Chapter 18: Clustering and classification

The method of determining the properties of the thematic classes directly from the reference data is called
supervised classification, because the analyst actually “supervises” how the discriminant functions of the
classes are formed by providing the reference data.

Unsupervised classification methods on the other hand group data points (e.g. pixels) together based on
their similarities, with no information from the user about which ones belong together. The user selects the
independent or predictor variables of interest, and the chosen algorithm does the rest. This doesn’t mean that
you don't need to know what you're classifying, however. Once a classification is produced, it's up to the user
to interpret it and decide which types of features correspond to which generated classes, or if they even do
correspond nicely.

Unsupervised classification is also called clustering.

K-Means clustering algorithm

The K-Means method is one of the most common unsupervised classification approach.

The algorithm requires an arbitrarily specified initial cluster centres that are represented by the means of the
data points assigned to them. As a naive solution, the user only defines the number of clusters and random
data points are selected as their initial centers.

This will generate a very crude set of clusters. The data points are then reassigned to the cluster with the
closest center, and the centers are recomputed. The process is repeated as many times as necessary such
that there is no further movement of the data points between clusters. In practice, with large data sets, the
process is not run to completion and some other stopping rule is used.

Considering the squared distance between each data point and the respective cluster center as the squared
error, the sum of squared errors (SSE) progressively reduces with each iteration. If the Euclidean distance is
used as a metric, this simply means to accumulate the squared distances for all points and their respective
cluster center.

Although no general proof of convergence exists for this algorithm, it can be expected to yield acceptable
results when the data exhibit characteristic pockets which are relatively far from each other. In most practical
cases the application of this algorithm will require experimenting with various values of inital clusters (the
value of k), as well as different choices of starting configurations.

Clustering raster data

The K-Means method can be use with an arbitrary distance function. For raster imagery the distance is
computed as if the pixel values were coordinates. For example, if the insensity values of two RGB pixels
were (25,42, 37) and (31, 40, 32), the squared distance would be

(25 — 31)? + (42 — 40) + (37 — 32)? = 65 in the 3 dimensional spectral space, no matter where the
pixels were in relation to each other spatially.

Elbow method

One of the most challenging tasks in the K-Means clustering algorithm is to choose the right value of the
clusters (the value of k). What should be the right value of k£ and how to choose it?

The Elbow Method is one of the most popular methods to determine the optimal value of k. The idea is to run
K-Means clustering on the dataset for a range of values of k (e.g. from 1 to 10), and for each value of k
calculate the sum of squared errors (SSE).

Then, visualize a line chart of the SSE for each value of k. If the line chart looks like an arm, then the "elbow"
on the arm is the value of k that is the best. The idea is that we want a small SSE, but that the SSE tends to
decrease toward 0 as we increase k. (The SSE is 0 when k is equal to the number of data points in the
dataset, because then each data point has its own cluster, and there is no error between it and the center of
its cluster.) Hence we select the value of k at the “elbow”, i.e. the point after which the line chart starts
decreasing in a linear fashion.

20 Elbow for KMeans clustering

Average within-cluster sum of squares

i i ; ; ;
2 3 4 5 3] 7 8 9
Number of clusters

0.2
1

K-Means clustering in Python

Scikit-learn (also known as sklearn) is a machine learning library for Python. It features various classification,
regression and clustering algorithms including k-means.

How to install scikit-learn?

If you have Anaconda installed, then scikit-learn was already installed together with it.

If you have a standalone Python3 and Jupyter Notebook installation, open a command prompt / terminal and
type in:

pip3 install scikit-learn

Clustering vector data

Read the hungary_cities.shp shapefile located in the data folder. This dataset contains both scalar
and spatial data of the Hungarian cities, and should be familiar from Chapter 15
(15_graph_spanning_tree.pdf).

file:///converted/book/pdf/15_graph_spanning_tree.pdf

In [1]:

import geopandas as gpd

from sklearn.cluster import KMeans

cities_gdf = gpd.read_file('../data/hungary_cities.shp')
display(cities_gdf)

Id County City Status KSH geometry

o 1 FEJER Aba town 17376 POINT (1217%%%%%%())

1 2 BARANYA Abaliget town 12548 POINT (27597298A6§él()%(;

2 3 HEVES Abasar town 24554 POINT (277231898603.’570%(;
3 4 BORSOD-ABAUJ-ZEMPLEN Abaljalpdr town 15662 POINT (3831125)1()25;?-22()%(;
4 5 BORSOD-ABAUJ-ZEMPLEN Abaljkér town 26718 POINT (383019173%53%%(;
3142 3143 GYOR-MOSON-SOPRON Zsira town 04622 POINT (2‘;77%3727‘.‘-220%(;
3143 3144 CSONGRAD Zsomb6 town 17765 POINT (1702916%%%10%(;
3144 3145 BORSOD-ABAUJ-ZEMPLEN Zsuita town 11022 POINT (38513513,237,'1%%(;
3145 3146 SZABOLCS'SZ%TEMRAE% Zsurk town 13037 POINT (3%1%1‘385“2?57()%(;
3146 3147 BORSOD-ABAUJ-ZEMPLEN Zubogy town 19105 POINT (763123.300

3147 rows x 6 columns

Fetch points for cities:

In [2]:

338338.600)

points = [(geom.x, geom.y) for geom in cities_gdf.geometry]

print("Number of points: {0}".format(len(points)))

Number of points: 3147

Cluster the points using the K-Means algorithm:

pred = KMeans(n_clusters=19).fit_predict(points)

In [3]:

print(pred)
print(len(pred))

[8 3 18 13 2 6]

3147

Plot figure:

In [4]:

import matplotlib.pyplot as plt
%matplotlib inline

plt.figure(figsize=(12, 8))
Fetch 1list of X and Y coordinates
xs = [point[0] for point in points]

ys = [point[1] for point in points]

Put the cluster points on the plot
plt.scatter(xs, ys, c=pred)

Display plot
plt.title("Cluster map of the Hungarian cities")
plt.show()

Cluster map of the Hungarian cities

350000 4

300000

250000 4

200000

150000 4

100000 4

50000 4

500000 00000 700000 800000 200000

Clustering raster images

Read the dataset

The data/LCO8_L1TP_188027_20200420_20200508_01_T1_Szekesfehervar.tif fileis a
segment of a Landsat 8 satellite image of Székesfehérvar city, Lake Velence and their surroundings,
acquired on 2020 April 20. It should be familiar from Chapter 12 (12_spatial_raster.pdf).

file:///converted/book/pdf/12_spatial_raster.pdf

In [5]:

import rasterio

szfv_2020 = rasterio.open('../data/LCO8_L1TP_188027_20200420_20200508_01_T1_Szek
esfehervar.tif')

print(szfv_2020.count) # band count

print(szfv_2020.width) # dimensions

print(szfv_2020.height)

11
1057
645

Read the red, green blue and NIR bands:

In [6]:

blue = szfv_2020.read(2)
green = szfv_2020.read(3)
red = szfv_2020.read(4)
nir = szfv_2020.read(5)

Single-band clustering

Cluster the satellite image based on the near-infrared band.

In [7]:

nir_1d = nir.reshape(nir.shape[0] * nir.shape[1l], 1)
print(nir_21d.shape)

(681765, 1)

In [20]:

pred = KMeans(n_clusters=5).fit_predict(nir_1d)
img_clusters = pred.reshape(nir.shape)

In [24]:

import matplotlib.colors as mc
cmap = mc.LinearSegmentedColormap.from_list('', ['purple', 'red', 'green', 'beig
e', 'blue'])

plt.figure(figsize=[12,12])
plt.imshow(img_clusters, cmap=cmap)
plt.axis('off"')

plt.show()

Multi-band clustering

Cluster the satellite image based on the RGBN (red, blue, green NIR) bands.

In [10]:

red_1id red.reshape(red.shape[0] * red.shape[1l], 1)
green_1d = green.reshape(green.shape[0] * green.shape[1l], 1)
blue_1d blue.reshape(blue.shape[0] * blue.shape[1], 1)

rgbn_1d = [(0, 0, 0, 0)] * (red.shape[0] * red.shape[1])
for i in range(red.shape[0@] * red.shape[1]):
rgbn_1d[i] = (red_1d[i, ©], green_1d[i, 0], blue_1d[i, 0], nir_1d[i, O])

print(rgbn_1d[10000]) # print random item

(8434, 8678, 9156, 15104)

In [28]:

pred = KMeans(n_clusters=6).fit_predict(rgbn_1d)
img_clusters = pred.reshape(red.shape)

In [32]:

cmap = mc.LinearSegmentedColormap.from_list('', ['blue', 'red', 'green', 'brown'
, 'beige', 'purple'])

plt.figure(figsize=[15,15])
plt.imshow(img_clusters, cmap=cmap)
plt.axis('off"')

plt.show()

Downsampling

The LCO8_L1TP_188027_20200420_20200508_01_T1 file is a complete Landsat 8 satellite image tile,
containing Budapest and parts of Western-Hungary, acquired on 2020 April 20.

Download: https://gis.inf.elte.hu/files/public/landsat-budapest-2020 (https://gis.inf.elte.hu/files/public/landsat-
budapest-2020) (1.4 GB)

In [13]:

import rasterio

bp_2020 = rasterio.open('LCO8_L1TP_188027_20200420_20200508_01_T1.tif"')
print(bp_2020.count) # band count

print(bp_2020.width) # dimensions

print(bp_2020.height)

11
7981
8071

To speed up processing larger raster files, we may downsample them for the price of reducing the accuracy
of the result.

First, define the resampling function:

In [14]:
from rasterio.enums import Resampling

def read_resampled_band(dataset, band, resample_factor):
data = dataset.read(band,

out_shape=(
1,
int(dataset.height * resample_factor),
int(dataset.width * resample_factor)

)

resampling=Resampling.bilinear

)

return data

Read the blue, green, read and near-infrared bands into Numpy arrays. Resample them to a smaller size to
make further processing (clustering especially) faster.

In [15]:

bp = {3}

bp['blue'] = read_resampled_band(bp_2020, 2, 1/4)
bp['green'] = read_resampled_band(bp_2020, 3, 1/4)
bp['red'] read_resampled_band(bp_2020, 4, 1/4)
bp['nir'] read_resampled_band(bp_2020, 5, 1/4)

print(bp['red'].shape)

(2017, 1995)

Display the near-infrared band for verification:

https://gis.inf.elte.hu/files/public/landsat-budapest-2020

In [16]:

plt
plt
plt
plt

plt.

.figure(figsize=[10,10])
.imshow(bp['nir'], cmap='Reds')
.axis('off")

.colorbar()

show()

Display the RGB image for verification:

30000

25000

20000

15000

10000

- 5000

In [17]:

from rasterio.plot import show
import numpy as np

bp['red_max'] = np.percentile(bp['red'], 99.99)

bp['blue_max'] = np.percentile(bp['blue'], 99.99)
bp['green_max'] = np.percentile(bp['green'], 99.99)

astype('f4') is a numpy function to convert to float (4 byte)
bp['redf'] = bp['red'].astype('f4') / bp['red_max']

bp['bluef'] = bp['blue'].astype('f4"') / bp['blue_max']
bp['greenf'] = bp['green'].astype('f4') / bp['green_max']
bp['rgb'] = [bp['redf'], bp['greenf'], bp['bluef']]
plt.figure(figsize=[10,10])

show(bp['rgb'])
plt.show()

Clipping input data to the valid range for imshow with RGB data
([0..1] for floats or [0..255] for integers).

]

250

500

750

1000

1250

1500

1750

2000
0 250 500 750 1000 1250 1500 1750

Summary exercise on clustering

Implement a functions which performs single band clustering on a rasterio band (NumPy array). Execute it on
the NIR band of the complete satellite image.

Example on how it shall work:

single_band_clustering(bp['nir'], ['red', 'black', 'gray', 'green', 'whit
e', 'blue']l) # 6 clusters with these colors

In [18]:
def single_band_clustering(band, clusters=['red', 'black',6 'gray', 'green', 'whi
te', 'blue']):

band_1d = band.reshape(band.shape[0] * band.shape[1], 1)

pred = KMeans(n_clusters=len(clusters)).fit_predict(band_1d)
img_clusters = pred.reshape(band.shape)

cmap = mc.LinearSegmentedColormap.from_list('', clusters)

plt.figure(figsize=[12,12])
plt.imshow(img_clusters, cmap=cmap)
plt.axis('off"')

plt.show()

In [19]:

single_band_clustering(bp['nir'])

