
Chapter 13: Graph construction and management in
Python

NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and
functions of complex networks. It is usually imported with the nx abbreviation.

How to install networkx?

We need to install the networkx package.
Note: if you have installed geopandas, you most likely also installed networkx already, as one of its
dependency.

Anaconda - Platform independent

If you have Anaconda installed, open the Anaconda Prompt and type in:

conda install -c conda-forge networkx

Python Package Installer (pip) - Linux

If you have standalone Python3 and Jupyter Notebook install on Linux, open a command prompt / terminal
and type in:

pip3 install networkx

How to use networkx?

The netwrokx package is a module which you can simply import. It is usually aliased with the nx
abbreviation:

import networkx as nx

Graph creation
NetworkX supports 4 type of graphs:

undirected, simple graphs: Graph
directed simple graphs: DiGraph
undirected graph with parallel edges: MultiGraph
directed graph with parallel edges: MultiDiGraph

Creation of a new, empty graph is straightforward:

In [1]:

import networkx as nx
graph = nx.Graph() # undirected, simple graph

Representation

To represent the graphs, two data structures as very common practices are well-known. One has a purely
arithmetic representation (adjacency matrix), and the other has a mixed arithmetic and chain representation
(edge list or neighborhood list).

Adjacency matrix representation

In graph theory and computer science, an adjacency matrix is a square matrix. Its elements indicate whether
pairs of vertices are adjacent in the graph or not.

Edge list representation

The edge list is a data structure used to represent a graph as a list of its edges for each vertices. The internal
data structures of NetworkX is based on the adjacency list representation and implemented using Python
dictionary data structures.

Building a graph from scratch

We can add nodes and edges to a graph:

In [2]:

graph.add_node(1)
graph.add_node(2)
graph.add_node(3)
graph.add_node(4)
graph.add_node(5)
graph.add_node(6)
graph.add_node(7)
graph.add_node(8)

In [3]:

graph.add_edge(1, 2)
graph.add_edge(1, 3)
graph.add_edge(1, 4)
graph.add_edge(2, 3)
graph.add_edge(2, 5)
graph.add_edge(2, 6)
graph.add_edge(3, 6)
graph.add_edge(4, 5)
graph.add_edge(4, 7)

Adding an edge to a non-existing node will also create that particular node:

In [4]:

graph.add_edge(1, 9)

Graph visualization with Matplotlib

NetworkX has tight integration with matplotlib, therefore visualization of a graph can be done easily.

In [5]:

import matplotlib.pyplot as plt

Special Jupyter Notebook command, so the plots by matplotlib will be displayed
inside the Jupyter Notebook
%matplotlib inline

nx.draw_networkx(graph)
plt.show()

Building a graph from a pandas DataFrame

Let's use the following basic dataset of airroutes flight data:

1. From city
2. To city
3. Distance

The dataset is given in the flights.csv file in the data folder. The used delimiter is the semicolon (;)
character.

Parse the CSV file into a pandas DataFrame:

In [6]:

import pandas as pd

flight_table = pd.read_csv('../data/flights.csv', delimiter = ';')
display(flight_table)

NetworkX has a from and to conversion for pandas DataFrames. Assuming all airroutes are bi-directional,
build an undirected graph:

From city To city Distance

0 London Paris 342

1 London Berlin 932

2 London Oslo 1153

3 Paris Zurich 488

4 Paris Budapest 1244

...

27 Athens Istanbul 562

28 Kiev Istanbul 1056

29 Istanbul Moscow 1755

30 Rome Athens 1051

31 Kiev Moscow 755

In [7]:

flight_graph = nx.from_pandas_edgelist(flight_table, 'From city', 'To city')
plt.figure(figsize=[15,8])
nx.draw_networkx(flight_graph, node_color = 'lightgreen')
plt.show()

You can define the type of the graph with the optional create_using parameter. Its default value is
Graph .

nx.from_pandas_edgelist(flight_table, 'From city', 'To city', create_usin

g = nx.DiGraph)

Building a graph from a CSV file (optional)

As an alternative solution a CSV file can be processed line-by-line with the built-in csv Python package:

In [8]:

import csv

flight_graph = nx.Graph()

csv_file = open('../data/flights.csv')
csv_reader = csv.reader(csv_file, delimiter=';')
next(csv_reader, None) # skip header line
for row in csv_reader:
 print('Reading flight {0} <=> {1}, distance: {2}km'.format(row[0], row[1], r
ow[2]))
 flight_graph.add_edge(row[0], row[1])
csv_file.close()

plt.figure(figsize=[15,8])
nx.draw_networkx(flight_graph, node_color = 'lightgreen')
plt.show()

Closing an opened file is easy to forget and a common programmer mistake. Use the with statement,
which will automatically close the file (if it was successfully opened):

Reading flight London <=> Paris, distance: 342km
Reading flight London <=> Berlin, distance: 932km
Reading flight London <=> Oslo, distance: 1153km
Reading flight Paris <=> Zurich, distance: 488km
Reading flight Paris <=> Budapest, distance: 1244km
...
Reading flight Athens <=> Istanbul, distance: 562km
Reading flight Kiev <=> Istanbul, distance: 1056km
Reading flight Istanbul <=> Moscow, distance: 1755km
Reading flight Rome <=> Athens, distance: 1051km
Reading flight Kiev <=> Moscow, distance: 755km

In [9]:

flight_graph = nx.Graph()

with open('../data/flights.csv') as csv_file:
 csv_reader = csv.reader(csv_file, delimiter=';')
 next(csv_reader, None) # skip header line
 for row in csv_reader:
 #print('Reading flight {0} <=> {1}, distance: {2}km'.format(row[0], row
[1], row[2]))
 flight_graph.add_edge(row[0], row[1])

plt.figure(figsize=[15,8])
nx.draw_networkx(flight_graph, node_color = 'lightgreen')
plt.show()

Analyzing the graph

Querying the size and degree information

In [10]:

print('Number of nodes: {0}'.format(flight_graph.order()))
print('Number of edges:{0}'.format(flight_graph.size()))
print('Degrees of the nodes: {0}'.format(flight_graph.degree()))

Number of nodes: 18
Number of edges:32
Degrees of the nodes: [('London', 3), ('Paris', 5), ('Berlin', 5),
('Oslo', 2), ('Zurich', 3), ('Budapest', 5), ('Rome', 4), ('Madrid',
3), ('Athens', 3), ('Stockholm', 4), ('Helsinki', 3), ('Moscow', 5),
('Prague', 3), ('Hamburg', 4), ('Munchen', 3), ('Wien', 3), ('Istanb
ul', 4), ('Kiev', 2)]

For directed graphs, there is also in_degree and out_degree defined.

Iterate through the nodes

In [11]:

for node in flight_graph.nodes:
 print(node)

Note: iterating through the graph itself (flight_graph) is the same.

Iterate through the edges

In [12]:

for from_node, to_node in flight_graph.edges:
 print("{0} <=> {1}".format(from_node, to_node))

Query the neighbors of a node

London
Paris
Berlin
Oslo
Zurich
Budapest
Rome
Madrid
Athens
Stockholm
Helsinki
Moscow
Prague
Hamburg
Munchen
Wien
Istanbul
Kiev

London <=> Paris
London <=> Berlin
London <=> Oslo
Paris <=> Zurich
Paris <=> Budapest
...
Moscow <=> Istanbul
Moscow <=> Kiev
Hamburg <=> Munchen
Munchen <=> Wien
Istanbul <=> Kiev

In [13]:

for neighbor in flight_graph.neighbors('Budapest'):
 print(neighbor)

Pay attention that it is written as neighbors (American English) and NOT neighbours (British English).

Check node and edge existence

In [14]:

if flight_graph.has_node('Budapest'):
 print('The Budapest node exists.')
if flight_graph.has_edge('Budapest', 'Paris'):
 print('The Budapest <=> Paris edge exists.')

Weighted graphs

Attributes (metadata) can be assigned to the nodes and edges of a graph.

Building weighted graphs

When creating the graph from a pandas DataFrame, the 4 parameter of the from_pandas_edgelist
function defines which Series (columns) of the DataFrame shall be added to the edges as attributes. If
True , all the remaining columns will be added. If None , no edge attributes are added to the graph. Its

default value is None .

th

Paris
Berlin
Wien
Prague
Moscow

The Budapest node exists.
The Budapest <=> Paris edge exists.

In [15]:

flight_graph = nx.from_pandas_edgelist(flight_table, 'From city', 'To city', ['D
istance'])
plt.figure(figsize=[15,8])
nx.draw_networkx(flight_graph, node_color = 'lightgreen')
plt.show()

Optional: when building a graph "manually", the node and edge attributes can be passed to the add_node
an add_edge methods.

In [16]:

flight_graph = nx.Graph()

with open('../data/flights.csv') as csv_file:
 csv_reader = csv.reader(csv_file, delimiter=';')
 next(csv_reader, None) # skip header line
 for row in csv_reader:
 print('Reading flight {0} <=> {1}, distance: {2}km'.format(row[0], row[1
], row[2]))
 flight_graph.add_edge(row[0], row[1], dist = row[2])

Reading flight London <=> Paris, distance: 342km
Reading flight London <=> Berlin, distance: 932km
Reading flight London <=> Oslo, distance: 1153km
Reading flight Paris <=> Zurich, distance: 488km
Reading flight Paris <=> Budapest, distance: 1244km
...
Reading flight Athens <=> Istanbul, distance: 562km
Reading flight Kiev <=> Istanbul, distance: 1056km
Reading flight Istanbul <=> Moscow, distance: 1755km
Reading flight Rome <=> Athens, distance: 1051km
Reading flight Kiev <=> Moscow, distance: 755km

Query the edge metadata

The metadata, called the weight of an edge can be queried then:

In [17]:

print('Metadata for the Budapest <=> Paris edge: {0}'.format(flight_graph['Budap
est']['Paris']))
print('Metadata for all edges from Budapest: {0}'.format(flight_graph['Budapest'
]))

Further readings
Check out the official NetworkX tutorial (https://networkx.github.io/documentation/stable/tutorial.html).
Browse the official NetworkX reference
(https://networkx.github.io/documentation/stable/reference/index.html).

Metadata for the Budapest <=> Paris edge: {'dist': '1244'}
Metadata for all edges from Budapest: {'Paris': {'dist': '1244'}, 'B
erlin': {'dist': '688'}, 'Wien': {'dist': '214'}, 'Prague': {'dist':
'444'}, 'Moscow': {'dist': '1569'}}

https://networkx.github.io/documentation/stable/tutorial.html
https://networkx.github.io/documentation/stable/reference/index.html

Breadth-first search
Breadth-first search (BFS) is an algorithm for traversing or searching a graph. It starts at some arbitrary node
of a graph, and explores all the neighbour nodes at the present depth prior to moving on to the nodes at the
next depth level.

The breadth-first search traversal can be implemented with a queue data structure (see Chapter 7
(07_collections.pdf#Queues)).
As a showcase, let's request a starting city from the user and a number of maximum flights. Calculate which
cities can be reached! Handle the case of a not existing starting city.

file:///converted/book/pdf/07_collections.pdf#Queues

In [18]:

from collections import deque

start_city = input('Start city: ')
flight_count = int(input('Max number of flights: '))

Check existence of start city
if flight_graph.has_node(start_city):
 ready_list = []
 process_queue = deque([(start_city, 0)])

 # Process until queue is empty
 while len(process_queue) > 0:
 # Move first item of process queue to ready list
 process_item = process_queue.popleft()
 process_city, process_dist = process_item
 ready_list.append(process_item)

 # NOTE: if process_dist > flight_count, we can halt the algorithm here,
 # all reachable cities are in the ready list
 #if process_dist > flight_count:
 # break

 # "Expand" the processed node: add its neighbors to the process queue
 for neighbor_city in flight_graph.neighbors(process_city):
 # Only add neighbors which are not already in the ready list or the
process_queue
 found = (neighbor_city in [city for city, dist in process_queue] or
 neighbor_city in [city for city, dist in ready_list])

 if not found:
 process_queue.append((neighbor_city, process_dist + 1))

 # Display results
 for city, dist in ready_list:
 if dist <= flight_count:
 print(city)
else:
 print('{0} city is unknown' % start_city)

Budapest
Paris
Berlin
Wien
Prague
...
Stockholm
Istanbul
Kiev
Oslo
Athens

NetworkX contains several traversal algorithms
(https://networkx.github.io/documentation/stable/reference/algorithms/traversal.html) out of the box, so we
don't need to reimplement them.

In [19]:

start_city = input('Start city: ')
flight_count = int(input('Max number of flights: '))

Check existence of start city
if flight_graph.has_node(start_city):
 reachable_cities = [start_city]

 # Do breadth first search
 successors = nx.bfs_successors(flight_graph, start_city, flight_count - 1)
 for item in successors:
 print('{0} -> {1}'.format(item[0], item[1]))
 reachable_cities += item[1]

 print('Reachable cities: {0}'.format(reachable_cities))
else:
 print('{0} city is unknown'.format(start_city))

Budapest -> ['Paris', 'Berlin', 'Wien', 'Prague', 'Moscow']
Paris -> ['London', 'Zurich', 'Rome', 'Madrid']
Berlin -> ['Hamburg', 'Munchen']
Prague -> ['Helsinki']
Moscow -> ['Stockholm', 'Istanbul', 'Kiev']
Reachable cities: ['Budapest', 'Paris', 'Berlin', 'Wien', 'Prague',
'Moscow', 'London', 'Zurich', 'Rome', 'Madrid', 'Hamburg', 'Munche
n', 'Helsinki', 'Stockholm', 'Istanbul', 'Kiev']

https://networkx.github.io/documentation/stable/reference/algorithms/traversal.html

