Chapter 13: Graph construction and management in
Python

NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and
functions of complex networks. It is usually imported with the nx abbreviation.

How to install networkx?

We need to install the networkx package.

Note: if you have installed geopandas, you most likely also installed networkx already, as one of its
dependency.

Anaconda - Platform independent

If you have Anaconda installed, open the Anaconda Prompt and type in:

conda install -c conda-forge networkx

Python Package Installer (pip) - Linux

If you have standalone Python3 and Jupyter Notebook install on Linux, open a command prompt / terminal
and type in:

pip3 install networkx

How to use networkx?

The netwrokx package is a module which you can simply import. It is usually aliased with the nx
abbreviation:

import networkx as nx

Graph creation

NetworkX supports 4 type of graphs:

« undirected, simple graphs: Graph
« directed simple graphs: DiGraph
» undirected graph with parallel edges: MultiGraph
« directed graph with parallel edges: MultiDiGraph

Creation of a new, empty graph is straightforward:

In [1]:

import networkx as nx
graph = nx.Graph() # undirected, simple graph

Representation

To represent the graphs, two data structures as very common practices are well-known. One has a purely
arithmetic representation (adjacency matrix), and the other has a mixed arithmetic and chain representation
(edge list or neighborhood list).

Adjacency matrix representation

In graph theory and computer science, an adjacency matrix is a square matrix. Its elements indicate whether
pairs of vertices are adjacent in the graph or not.

011 0 0
0 01 1 1
0 0 01 0
0 0 0 0 O
0 0 01 0
0 1 1 0 O
1 01 1 1
1 1 0 1 0
0 1 1 0 1
01 0 1 O

Edge list representation

The edge list is a data structure used to represent a graph as a list of its edges for each vertices. The internal
data structures of NetworkX is based on the adjacency list representation and implemented using Python
dictionary data structures.

NS PIEE Y
N ENEEIE= LNV
3| =14/

X]
|

s | =14/

' [-EE-EU
G- -]
K EAEN KN

| FEE-EE-E
SR

(X
|

w
|

th
|

Building a graph from scratch
We can add nodes and edges to a graph:

In [2]:

graph.add_node(1)
graph.add_node(2)
graph.add_node(3)
graph.add_node(4)
graph.add_node(5)
graph.add_node(6)
graph.add_node(7)
graph.add_node(8)

In [3]:

graph.add_edge(1, 2)
graph.add_edge(1, 3)
graph.add_edge(1, 4)
graph.add_edge(2, 3)
graph.add_edge(2, 5)
graph.add_edge(2, 6)
graph.add_edge(3, 6)
graph.add_edge(4, 5)
graph.add_edge(4, 7)

Adding an edge to a non-existing node will also create that particular node:

In [4]:

graph.add_edge(1, 9)

Graph visualization with Matplotlib

NetworkX has tight integration with matplotlib, therefore visualization of a graph can be done easily.

In [5]:

import matplotlib.pyplot as plt

Special Jupyter Notebook command, so the plots by matplotlib will be displayed
inside the Jupyter Notebook

%matplotlib inline

nx.draw_networkx(graph)
plt.show()

Building a graph from a pandas DataFrame

Let's use the following basic dataset of airroutes flight data:

1. From city
2. To city
3. Distance

The dataset is given inthe flights.csv fileinthe data folder. The used delimiter is the semicolon (;)

character.

Parse the CSV file into a pandas DataFrame:

In [6]:

import pandas as pd

flight_table = pd.read_csv('../data/flights.csv', delimiter = ';")
display(flight_table)

From city To city Distance

0 London Paris 342
1 London Berlin 932
2 London Oslo 1153
3 Paris Zurich 488
4 Paris Budapest 1244
27 Athens Istanbul 562
28 Kiev Istanbul 1056
29 Istanbul Moscow 1755
30 Rome Athens 1051
31 Kiev Moscow 755

NetworkX has a from and to conversion for pandas DataFrames. Assuming all airroutes are bi-directional,
build an undirected graph:

In [7]:

flight_graph = nx.from_pandas_edgelist(flight_table,
plt.figure(figsize=[15,8])
nx.draw_networkx(flight_graph,
plt.show()

'"From city', 'To city')

node_color = 'lightgreen')

Oslo
Stockholm gue
Kie
SC

Lond

Budapgst

;Hmhﬁhmh‘“““ﬁ=an

IstanBul

m
drid

H;;;;i:::::ﬁh
chen

e

1en

You can define the type of the graph with the optional create_using parameter. Its default value is

Graph .

nx.from_pandas_edgelist(flight_table,
g = nx.DiGraph)

'"From city',

Building a graph from a CSV file (optional)

'"To city', create_usin

As an alternative solution a CSV file can be processed line-by-line with the built-in ecsv Python package:

In [8]:

import csv
flight_graph = nx.Graph()

csv_file = open('../data/flights.csv')
csv_reader = csv.reader(csv_file, delimiter=";")
next(csv_reader, None) # skip header line
for row in csv_reader:
print('Reading flight {0} <=> {1}, distance: {2}km'.format(row[0], row[1], r
ow[2]))
flight_graph.add_edge(row[0], row[1])
csv_file.close()

plt.figure(figsize=[15,8])
nx.draw_networkx(flight_graph, node_color = 'lightgreen')
plt.show()

Reading flight London <=> Paris, distance: 342km
Reading flight London <=> Berlin, distance: 932km
Reading flight London <=> 0slo, distance: 1153km
Reading flight Paris <=> Zurich, distance: 488km
Reading flight Paris <=> Budapest, distance: 1244km

Reading flight Athens <=> Istanbul, distance: 562km
Reading flight Kiev <=> Istanbul, distance: 1056km
Reading flight Istanbul <=> Moscow, distance: 1755km
Reading flight Rome <=> Athens, distance: 1051km
Reading flight Kiev <=> Moscow, distance: 755km

Munchen— Wie
\ rich

drid

ens

Closing an opened file is easy to forget and a common programmer mistake. Use the with statement,
which will automatically close the file (if it was successfully opened):

In [9]:

flight_graph = nx.Graph()

with open('../data/flights.csv') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=';")
next(csv_reader, None) # skip header line
for row in csv_reader:
#print('Reading flight {0} <=> {1}, distance: {2}km'.format(row[O], row
[1], row[2]))
flight_graph.add_edge(row[0], row[1])

plt.figure(figsize=[15,8])
nx.draw_networkx(flight_graph, node_color = 'lightgreen')
plt.show()

ev

S
me
sinki
Madrg
khGlm

Os

=
Zri en_—\—q”m\

Analyzing the graph

ri gue

A

chen

Querying the size and degree information

In [10]:

print('Number of nodes: {0}'.format(flight_graph.order()))
print('Number of edges:{0}'.format(flight_graph.size()))
print('Degrees of the nodes: {0}'.format(flight_graph.degree()))

Number of nodes: 18

Number of edges:32

Degrees of the nodes: [('London', 3), ('Paris', 5), ('Berlin', 5),
('0oslo', 2), ('Zurich', 3), ('Budapest', 5), ('Rome', 4), ('Madrid',
3), ('Athens', 3), ('Stockholm',6 4), ('Helsinki', 3), ('Moscow', 5),
('Prague', 3), ('Hamburg', 4), ('Munchen', 3), ('wien', 3), ('Istanb
ul', 4), ('Kiev', 2)]

For directed graphs, there is also in_degree and out_degree defined.

Iterate through the nodes

In [11]:

for node in flight_graph.nodes:
print(node)

London
Paris
Berlin
Oslo
Zurich
Budapest
Rome
Madrid
Athens
Stockholm
Helsinki
Moscow
Prague
Hamburg
Munchen
Wien
Istanbul
Kiev

Note: iterating through the graph itself (f1ight_graph) is the same.

Iterate through the edges

In [12]:

for from_node, to_node in flight_graph.edges:
print("{0} <=> {1}".format(from_node, to_node))

London <=> Paris
London <=> Berlin
London <=> Oslo
Paris <=> Zurich
Paris <=> Budapest

Moscow <=> Istanbul
Moscow <=> Kiev
Hamburg <=> Munchen
Munchen <=> Wien
Istanbul <=> Kiev

Query the neighbors of a node

In [13]:
for neighbor in flight_graph.neighbors('Budapest'):
print(neighbor)

Paris
Berlin
wWien
Prague
Moscow

Pay attention that it is written as neighbors (American English) and NOT neighbours (British English).

Check node and edge existence

In [14]:

if flight_graph.has_node('Budapest'):
print('The Budapest node exists.')

if flight_graph.has_edge('Budapest', 'Paris'):
print('The Budapest <=> Paris edge exists.')

The Budapest node exists.
The Budapest <=> Paris edge exists.

Weighted graphs

Attributes (metadata) can be assigned to the nodes and edges of a graph.

Building weighted graphs

When creating the graph from a pandas DataFrame, the 4" parameter of the from_pandas_edgelist
function defines which Series (columns) of the DataFrame shall be added to the edges as attributes. If
True , all the remaining columns will be added. If None , no edge attributes are added to the graph. Its
default value is None .

In [15]:

flight_graph = nx.from_pandas_edgelist(flight_table, 'From city', 'To city', ['D
istance'])

plt.figure(figsize=[15,8])

nx.draw_networkx(flight_graph, node_color = 'lightgreen')

plt.show()

Kiev

n\—m Dslo
= ‘—‘"!:. nki

St khol m

Munchen

Optional: when building a graph "manually”, the node and edge attributes can be passed to the add_node
an add_edge methods.

In [16]:

flight_graph = nx.Graph()

with open('../data/flights.csv') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=";")
next(csv_reader, None) # skip header line
for row in csv_reader:
print('Reading flight {0} <=> {1}, distance: {2}km'.format(row[O], row[1l
1, row[2]))
flight_graph.add_edge(row[0], row[1l], dist = row[Z2])

Reading flight London <=> Paris, distance: 342km
Reading flight London <=> Berlin, distance: 932km
Reading flight London <=> 0slo, distance: 1153km
Reading flight Paris <=> Zurich, distance: 488km
Reading flight Paris <=> Budapest, distance: 1244km

Reading flight Athens <=> Istanbul, distance: 562km
Reading flight Kiev <=> Istanbul, distance: 1056km
Reading flight Istanbul <=> Moscow, distance: 1755km
Reading flight Rome <=> Athens, distance: 1051km
Reading flight Kiev <=> Moscow, distance: 755km

Query the edge metadata
The metadata, called the weight of an edge can be queried then:

In [17]:

print('Metadata for the Budapest <=> Paris edge: {0}'.format(flight_graph['Budap
est']['Paris']))

print('Metadata for all edges from Budapest: {0}'.format(flight_graph['Budapest"
1))

Metadata for the Budapest <=> Paris edge: {'dist': '1244'}

Metadata for all edges from Budapest: {'Paris': {'dist': '1244'}, 'B
erlin': {'dist': '688'}, 'Wien': {'dist': '214'}, 'Prague': {'dist':
'444'}, 'Moscow': {'dist': '1569'}}

Further readings

« Check out the official NetworkX tutorial (https://networkx.github.io/documentation/stable/tutorial.html).
« Browse the official NetworkX reference
(https://networkx.github.io/documentation/stable/reference/index.html).

https://networkx.github.io/documentation/stable/tutorial.html
https://networkx.github.io/documentation/stable/reference/index.html

Breadth-first search

Breadth-first search (BFS) is an algorithm for traversing or searching a graph. It starts at some arbitrary node
of a graph, and explores all the neighbour nodes at the present depth prior to moving on to the nodes at the
next depth level.

The breadth-first search traversal can be implemented with a queue data structure (see Chapter 7
(07_collections.pdf#Queues)).

As a showcase, let's request a starting city from the user and a number of maximum flights. Calculate which
cities can be reached! Handle the case of a not existing starting city.

file:///converted/book/pdf/07_collections.pdf#Queues

In [18]:

from collections import deque

start_city = input('Start city: ')
flight_count = int(input('Max number of flights: '))

Check existence of start city

if flight_graph.has_node(start_city):
ready_list = []
process_queue = deque([(start_city, 0)])

Process until queue 1is empty

while len(process_queue) > 0:
Move first item of process queue to ready 1list
process_item = process_queue.popleft()
process_city, process_dist = process_item
ready_list.append(process_item)

NOTE: if process_dist > flight_count, we can halt the algorithm here,
all reachable cities are in the ready 1list

#1f process_dist > flight_count:

break

"Expand" the processed node: add its neighbors to the process queue
for neighbor_city in flight_graph.neighbors(process_city):
only add neighbors which are not already in the ready list or the
process_queue
found = (neighbor_city in [city for city, dist in process_queue] or
neighbor_city in [city for city, dist in ready_list])

if not found:
process_queue.append((neighbor_city, process_dist + 1))

Display results
for city, dist in ready_list:
if dist <= flight_count:
print(city)
else:
print('{0} city is unknown' % start_city)

Budapest
Paris
Berlin
wien
Prague
Stockholm
Istanbul
Kiev

Oslo
Athens

NetworkX contains several traversal algorithms
(https://networkx.github.io/documentation/stable/reference/algorithms/traversal.html) out of the box, so we
don't need to reimplement them.

In [19]:

start_city = input('Start city: ')
flight_count = int(input('Max number of flights: '))

Check existence of start city
if flight_graph.has_node(start_city):
reachable_cities = [start_city]

Do breadth first search
successors = nx.bfs_successors(flight_graph, start_city, flight_count - 1)
for item in successors:

print('{0} -> {1}'.format(item[0], item[1]))

reachable_cities += item[1]

print('Reachable cities: {0}'.format(reachable_cities))
else:
print('{0} city is unknown'.format(start_city))

Budapest -> ['Paris', 'Berlin', 'Wien', 'Prague', 'Moscow']

Paris -> ['London', 'Zurich', 'Rome', 'Madrid']

Berlin -> ['Hamburg', 'Munchen']

Prague -> ['Helsinki']

Moscow -> ['Stockholm',6 'Istanbul', 'Kiev']

Reachable cities: ['Budapest', 'Paris', 'Berlin', 'Wien', 'Prague',
'"Moscow', 'London', 'Zurich', 'Rome', 'Madrid', 'Hamburg', 'Munche
n', 'Helsinki', 'Stockholm',6 'Istanbul', 'Kiev']

https://networkx.github.io/documentation/stable/reference/algorithms/traversal.html

