Appendix 1: Strings
Advanced string operations

Concatenation: +

For string the + operator is used for concatenation, joining multiple strings together.

In [1]:

wordl = 'Hello'

word2 = 'Python'

greet = wordl + ' ' + word2 + '!'
print(greet)

Hello Python!

Multiplication: *

The * operator is used for "multiplying" a string, repeating and concatenating it the given times.
In [2]:

greet3times = greet * 3
print(greet3times)

Hello Python!Hello Python!Hello Python!
Length: len()

The len() statement returns the length of the string.

In [3]:
print(len(greet))

13

String indexing and slicing: []

A single charcter of a string can be access by indexing it, starting from zero:

In [4]:
print(greet[0])

H

Question: what will happen if we index with a negative number?

In [5]:
print(greet[-1])

Question: what will happen if we with a number larger than the length of the string?

In [6]:
print(greet[100])

IndexError Traceback (most recent cal
1 last)

<ipython-input-6-eb8fbb2c6e43> in

----> 1 print(greet| 1)

IndexError: string index out of range

We can also create substrings by fetching a slice of a string.

Note that the end index is exclusive, so if the slice is given as [4:6] , then the characters with the index 4
and 5 will be sliced.

In [7]:

print(greet[0:5])
print(greet[6:7])

Hello
P

The first (start) index can be omitted, by default it will be zero:

In [8]:
print(greet[:5])

Hello

The second (end) index can also be omitted, by default it will be the end of the string:

In [9]:
print(greet[6:])

Python!

Question: what happens if we omit both the start and the end index?

In [10]:
print(greet[:])

Hello Python!

Question: what happens if we use negative indices?

In [11]:

print(greet[-7:])
print(greet[1:-2])

Python!
ello Pytho

Question: what happens if the end index is larger than the length of the string?

In [12]:
print(greet[6:100])

Python!

Built-in string functions

A comprehensive list of the built-in functions can be found in the 'string_library’
(https://docs.python.org/3/library/stdtypes.html#string-methods) reference documentation.

These string functions are methods, which means they can be called on a string instance (value or variable)
inaform stringvar.method(parameters) . They do not modify the original string, but return a new
instance.

Lowercase: lower

Replace all letters to lowercase.

In [13]:

print(greet)
greet_lower=greet.lower ()
print(greet_lower)

Hello Python!
hello python!

Uppercase: upper

Replace all letters to uppercase.

https://docs.python.org/3/library/stdtypes.html#string-methods

In [14]:

print(greet)
greet_upper=greet.upper()
print(greet_upper)

Hello Python!
HELLO PYTHON!

Capitalization: capitalize and title
Replace the very first letter or the first letter of each words to uppercase. The rest will be turned to lowecase.

In [15]:

print(greet_lower)
greet_capital=greet_lower.capitalize()
print(greet_capital)

greet_title=greet_lower.title()
print(greet_title)

hello python!
Hello python!
Hello Python!

Substring search: find

Looks up the first occurance of a character or a substring in a string. The result is the starting index position
of the first occurance as an integer . Keep in mind that the first index is @ ! The returned value is -1 if

the substring was not found.

In [16]:

print(greet)
location = greet.find('Python')
print(location)

print(greet)
location = greet.find('java')
print(location)

Hello Python!
6

Hello Python!
-1

The starting index of the search can also be passed to the function. This way multiple occurances of a
substring can be looked up.

In [17]:

print(greet3times)
location = greet3times.find('Python'")
print(location)

location = greet3times.find('Python', location + 1)
print(location)

Hello Python!Hello Python!Hello Python!
6
19

This function is case-sensitive.
If you would like to search for both lower and uppercase variants, you may convert the string to lowercase
first!

In [18]:

print(greet)
location = greet.find('python')
print(location)

print(greet.lower())
location = greet.lower().find('python'")
print(location)

Hello Python!
-1

hello python!
6

Substring replace: replace

Replace all occurances of a substring to another substring.
This function is also case-sensitive.

In [19]:

greet_alternative = greet3times.replace('Hello', 'Hi')
print(greet_alternative)

Hi Python!Hi Python!Hi Python!

Stripping: 1strip, rstrip, strip

All functions are used to trim unrequired whitespace characters (spaces, tabulators, newlines) from a string.

« lstrip - remove whitespace characters from the lefthand side.
« rstrip - remove whitespace characters from the righthand side.
« stri - remove whitespace characters from both sides.

In [20]:

greet_world = ' --== Hello World ==--"
print(greet_world.lstrip())
print(greet_world.rstrip())
print(greet_world.strip())

--== Hello World ==--
--== Hello World ==--
--== Hello World ==--

The characters to remove can also be specified otherwise:

In [21]:
print(greet_world.strip(' -="))

Hello World

Prefix and suffix check: startswith, endswith

These functions verifies whether a string starts or ends with the given substring. The result is a boolean value
(True or False)

This function is also case-sensitive.

In [22]:

print(greet.startswith('Hello'))
print(greet.startswith('Hi'))

True
False

Splitting: split

Split a string into a list of substring by defining a so-called separator or delimiter character or string. The
separator is removed from the string

In [23]:

print(greet3times)

words = greet3times.split('!"')

print(words)

Hello Python!Hello Python!Hello Python!

['Hello Python', 'Hello Python', 'Hello Python', '']

Question: why is there an empty string at the end of the result list?

Logical operations on strings

Containment check: in

Verify whether a letter or a substring occures anywhere inside a string. The result is a boolean value (True
or False)

In [24]:

print('p' in greet)
print('P' in greet)
print('Python' in greet)

False
True
True
In [25]:

if 'P' in greet:
print('Contains a letter P!')

Contains a letter P!

Equality check: ==

Perform a case-sensitive equality check between two strings.

In [26]:

if word2 == 'Python':
print('It was Python.'")

else:

print('It was not Python.')

It was Python.

Summary exercise on strings

Task: request the name, birth year, email address and spoken languages of the user. The spoken languages
are requested as a string, separated by commas.

Check whether the following validation rules are matched. If any of the data is invalid, display an error
message and request a repeated entry of the data.

» The name must contain at least 2 parts. (There must be a space inside it.)
» The birth year must be a number, between 1900 and 2019.
e The email address must contain a @ letter and must end with a elte.hu domain.

When the data was given successfully, trim any unncceseary whitespaces and display it in a corrected
format:

The name shall be displayed with each part starting with a capital letter.

Beside the birth year, calculate the (possible) age of the current user.

The email address shall be lowercase.

The spoken languages shall be displayed as a list of languages instead of a single string.

In [27]:

import datetime

def valid_name(name):
name = name.strip()
return len(name.split(' ")) >= 2

def valid_birthyear(year):
year = year.strip()
try:
year_num = int(year)
return year_num >= 1900 and year_num <= 2019
except:
return False

def valid_email(email):
email = email.strip()
return '@' in email and email.endswith('elte.hu'")

def format_name(name):
return name.strip().title()

def format_age(year):
now = datetime.datetime.now()
age_max = now.year - int(year)
age_min = max(age_max - 1, 0)
if age_max != age_min:
return str(age_min) + "/" + str(age_max)
else:
return str(age_max)

def format_email(email):
return email.strip().lower ()

def format_langs(langs):
langs = langs.strip().split(',")
langs = list(map(str.strip, langs))
return langs

name = input("Name: ")

while not valid_name(name):
print("Incorrect format for name.")
name = input("Name: ")

birthyear = input("Birth year: ")

while not valid_birthyear(birthyear):
print("Incorrect format for birth year.")
birthyear = input("Birth year: ")

email = input("Email: ")

while not valid_email(email):
print("Incorrect format for email.")
email = input("Email: ")

langs = input("Spoken languages: ")

print("Name: %s" % format_name(name))

print("Birth year: %s (age: %s)" % (birthyear, format_age(birthyear)))
print("Email: %s" % format_email(email))

print("Languages: %s" % format_langs(langs))

Incorrect format for name.
Incorrect format for birth year.
Incorrect format for email.
Incorrect format for email.

Name: John Smith

Birth year: 1985 (age: 35/36)

Email: johnsmith@elte.hu

Languages: ['english', 'german', 'hungarian']

