
Chapter 16: Spatial indexing

Package installation
This chapter covers spatial indexing with KD-trees, Quadtrees and R-trees. The package requirement for
these spatial indexes are the scipy.spatial , pyqtree  and rtree  modules respectively.

Anaconda

If you have Anaconda installed, the scipy  package was installed together with, you only need to install 
pyqtree  and rtree . Open the Anaconda Prompt and type in:

conda install -c conda-forge pyqtree rtree

Python Package Installer (pip)

If you have standalone Python3 and Jupyter Notebook install, open a command prompt / terminal and type
in:

pip3 install scipy pyqtree rtree

You most likely have already installed rtree , as it was an optional dependency for geopandas  in
Chapter 11 (11_spatial_vector.pdf).

Process the dataset

Read the hungary_cities.shp  shapefile located in the data  folder. This dataset contains both scalar
and spatial data of the Hungarian cities, and should be familiar from Chapter 15
(15_graph_spanning_tree.pdf).

file:///converted/book/pdf/11_spatial_vector.pdf
file:///converted/book/pdf/15_graph_spanning_tree.pdf


In [1]:

import geopandas as gpd 

cities = gpd.read_file('../data/hungary_cities.shp') 
display(cities) 

Minimal bounding box

Calculate the minimal bounding box for all the points! (We will use it later.)

Id County City Status KSH geometry

0 1 FEJÉR Aba town 17376 POINT (610046.800
187639.000)

1 2 BARANYA Abaliget town 12548 POINT (577946.100
89280.800)

2 3 HEVES Abasár town 24554 POINT (721963.700
273880.300)

3 4 BORSOD-ABAUJ-ZEMPLÉN Abaújalpár town 15662 POINT (812129.200
331508.200)

4 5 BORSOD-ABAUJ-ZEMPLÉN Abaújkér town 26718 POINT (809795.600
331138.300)

... ... ... ... ... ... ...

3142 3143 GYÕR-MOSON-SOPRON Zsira town 04622 POINT (471324.200
237577.200)

3143 3144 CSONGRÁD Zsombó town 17765 POINT (721098.100
109690.000)

3144 3145 BORSOD-ABAUJ-ZEMPLÉN Zsujta town 11022 POINT (815027.400
353143.100)

3145 3146 SZABOLCS-SZATMÁR-
BEREG Zsurk town 13037 POINT (884847.700

344952.800)

3146 3147 BORSOD-ABAUJ-ZEMPLÉN Zubogy town 19105 POINT (763123.300
338338.600)

3147 rows × 6 columns



In [2]:

def get_x(point): 
   return point.x 

def get_y(point): 
   return point.y 

# Calculating the minimal bounding box 
min_x = min(cities['geometry'], key = get_x).x # or cities.geometry 
max_x = max(cities['geometry'], key = get_x).x 
min_y = min(cities['geometry'], key = get_y).y 
max_y = max(cities['geometry'], key = get_y).y 

print("Bounding box: ({0:.1f}, {1:.1f}) - ({2:.1f}, {3:.1f})".format(min_x, min_
y, max_x, max_y)) 

Lambda functions (optional)

Python lambdas are little, anonymous functions, subject to a more restrictive but more concise syntax than
regular Python functions.

Lambda functions can have any number of arguments but only one expression. The evaluated expression is
the return value of the function.

A lambda function in python has the following syntax:

lambda arguments: expression 

Lambda functions can be used wherever function objects are required.

In [3]:

# Calculating the minimal bounding box 
min_x = min(cities['geometry'], key = lambda p: p.x).x 
max_x = max(cities['geometry'], key = lambda p: p.x).x 
min_y = min(cities['geometry'], key = lambda p: p.y).y 
max_y = max(cities['geometry'], key = lambda p: p.y).y 

print("Bounding box: ({0:.1f}, {1:.1f}) - ({2:.1f}, {3:.1f})".format(min_x, min_
y, max_x, max_y)) 

Bounding box: (431339.2, 48431.5) - (934944.4, 359044.9) 

Bounding box: (431339.2, 48431.5) - (934944.4, 359044.9) 



KdTree
A kdTree (https://en.wikipedia.org/wiki/K-d_tree) (short for k-dimensional tree) is a space-partitioning data
structure for organizing points in a k-dimensional space. KdTrees are especially useful for searches involving
a multidimensional search key, e.g. nearest neighbor searches and range searches.

Example KdTree: 

Representation: 

Select a random city and create a point which we will query later.

https://en.wikipedia.org/wiki/K-d_tree


In [4]:

import random 
random.seed(42) # for reproducibility 

idx = random.randint(0, len(cities) - 1) 
city = cities.iloc[idx] 
print(city) 

Create the query point, by slightly distorting the location of the selected city.

In [5]:

from shapely.geometry import Point 

city_point = city.geometry 
query_point = Point(city_point.x + 1, city_point.y + 2) 

print("City location: {0}".format(city_point)) 
print("Query location: {0}".format(query_point)) 

Construct the KD-Tree

The scipy  module can construct KD-Tree from a list of points, where each point is represented by a 2
element list or tuple.

In [6]:

points = [(p.x, p.y) for p in cities['geometry']] 
print(points[:10]) 

Now the KD-Tree can be constructed.

In [7]:

import scipy.spatial 
kdtree = scipy.spatial.KDTree(points) 

Pointwise query

Id                               2620 
County                           PEST 
City                      Szigethalom 
Status                           town 
KSH                             13277 
geometry    POINT (646998.8 219076.5) 
Name: 2619, dtype: object 

City location: POINT (646998.8 219076.5) 
Query location: POINT (646999.8 219078.5) 

[(610046.8, 187639.0), (577946.1, 89280.8), (721963.7, 273880.3), (8
12129.2, 331508.2), (809795.6, 331138.3), (791113.0, 341953.5), (808
664.6, 328230.8), (792853.4, 338292.6), (817486.0, 356056.1), (76721
4.3, 237868.5)] 



Query the closest neighbor to the query point.

In [8]:

print("City location: {0}".format(city_point)) 
print("Query location: {0}".format(query_point)) 

dist, idx = kdtree.query(query_point) 

print("Closest neighbor: distance = {0:.4f}, index = {1}, point = {2}".format(di
st, idx, points[idx])) 
print("Closest neighbor city: {0}".format(cities.iloc[idx]['City'])) 

Query the 3 closest neighbors to the query point.

In [9]:

distances, indices = kdtree.query(query_point, k = 3) 

print("Query location: {0}".format(query_point)) 
print("3 closest neighbors:") 
for i in range(len(indices)):     
   idx = indices[i] 
   dist = distances[i] 
   print("{0}. neighbor: distance = {1:.4f}, index = {2}, point = {3}, city = 
{4}".format(i+1, dist, idx, points[idx], cities.iloc[idx]['City'])) 

Query the 50 closest neighbors to the query point within 10km.

City location: POINT (646998.8 219076.5) 
Query location: POINT (646999.8 219078.5) 
Closest neighbor: distance = 2.2361, index = 2619, point = (646998.
8, 219076.5) 
Closest neighbor city: Szigethalom 

Query location: POINT (646999.8 219078.5) 
3 closest neighbors: 
1. neighbor: distance = 2.2361, index = 2619, point = (646998.8, 219
076.5), city = Szigethalom 
2. neighbor: distance = 3087.9825, index = 2864, point = (643968.9, 
219669.5), city = Tököl 
3. neighbor: distance = 3250.9858, index = 2622, point = (649095.2, 
221564.1), city = Szigetszentmiklós 



In [10]:

distances, indices = kdtree.query(query_point, k = 50, distance_upper_bound = 10
000) 
print("Distance list: %s" % distances) 
print("Index list: %s" % indices) 

Most likely will only find less than 50 neighbors in a 10km range, but the index list has still 50 elements. For
the invalid elements the indices[i]  is not a valid index, but instead equals to len(cities) . So with a
simple check we can detect the end of the valid results.

In [11]:

valid_indices = [idx for idx in indices if idx < len(cities)] 
print(valid_indices) 

Distance list: [2.23606798e+00 3.08798248e+03 3.25098578e+03 4.37588
711e+03 
5.82197378e+03 5.82989477e+03 6.07146723e+03 6.09635922e+03 
6.88039701e+03 7.86611138e+03 8.30077594e+03 8.36841190e+03 
9.92969764e+03            inf            inf            inf 
           inf            inf            inf            inf 
           inf            inf            inf            inf 
           inf            inf            inf            inf 
           inf            inf            inf            inf 
           inf            inf            inf            inf 
           inf            inf            inf            inf 
           inf            inf            inf            inf 
           inf            inf            inf            inf 
           inf            inf] 
Index list: [2619 2864 2622 2678 1619  971  660 2618 2547  646  733  
586   95 3147 
3147 3147 3147 3147 3147 3147 3147 3147 3147 3147 3147 3147 3147 31
47 
3147 3147 3147 3147 3147 3147 3147 3147 3147 3147 3147 3147 3147 31
47 
3147 3147 3147 3147 3147 3147 3147 3147] 

[2619, 2864, 2622, 2678, 1619, 971, 660, 2618, 2547, 646, 733, 586, 
95] 



In [12]:

print("50 closest neighbors within 10km:") 
for i in range(len(valid_indices)): 
   idx = valid_indices[i] 
   dist = distances[i] 
   print("{0}. neighbor: distance = {1:.1f}, index = {2}, location = {3}, city
= {4}".format(i+1, dist, idx, points[idx], cities.iloc[idx]['City'])) 

Exercise

Task 1: Implement a linear search for the closest point instead of using a KD-Tree!

50 closest neighbors within 10km: 
1. neighbor: distance = 2.2, index = 2619, location = (646998.8, 219
076.5), city = Szigethalom 
2. neighbor: distance = 3088.0, index = 2864, location = (643968.9, 
219669.5), city = Tököl 
3. neighbor: distance = 3251.0, index = 2622, location = (649095.2, 
221564.1), city = Szigetszentmiklós 
4. neighbor: distance = 4375.9, index = 2678, location = (651262.9, 
220065.6), city = Taksony 
5. neighbor: distance = 5822.0, index = 1619, location = (646007.0, 
213341.8), city = Majosháza 
6. neighbor: distance = 5829.9, index = 971, location = (644860.0, 2
24501.5), city = Halásztelek 
7. neighbor: distance = 6071.5, index = 660, location = (651533.1, 2
15039.7), city = Dunavarsány 
8. neighbor: distance = 6096.4, index = 2618, location = (643902.1, 
213827.8), city = Szigetcsép 
9. neighbor: distance = 6880.4, index = 2547, location = (640127.5, 
218744.8), city = Százhalombatta 
10. neighbor: distance = 7866.1, index = 646, location = (653626.9, 
223316.1), city = Dunaharaszti 
11. neighbor: distance = 8300.8, index = 733, location = (640833.1, 
224635.0), city = Érd 
12. neighbor: distance = 8368.4, index = 586, location = (651301.4, 
211900.3), city = Délegyháza 
13. neighbor: distance = 9929.7, index = 95, location = (647222.5, 2
09151.3), city = Áporka 



In [13]:

def find_closest(points, query): 
   min_dist = None 
   min_point = None 
   for point in points: 
       dist = point.distance(query) 
       if min_dist is None or dist < min_dist: 
           min_dist = dist 
           min_point = point 
   return min_point 
            
print("City location: {0}".format(city_point)) 
print("Query location: {0}".format(query_point)) 
closest_point = find_closest(cities['geometry'], query_point) 
print("Closest location: {0}".format(closest_point)) 

Task 2: Compare the execution time of the linear search and the spatial index query (logarithmic asymptotic
complexity) approach!

Hint: import the time  module to record the timestamp before and after the execution of the desired
algorithm:

start = time.time() 

# ... measured code ... 

end = time.time() 

print("Execution time: {0:.6f}s".format(end-start)) 

In [14]:

import time 

start = time.time() 
find_closest(cities['geometry'], query_point) 
end = time.time() 
print("Linear search execution time: {0:.6f}s".format(end-start)) 

start = time.time() 
kdtree.query(query_point) 
end = time.time() 
print("KD-tree search execution time: {0:.6f}s".format(end-start)) 

City location: POINT (646998.8 219076.5) 
Query location: POINT (646999.8 219078.5) 
Closest location: POINT (646998.8 219076.5) 

Linear search execution time: 0.018702s 
KD-tree search execution time: 0.000258s 



Quadtree
A quadtree (https://en.wikipedia.org/wiki/Quadtree) is a tree data structure in which each internal node has
exactly four children. The 3 dimensional analog of quadtree is the octree
(https://en.wikipedia.org/wiki/Octree).

Quadtree example: 

Create a 10x10km query area around a point.

In [15]:

query_area_size = 10000 
query_area = ( 
   query_point.x - query_area_size/2, 
   query_point.y - query_area_size/2, 
   query_point.x + query_area_size/2, 
   query_point.y + query_area_size/2 
) 
print("Query area: {0}, side length = {1:.1f} km".format(query_area, query_area_
size / 1000)) 

Construct the Quad-tree

Query area: (641999.8, 214078.5, 651999.8, 224078.5), side length = 
10.0 km 

https://en.wikipedia.org/wiki/Quadtree
https://en.wikipedia.org/wiki/Octree


In [16]:

import pyqtree 

quadtree = pyqtree.Index(bbox=(min_x, min_y, max_x, max_y)) 
for i in range(len(points)): 
   obj = { "id": i, "point": points[i] } 
   quadtree.insert(obj, points[i]) # object, bbox 

Note: for a polygon, the first argument should be the indexed object (e.g. the polygon itself), and the second
argument should be the bounding box of the polygon.

Areawise query

In [17]:

matches = quadtree.intersect(query_area) 
print("Matches: {0}".format(matches)) 

In [18]:

for obj in matches: 
   print("Index: {0}, Location: {1}, City: {2}".format(obj['id'], obj['point'],
cities.iloc[obj['id']]['City'])) 

Matches: [{'id': 660, 'point': (651533.1, 215039.7)}, {'id': 2619, 
'point': (646998.8, 219076.5)}, {'id': 2622, 'point': (649095.2, 221
564.1)}, {'id': 2678, 'point': (651262.9, 220065.6)}, {'id': 2864, 
'point': (643968.9, 219669.5)}] 

Index: 660, Location: (651533.1, 215039.7), City: Dunavarsány 
Index: 2619, Location: (646998.8, 219076.5), City: Szigethalom 
Index: 2622, Location: (649095.2, 221564.1), City: Szigetszentmiklós 
Index: 2678, Location: (651262.9, 220065.6), City: Taksony 
Index: 2864, Location: (643968.9, 219669.5), City: Tököl 



R-Tree
Inspired by the B-tree (https://en.wikipedia.org/wiki/B-tree) for scalara data, he key idea of the R-tree
(https://en.wikipedia.org/wiki/R-tree) index structure is to group nearby objects and represent them with their
minimum bounding rectangle in the next higher level of the tree, The "R" in R-tree stands for rectangle.

R-tree for 2 dimensional data: 

We will use the same query_area  for demonstration, as before with the Quadtree.

Construct the R-Tree

https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/R-tree


In [19]:

from rtree import index as rtree_index 

rtree = rtree_index.Index() 
for i in range(len(points)): 
   rtree.insert(i, points[i]) # index, bbox 

Areawise query

In [20]:

matches = rtree.intersection(query_area) 
print("Matches: {0}".format(list(matches))) 

In [21]:

matches = rtree.intersection(query_area) 
for idx in matches: 
   city = cities.iloc[idx] 
   print("Index: {0}, Location: {1}, City: {2}".format(idx, city['geometry'], c
ity['City'])) 

GeoPandas integration

If the rtree  module is installed, the geopandas  module utilizes an R-tree in the background to spatially
index the spatial objects in a GeoDataFrame.

This spatial index can be accessed directly as the sindex  property of the GeoDataFrame:

In [22]:

print(cities.sindex) 
matches = cities.sindex.intersection(query_area) 
print("Matches: {0}".format(list(matches))) 

The R-Tree spatial index is also used by the sjoin()  and clip()  function of geopandas.

Matches: [2622, 2678, 2619, 2864, 660] 

Index: 2622, Location: POINT (649095.2 221564.1), City: Szigetszentm
iklós 
Index: 2678, Location: POINT (651262.9 220065.6), City: Taksony 
Index: 2619, Location: POINT (646998.8 219076.5), City: Szigethalom 
Index: 2864, Location: POINT (643968.9 219669.5), City: Tököl 
Index: 660, Location: POINT (651533.1 215039.7), City: Dunavarsány 

rtree.index.Index(bounds=[431339.156, 48431.5, 934944.4, 359044.9], 
size=3147) 
Matches: [660, 2619, 2864, 2678, 2622] 


