + height)

print("Area = {0}".format(area))
print("Perimeter = {0}".format(perimeter))

Area = 840
Perimeter = 118

Exercise: Circle

Task: Calculate the area and the perimeter of a circle.

Get the radius of circle from the user.

In [13]:

import math

radius = float(input("Radius = "))
area = radius**2 * math.pi
perimeter = 2 * radius * math.pi

print("Area = {0}".format(area))
print("Perimeter = {0}".format(perimeter))

Area = 50.26548245743669
Perimeter = 25.132741228718345

Note: we can get a (finite) representation of pi using the math.pi constant after importing the math
module:

In [14]:

import math
print(math.pi)

3.141592653589793

Control structures

There are 3 basic control flows for all imperative programming languages: sequences, conditions and
loops.

Sequence

When operations are evaluated segentially one after another, it is called a sequence statement.

Statement 1

Statement 2

Statement 3

In [15]:

print("First statement")
print("Second statement")

First statement
Second statement

So far, we have worked with sequences.

Conditions

Conditions (or also called select statements):.

« define multiple branches of the program code;
« itis decided based on logical tests that which branch should be executed.

Two-way conditions

First lets read a number from the user:

In [16]:

number = input("Give a number: ")
print("Number is {0} with type of {1}".format(number, type(number)))

Number is 42 with type of <class 'str'>

Convert the number to an integer:

In [17]:

number = int(number)
print("Now number is now {0} with type of {1}".format(number, type(number)))

Now number is now 42 with type of <class 'int'>

Check whether the number is positive or not:

In [18]:

if number > 0:

print("number is positive, its value is " + str(number))
else:

print("number is non-positive, its value is " + str(number))

number is positive, its value is 42

Condition?

One or more One or more
statements to be statements to be
executed if the executed if the
condition is true condition is false

L (O

IMPORTANT: in Python, the indentation of the code is crucial, because it defines the code blocks!

In [19]:

if number > 0:
print("number is positive, its value is " + str(number))
else:
print("number is non-positive, its value is " + str(number))
print("Check when this line is printed")

number is positive, its value is 42

In [20]:

if number > 0:

print("number is positive, its value is " + str(number))
else:

print("number is non-positive, its value is " + str(number))
print("Check when this line is printed")

number is positive, its value is 42
Check when this line is printed

Indentation is done with whitespace characters: spaces and tabs. You can either use spaces or tabs to indent
and you can decide how many of them you are using. (Typical values are indenting with 2 or 4 whitespaces.)

Note: a single tab is just 1 whitespace even if displayed as multiple in your text editor! Therefore you shall
not mix spaces and tabs when indenting, use only one of them!

Logical operations

Boolean values and expressions can also be combined with the logical, binary and and or operators.
Negation can be done with the unary not operator.

In [21]:

print("True and False is {0}".format(True and False))
print("True or False is {0}".format(True or False))
print("not True is {0}".format(not True))

True and False is False
True or False is True
not True is False

Just like with the arithmetic operators, there is also a precedence order for the logical operators: not |,
and , or . Use parentheses to "override" the default precedence order.

In [22]:

print("True or True and False is {0}".format(True or True and False))
print("(True or True) and False is {0}".format((True or True) and False))

True or True and False is True
(True or True) and False is False

Three (or more) way conditions

We can define multiple logical expression (elif) to test. These conditions are tested in the order they are
defined and the body for the first one to be True will be executed. We can still define an else branch in case
none of the conditions was True.

In [23]:

if number > 0:

print("number is positive, its value is " + str(number))
elif number < 0:

print("number is negative, its value is " + str(number))
else:

print("number is zero")

number is positive, its value is 42

Condition?

CASEA CASEZ2 CASE 3 CASE "ELSE"
Cne or more One or more One or more Cne or more
statements to be statements to be statements to be statements to be
executed in executed in executed in executed
CASE 1 CASE 2 CASE 3 OTHERWISE

(U

Actually, there are no three (or more) way conditional statements, only two-way conditions. The elif
keyword is just a little "syntax sugar" to provide an easier understandable version of nested, 2-way
conditions.

Task: Can you write the above 3-way condition with just 2-way conditions?

In [24]:

if number > 0:
print("number is positive, its value is " + str(number))
else:
if number < 0:
print("number is negative, its value is " + str(number))
else:
print("number is zero")

number is positive, its value is 42

First
condition?

l True False

Cne or more 2 d
statements to be e{rl:_?ln 5
executed in conaitions
CASE1
J;True False
Cne or more _
statements o be Third
executed in condition?
CASE 2
$ True False %
(- Cne or more Cne or more
statements to be statements to be
executed in executed
CASE 2 CTHERWISE
One-way conditions
You do not have touse if-else or if-elif-...-else.Youcanuse if without other clauses

following that. The else branch can be omitted if not required

In [25]:
if number > 0:

print("number is positive, its value is " + str(number))

number is positive, its value is 42

Condition?
True False

W/

One ar mare
statements to be
executed if the
condition is true

o e

Comparison

Python syntax for comparison is the same as our hand-written convention:

1. Larger (or equal): > (>=)

2. Smaller (or equal): < (<=)

3. Equal to: == (Note here that there are double equal signs)
4. Not equal to: !=

In [26]:
print(3 == 5)

False

In [27]:
print(72 >= 2)

True

In [28]:

store_name = 'Auchan'
#store_name = 'Tesco'

In [29]:

print(store_name)

Auchan
In [30]:
print(store_name == "Tesco") # Will return a boolean value True or False
False
In [31]:
if store_name == 'Auchan':
print("The store is an Auchan.")
else:
print("The store is not an Auchan. It's " + store_name + ".")

The store is an Auchan.

Floating point comparison

IMPORTANT: Note that floating point precision and therefore comparisons between floating point numbers
can be tricky.

What will these floating point mathematical operations result?

In [32]:

(o]

print(0.1 +
print(0.1 + 0.

print(1.0 -
print(1.0 - 0.83 == 0.17)

(O]
[00]
w
N

print(2.2 * 3.0)
print(2.2 * 3.0 == 6.6)

w

print(3.3 * 2.0)
print(3.3 * 2.0 == 6.6)

0.30000000000000004
False
0.17000000000000004
False
6.6000000000000005
False

6.6

True

In [33]:

a = 1000.0
b = 0.000000001
print(a + b == a)

a 100000000.0
b = 0.000000001
print(a + b == a)

False
True

Therefore, calculated floating point numbers shall never be checked for precise equality, instead a small error
threshold shall be allowed.

In [34]:

a=2.2"%*3.0

b =26.6

print(abs(a - b) < 1e-5) # 1e-5 == 10/-5 == 0.00001 (scientific number notation)

True

Theoretical background for floating point calculation errors (optional)

Signed integers representation

Signed integers are usually represented with the Two's complement interpretation
(https://en.wikipedia.org/wiki/Two%27s_complement):

00000000 -> 0
00006001 -> 1
00000010 -> 2
00000101 -> 5

10000000 -> -128
10000001 -> -127
11111110 -> -2
11111111 -> -1

https://en.wikipedia.org/wiki/Two%27s_complement

Floating point representation

Floating point numbers are usually represented according to the standard IEEE-754
(https://en.wikipedia.org/wiki/IEEE_754).

Since hardware can only work with integers, numbers are represented in a form of
[mantissa|exponent] , where value = mantissa * 2°°P°"*™ Both mantissa and exponent are a
two's complement interpretation of signed integers.

Example for converting a float representation to decimal value:

representation = [000000000101|11111100]
value = 5 * 2A-2 = 1,25

Example for converting a decimal value to float representation:

value = 179.375

binary value = 10110011.011

normal form = 0.10110011011 * 2A/8
mantissa = 101100116011

exponent = 1000

representation = [010110011011|600001000]

Problem 1

The number base problem: not all numbers can be exactly represented in all bases. Neither 0.17 or 0.83 can
be represented in base 2, so:

0.1700000000000000122124532708767219446599483489990234375 -> 0.0010101110
000160106001111601601116000016160600111160160111006011
0.8299999999999999600319711134943645447492599487304687500 -> 0.1101010001
11160160111600606001016060011116010111000010100011110600

1.0 - 0.83 = 0.0010101110000101000111101011100001010001111010111000011
0.17 = 0.0010101110006001010060011110101110060101606060111101011100061600
Problem 2

The floating point problem: all representations have restricted range by the exponent, performing operations
on numbers with very large and small exponents could result in the ignorance of the smaller one, as it would
be shifted out of range.

https://en.wikipedia.org/wiki/IEEE_754

decimal 100000000
binary 10111116010111106000100000000
normal = 0.101111101011110000100000000 * 2A27

decimal 0.000000001
binary ~= 0.000000000000000000000000000001

Summary exercise on conditions

Exercise: Parity

Task: Decide whether an integer number is even or odd!

Request the number from the user.

In [35]:

number = int(input("Number to test: "))
if number % 2 ==

print("{0} is even".format(number))
else:

print("{0} is odd".format(number))

43 is odd

Exercise: Body Mass Index

Task: Calculate the Body Mass Index (BMI) of the user and categorize it.

The BMI is defined as the body mass (in kilogramms) divided by the square of the body height (in meters),
and is universally expressed in units of k:g/m2.

Request the weight and the height and calculate the BMI value for the user!
Categorize the user based on the BMI value:

Category BMI value

Underweight BMI < 18.5
Normal 18.5<=BMI <25
Overweight 25 <=BMI < 30

Obese 30 <= BMI

Note: this is just a simplified categorization.

In [36]:

weight_kg = int(input("Weight of the user (in kg): "))
height_cm = int(input("Height of the user (in cm): "))
height_m = height_cm / 100

bmi = weight_kg / (height_m**2)

print("BMI of the user is {0:.2f}".format(bmi))

if bmi < 18.5:

print("Category: underweight")
elif bmi < 25:

print("Category: normal")
elif bmi < 30:

print("Category: overweight")
else:

print("Category: obese")

BMI of the user is 23.99
Category: normal

Note how the conditions are tested in the order they are defined. The body of the first one to be True gets
executed and the further ones are omitted.

Exception handling: Try and Except

Python code raises so called exceptions in exceptional cases, typically when an error occurred. We can use
the try-except block to handle these errors (exceptions), so our code will not stop and abort because of
the error.

E.g.: lets consider we would like to request a number from the user, but the user can type in any value, even
a string. Then converting this string to an integer with int () would raise an exception. Not handling this
exception will abort the program. By handling the exception we can print out an error message, set a default
value or even request the number a second time.

Format:

« TRY block: look for exception to be raised in the code block.
« EXCEPT block: if an exception was detected, stop the execution of the TRY block at that point and
continue with the EXCEPT block.

Example without exception handling:

In [37]:

age = input('What is your age?')
age = int(age)
print("The given age is: {0}".format(age))

ValueError Traceback (most recent cal
1 last)
<ipython-input-37-8b0cdbac8dcl> in
1 age = input('What is your age?')
----> 2 age = int(age)
3 print("The given age is: {0}".format(age))

ValueError: invalid literal for int() with base 10: 'Twenty'

Test what will happen if you type in a string instead of a number? Will the value of the age variable printed
out?

Example with exception handling:

In [38]:
age = input('What is your age?')
try:
age = int(age)
except:

age = -1

print("The given age is: {0}".format(age))

The given age is: -1

Test again what will happen if you type in a string instead of a number? Will the value of the age variable
printed out?

Modify the code above by displaying an error message if not a number was given on the first attempt. Also
request the age of the user a second time.

In [39]:

age = input('What is your age?')

try:
age = int(age)

except:
print('That was not a number, try again!')
age = input('What is your age?')

age = int(age)

print("The given age is: {0}".format(age))
That was not a number, try again!

The given age is: 20

Both the TRY and the EXCEPT block can contain multiple statements. Test what will happen here if you
comment out the erroneous assignment of the y variable?

In [40]:
x = 'Ten'
try:

print('Line 1 in TRY block')
y = int(x) # this will raise an exception
print('Line 2 in TRY block"')
except:
print('Line in EXCEPT block')
print('END")

Line 1 in TRY block
Line in EXCEPT block
END

Multiple Except blocks

Different errors have different types which can be checked on the EXCEPT blocks.

IMPORTANT: EXCEPT blocks are tested in the order they are defined, so more specific error types MUST
precede more general types.

In [41]:
x = 'Ten'
try:

print('Line 1 in TRY block')

y = int(x) # this will raise a ValueError

y =10 / 0 # this will raise a ZeroDivisionError

print('Line 2 in TRY block'")
except ValueError as e:

print("vValueError was raised: " + str(e))
except ZeroDivisionError:

print("ZerobDivisionError was raised")
except:

print("Unknown error was raised.")
print('END")

Line 1 in TRY block
ValueError was raised: invalid literal for int() with base 10: 'Ten'
END

Finally

The try-except structure can be extended with a finally block. The code inside this block is always
evaluated:

« Even if the TRY block was executed without an exception.
« Even if an exception was raised and handled by an EXCEPT block. (After the EXCEPT block.)
« Even if an exception was raised, but not handled by any EXCEPT block.

In [42]:
X = 'Ten'
try:

print('Line 1 in TRY block')

y = int(x) # this will raise a ValueError

y =10 / 0 # this will raise a ZeroDivisionError

print('Line 2 in TRY block')
except ValueError as e:

print("valueError was raised: " + str(e))
finally:

print('This line always gets printed')
print('END")

Line 1 in TRY block

ValueError was raised: invalid literal for int() with base 10: 'Ten'
This line always gets printed

END

The finally block can be especially when some operations must be performed in all cases; e.g. an opened file
must be closed even if an error occurred during its processing.

Summary exercise on exception handling and conditions

Task: Check whether a certain year is a leap year or not?

According to the Gregorian calendar, every year that is exactly divisible by 4 is a leap year, except for years
that are exactly divisible by 100, but these centurial years are leap years if they are exactly divisible by 400.

Also make sure that the user input is a positive number.

In [43]:

try:
year = int(input('Which year to check? '))
if year > 0:
if year % 4 == 0:
if year % 100 == 0:
if year % 400 ==
print('{0} is a leap year'.format(year))
else:
print('{0} is NOT leap year'.format(year))
else:
print('{0} is a leap year'.format(year))
else:
print('{0} is NOT leap year'.format(year))
else:
print('That was not a positive number!')
except:

print('That was not an integer number!')

2000 is a leap year

The solution can be simplified by constructing a combined condition with the logical operators and and
or:

In [44]:

try:
year = int(input('Which year to check? '))

if year > 0:
if year % 400 == 0 or year % 4 == 0 and year % 100 != 0:
print('{0} is a leap year'.format(year))
else:
print('{0} is NOT leap year'.format(year))
else:
print('That was not a positive number!')
except:
print('That was not an integer number!')

2020 is a leap year

