
Exercise Book 1
Covering the materials of Chapters 1-4.
Topics: control structures, user input, exception handling, random generation, lists, function definition

Task 1: Armstrong numbers

Produce all Armstrong numbers smaller than . The value of is given by the user. Validate the user input!

A number is an Armstrong number (https://en.wikipedia.org/wiki/Narcissistic_number), if it is the sum of its
own digits, each raised to the power of the number of digits. For example 153 is an Armstrong number,
because . The first few Armstrong numbers are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370,
371, 407, 1634, etc.

N N

13 + 53 + 33 = 153

In [1]:

valid_input = False
while not valid_input:
 try:
 N = int(input("N := "))
 valid_input = True
 except:
 print("That is not a number.")

print('Armstrong numbers smaller than %d:' % N)
for number in range(0, N):
 orig_number = number
 digits = len(str(number))
 result = 0
 while number > 0:
 last_digit = number % 10
 number = number // 10
 result += last_digit ** digits
 if result == orig_number:
 print(orig_number)

Armstrong numbers smaller than 10000:
0
1
2
3
4
5
6
7
8
9
153
370
371
407
1634
8208
9474

https://en.wikipedia.org/wiki/Narcissistic_number

Task 2: Perfect numbers

Produce the first Perfect numbers. The value of is given by the user. Validate the user input!

In number theory, a perfect number (https://en.wikipedia.org/wiki/Perfect_number) is a positive integer that is
equal to the sum of its positive divisors, excluding the number itself. For instance, 6 has divisors 1, 2 and 3
(excluding itself), and , so 6 is a perfect number. The first few perfect numbers are: 6, 28,
496, etc.

N N

1 + 2 + 3 = 6

In [2]:

valid_input = False
while not valid_input:
 try:
 N = int(input("N := "))
 valid_input = True
 except:
 print("That is not a number.")

print('The first %d perfect numbers:' % N)
found_numbers = 0
number = 1
while found_numbers < N:
 result = 0
 for div in range(1, number):
 if number % div == 0:
 result += div
 if result == number:
 print(number)
 found_numbers += 1
 number += 1

Task 3: Greatest common divisor

Calculate the greatest common divisor of 2 numbers!

Request 2 integer numbers from the user and calculate their greatest common divisor. E.g. for 30 and 105
their greatest common divisor is 15. Do not use the math.gcd() built-in function to solve the task.

Hint: use the Euclidean algorithm (https://en.wikipedia.org/wiki/Euclidean_algorithm)

The first 4 perfect numbers:
6
28
496
8128

https://en.wikipedia.org/wiki/Perfect_number
https://en.wikipedia.org/wiki/Euclidean_algorithm

In [3]:

def gcd(a, b):
 while a != b:
 if a > b:
 a -= b
 else:
 b -= a
 return a

num1 = int(input('First number: '))
num2 = int(input('Second number: '))

print('The greatest common divisor of %d and %d is %d' %(num1, num2, gcd(num1, n
um2)))

Task 4: Rock–paper–scissors

Implement the popular rock–paper–scissors
(https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) game, where the user can play
against the computer! The human player can type in rock, paper or scissors. Handle incorrect input and
request the input again if it does not match one of the three previous options. The computer player randomly
chooses one of the options. The game finishes when one of the players won. (It continues with another round
upon a draw.)

The greatest common divisor of 30 and 105 is 15

https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors

In [4]:

import random
options = ['rock', 'paper', 'scissors']
computer = random.choice(options)

Read user input with validation
def read_user_input():
 user_input = input("Please type in 'rock', 'paper' or 'scissors': ")
 while not user_input in options:
 print("There must have been a typo. Please try again: ")
 user_input = input("Please type in 'rock', 'paper' or 'scissors': ")
 return user_input

user_input = read_user_input()
while user_input == computer:
 print("There is a tie!")
 computer = random.choice(options)
 user_input = read_user_input()

if user_input == "rock":
 if computer == "paper":
 print ("Paper beats rock. The computer won.")
 else:
 print("Rock beats scissors. You won!")
elif user_input == "paper":
 if computer == "rock":
 print("Paper beats rock. You won!")
 else:
 print("Scissors beat paper. The computer won.")
elif user_input == "scissors":
 if computer == "rock":
 print("Rock beats scissors. The computer won.")
 else:
 print ("Scissors beats paper. You won.")

Task 5: Guess a number

Write a program which can think a of number between 1 and 100, randomly. The task of the user is to guess
that number. In each round the user can make a guess, and the program replies whether the guess is correct
or it was too small or too large. The game ends when the user succefully guesses the number.

Rock beats scissors. You won!

In [5]:

import random
number = random.randint(1, 100)

guess = int(input("Guess my number between 1 and 100: "))
while guess != number:
 if guess > number:
 print("Your number is too large. Try again. ")
 guess = int(input("Guess a number: "))
 elif guess < number:
 print("Your number is too small. Try again.")
 guess = int(input("Guess a number: "))
else:
 print("This is the correct number!")

Question: if the human player is smart, what is the minimum number of guesses, which is always enough?

Task 6: Separation by parity

Given a list of numbers, write a program, which separates the odd and even integers in separate lists. E.g.:

Input: [45, 83, 90, 11, 24, 98, 87, 39, 9, 6]

Even numbers: [90, 24, 98, 6]

Odd numbers: [45, 83, 11, 87, 39, 9]

Here is a list of 20 random numbers between 1 and 100:

In [6]:

import random

numbers = []
for i in range(20):
 numbers.append(random.randint(1, 100))
print(numbers)

Now write a program which separates them:

Your number is too large. Try again.

Your number is too small. Try again.

Your number is too small. Try again.

Your number is too large. Try again.

Your number is too small. Try again.

This is the correct number!

[68, 48, 82, 81, 37, 41, 96, 8, 95, 96, 97, 20, 54, 52, 28, 17, 76,
54, 6, 23]

In [7]:

even_numbers=[]
odd_numbers=[]
for i in numbers:
 if i%2==0:
 even_numbers.append(i)
 else:
 odd_numbers.append(i)
print('The even numbers are: %s' % even_numbers)
print('The odd numbers are: %s' % odd_numbers)

Task 7: Pyramid

Write the pyramid(height) function, which displays a pattern like a pyramid with an asterisk. The height
of the pyramid can be defined by the user.

E.g. for , the pyramid would look like:

 *

height = 4

In [8]:

def pyramid(height):
 for i in range(height):
 print(' '*(height-i-1) + '*'*(2*i+1))

h=int(input('Height of the pyramid: '))
pyramid(h)

Task 8: Collatz sequence

The even numbers are: [68, 48, 82, 96, 8, 96, 20, 54, 52, 28, 76, 5
4, 6]
The odd numbers are: [81, 37, 41, 95, 97, 17, 23]

 *

Write a function which produces the Collatz sequence and returns it as a list. The function receives the
starting value for the sequence. Request the starting value from the user, call the function and display the
generated Collatz sequence.

The Collatz sequence (https://en.wikipedia.org/wiki/Collatz_conjecture) has a starting value and the next item
of the sequence is always calculated from the previous one, defined as follows:

if the number is even, divide it by two;
if the number is odd, triple it and add one.

More formally:

The sequence stops upon reaching 1. For instance, starting with , one gets the sequence 12, 6, 3,
10, 5, 16, 8, 4, 2, 1.

f(n) = {n/2 n ≡ 0 (mod 2)

3n + 1 n ≡ 1 (mod 2)

n = 12

In [9]:

def collatz(number):
 sequence=[number]
 while number>1:
 if number%2==0:
 number=number//2
 sequence.append(number)
 else:
 number=3*number+1
 sequence.append(number)
 return sequence

number=int(input('Starting number of Collatz sequence: '))
print(collatz(number))

Task 9: Anagram

An anagram is a word or phrase formed by rearranging the letters of a different word or phrase. For example
the words spear and pears are anagrams. Write a function, which decides whether two words are anagrams
or not and returns a boolean value accordingly (True or False).

Hint: pay attention that a single letter may accour multiple times in a word.

[123, 370, 185, 556, 278, 139, 418, 209, 628, 314, 157, 472, 236, 11
8, 59, 178, 89, 268, 134, 67, 202, 101, 304, 152, 76, 38, 19, 58, 2
9, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2,
1]

https://en.wikipedia.org/wiki/Collatz_conjecture

In [11]:

def is_anagram(word1, word2):
 # If the size does not match, they cannot be anagrams
 if len(word1) != len(word2):
 return False

 # Check for each character in word1 whether it is also in word2
 for ch in word1:
 if not ch in word2:
 return False
 return True

a=input('First word: ')
b=input('Second word: ')
print('Are they anagrams? %s' % is_anagram(a, b))

Task 10: Circularly identical lists

A list is called circular if we consider the first element as next of the last element. Circularly identical lists
contain the same elements in the same order, given that two lists that can be obtained from each other if one
or more of the elements in one of the lists are rotated/displaced from their original index and placed at the
beginning. E.g. the lists [10, 20, 30, 40, 50] and [40, 50, 10, 20, 30] are circularly
identical, but not with [50, 40, 10, 20, 30] .

Write a function which decides whether the given 2 parameter lists are circularly identical or not and returns a
boolean value accordingly (True or False).

Are they anagrams? True

In [18]:

def is_circularly_identical(listA, listB):
 listA2 = listA + listA
 for i in range(len(listA2)):
 if listA2[i] == listB[0]:
 n = 1
 while (n < len(listB)) and (i + n < len(listA2)) and (listA2[i+n] ==
listB[n]):
 n += 1
 if n == len(listB):
 return True

 return False

list1 = [10, 20, 30, 40, 50]
list2 = [40, 50, 10, 20, 30]
list3 = [50, 40, 10, 20, 30]

print('list1 is circularly identical with list2: {0}'.format(is_circularly_ident
ical(list1, list2)))
print('list1 is circularly identical with list3: {0}'.format(is_circularly_ident
ical(list1, list3)))
print('list2 is circularly identical with list3: {0}'.format(is_circularly_ident
ical(list2, list3)))

list1 is circularly identical with list2: True
list1 is circularly identical with list3: False
list2 is circularly identical with list3: False

