
Chapter 8: Object-oriented programming

Python is an object-oriented programming language (OOP). Objects are an encapsulation of variables and
functions into a single entity.

Let's assume we have a data type for rectangles. Without objects we could write the following code:

In [1]:

rec1_bl = (0, 2) # bl = bottom-left
rec1_ur = (6, 8) # ur = upper-right

rec2_bl = (4, 3)
rec2_ur = (7, 5)

def area(bl, ur):
 width = ur[0] - bl[0]
 height = ur[1] - bl[1]
 return width * height

print("Area of rectangle #1: {0}".format(area(rec1_bl, rec1_ur)))
print("Area of rectangle #2: {0}".format(area(rec2_bl, rec2_ur)))

As we can observe the data (rec1_bl , rec1_ur , etc.) and the functions (area() and possible further
functions) are defined separately, not encapsulated together.

Classes and objects

Simply put, an object is a collection of data (variables) and methods (functions) that act on those data. A
class is a blueprint for the object. Classes introduce new data types in Python, describing real-world things
and situations. Objects are the instances of classes, the creation process of objects are also called
instantiation.

Let's create the Rectangle class now:

Area of rectangle #1: 36
Area of rectangle #2: 6

In [2]:

class Rectangle():
 name = 'Rectangle'

 def area(self):
 width = self.ur[0] - self.bl[0]
 height = self.ur[1] - self.bl[1]
 return width * height

rec1 = Rectangle()
rec1.bl = (0, 2)
rec1.ur = (6, 8)
rec2 = Rectangle()
rec2.bl = (4, 3)
rec2.ur = (7, 5)

print("Area of rectangle {0}".format(rec1.area()))
print("Area of rectangle {0}".format(rec2.area()))

In this example the Rectangle class has 4 attributes: name , ur , bl and area() . Attributes may be
data or method: the name is a simple string, bl and ur are tuples while area() is a function.
Functions in a class are called methods more specifically.

The rec1 = Rectangle() statement creates a new instance object named rec1 from the class
Rectangle . We can access the attributes of objects using the object name prefix, e.g. rec1.area() .

Remember how we used list and dictionary functions:

numbers = [1, 4, 5, -2, 8]

numbers.sort()

shopping_list = {'apple': 6, 'bread': 2, 'milk': 6, 'butter': 1}

for item in shopping_list.items():

 print(item)

This is the same syntax, we are calling methods on objects.

self parameter

There is a self parameter in the area() function definition inside the Rectangle class but, we called
the method simply as rec1.area() , without any arguments. It still worked.

This is because, whenever an object calls its method, the object itself is passed as the first argument. So,
rec1.area() translates into Rectangle.area(rec1) .

Area of rectangle 36
Area of rectangle 6

In [3]:

print("Area of rectangle #1: {0}".format(Rectangle.area(rec1)))
print("Area of rectangle #2: {0}".format(Rectangle.area(rec2)))
print("Name of all rectangles: {0}".format(Rectangle.name))

In general, calling a method with a list of arguments is equivalent to calling the corresponding function with
an argument list that is created by inserting the method's object before the first argument.

For these reasons, the first argument of the function in class must be the object itself. This is conventionally
called self . It can be named otherwise but it is highly discouraged to follow the convention.

Constructors

In our previous example we deliberately gave a value to the bl and ur attributes of rec1 and rec2
before calling the area() method on them, so it can process those values. What happens if we e.g. forget
to initialize those attributes beforehand?

In [4]:

rec3 = Rectangle()
print("Area of rectangle #3: {0}".format(rec3.area()))

This issue can be addressed with a special constructor method, which is always executed when a new object
is instantiated from a class.

In Python, class functions that begins with double underscore (__) are called special functions as they have
special meaning. The __init__() function has particular interest for us now. This special function gets
called whenever a new object of that class is instantiated. This type of function is also called a constructor
in object-oriented programming. We normally use it to initialize all the variables.

Area of rectangle #1: 36
Area of rectangle #2: 6
Name of all rectangles: Rectangle

--

AttributeError Traceback (most recent cal
l last)
<ipython-input-4-a77eecff7f61> in <module>
 1 rec3 = Rectangle()
----> 2 print("Area of rectangle #3: {0}".format(rec3.area()))

<ipython-input-2-1afbe4a6155f> in area(self)
 3
 4 def area(self):
----> 5 width = self.ur[0] - self.bl[0]
 6 height = self.ur[1] - self.bl[1]
 7 return width * height

AttributeError: 'Rectangle' object has no attribute 'ur'

In [5]:

class Rectangle():
 name = 'Rectangle'

 def __init__(self, bl_x, bl_y, ur_x, ur_y):
 self.bl = (bl_x, bl_y)
 self.ur = (ur_x, ur_y)

 def area(self):
 width = self.ur[0] - self.bl[0]
 height = self.ur[1] - self.bl[1]
 return width * height

rec1 = Rectangle(0, 2, 6, 8)
rec2 = Rectangle(4, 3, 7, 5)

print("Area of rectangle #1: {0}".format(rec1.area()))
print("Area of rectangle #2: {0}".format(rec2.area()))

Now we cannot "forget" to pass all the required data to the object upon instatiation, because Python will raise
a TypeError .

In [6]:

rec3 = Rectangle()
print("Area of rectangle #3: {0}".format(rec3.area()))

Default arguments

Alternatively we could use default values for the parameters, so a Rectangle could be constructed without
defining its dimensions, but still giving value to the instance attributes.

Area of rectangle #1: 36
Area of rectangle #2: 6

--

TypeError Traceback (most recent cal
l last)
<ipython-input-6-a77eecff7f61> in <module>
----> 1 rec3 = Rectangle()
 2 print("Area of rectangle #3: {0}".format(rec3.area()))

TypeError: __init__() missing 4 required positional arguments: 'bl_
x', 'bl_y', 'ur_x', and 'ur_y'

In [7]:

class Rectangle():
 name = 'Rectangle'

 def __init__(self, bl_x = 0, bl_y = 0, ur_x = 0, ur_y = 0):
 self.bl = (bl_x, bl_y)
 self.ur = (ur_x, ur_y)

 def area(self):
 width = self.ur[0] - self.bl[0]
 height = self.ur[1] - self.bl[1]
 return width * height

In [8]:

rec3 = Rectangle()
print("Area of rectangle #3: {0}".format(rec3.area()))

Class and instance attributes

Generally speaking, instance attributes are for data unique to each instance and class attributes are for
variables and methods shared by all instances of the class.

In the example Rectangle class, the name attribute is a class variable, because it is defined as an
attribute of the class.

In [9]:

print(Rectangle.name)

The bl and ur are instance attributes (because they are accessed through the self object). This
means that each rectangle can have its own bottom-left and upper-right position, but all rectangles share the
same name.

In [10]:

rec1.bl = (-2, 1)
print(rec1.bl) # has no effect on rec2
print(rec2.bl)

String representation of an object

By default, the string representation of an object consists of the type name and memory address:

Area of rectangle #3: 0

Rectangle

(-2, 1)
(4, 3)

In [11]:

print(rec1)

As we discussed, methods that begins with double underscore (__) are called special functions in Python.
The __str__() method is another special function, which can compute and return the "informal" or nicely
printable string representation of an object. The return value must be a string object.

In [12]:

class Rectangle():
 def __init__(self, bl_x, bl_y, ur_x, ur_y):
 self.bl = (bl_x, bl_y)
 self.ur = (ur_x, ur_y)

 def __str__(self):
 return "Rectangle ({0}, {1}, {2}, {3})".format(self.bl[0], self.bl[1], s
elf.ur[0], self.ur[1])

 def area(self):
 width = self.ur[0] - self.bl[0]
 height = self.ur[1] - self.bl[1]
 return width * height

rec1 = Rectangle(0, 2, 6, 8)
rec2 = Rectangle(4, 3, 7, 5)

print(rec1)
print(rec2)

Summary exercises on object-oriented programming

Task 1: Perimeter

Extend the Rectangle class with a perimeter() method.

Sample usage:

result = rec1.perimeter()

result is an integer value

<__main__.Rectangle object at 0x7fbcfd0291f0>

Rectangle (0, 2, 6, 8)
Rectangle (4, 3, 7, 5)

In [13]:

class Rectangle():
 def __init__(self, bl_x, bl_y, ur_x, ur_y):
 self.bl = (bl_x, bl_y)
 self.ur = (ur_x, ur_y)

 def __str__(self):
 return "Rectangle ({0}, {1}, {2}, {3})".format(self.bl[0], self.bl[1], s
elf.ur[0], self.ur[1])

 def area(self):
 width = self.ur[0] - self.bl[0]
 height = self.ur[1] - self.bl[1]
 return width * height

 def perimeter(self):
 width = self.ur[0] - self.bl[0]
 height = self.ur[1] - self.bl[1]
 return 2 * (width + height)

The computation of the width and height of the rectangle is now redundantly given in the area() and the
perimeters() methods. Eliminate the redundancy by extracting a new width() and height()

function in the Rectangle class.

In [14]:

class Rectangle():
 def __init__(self, bl_x, bl_y, ur_x, ur_y):
 self.bl = (bl_x, bl_y)
 self.ur = (ur_x, ur_y)

 def __str__(self):
 return "Rectangle ({0}, {1}, {2}, {3})".format(self.bl[0], self.bl[1], s
elf.ur[0], self.ur[1])

 def width(self):
 return self.ur[0] - self.bl[0]

 def height(self):
 return self.ur[1] - self.bl[1]

 def area(self):
 return self.width() * self.height()

 def perimeter(self):
 return 2 * (self.width() + self.height())

Task 2: Translation

Extend the Rectangle class with a translate() method, which moves it in the Euclidean space in the
given direction.

Sample usage:

print(rec1)

rec1.translate(3, 4)

print(rec1)

In [15]:

class Rectangle():
 def __init__(self, bl_x, bl_y, ur_x, ur_y):
 self.bl = (bl_x, bl_y)
 self.ur = (ur_x, ur_y)

 def __str__(self):
 return "Rectangle ({0}, {1}, {2}, {3})".format(self.bl[0], self.bl[1], s
elf.ur[0], self.ur[1])

 def width(self):
 return self.ur[0] - self.bl[0]

 def height(self):
 return self.ur[1] - self.bl[1]

 def area(self):
 return self.width() * self.height()

 def perimeter(self):
 return 2 * (self.width() + self.height())

 def translate(self, x, y):
 self.bl = (self.bl[0] + x, self.bl[1] + y)
 self.ur = (self.ur[0] + x, self.ur[1] + y)

Task 3: Overlap

Extend the Rectangle class with an overlap() method, which can decide whether 2 rectangles
overlap each other.

Sample usage:

result = rec1.overlap(rec2)

result is a boolean value

In [16]:

class Rectangle():
 def __init__(self, bl_x, bl_y, ur_x, ur_y):
 self.bl = (bl_x, bl_y)
 self.ur = (ur_x, ur_y)

 def __str__(self):
 return "Rectangle ({0}, {1}, {2}, {3})".format(self.bl[0], self.bl[1], s
elf.ur[0], self.ur[1])

 def width(self):
 return self.ur[0] - self.bl[0]

 def height(self):
 return self.ur[1] - self.bl[1]

 def area(self):
 return self.width() * self.height()

 def perimeter(self):
 return 2 * (self.width() + self.height())

 def translate(self, x, y):
 self.bl = (self.bl[0] + x, self.bl[1] + y)
 self.ur = (self.ur[0] + x, self.ur[1] + y)

 def overlap(self, other):
 overlap_x = ((self.bl[0] < other.bl[0] and self.ur[0] > other.bl[0]) or
 (other.bl[0] < self.bl[0] and other.ur[0] > self.bl[0]))
 overlap_y = ((self.bl[1] < other.bl[1] and self.ur[1] > other.bl[1]) or
 (other.bl[1] < self.bl[1] and other.ur[1] > self.bl[1]))

 return overlap_x and overlap_y

Hint: Two axis-parallel rectangles overlap if they overlap either by the X or Y dimensions.
They overlap by the X dimension if A_X1 < B_X1 and A_X2 > B_X1 ; or B_X1 < A_X1 and B_X2 >
A_X1 .
Similar inequality condition apply on the Y dimension.

Data classes (optional)

A relatively new feature available since Python 3.7 (released in 2018) is the data class. A data class is a
class typically containing mainly data, although there aren’t really any restrictions. It is created using the
@dataclass decorator, as follows:

In [17]:

from dataclasses import dataclass

@dataclass
class Country:
 name: str
 capital: str
 area: int
 population: int
 gdp: int
 literacy: float
 region: str = 'Unknown'

 def population_density(self):
 return self.population / self.area

The benefit of using data classes is that some special methods, e.g. the __init__() constructor method
will be automatically generated and added to the class, initiating all instance variables. The generated
constructor will look like:

def __init__(self, name, capital, area, population, gdp, literacy, region

= 'Unknown'):

 self.name = name

 self.capital = capital

 self.area = area

 self.population = population

 self.gdp =gdp

 self.literacy = literacy

 self.region = region

Since data classes is just a new syntactical approach in Python for defining classes, we can instantiate
objects from data classes and use them just like before:

In [18]:

hungary = Country('Hungary', 'Budapest', 93030, 9981334, 13900, 99.4, 'Central-E
urope')

In [19]:

print(hungary.capital)
print(hungary.population_density())

The string representational __str__() method is also predefined for data classes:

Budapest
107.29156186176502

In [20]:

print(hungary)

Type annotations

As you have may noticed we also defined the type of the instance variables in the data class, e.g.
population: int . This is called type hinting or type annotations and is mandatory when defining a data

class. Type hinting is available in Python since version 3.5 and can also be used elsewhere: for local
variables, function parameters, return types, etc.

Note that the Python runtime does not enforce function and variable type annotations, so whether you use
them or not, they will not affect how your code is executed. However they can be used by third party tools
such as type checkers (see mypy (http://mypy-lang.org/)) or integrated development environments (IDEs), to
early detect potential errors in your code.

We will not use type hinting further in this course, as Jupyter Notebook itself does not perform type checking
based on them.

Inheritance (advanced, optional)

We do not always have to start from scratch when writing a class. If the class is a specialized version of
another already existing class, we can use inheritance.

When one class inherits from another, it automatically takes on all the attributes and methods of the first
class. The original class is called the parent class, and the new class is the child class. The child class
inherits every attribute and method from its parent class but is also free to define new attributes and methods
of its own.

Let's inherit the Square class from the Rectangle class:

In [21]:

class Square(Rectangle):
 def __init__(self, bl_x, bl_y, width):
 self.bl = (bl_x, bl_y)
 self.ur = (bl_x + width, bl_y + width)

s1 = Square(5, 10, 3)
print("Area of square #1: {0}".format(s1.area()))

The __init__() function in the child class

Country(name='Hungary', capital='Budapest', area=93030, population=9
981334, gdp=13900, literacy=99.4, region='Central-Europe')

Area of square #1: 9

http://mypy-lang.org/

Often we would like to reuse the original __init__ function of the parent class in the child class.

This can be done with the super() function inside the child class constructor. This is a special function
that helps Python make connections between the parent and child class.

Note: The name super comes from a convention of calling the parent class a superclass and the child class a
subclass.

In [22]:

class Square(Rectangle):
 def __init__(self, bl_x, bl_y, width):
 super().__init__(bl_x, bl_y, bl_x + width, bl_y + width)

s1 = Square(5, 10, 3)
print("Area of square #1: {0}".format(s1.area()))

Overiding methods from the parent class

Let's see what happens if we print our s1 object:

In [23]:

print(s1)

It shows the text "Rectangle", because the __str__() special function was defined this way in the
Rectangle parent class and now the Square child class inherited it.

We can override any method from the parent class that do not fit into the model of the child class. To achieve
this, we can simply redefine the method in the child class with the same name as the method we want to
override in the parent class. Python will disregard the parent class method and only pay attention to the
method you define in the child class.

In [24]:

class Square(Rectangle):
 def __init__(self, bl_x, bl_y, width):
 self.bl = (bl_x, bl_y)
 self.ur = (bl_x + width, bl_y + width)

 def __str__(self):
 return "Square ({0}, {1}, width = {2})".format(self.bl[0], self.bl[1], s
elf.ur[0] - self.bl[0])

s1 = Square(5, 10, 3)
print("Area of square #1: {0}".format(s1.area()))
print(s1)

Area of square #1: 9

Rectangle (5, 10, 8, 13)

Area of square #1: 9
Square (5, 10, width = 3)

Note: the super() function can be used in any overriding child class methods.

Extend the functionality of the parent class

Child classes may also extend the functionality of their parent class by adding new methods to themselves.

In [25]:

class Square(Rectangle):
 def __init__(self, bl_x, bl_y, width):
 self.bl = (bl_x, bl_y)
 self.ur = (bl_x + width, bl_y + width)

 def __str__(self):
 return "Square ({0}, {1}, width = {2})".format(self.bl[0], self.bl[1], s
elf.ur[0] - self.bl[0])

 def side(self):
 return self.bl[1] - self.ur[0]

In [26]:

s1 = Square(5, 10, 3)
print(s1.side())

The Rectangle class does not have this new side() method:

In [27]:

print(rec1.side())

2

--

AttributeError Traceback (most recent cal
l last)
<ipython-input-27-63985b0fc09e> in <module>
----> 1 print(rec1.side())

AttributeError: 'Rectangle' object has no attribute 'side'

