
Exercise Book 5
Covering the materials of Chapters 12-14.
Topics: graph algorithms and spatial indexing

In the attached data folder the following shapefiles are available for this assignment

osm_roads_hungary.shp , containing the road network of Hungary as linestrings. (Data source:
OpenStreetMap (https://download.geofabrik.de/europe/hungary.html))
hungary_cities.shp , containing the Hungarian cities as points. (Data source: ELTE FI, Institute of

Cartography and Geoinformatics)

The osm_roads_hungary.shp file is in WGS 84 (EPSG:4326) coordinate reference system. The
projection of the hungary_cities.shp file is not defined, but the data is in EOV (EPSG:23700), which
you have to set it manually.

Task 1
Read the input data from the Shapefiles.
Display the cities and the road network on a map using the matplotlib library. (Roads shall be colored black
and cities shall be red dots.)

Among the roads filter only the more significant types. In all the following tasks you will only have to work
with these type of roads.
More significant type of roads are where the fclass column of the GeoDataFrame is among the following
values:
motorway , primary , secondary , tertiary , motorway_link , primary_link ,
secondary_link , tertiary_link .

Hint: reproject the roads to EOV before displaying the GeoDataFrame.

https://download.geofabrik.de/europe/hungary.html

In [1]:

import geopandas as gpd

Read the shapefiles
roads = gpd.read_file('../data/osm_roads_hungary.shp')
cities = gpd.read_file('../data/hungary_cities.shp')

Set the CRS to EOV projection (EPSG:23700) if None for cities
if cities.crs == None:
 cities.set_crs('epsg:23700', inplace=True)

Display road types
print(roads['fclass'].unique())

In [2]:

Filter roads by their type
roads = roads[roads['fclass'].isin(['motorway', 'primary', 'secondary', 'tertiar
y',
 'motorway_link', 'primary_link', 'secondary_
link', 'tertiary_link'])]

In [3]:

print("Cities CRS: {0}, Roads CRS: {1}".format(cities.crs, roads.crs))

Convert CRS to EOV
if cities.crs != 'epsg:23700':
 cities.to_crs('epsg:23700', inplace=True)

if roads.crs != 'epsg:23700':
 roads.to_crs('epsg:23700', inplace=True)

print("Cities CRS: {0}, Roads CRS: {1}".format(cities.crs, roads.crs))

['residential' 'secondary' 'primary' 'tertiary' 'service' 'unclassif
ied'
'footway' 'primary_link' 'track' 'pedestrian' 'steps' 'secondary_li
nk'
'path' 'cycleway' 'motorway_link' 'motorway' 'tertiary_link' 'trunk
_link'
'living_street' 'track_grade2' 'trunk' 'track_grade4' 'track_grade
1'
'track_grade5' 'track_grade3' 'bridleway' 'unknown']

Cities CRS: epsg:23700, Roads CRS: epsg:4326
Cities CRS: epsg:23700, Roads CRS: epsg:23700

In [4]:

import matplotlib.pyplot as plt
%matplotlib inline

Plot roads and cities
base = roads.plot(figsize=[15,10], color='black')
cities.plot(ax=base, color='red', markersize=4)

Display plot
plt.show()

Task 2
Display the road network of Hungary, but with a different coloring based on their class:

motorways should be red;
primary roads should be black;
secondary roads should be gray;
tertiary roads should be green.

In [5]:

base = roads[roads['fclass'].isin(['motorway', 'motorway_link'])].plot(figsize=[
15,10], color='red')
roads[roads['fclass'].isin(['primary', 'primary_link'])].plot(ax=base, color='bl
ack')
roads[roads['fclass'].isin(['secondary', 'seondary_link'])].plot(ax=base, color=
'gray')
roads[roads['fclass'].isin(['tertiary', 'tertiary_link'])].plot(ax=base, color=
'green')

Display plot
plt.show()

Task 3
Build a graph of the road network and compute the shorthest path (based on distance) between Győr and
Debrecen.
Display the complete road network (with black color) on a map and overlay the found shorthest path wirh red
color.

Pairs of EOV X and Y coordinates of the cities are given below, which shall be precisely on the roads.

Győr: (261414.51778597923, 544944.4764306903)
Debrecen: (247370.13702113688, 842839.3118560591)

Hint: the coordinates in the Shapefiles are in a switched (Y, X) order.

In [6]:

import math
import networkx as nx

Create empty, undirected graph
graph = nx.Graph()

Iterate through all linestrings
for idx, row in roads.iterrows():
 line = row['geometry']
 for i in range(1, len(line.coords)):
 p1 = line.coords[i-1]
 p2 = line.coords[i]

 # Since the file is in the EOV CRS, we can calulate the distance in SI
 # based on the Pythagoras theorem
 dist = math.sqrt(pow(p1[0] - p2[0], 2) + pow(p1[1] - p2[1], 2)) / 1000

 # Add it to the graph
 graph.add_edge(p1, p2, distance = dist, road_class = row['fclass'])

In [7]:

Given positions
pos_gyor = (544944.4764306903, 261414.51778597923)
pos_debrecen = (842839.3118560591, 247370.13702113688)

Calculate the shortest distance between Berlin and Budapest
path = nx.shortest_path(graph, pos_gyor, pos_debrecen, weight = 'distance')

Draw roads
roads.plot(figsize=[15,10], color='black')

Draw path function
def draw_path(path):
 # Get the X an Y positions into separate lists for the shortest path
 xs = [coord[0] for coord in path]
 ys = [coord[1] for coord in path]
 # Add it to the plot
 plt.plot(xs, ys, color='red')

Draw path
draw_path(path)

Display plot
plt.show()

Alternative approach: draw the graph with networkx

In [8]:

Add the position to the nodes as attributes
for idx, row in roads.iterrows():
 line = row['geometry']
 for i in range(len(line.coords)):
 p = line.coords[i]
 graph.nodes[p]['position'] = p

Draw the graph
plt.figure(figsize=[15,10])
nx.draw_networkx(graph, nx.get_node_attributes(graph, 'position'), with_labels=F
alse, node_size=0)
plt.show()

In [9]:

Add default color and width attributes to all edges
for source, target in graph.edges:
 graph[source][target]['color'] = 'black'
 graph[source][target]['width'] = 1.0

Modify the color and width attributes for the edges on the shorthest path
for i in range(1, len(path)):
 source = path[i-1]
 target = path[i]
 graph[source][target]['color'] = 'red'
 graph[source][target]['width'] = 2.0

Compute list of edge colors and widths
edge_color_list = [graph[source][target]['color'] for source, target in graph.ed
ges]
edge_width_list = [graph[source][target]['width'] for source, target in graph.ed
ges]

Draw the graph
plt.figure(figsize=[15,10])
nx.draw_networkx(graph, nx.get_node_attributes(graph, 'position'), with_labels=F
alse, node_size=0,
 edge_color = edge_color_list, width = edge_width_list)
plt.show()

Task 4
Let the user define the start and target coordinates for the shorthest path search. (Input validation is not
required.)
Since the user given coordinates are not necessarily on any of the roads, it is required to find the nearest
vertices in the graph (both for the start and the goal).

Test data:

Győr: (261473, 545052)
Debrecen: (247367, 842842)

Hint: build a Kd-tree form the vertices of the graph.

In [10]:

import scipy.spatial # for Kd-Tree support

Put all points on road network into list
all_points = []

for line in roads.geometry:
 for coord in line.coords:
 all_points.append(coord)

all_points = list(set(all_points))

Build a Kd-tree
kdtree = scipy.spatial.KDTree(all_points)

In [13]:

Read user input
from_x = float(input('Start X coordinate: '))
from_y = float(input('Start Y coordinate: '))
to_x = float(input('Target X coordinate: '))
to_y = float(input('Target Y coordinate: '))

def closest_point(point):
 dist, idx = kdtree.query(point)
 return all_points[idx]

Find closest points in road network
from_point = closest_point((from_y, from_x))
to_point = closest_point((to_y, to_x))

Calculate the shortest distance between the given coordinates
path = nx.shortest_path(graph, from_point, to_point, weight = 'distance')

Draw roads
roads.plot(figsize=[20, 10], color='black')

Draw path
draw_path(path)

Display plot
plt.show()

Task 5
Let the user define the name of the start and the target city instead of coordinates.
The Hungarian cities and their location is given in the hungary_cities.shp Shapefile. (These locations
marks the centorid of the cities are not necessarily on any of the roads.)

Validate the user input whether the given cities exist. Show an error message if not.

In [14]:

Set index in cities GeoDataFrame
cities.set_index('City', inplace=True)
display(cities)

Id County Status KSH geometry

City

Aba 1 FEJÉR town 17376 POINT (610046.800
187639.000)

Abaliget 2 BARANYA town 12548 POINT (577946.100 89280.800)

Abasár 3 HEVES town 24554 POINT (721963.700
273880.300)

Abaújalpár 4 BORSOD-ABAUJ-ZEMPLÉN town 15662 POINT (812129.200
331508.200)

Abaújkér 5 BORSOD-ABAUJ-ZEMPLÉN town 26718 POINT (809795.600
331138.300)

...

Zsira 3143 GYÕR-MOSON-SOPRON town 04622 POINT (471324.200
237577.200)

Zsombó 3144 CSONGRÁD town 17765 POINT (721098.100
109690.000)

Zsujta 3145 BORSOD-ABAUJ-ZEMPLÉN town 11022 POINT (815027.400
353143.100)

Zsurk 3146 SZABOLCS-SZATMÁR-
BEREG town 13037 POINT (884847.700

344952.800)

Zubogy 3147 BORSOD-ABAUJ-ZEMPLÉN town 19105 POINT (763123.300
338338.600)

3147 rows × 5 columns

In [15]:

Read user input
from_city = input('Start city: ')
to_city = input('Target city: ')

Check whether the given cities exist in the dataset
if from_city in cities.index and to_city in cities.index:
 # Find coordinates for cities
 from_x = cities.loc[from_city].geometry.y
 from_y = cities.loc[from_city].geometry.x
 to_x = cities.loc[to_city].geometry.y
 to_y = cities.loc[to_city].geometry.x

 # Find closest points in road network
 from_point = closest_point((from_y, from_x))
 to_point = closest_point((to_y, to_x))

 # Calculate the shortest distance between the given cities
 path = nx.shortest_path(graph, from_point, to_point, weight = 'distance')

 # Draw roads
 roads.plot(figsize=[20, 10], color='black')

 # Draw path
 draw_path(path)

 # Display plot
 plt.show()
else:
 print('Start or target city not found!')

Task 6
Instead of calculating the shortest path based on geographical distance between two user given cities,
calculate the shorthest path based on the travel time! Let's define the following speed limits for the various
classes of roads:

motorway: 130 km/h
primary road: 90 km/h
secondary road: 70 km/h (since their condition is degraded)
tertiary road: 50 km/h

We assume the that user an drive with the speed limit on all roads.

Test data: the Budapest - Békéscsaba path should be different when the shortest path based on
geographical distance between and shortest path based on travel time is calculated.

In [16]:

def custom_distance(from_node, to_node, edge_attr):
 speed_limit = 50
 if edge_attr['road_class'] in ['motorway', 'motorway_link']:
 speed_limit = 130
 if edge_attr['road_class'] in ['primary', 'primary_link']:
 speed_limit = 90
 if edge_attr['road_class'] in ['secondary', 'secondary_link']:
 speed_limit = 70
 return edge_attr['distance'] / speed_limit

Read user input
from_city = input('Start city: ')
to_city = input('Target city: ')

Check whether the given cities exist in the dataset
if from_city in cities.index and to_city in cities.index:
 # Find coordinates for cities
 from_x = cities.loc[from_city].geometry.y
 from_y = cities.loc[from_city].geometry.x
 to_x = cities.loc[to_city].geometry.y
 to_y = cities.loc[to_city].geometry.x

 # Find closest points in road network
 from_point = closest_point((from_y, from_x))
 to_point = closest_point((to_y, to_x))

 # Calculate the shortest distance between the given cities
 path = nx.shortest_path(graph, from_point, to_point, weight = custom_distanc
e)

 # Draw roads
 roads.plot(figsize=[20, 10], color='black')

 # Draw path
 draw_path(path)

 # Display plot
 plt.show()
else:
 print('Start or target city not found!')

