Chapter 17: Geometric algorithms - Convex Hull

The convex hull of a set of points, is the smallest convex polygon for which each point in the set is either on
the boundary of the polygon or in its interior.

We can visualize what the convex hull looks like by imagining that the points are nails sticking out of the
plane. Take an elastic rubber band, stretch it around the nails and let it go. It will snap around the nails and
assume a shape that minimizes its length. The area enclosed by the rubber band is called the convex hull of
the points. This leads to an alternative definition of the convex hull of a finite set of points in the plane: it is
the unique convex polygon whose vertices are points from and which contains all points.

Jarvis's march

Jarvis’s march computes the convex hull of a set Q of points by a technique also known as the gift wrapping
algorithm. The algorithm was named after R. A. Jarvis, who published it in 1973.

The algorithm simulates wrapping a piece of paper around the set of points. We start by taping the end of the
paper to the lowest point in the set, that is, the point with the lowest Y-coordinate, picking the leftmost such
point in case of a tie. We know that this point must be a vertex of the convex hull. We pull the paper to the
right to make it wrapping "tight" and then we pull it higher until it touches a point. This point must also be a
vertex of the convex hull. Keeping the paper "tight", we continue in this way around the set of vertices until
we come back to our original starting point.

The algoirhtm has an O(n * h) asymptotic complexity, where n is the number of points and h is the number
of points on the convex hull.



Orientation

Given line (A, B) and point M, check whether M is left or right from the line, more precisely whether A -> B ->
M is a closckwise or counter-clockwise turn?

det := (Bx — Ax) x (My — Ay) — (By — Ay) x (Mz — Ax)

« if det > 0: counter-clockwise
« if det < 0: clockwise
« if det = 0: collinear

Graham's scan

Graham'’s scan solves the convex-hull problem by maintaining a stack of candidate points. It pushes each
point of the input set onto the stack one time, and it eventually pops from the stack each point that is not a
vertex of the convex hull. When the algorithm terminates, the stack contains exactly the vertices of the
convex hull, in counter-clockwise order of their appearance on the boundary. The algorithm is named after
Ronald Graham, who published the original version in 1972.

The algorithm consists of 3 steps:

1. Find the point with the lowest Y-coordinate, picking the leftmost such point in case of a tie. Call this point
P.

2. The set of points must be sorted in increasing order of the angle they and the point P make with the X-
axis. (Sorting algorithm were discussed in Chapter 6 (06_sorting.pdf).)

3. Initiate an empty stack. Then consider each points in the sorted list in sequence iteratively. For each
point, it is first determined whether traveling from the two points immediately preceding this point
constitutes making a left turn or a right turn in orientation.

« If a left turn, push the point onto the stack.

 If aright turn, the second-to-last point is not part of the convex hull (lies inside it), and is therefore
removed from the stack. The same determination is then made for the set of the latest point, and the
two points that immediately precede the point found to have been inside the hull, and is repeated
until a left turn set is encountered, at which point the algorithm moves on to the next point in the set
of points in the sorted list.

The algorithm has an O(n * log(n) asymptotic complexity. Thus, this algorithm is not output-sensitive
(compare to Jarvis's march).
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Quickhull

The Quickhull method uses the divide and conquer approach similar to that of Quicksort
(06_sorting.pdf#Quicksort), from which its name derives. The original algorithm was described by Scott
Greenfield in 1990. The algorithm was later extended to work in n-dimensional space.

The algorithm contains the following steps:

1. Find the points with minimum and maximum X-coordinates, as these will always be part of the convex
hull. If case of a tie, pick the ones with minimum/maximum Y-coordinates correspondingly.

2. Use the line formed by these two points to divide the set in two subsets of points, which will be
processed recursively (“divide and conquer”).

3. For both sides, determine the point with the maximum distance from the line. This point forms a triangle
with those of the line. The points lying inside of that triangle cannot be part of the convex hull and can
therefore be ignored in the next steps.

4. Repeat the previous step on the two lines formed by the triangle.

5. Continue the recursion until no more points are left. In the end, all points selected constitute the convex
hull.

The asymptotic complexity of the algorithm is O(n * log(r)), where r is the number of processed points.

Chan's algorithm

Chan's algorithm is an optimal output-sensitive algorithm to compute the convex hull. It was named after
Timothy M. Chan, who published the algorithm in 1996.

The algorithm combines Graham's scan (or other algorithm with O(n * log(n)) complexity) with Jarvis's
march (O(n  h)), in order to obtain an optimal O(n * log(h)) complexity, where n is the number of points
and h is the number of vertices of the output (the convex hull).
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QuickHull with Shapely

Read the hungary_cities.shp shapefile located in the data folder. This dataset contains both scalar
and spatial data of the Hungarian cities, and should be familiar from Chapter 15
(15_graph_spanning_tree.pdf).

In [1]:

import geopandas as gpd
from scipy.spatial import ConvexHull

cities_gdf = gpd.read_file('../data/hungary_cities.shp')
display(cities_gdf)

Id County City Status KSH geometry
. POINT (610046.800

0 1 FEJER Aba town 17376 187639.000)
) POINT (577946.100

1 2 BARANYA Abaliget  town 12548 89280.800)
2 3 HEVES Abasar  town 24554 POINT (721963700

273880.300)

POINT (812129.200

3 4 BORSOD-ABAUJ-ZEMPLEN Abaujalpar town 15662 331508.200)

POINT (809795.600

4 5 BORSOD-ABAUJ-ZEMPLEN Abauijkér town 26718 331138.300)

POINT (471324.200

3142 3143  GYOR-MOSON-SOPRON Zsita  town 04622 e 00
3143 3144 CSONGRAD ~ Zsomb6  town 17765 POINT (17029%%%%10%(;
3144 3145 BORSOD-ABAUJ-ZEMPLEN Zsuita  town 11022 POINT (3%135&2?:-1%%(;
3145 3146 SZABOLCS'SZABT&AERG' Zsurk  town 13037 POINT (3%%85427.5370%(;

POINT (763123.300

3146 3147 BORSOD-ABAUJ-ZEMPLEN Zubogy town 19105 338338.600)

3147 rows x 6 columns

Shapely can compute the convex hull of any geometry through the convex_hull attribute.

The geometry column of the GeoDataFrame contains Shapely points (see Chapter 11
(11_spatial_vector.pdf)), but we need to create a MultiPoint of all cities to calculate their aggregated concex
hull.
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In [2]:

from shapely import geometry

multipoint = geometry.MultiPoint(cities_gdf.geometry)
hull = multipoint.convex_hull
print(hull)

POLYGON ((599595.6 48431.5, 560116.5 52448.8, 554768.8 53926, 54516

1.9 57103.6, 526519.8 69931.67999999999, 514301.4 78648.89999999999,
487965.5 104677.9, 461349.736 131087.715, 458840.1 133907.4, 448204.
1 146147.2, 431339.156 174384.3, 459598.524 263436.1, 512056.1 29642
9.8, 778249.4 359044.9, 830043.1 358431.7, 884847.7 344952.8, 93100

5.4 312885.6, 933862.3 309972.7, 934499.7 307908.4, 934944.4 296041.
6, 818003.3 122843.7, 810002.9 112845.9, 801928.9 107279.7, 778496.3
93680, 602643.7 48962.9, 599595.6 48431.5))

Plot figure:

In [3]:

import matplotlib.pyplot as plt
%matplotlib inline

plt.figure(figsize=[15, 10])

# Add all points to plot
for point in cities_gdf.geometry:
plt.plot(point.x, point.y, color='black', marker='o', markersize=1)

# Fetch the 1list of X and Y coordinates of the convex hull
line_x, line_y = hull.exterior.xy

# Plot linestring

plt.plot(line_x, line_y, color='red")

# Display plot
plt.show()
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Quickhull with SciPy (optional)
As an alternative approach, we can use SciPy to cimpute the convex hull.

SciPy (pronounced "Sigh Pie") is library used for scientific computing and technical computing for
mathematics, science, and engineering. SciPy is built on top of NumPy, Matplotlib and Pandas and are tightly
integrated with them. It is one of the most widely used Python package in the scientific community.

How to install SciPy?

If you have Anaconda installed, then scipy was already installed together with it.

If you have a standalone Python3 and Jupyter Notebook installation, open a command prompt / terminal and
type in:

pip3 install scipy

How to use SciPy?

SciPy consists of sub-packages for various scientific areas. For us the spatial package is in focus, which
contains spatial algorithms, like the QuickHull or the KdTree (see Chapter 16 (16_spatial_indexing.pdf)).

import scipy.spatial

Fetch points for cities:

In [4]:

points = [(geom.Xx, geom.y) for geom in cities_gdf.geometry]
print("Number of points: {0}".format(len(points)))

Number of points: 3147

Calculate convex hull:

In [5]:

hull = ConvexHull(points)
print("Number of vertices on hull: {0}".format(len(hull.vertices)))
print("Hull vertices: {0}".format(hull.vertices))

Number of vertices on hull: 25
Hull vertices: [ 93 783 853 2847 1289 3115 334 198 782 635 31
08 1245 257 1845

204 601 1575 849 1589 2892 2769 3145 2222 2844 2247]
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Plot figure:

In [6]:

import matplotlib.pyplot as plt
%matplotlib inline

plt.figure(figsize=[15, 10])

# Add all points to plot
for point in points:
plt.plot(point[@], point[l1], color='black', marker='o', markersize=1)

# Calculate convex hull linestring

line_x = [points[idx][0] for idx in hull.vertices]

line_y = [points[idx][1] for idx in hull.vertices]

# Add first point of hull to the end, so the linestring will be closed.
line_x.append(points[hull.vertices[0]][0O])
line_y.append(points[hull.vertices[0]][1])

# Plot linestring

plt.plot(line_x, line_y, color='red")

# Display plot
plt.show()
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