
Chapter 4: Functions

We have already used (called) functions multiple times, like print() , int() , len() or randint() .

In [1]:

import random

name = "James Bond"
number = int("007")
print(name)
print(len(name))
print(number)
print(random.randint(1, 100))

The concept of a function in programming is very close to the mathematical definition of a function. These
functions can:

accept 0, 1 or multiple parameters;
return a value or not;
meanwhile causing side-effects, like printing a message on the console output.

Defining custom functions

By defining custom functions, the redundancy in the code can be reduced. A custom function can be defined
with the def keyword:

def function_name (<parameter_list>):

 function_statement

By defining a function we are just "storing" it, be we are not executing it yet. For example:

In [2]:

def hello():
 print("Hello World!")

Now we may call the function even multiple types to execute it:

James Bond
10
7
67

In [3]:

print("First line")
hello()
print("Second line")
hello()

What will be the type of a function?

In [4]:

print(type(hello))

Parameters

Functions may have zero, one or multiple parameters, which are given between parentheses as variables to
the function:

In [5]:

def greet(name):
 print("Hello " + name + "!")

In [6]:

greet("John")
someName = "Jane"
greet(someName)

In the above example the variable name is a parameter. The literal value John and the variable
someName are the arguments of the function call. So parameters are the generalized variables in the

function definitions, while arguments are the actual, concrete values in a function call.

Return values

Functions can return a value with the return statement. When a function reaches a return statement, the
execution of the function is stopped and the given value is returned. (A function can contain multiple return
statements when using conditions or iterations.)

Let's write the sum_list function, which receives a list of numerical values as a parameter and returns the
sum of the numbers!

First line
Hello World!
Second line
Hello World!

<class 'function'>

Hello John!
Hello Jane!

In [7]:

def sum_list(numbers): # numbers is assumed to be a list of numerical values
 sum_value = 0
 for num in numbers:
 sum_value += num
 return sum_value
 print("This line will never get printed")

Until now, we have only defined the function, now we can call it:

In [8]:

nums = [12, 8, 37, 21, 67, 42, 25]
print(sum_list(nums))

A function can contain multiple return statements. After the first return statement reached, the
execution of the function is stopped.

Let's write the average function, which receives a list of numerical values as a parameter and returns the
average of the numbers. If the list is empty, the returned value shall be None . Reuse the previous
sum_list function to produce the sum of the values.

In [9]:

def average(numbers): # numbers is assumed to be a list of numerical values
 if len(numbers) == 0:
 return None
 else:
 return sum_list(numbers) / len(numbers)
 print("This line will never get printed")

In [10]:

nums = [12, 8, 37, 21, 67, 42, 25]
print(average(nums))

Remark: the None keyword is used to define a no value at all (also called null value).
None is not the same as 0 , False , or an empty string. None has a data type of its own (NoneType)

and only None can be None .

Functions returning a value are called fruitful functions. Functions without a return value are called void
functions. In that case the returned value is None.

212

30.285714285714285

In [11]:

greet("Matthew")
result = greet("Andrew")
print(result)

Multiple parameters

Functions may have multiple parameters. In such a case the arguments are matched to the parameters in
the same order as they are listed.

In [12]:

def add(a, b):
 print("Adding {0} and {1}".format(a,b))
 c = a + b
 return c

result = add(10, 32)
print(result)
result = add(-5, 8)
print(result)

Default arguments

Python allows function parameters to have default values. If the function is called without the argument, the
parameter gets its default value.

In [13]:

def power(base, exp = 10):
 return base ** exp

print(power(2, 6))
print(power(2, 10))
print(power(2))

Hello Matthew!
Hello Andrew!
None

Adding 10 and 32
42
Adding -5 and 8
3

64
1024
1024

IMPORTANT: if a parameter has a default value, all other parameters following it must have a default value
too! E.g. this is invalid:

def power(base = 2, exp):

 return base ** exp

Passing arguments by their position or name

In Python, we can either pass the arguments by their position - as we have seen it so far:

In [14]:

print(power(2, 6))
print(power(6, 2))

Alternatively arguments can be passed by the respective parameter name:

In [15]:

print(power(base = 2, exp = 6))
print(power(exp = 6, base = 2))
print(power(2, exp = 6))

Note: passing arguments by their name is especially useful when:

a function has many parameters and the function call is much more readable when the parameters are
passed by their name;
a function has many parameters with default values and we would like to override the default value for
only a few of them.

Built-in functions

There are many built-in functions in Python for common use cases, e.g. for looking up the
maximum/minimum value in a list, or to calculate the sum of a list:

64
36

64
64
64

In [16]:

print("Maximum value in nums: {0}".format(max(nums)))
print("Minimum value in nums: {0}".format(min(nums)))
print("Sum of the values in nums: {0}".format(sum(nums)))

A comprehensive list can be found in the documentation:
https://docs.python.org/3/library/functions.html (https://docs.python.org/3/library/functions.html)

Note: defining a variable or function with the same of an existing (even builtin) function will hide it.

In [17]:

print("Maximum value in nums: {0}".format(max(nums)))
max = 42
print("Maximum value in nums: {0}".format(max(nums))) # yields error ,as max in
an integer now, not a function

Modules

In Python a logical unit of definitions (variables, functions, classes) shall be put in a standalone file to support
the easy reuse of the code. Such a file is called a module; definitions from a module can be imported into
other modules or into the main module.

There are many built-in modules, we have already used the math and the random module for example.
By using modules we can access preinstalled libraries and use them, so our code will be shorter and more
compact.

In [18]:

import math
print(math.pi) # using a variable definition from module math
print(math.factorial(10)) # using a function definition from module math

Maximum value in nums: 67
Minimum value in nums: 8
Sum of the values in nums: 212

Maximum value in nums: 67

--

TypeError Traceback (most recent cal
l last)
<ipython-input-17-582e3602d77e> in <module>
 1 print("Maximum value in nums: {0}".format(max(nums)))
 2 max = 42
----> 3 print("Maximum value in nums: {0}".format(max(nums))) # yiel
ds error ,as max in an integer now, not a function

TypeError: 'int' object is not callable

3.141592653589793
3628800

https://docs.python.org/3/library/functions.html

You can easily get a documentation for a module, by either looking it up in the reference:
https://docs.python.org/3/library/math.html (https://docs.python.org/3/library/math.html)

Or fetching it dynamically with the help function:

https://docs.python.org/3/library/math.html

In [19]:

help(math)

Help on built-in module math:

NAME
 math

DESCRIPTION
 This module provides access to the mathematical functions
 defined by the C standard.

FUNCTIONS
 acos(x, /)
 Return the arc cosine (measured in radians) of x.

 acosh(x, /)
 Return the inverse hyperbolic cosine of x.

 asin(x, /)
 Return the arc sine (measured in radians) of x.

 asinh(x, /)
 Return the inverse hyperbolic sine of x.

 atan(x, /)
 Return the arc tangent (measured in radians) of x.

 ...

 sqrt(x, /)
 Return the square root of x.

 tan(x, /)
 Return the tangent of x (measured in radians).

 tanh(x, /)
 Return the hyperbolic tangent of x.

 trunc(x, /)
 Truncates the Real x to the nearest Integral toward 0.

 Uses the __trunc__ magic method.

DATA
 e = 2.718281828459045
 inf = inf
 nan = nan
 pi = 3.141592653589793
 tau = 6.283185307179586

FILE
 (built-in)

Summary exercises on functions

Task 1: Fahrenheit to Celsius

Write a function fahr2cels , which computes the temperature in Celcius from Fahrenheit. The formula is
the following:

Where is the degree in Celsius and is the degree in Fahrenheit.

Write a program which prints out the appropriate Celsius values for each degree in Fahrenheit between 0
and 100, using an incremental step of 10.

C = ∗ (F − 32)
5

9

C F

In [20]:

def fahr2cels(f):
 c = 5 / 9 * (f - 32)
 return c

for fahr in range(0, 101, 10):
 cels = fahr2cels(fahr)
 print("Fahr = {0}, Cels = {1:.4f}".format(fahr, cels))

Task 2: Prime check

Write a function isPrime which determines whether a number received as a parameter is a prime or not.
(You may reuse your algorithm from the previous lecture.)

Wrtite a program which request a number from the user and tests whether it is a prime or not. Check whether
the user input is really an integer number or not.

Fahr = 0, Cels = -17.7778
Fahr = 10, Cels = -12.2222
Fahr = 20, Cels = -6.6667
Fahr = 30, Cels = -1.1111
Fahr = 40, Cels = 4.4444
Fahr = 50, Cels = 10.0000
Fahr = 60, Cels = 15.5556
Fahr = 70, Cels = 21.1111
Fahr = 80, Cels = 26.6667
Fahr = 90, Cels = 32.2222
Fahr = 100, Cels = 37.7778

In [21]:

import math

def isPrime(number):
 # Handle 0 and 1 as a special case
 if number < 2:
 return False

 # Numbers >= 2 are tested whether they have any divisors
 for i in range(2, int(math.sqrt(number) + 1)):
 #print("Testing divisor %d" % i)
 if number % i == 0:
 # If we found a divisor, we can stop checking, because the number is
NOT a prime
 return False

 # If no divisors were found, then the number is a prime
 return True

try:
 num = int(input("Number to check: "))
 if isPrime(num):
 print("{0} is a prime".format(num))
 else:
 print("{0} is NOT a prime".format(num))
except:
 print("That was not a number!")

Task 3: Word count

Request a string input from the user (a sentence). Write a function wordCount which count the words in
the sentence!

In [22]:

def wordCount(sentence):
 spaceCount = 0
 for char in sentence:
 if char == ' ':
 spaceCount += 1
 return spaceCount + 1

userInput = input('Say a sentence: ')
print('Your sentence consisted of {0} words.'.format(wordCount(userInput)))

Hint: count the spaces in the input string.

37 is a prime

Your sentence consisted of 9 words.

Task 4: Monotonity

A) Given a list a numbers, write a function isMonotonous which decides whether the sequence is
monotically increasing or not?

Sample input:

In [23]:

list1 = [10, 20, 50, 400, 600]
list2 = [10, 20, 50, 40, 600]
list3 = [1000, 500, 200, 50, 10]
list4 = [10, 20, 50, 50, 300]

In [24]:

def isMonotonous(numbers):
 # Assume that the list is monotically increasing and search for an index pai
r where it is not true!
 for i in range(1, len(numbers)):
 if numbers[i - 1] > numbers[i]:
 return False
 # If no such errornous index pair was found, then the list was really monoti
cally increasing.
 return True

print("List 1: {0}".format(isMonotonous(list1)))
print("List 2: {0}".format(isMonotonous(list2)))
print("List 3: {0}".format(isMonotonous(list3)))
print("List 4: {0}".format(isMonotonous(list4)))

B) Modify the previous function, so it decides whether the sequence is monotonous or not. (It can be either
increasing or decreasing.)

List 1: True
List 2: False
List 3: False
List 4: True

In [25]:

def isMonotonous(numbers):
 # Check for monotically increasing
 isIncreasing = True
 for i in range(1, len(numbers)):
 if numbers[i - 1] > numbers[i]:
 isIncreasing = False
 break

 # Check for monotically decreasing
 isDecreasing = True
 for i in range(1, len(numbers)):
 if numbers[i - 1] < numbers[i]:
 isDecreasing = False
 break

 # Return whether either one of the 2 conditions were true!
 return isIncreasing or isDecreasing

print("List 1: {0}".format(isMonotonous(list1)))
print("List 2: {0}".format(isMonotonous(list2)))
print("List 3: {0}".format(isMonotonous(list3)))
print("List 4: {0}".format(isMonotonous(list4)))

List 1: True
List 2: False
List 3: True
List 4: True

