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Introduction
Some notations:

• The set of real numbers: R;

• The set of natural numbers: N := {0, 1, 2, . . .} ;

• The set of positive integers: N+ := {1, 2, 3, . . .} ;

• The set of integers: Z := N ∪ {−x ∈ R : x ∈ N};

• The set of rational numbers: Q :=

{
p

q
∈ R | p, q ∈ Z, q 6= 0

}
;

• The set of complex numbers: C := {z = x+ iy ∈ C
∣∣∣ x, y ∈ R} (i is the imaginary

unit);

• The points of the plane: R2 := {(x, y) | x, y ∈ R} ;

• The points of the space: R3 := {(x, y, z) | x, y, z ∈ R} .



1. Algebraic expressions and radicals I.

1.1. Theoretic review

It is recommended to make a revision of the following topics:

1. Important algebraic identities.

2. Powers (positive integer exponents, negative integer exponents, rational exponents)
and operations with exponents.

3. Operations with expressions containing radicals, powers.

4. Factorization of polynomials.

Some important algebraic identities

• (a+ b)2 = a2 + 2ab+ b2 (a, b ∈ R);

• (a− b)2 = a2 − 2ab+ b2 (a, b ∈ R);

• (a+ b)3 = a3 + 3a2b+ 3ab2 + b3 (a, b ∈ R);

• (a− b)3 = a3 − 3a2b+ 3ab2 − b3 (a, b ∈ R);

• a2 − b2 = (a+ b) · (a− b) (a, b ∈ R);

• a3 + b3 = (a+ b) · (a2 − ab+ b2) (a, b ∈ R);

• a3 − b3 = (a− b) · (a2 + ab+ b2) (a, b ∈ R);

• an − bn = (a− b) · (an−1 + an−2b+ an−3b2 + . . .+ bn−1) (a, b ∈ R).

Polynomials, Roots of polynomials

Let n ∈ N be a natural number and the following expression is a polynomial of degree n:

P (x) = an · xn + an−1 · xn−1 + . . .+ a1 · x+ a0, (x ∈ R)

where an 6= 0, an−1, ..., a1, a0 are given real numbers, the so called coefficients of the
polynomial P . The number an is called the main coefficient of P . x denotes the variable
of P , and stands for any possible real number. In the case when n = 0 we are talking
about a constant polynomial. These polynomials can be identified with the real numbers.
The polynomial 0 is the zero−polynomial, for hich we have:

P (x) = 0 (x ∈ R).
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The number α ∈ R is called the root of the polynomial P , if P (α) = 0. The first order
polynomial

x− α

is called the root factor corresponding to the root α. Using the identity of decomposing
into product an−bn it can be proved, that the number α ∈ R is a root of the polynomial
P if and only if x−α is a factor in the decomposition of P , which means that there exists
a polynomial Q so that:

P (x) = (x− α) ·Q(x) (x ∈ R).

The factorization can be easily made using the Horner-table. Let α be a root of the

polynomial P . In this case there is a polynomial Q1, so that

P (x) = (x− α) ·Q1(x) (x ∈ R).

If α is also a root of the polynomial Q1, then there exists a polynomial Q2, so that:

P (x) = (x− α) · (x− α) ·Q2(x) = (x− α)2 ·Q2(x) (x ∈ R).

By continuing this procedure as long as α is still a root of the ”remaining” polynomial,
we get that there exists a number m ∈ N+ and a polynomial Qm with the following
properties:

P (x) = (x− α)m ·Qm(x) (x ∈ R) ,

and α is not a root of Qm, which means that Qm(α) 6= 0.
We call by definition m the multiplicity of α (in the polynomial P ).

Using the upper method of factorizing P it can be proved, that a polynomial of degree n
has at most n roots.

1.1.1. Checking questions to the theory and its use

1. Evaluate: (a− 2b+ c)2, if a, b, c ∈ R.

2. Make the factorization of the following expression, if x, y, z ∈ R:

4x2y2 − (x2 + y2 − z2)2.

3. Give the most simple algebraic form of the following polynomial:

P (x) := (2x− 1)3 − 2 · (2 + x)3 + x+ 5 (x ∈ R).

4. Decompose the following polynomial into factors:

P (x) := 3x3 + 3x2 − 6x (x ∈ R).
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5. Simplify the following algebraic fraction:

E(x) :=
x3 − 1

1− x5
(1 6= x ∈ R).

6. Simplify the following algebraic fraction:

E(x) :=
x4 + x2 + 1

x6 − 1
(±1 6= x ∈ R).

7. Simplify the following algebraic fraction:

E(x) :=
x2 + x+ 1

x4 + x2 + 1
(x ∈ R).

8. Evaluate the indicated operations and simplify the following expression:(
y2

x3 − xy2
+

1

x+ y

)
:

(
x− y
x2 + xy

− x

y2 + xy

)
(x; y ∈ R;x 6= 0; |x| 6= |y|).

9. Rationalize the denominator of the following fractions:

(a)
2√

3−
√

2− 1
;

(b)
1

1 +
1

1 +
1√
2

.

10. Evaluate the exact value of the following expressions:

(a)
(√

9 + 6
√

2−
√

9− 6
√

2
)2

;

(b)
1√

3− 2
√

2
− 1√

3 + 2
√

2
.

11. What is the exact value of:(
1√

5− 2

)3

−
(

1√
5 + 2

)3

?

12. Evaluate:

√
a+
√
b− 1

a+
√
ab

+

√
a−
√
b

2
√
ab

·

( √
b

a−
√
ab

+

√
b

a+
√
ab

)
(a; b > 0; ab 6= 0; a 6= b).

13. Evaluate: (
a1/2 · b2/3

)−3/4 · (a1/3 · b1/4)2
(a1/12)

−1/2 (a > 0; b ≥ 0).
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14. Consider the following function:

f(x) :=

√
x+ 2

√
x+ 1 +

√
x− 2

√
x+ 1 (x ∈ [0; +∞)) .

What is the most simple form of f(x)?

15. Let x, y, z ∈ R \ {0} be real numbers, for which:

x+ y + z = 1 ∧ 1

x
+

1

y
+

1

z
= 0.

Evaluate:
x2 + y2 + z2 .

1.2. Exercises

1.2.1. Exercises for class work

Algebraic computations, identities

1. Prove the following identity for all a, b ∈ R:

a2 + ab+ b2 = 3 ·
(
a+ b

2

)2

+

(
a− b

2

)2

.

Evaluate a3 − b3 , if a− b = 2 and a+ b =
√

5.

2. Let x > 0 be a positive number for which: x2 +
1

x2
= 7.

Prove that x5 +
1

x5
is an integer.

3. Prove that:

(a)
1

(a+ b)2

(
1

a2
+

1

b2

)
+

2

ab(a+ b)2
=

1

a2b2
;

(b)
a

a3 + a2b+ ab2 + b3
+

b

a3 − a2b+ ab2 − b3
+

1

a2 − b2
− 1

a2 + b2
− a2 + 3b2

a4 − b4
= 0;

(c)
1

a(a− b)(c− a)
+

1

b(a− b)(b− c)
+

1

c(c− a)(b− c)
= − 1

abc
;

(d)
a2 − bc

(a+ b)(a+ c)
+

b2 − ac
(a+ b)(b+ c)

+
c2 − ab

(a+ c)(b+ c)
= 0.
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4. Prove that, if

(a) a, b, c ∈ R and a+ b+ c = 0, then a3 + a2c− abc+ b2c+ b3 = 0;

(b) a, b, c ∈ R and a+ b+ c = 0, then a3 + b3 + c3 = 3abc;

(c) a, b, c ∈ R and a2 + b2 + c2 = ab+ ac+ bc, then a = b = c.

5. Prove that, if the positive real numbers x, y, z > 0 satisfy the following conditions:

x+ 2y + 3z = 6 ∧ 6

x
+

3

y
+

2

z
= 1,

then
(x− 6) · (y − 3) · (z − 2) = 0.

6. Simplify the following algebraic fraction, where x, y are real numbers, but x 6= y:

E(x, y) =
x3 − x− y3 + y + xy2 − x2y
x3 + x− y3 − y + xy2 − x2y

.

Prove that if we substitute into variables x, y the following expressions, then the
result does not depend on the parameter z:

x =
k(1− z2)

1 + z2
; y =

2kz

1 + z2
(k, z ∈ R).

7. Decompose into product the following expression:

(a2 + b2 − c2)2 − (a2 − b2 + c2)2 (a, b, c ∈ R).

8. Evaluate the following sum, where in the last number there are n digits of 1

(1 ≤ n ∈ N):
1 + 11 + 111 + · · ·+ 1 · · · 1︸ ︷︷ ︸

n digits

.

9. Consider the following functions:

f(x) :=
1− x
1 + x

(x ∈ R \ {−1}); g(x) :=
1 + x

1− x
(x ∈ R \ {1}).

Prove that for all x ∈ R \ {−1; 0; 1} we have:

f(g(x)) · g(f(x)) + 1 = 0.
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10. Find a function f : R \ {1} → R which makes true the following equation:

xn + 1

x− 1
= xn−1 + xn−2 + · · ·+ xn−k + f(x) (1 ≤ k ≤ n; 1 ≤ k, n ∈ N)

for all x ∈ R \ {1}.

Expressions and computations with radicals, roots

11. Prove that:

(a) a− b = (
√
a−
√
b)(
√
a+
√
b) (a, b ≥ 0);

(b) a+ b =
(

3
√
a+ 3
√
b
)(

3
√
a2 − 3

√
ab+

3
√
b2
)

(a, b ∈ R);

(c) a− b =
(

3
√
a− 3
√
b
)(

3
√
a2 + 3

√
ab+

3
√
b2
)

(a, b ∈ R).

12. Evaluate and simplify the following expressions:

(a)

√
a+ b−

√
a− b√

a+ b+
√
a− b

(a, b ∈ R, 0 < b < a);

(b)
a
√
b+ b

√
a

√
a+
√
b

(a, b ∈ R, 0 < b, a);

(c)
(√

x−
√
xy + y
√
x+
√
y

)
·
( √

x√
x+
√
y

+

√
y

√
x−√y

+
2
√
xy

x− y

)
(0 < x 6= y).

13. Give the most simple form of the following expression (0 < x, y; x 6= y):

E(x, y) :=

 x−1/6 − 5
6
√
y

1

x1/3
− y−1/3

− 5 · x
−1/6 − y−1/6

x−1/3 − 3
√
y−1


−1

· 6 6
√
x

3
√
x− 3
√
y
.

14. Evaluate and give the most simple form of the following expression, and evaluate
its value for x = 0, 5:

E(x) :=

( √
1 + x√

1 + x−
√

1− x
+

1− x√
1− x2 − 1 + x

)
·
(√

x−2 − 1− 1

x

)
(0 < x < 1) .
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15. Give the most simple form of the following number:√
7−
√

48 +

√
5−
√

24 +

√
3−
√

8.

16. Evaluate the following ”telescopic” sums:

a)
n∑
k=1

1

k2 + k
(1 ≤ n ∈ N);

b)
n∑
k=1

1
√
k − 1 +

√
k

(1 ≤ n ∈ N).

17. Consider the following function:

f(x) :=

√
x+ 2

√
x− 1 +

√
x− 2

√
x− 1 (x ∈ [1; +∞)) .

Give the most simple form of f and sketch its graph.

Polynomials

18. Decompose into factors the following polynomials:

(a) P (x) := x3 + 8 (x ∈ R);

(b) Q(x) := x5 + x4 + x3 + x2 + x+ 1 (x ∈ R).

19. Prove that the given number x0 is a root of the polynomial P and divide P with
the root factor (x− x0):

(a) x0 = 2, P (x) = 3x2 − 7x+ 2;

(b) x0 = 3, P (x) = 2x3 − 4x2 − 18;

(c) x0 = −1, P (x) = 2x4 − 5x3 − 6x2 + 3x+ 2.

20. For what value of k ∈ R can we multiply out

(a) (x+ 3) from (2x2 + x+ k) (x ∈ R);

(b) (x− 3) from (4x2 − 6x+ k) (x ∈ R)?

Give the product form of P with those factors.
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21. Let x1, x2 be the real roots of x2 + px + 1 and x3, x4 the real roots of x2 + qx + 1.
Evaluate the following product using p and q:

(x1 − x3) · (x2 − x3) · (x1 + x4) · (x2 + x4).

22. Find a, b, c ∈ R so that the polynomial:

P (x) = x4 + x3 + ax2 + bx+ c (x ∈ R)

divided by (x− 1), (x− 2) and (x− 3) gives the remainders 1, 2 respectively 3.

1.2.2. Homework and exercises to practice

Algebraic computations, identities

1. Evaluate and give the most simple form of the following expression:

a

a2 − 2ab+ b2
− a

a2 − b2
+

1

a+ b
(a, b ∈ R, |a| 6= |b|).

2. Prove the following identity:(
a

a+ 2b
− a+ 2b

2b

)(
a

a− 2b
− 1 +

8b3

8b3 − a3

)
=

a

2b− a

(a, b ∈ R, |a| 6= 2|b|, b 6= 0).

3. Prove that for all the real numbers a, b, c, x, y ∈ R we have:

(a) a(b+ c)2 + b(c+ a)2 + c(a+ b)2 − 4abc = (a+ b)(b+ c)(c+ a);

(b) (a2 + b2) (x2 + y2)− (ax+ by)2 = (ay − bx)2;

(c) a3 + b3 + c3 − 3abc = (a+ b+ c) (a2 + b2 + c2 − ab− bc− ca).

4. Prove the following identities for all a, b, c ∈ R:

(a) (a+ b)3 + (b+ c)3 + (c+ a)3 − 3(a+ b)(b+ c)(a+ c) = 2(a3 + b3 + c3 − 3abc);

(b) (a− b)3 + (b− c)3 + (c− a)3 − 3(a− b)(b− c)(c− a) = 0;

(c) (a2 − bc)3 + (b2 − ac)3 + (c2 − ab)3 − 3(a2 − bc)(b2 − ac)(c2 − ab) =
= (a3 + b3 + c3 − 3abc)2;

(d) (a+ b− c)3 + (b+ c− a)3 + (c+ a− b)3 − 3(a+ b− c)(b+ c− a)(c+ a− b) =
= 4(a3 + b3 + c3 − 3abc).
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5. Prove that if a, b, c > 0 and abc = 1, then

a

ab+ a+ 1
+

b

bc+ b+ 1
+

c

ca+ c+ 1
= 1.

6. Consider the real numbers a, b, c so that:

a+ b+ c = 1 ∧ 1

ab
+

1

ac
+

1

bc
= 1.

Evaluate the value of the following expression:

1

1 + a+ ab
+

1

1 + b+ bc
+

1

1 + c+ ac
.

7. Prove that if x, y, z ∈ R and

x3 + y3 + z3 = x2 + y2 + z2 = x+ y + z = 1,

then xyz = 0.

8. What is the value of

a3 + b3 + 3(a3b+ ab3) + 6(a3b2 + a2b3),

if a, b ∈ R and a+ b = 1.

9. Consider the integers x, y so that x − y = 2. Prove that x3 − y3 can be written as
the sum of three squared integers.

10. Evaluate and simplify the following expression:(
4

3x
− 1

x− 1

)
:

(
1− 3(x− 2)

2(x− 1)

)
(x ∈ R, x 6= 0; 1).

11. Evaluate the following expressions at the given values of the variables:

(a)
(a+ 1)(a8 + a4 + 1)

(a4 − a2 + 1)(a2 + a+ 1)
, ha a = 10;

(b)

(
8 + b3

x2 − y2
:

4− 2b+ b2

x− y

)(
x+

xy + y2

x+ y

)
, ha b = 8, x = 997, 5, y = −0, 75.

12. Consider the following functions:

f(x) := 2x+ 3 (x ∈ R); g(x) := 4x+ 9 (x ∈ R).

Prove that we have:
f(g(x)) = g(f(x)) (x ∈ R).
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13. Assume that x+
1

x
= a ∈ R. Express x4 +

1

x4
with a.

14. Find a function f : R \ {0; 1} → R so that the following equation holds for all
x ∈ R \ {0; 1}:

1

1− x
= 1 + x+ x2 + · · ·+ xn + xn+1 · f(x) (1 ≤ n ∈ N).

How can we define the value f(0) so that, the equation above to be true for x = 0

as well? How much is the value
1

f(2018)
?

Expressions and evaluations with radicals, roots

15. Prove that:

(a)
√
a−
√
b = ( 4

√
a− 4
√
b)( 4
√
a+ 4
√
b) (a, b ≥ 0);

(b) a
√
a− b

√
b = (

√
a)3 − (

√
b)3 = (

√
a−
√
b)(a+

√
ab+ b) (a, b ≥ 0);

(c)
√
a3 +

√
b3 = (

√
a+
√
b)
(
a−
√
ab+ b

)
(a, b ≥ 0).

16. Give the most simple form of the following expression:

a− b
a+ b

·

√
a2 + ab

a2 − 2ab+ b2
(a, b ∈ R, 0 < b < a).

17. Evaluate the value of the following expression:

2
√
xy + 4

√
y − 3

√
x− 6

2− 2y
:

(
4y + 19− 2

√
y

2 + 2
√
y

− 5

)
,

if x = 16, y = 9 .

18. Prove that:

(a)
√

7 + 2
√

6 ·
√

7− 2
√

6;

(b)
3
√√

5 + 2− 3
√√

5− 2;

(c)
√

7 + 4
√

3 +
√

7− 4
√

3;

(d)
3
√

1− 27 3
√

26 + 9
3
√

262 + 3
√

26

are integers.
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19. Evaluate the following ”telescopic” sums:

a)
n∑
k=1

2k + 1

k2 · (k + 1)2
(1 ≤ n ∈ N);

b)
n∑
k=1

1

k
√
k + 1 + (k + 1)

√
k

(1 ≤ n ∈ N).

20. Give the most simple form of the following expression:

E(x, y) :=

x1/2 + y1/2

(x+ y)1/2
− (x+ y)1/2

x1/2 +

(
1

y

)−1/2

−2

− x+ y

2
√
xy

; (0 < x, y).

21. Give the most simple form of the following expression:

E(a, b) :=

(ab)3/2 − (a− b) ·

(√
a

b
−
√
b

a

)

ab

(√
a

b
−
√
b

a
+
√
ab

)
+ (a− b)

(√
b

a
−
√
a

b
−
√
ab

) .

Polynomials

22. Give the best possible product forms for the following polynomials:

(a) 4x2 − 9b2;

(b) y3 + 1;

(c) 8a3 − 27;

(d) 27a3 + 8;

(e) 8a3 + b6;

(f) 27a6x12 − 64b9y15;

(g) x3 + 18x2 + 108x+ 216 .

23. Prove that the given number x0 is a root of the given polynomial P and multiply
out the root factor (x− x0) from P :

(a) x0 = 1, P (x) = 5x3 − 2x2 + 7x− 10;
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(b) x0 = −2, P (x) = 3x3 + 10x2 + 8x.

24. For what values of k ∈ R can we multiply out:

(a) (x− 4) from (x3 − 4x+ 2k);

(b) (x+ 1) from(x4 − 3x3 + 5x2 + 7x− 3k)?

Give the product form of f by multiplying out the (x− x0) factor.

25. Find all the integer roots of the following polynomials:

(a) x4 − 2x3 − 8x2 + 13x− 4;

(b) x4 − 2x3 − 8x2 + 13x− 6;

(c) x3 − 6x2 + 15x− 14;

(d) x5 − 2x4 − 4x3 + 4x2 − 5x+ 6;

(e) x5 − 7x3 − 12x2 + 6x+ 36.

26. Consider the polynomial

P (x) := x2 + ax+ b (x ∈ R),

where a and b are real parameters. Evaluate the following expression:

P (−P (x))− P (P (−x)) (x ∈ R).



2. Quadratic equations, inequalities

2.1. Theoretic review

It is recommended to go through the following topics:

1. Quadratic equations, quadratic formula to evaluate the roots, quadratic inequalities.

2. The Viéte formulas.

3. Decomposition into factors, complete to square.

4. Quadratic functions, polynomials and their properties.

5. Quadratic functions, their graphs, parabolas and their properties.

6. Minimal and maximal values of quadratic functions.

7. Extremum exercises.

2.1.1. Checking questions to the theory and its use

1. Let a, b, c ∈ R; a 6= 0 be fixed real numbers. What are the roots of the quadratic
equation

ax2 + bx+ c = 0

and discuss their nature depending on the sign of the discriminant.

2. Let a, b, c ∈ R; b 6= 0 be fixed real numbers. Write down the Viéte formulas between
the roots and the coefficients of the equation

bx2 + ax+ c = 0.

3. Consider the equation 2x2 − 3x− 8 = 0. Evaluate the expression:

x1
x2

+
x2
x1
,

if x1, x2 are the roots of the given equation.

4. Which is the quadratic equation with the dominant coefficient 1 whose roots are√
2− 1 and

√
2 + 1. Give all the coefficients of this equation.

5. Let p ∈ R be a real parameter. For what values of p has the following equation two
different real roots:

px2 − x+ 1 = 0 ?
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6. Let p ∈ R be a real parameter. For what values of p is the following inequality true
for all x ∈ R :

px2 − (p+ 2)x+ 3 > 0 ?

7. Let p ∈ R be a real parameter. Find all the values of p so that the following equation
has two different real roots:

p

x2
− 2

x
+ 1 = 0 ?

For what p has this equation only one real root?

8. Solve the following inequality on the set of the real numbers:

x2 − 2x

x2 − x+ 1
< 1.

9. Consider the function
f(x) := x2 − 4x+ 7 (x ∈ R).

Give the ”complete square” form of f , draw the graph of f and give the smallest and
the biggest values of f (if they exist). Where does the function f take its extremal
values? What is the intersection point of the graph of f and the axis y?

10. What real numbers x, y satisfy the following equation:

x2 − 3xy + y2 = 0 ?

Where are these (x; y) points on the plane?

11. Evaluate the smallest and biggest value of the following function:

f(x) := 2− 1

x2 − 2x+ 2
(x ∈ [−3; 2]).

Where does the f take them?

12. Prove that for all a, b ≥ 0 non-negative real numbers the following inequality holds:

a+ b

2
≥
√
ab.

When do we have equality here?

13. Prove that for all real numbers x ∈ R the following inequality is true:

|x|
x2 + 4

≤ 1

4
.

When do we have equality here?

14. Find the extremal points (place and value) of the following f :

f(x) := −2x2 + x− 1 (x ∈ D := {x ∈ R : |x− 1/2| ≤ 1/2}).
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15. Consider the real parameters a, b, c ∈ R; a 6= 0 and the quadratic polynomial

P (x) := ax2 + bx+ c (x ∈ R).

Give the factorization of f , if x1 and x2 denote the real roots of the equation

f(x) = 0.

In what cases is f a complete square? Give this complete square form too.

2.2. Exercises

2.2.1. Exercises for class work

1. Give the complete square form of the following polynomials and using this form
solve the equation P (x) = 0 :

P (x) = x2 − 6x+ 3; P (x) = 2x2 + 7x− 1.

2. Using the V iète formulas evaluate for the roots of the equations above the following
expressions:

(a) the sum of the roots;

(b) the product of the roots;

(c) the sum of the squared roots;

(d) the absolute value of the difference of the roots;

(e) the sum of the reciprocals of the roots;

(f) the sum of the cubes of the roots.

3. Solve the following inequalities (x ∈ R):

(a) x2 − 5x+ 6 > 0 ;

(b)
3x2 + 7x− 4

x2 + 2x− 3
< 2 ;

(c)
x− 1

x+ 1
>

3x+ 4

1− 2x
;

(d)
x+ 2

x+ 1
+

3x− 2

1− 2x
≤ 0.
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4. Find all the values of the real parameter p ∈ R so that:

(a) the inequality x2 + 6x+ p > 0 is true for all x ∈ R !

(b) the inequality x2 − px > 2

p
holds for all x ∈ R !

(c) the inequality (p2 − 1)x2 + 2(p− 1)x+ 1 > 0 is true for all x ∈ R !

(d) the inequality
x2 − px+ 1

x2 + x+ 1
< 3 is true for all x ∈ R !

5. For some value of the real parameter p ∈ R the squared sum of the roots of the
equation

2x2 − 3(p− 1)x+ 1− p2 = 0

is
5

4
. What is p?

6. Find the parameter p ∈ R so that the roots of the quadratic equation

(1− p)x2 + 2px = p+ 3

be different and both positive.

7. Let p ∈ R and consider the equation x2− (p− 2)x+ p− 3 = 0. Find those values of
the parameter p for which the sum of the square of the real roots of this equation
is minimal.

8. For what coefficients p, q ∈ R will be p and q both roots of the equation

x2 + px+ q = 0?

9. Prove that for all x ∈ R we have:

7−
√

52

3
≤ x+ 3

x2 − x+ 1
≤ 7 +

√
52

3
.

10. Find the minimal and maximal values of the following function:

f(x) =
x2 − 3x+ 2

x2 + 4x+ 5
(x ∈ R).

11. Suppose that a, b, c are three different consequtive terms of a geometric sequence.
Prove the following inequalities:

1

3
≤ ax2 + bx+ c

ax2 − bx+ c
≤ 3 (x ∈ R).
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12. Prove that:

(a)
2

1/a+ 1/b
≤
√
ab ≤ a+ b

2
≤
√
a2 + b2

2
(a, b ∈ (0; +∞));

(b) a2 + b2 + c2 ≥ ab+ ac+ bc (a, b, c ∈ R);

(c)

∣∣∣∣a+
1

a

∣∣∣∣ ≥ 2 (a 6= 0).

When do we have equalities in the upper inequalities?

13. Prove that for all a, b, c ∈ R we have:

(a2 + 1)(b2 + 1)(c2 + 1) ≥ 8abc.

When do we have equality here?

14. Prove the following inequalities:

(a)

∣∣∣∣ 1

a− b

∣∣∣∣ < 2

|a|
(a, b ∈ R, 2|b| < |a|);

(b)

∣∣∣∣ab +
b

a

∣∣∣∣ ≥ 2 (a, b ∈ R\{0});

(c)
x2 + 2√
x2 + 1

≥ 2 (x ∈ R);

(d)
x2

1 + x4
≤ 1

2
(x ∈ R);

(e) a2 + b2 − ab− a− b+ 1 ≥ 0 (a, b ∈ R);

(f) 2 <

(
a+ 2b

a+ b

)2

(a, b ∈ (0,+∞), a2 < 2b2) .

15. Prove that for all a, b, x, y ∈ R we have:

(a) |ax+ by| ≤
√
a2 + b2 ·

√
x2 + y2 (Cauchy−Bunyakovszkij inequality);

(b)
√

(x+ a)2 + (y + b)2 ≤
√
x2 + y2 +

√
a2 + b2 (Minkowski inequality);

We have equalities here, if there exists a number λ > 0 , so that

(x = λa and y = λb) or (a = λx and b = λy) .

What is the geometric meaning of these inequalities?
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2.2.2. Homework and exercises to practice

1. Give the complete square form of the following polynomials and using this form
solve the equation P (x) = 0:

P (x) = x2 + 10x+ 26; P (x) = −x2 + 2x+ 3; P (x) = −3x2 + 8x+ 5.

2. Using the V iète formulas evaluate for the roots of the equations above the following
expressions:

(a) the sum of the roots;

(b) the product of the roots;

(c) the sum of the squared roots;

(d) the absolute value of the difference of the roots;

(e) the sum of the reciprocals of the roots.

(f) the sum of the cubes of the roots.

3. Solve the following inequalities, where x ∈ R:

(a)
2x2 + 5x− 18

x− 2
≤ 0;

(b)
x− 9√
x− 3

≥ 0 .

4. For what coefficients p, q ∈ R will the equation x2 + px+ q = 0

(a) have a root so that its reciprocal is also a root?

(b) have the property that all the reciprocals of all of its roots are also roots?

(c) have the property that all the squares of all of its roots are also roots?

(d) have the property that all the opposites of all of its roots are also roots?

5. Solve the following equations ( where p ∈ R is a real parameter):

(a) x(x+ 3) + p(p− 3) = 2(px− 1);

(b)
x(x− p)
x+ p

− x+ p =
10x

x+ p
− 10.

6. For what values of the parameter m ∈ R will the equation

(m− 1)x2 − 2mx+m− 2 = 0

have two different real roots?
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7. Find the values of the parameter m ∈ R so that both roots of the following equation
to be positive

x2 + 2(m− 3)x+m2 − 4 = 0.

8. For what values of the parameter p ∈ R has the equation

(1− p)x2 − 4px+ 4(1− p) = 0

at most one real root?

9. Find q ∈ R so that the equation x2 − 4x+ q = 0

(a) has the property that it has a root whose tripled value is also a root;

(b) has exactly one root.

10. For what numbers k ∈ R will the following euations have common root(s):

x2 + kx+ 1 = 0 és az x2 + x+ k = 0?

11. Solve the following equation on the set of the real numbers:

(2x2 + 7x− 8) · (2x2 + 7x− 3)− 6 = 0.

12. Consider the parameters a, b ∈ R and we know that x1 = −2 is one root of the
equation

x3 + ax2 + x+ b = 0.

It also has the property that it has a root whose reciprocal is also root. Find the
parameters a, b.

13. Suppose that the roots x1, x2 of a quadratic equation satisfy the following properties:

4x1x2 − 5x1 − 5x2 + 4 = 0; (x1 − 1) · (x2 − 1) =
1

1 + a
,

where a ∈ R \ {−1} is a real parameter.

a) Give the quadratic equations whose roots are the upper x1 and x2.

b) Find the values of a so that:

x21 + x22 = 11.
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3.1. Theoretic review

Absolute value, its properties and the triangle inequalities

Definition : Let x ∈ R be an arbitrary fixed real number. Its absolute value |x| is defined
by:

|x| :=
{
−x , if x < 0;
x , if x ≥ 0.

It is obvious that |x| is the distance of x from 0 on the real coordinate line.

If x, y ∈ R are real numbers, then the nonnegative number |x−y| measures the geometric
distance between x and y on the real coordinate line.

It is easy to prove that the following properties are true:

∀ x, y ∈ R : |x · y| = |x| · |y|,

and

∀ x, y ∈ R, y 6= 0 :
∣∣∣x
y

∣∣∣ =
|x|
|y|
.

We cannot state the same properties for the absolute value of a sum or a difference, but
the following important inequalities are true:

Theorem: (Triangle inequalities) For all real numbers x, y ∈ R we have:

1. |x+ y| ≤ |x|+ |y|;

2. |x− y| ≥
∣∣∣|x| − |y|∣∣∣.

3.1.1. Checking questions to the theory and its use

1. Define the absolute value of a real number x.

2. Depending on the values of x ∈ R how can we eliminate the absolute value in
|x2 − 1|?

3. Write down the triangle inequalities.

4. Give all the points (x; y) in the plane which satisfy the inequality: |y − |x|| < 1.

5. Solve the equation: |x+ 2| = x− 1.

6. For what real numbers x holds the inequality ||x− 1| − 2| > 1?
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7. Simplify the following expression:

x3 − 1

x4 − 1
.

8. Solve the following equation:

1√
x− 1

− 1√
x+ 1

=
3

x
.

9. Solve the following inequality:

√
x− 4 +

√
3− x < x+

√
x− 1.

10. For what real numbers x is true that:

|2−
√

1− x| < 1?

11. For what real numbers is true that:

√
x2 = x+ 1?

12. Give two different real numbers x, t (if they exist), so that:

(x− 2)2 + |x− 1| = (t− 2)2 + |t− 1|.

13. We know that x satisfies the condition |x+ 1| < 1/2. What values can |x− 1| take?

14. Find all the real numbers x for which:

|x| < 2 and |1− x| > 1 .

15. The real number x satisfies the condition |x − 3| < 2. Give an upper estimate for
|x2 − 9|.

3.2. Exercises

3.2.1. Exercises for class work

Algebraic computations and simplifications

1. Give the most simple forms of the following expressions:

(a)
3x2 + 5x− 2

x2 + 3x+ 2
;
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(b)
x4 + 5x2 + 4

x4 − 16
;

(c)
2x2 − 13x− 7

8x3 + 1
;

(d)
(x2 − 1)2 − (x2 + 1)2

x5 + x3
;

(e)
2

x2 − 1
− 3

x3 − 1
.

2. Make the rationalization of these fractions and then simplify them:

(a)

√
x2 + 1−

√
2

x3 − 1
;

(b)
x2 + x− 6√√
x−
√

2 + 1− 1
;

(c)
x2 − 64
3
√
x− 2

;

(d)
x2 − 3x− 4√√

x− 1− 1
(x > 4) .

Equations and inequalities containing absolute values

3. For what numbers x ∈ R are true the following equations and inequalities:

(a) |2x− 7|+ |2x+ 7| = 14 ;

(b) |2x− 7|+ |2x+ 7| = x+ 15 ;

(c) |x2 − 4x− 5|+ |x− 2| = 7 ;

(d) |x2 + 3x| = |2x− 6| ;
(e) |x2 − 9|+ |x2 − 4| = 5 ;

(f) |x− 2| < 3 ;

(g) |2x− 1| < |x− 1| ;

(h) |x(1− x)| < 1

4
;

(i)
1 + |x− 2|
|x− 3|

≤ 1

2
.

4. The number x satisfies the condition |x+ 2| < 1. Between what bounds can change
|x+ 1|?
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5. The number x satisfies the condition |x−2| < 2. Give an upper estimate for |x2−4|.

Equations and inequalities containing radicals, roots

6. Solve the following equations and inequalities:

(a)
√
x+ 1−

√
9− x =

√
2x− 12 ;

(b)
√
x2 + 5x+ 1 = 2x− 1 ;

(c) x− 1 =
√

1− x
√

16 + x2 ;

(d)
√

6x2 + 8x− 8−
√

3x− 2 = 0 ;

(e)
√
x2 − p+ 2 ·

√
x2 − 1 = x (p ∈ R) ;

(f)
√
x+
√
x−

√
x−
√
x =

3

2
·
√

x

x+
√
x

;

(g)
x 3
√
x− 1

3
√
x2 − 1

−
3
√
x2 − 1

3
√
x− 1

= 12 ;

(h)
√
|1− x2| = x

2
+ 1 ;

(i) 3
√

4x− 1 + 3
√

4− x = − 3
√

3;

(j)
√

3x+ 13 ≤ x+ 1 ;

(k)
√
x2 + 4x > 2− x ;

(l)
√
x2 − 1 < 5− x ;

(m)
4x2

(1−
√

1 + 2x)2
< 2x+ 9 ;

(n)
√

3− x−
√
x+ 1 >

1

2
;

(o)
√

2x+ 1−
√
x− 8 > 3 ;

(p)
1 +
√
x

1−
√
x
>

1−
√
x

1 +
√
x

.

Functions, sequences and greatness preserving estimates

7. What is the greatest and the least value of the following function:

f(x) =

√
x+ 3− 4

√
x− 1 +

√
x+ 8− 6

√
x− 1 (x ∈ [2; 17]).
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8. Dividing by the dominant term give the following expressions as a function of
1

n
,

that is in a form of f

(
1

n

)
:

(a)
5n3 − 3n2 + 2n+ 7

8n3 + 7n− 3
;

(b)

√
n+ 1 + 3 ·

√
n√

2n− 1
;

(c)
3
√

(n+ 1)2 + 2
3
√
n2 − 1

.

9. Rationalize the following expressions and then write them in a form of a function

depending on
1

n
:

(a)
√
n2 + n+ 1−

√
n2 + 1 ;

(b)
1√

n2 + n−
√
n2 − n− 1

;

(c) 3
√
n · ( 3
√
n2 + n+ 2− 3

√
n2 + 1) .

10. Consider the following sequences (xn). Give the following new sequence (quotient-

sequence)

(∣∣∣∣xn+1

xn

∣∣∣∣):

(a) xn =
n!

2n+1
(n ∈ N+) ;

(b) xn =
(2n)!

(n!)2
(n ∈ N+) ;

(c) xn =
3n · n2

(n+ 1)!
(n ∈ N+) ;

(d) xn =
nn · (−1)n+1

(2n+ 1)!
(n ∈ N+) ;

(e) xn =

√
3n+ 2

(1 +
√

1) · (1 +
√

2) · . . . · (1 +
√
n)

(n ∈ N+) .

11. Consider the following sequences (xn). Give the most simple form of the sequence
( n
√
|xn|):

(a) xn =
2n+1

(n2 + 1)2n
(n ∈ N+) ;

(b) xn =
(−1)n

21−n + 2n
(n ∈ N+) ;
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(c) xn =

(
1 +

1

n

)n2+n+1

(n ∈ N+) .

3.2.2. Homework and more exercises to practice

Algebraic computations and simplifications

1. Simplify the following algebraic expressions:

(a)
x2 + 2x− 3

5x2 + 16x+ 3
;

(b)
x4 + 8x2 + 15

x4 + 6x2 + 9
;

(c)
27x3 − 1

6x2 + x− 1
;

(d)
x4 + x2 + 1

x3 + 1
.

2. Rationalize the radicals and then simplify the following expressions if it is possible:

(a)
x2 − 1√
x3 + 5− 2

;

(b)
x2 − 9√√

x−
√

3 + 4− 2
;

(c)
x2 − 26x− 27

3
√
x− 3

.

Equations and inequalities containing absolute values

3. Solve the following equations and inequalities on the set of the real numbers:

(a)

∣∣∣∣3|x| − 2

|x| − 1

∣∣∣∣ = 2 ;

(b) ||x+ 1| − 2| = ||x− 2|+ 1| ;
(c) |x+ 3|+ |x− 1| = 3x− 5 ;

(d) |x+ 1| − |x|+ 3|x− 1| − 2|x− 2| = x+ 2 ;

(e) |x+ 3|+
√
x2 − 2x+ 1 = 8 ;
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(f)

∣∣∣∣ x

1 + x
− 2

3

∣∣∣∣ ≤ |x− 2|
1 + |x− 2|

;

(g) x2 − 6|x| − 7 < 0 ;

(h)

∣∣∣∣x+ 1

x− 1

∣∣∣∣+

∣∣∣∣x− 1

x+ 1

∣∣∣∣ ≤ 2 ;

(i) | |x+ 1| − |x− 1| | < 1 ;

(j) |x| > |x− 1| ;
(k) |x+ 2| − |x| ≥ 1 .

4. Prove the following statements:

(a) 0 < a+ b− ab < 1 (a, b ∈ (0, 1));

(b) a2 + b2 ≥ 2|ab| (a, b ∈ R);

(c) 2x4 − 2x3 − x2 + 1 ≥ 0 (x ∈ R);

(d) ab− 5a2 − 3b2 ≤ 0 (a, b ∈ R);

(e) |a+ b| < |1 + ab| (a, b ∈ R, |a|, |b| < 1);

(f) |a+ b|+ |a− b| ≥ |a|+ |b| (a, b ∈ R);

(g) |a|+ |b|+ |c|+ |a+ b+ c| ≥ |a+ b|+ |b+ c|+ |c+ a| (a, b, c ∈ R);

(h)

(
a+ 2b

a+ b

)2

− 2 < 2−
(a
b

)2
(a, b ∈ (0,+∞), a2 < 2b2) .

5. If the real number x satisfies the condition |x+ 5| < 3 find lower and upper bounds
for 1/|x− 2|.

6. Suppose that the real number x satisfies the condition |x+ 1| < 1/2. Give an upper
estimate for the expression |1/x2 − 1|.

Equations and inequalities containing radicals, roots

7. Solve the following equations and inequalities:

(a)
√

5 +
√
x+ 1 +

√
3−
√
x+ 1 =

√
7 + 1;

(b)
√

3 +
√

5− x =
√
x;

(c)
√

2x+ 3 +
√

3x+ 3 = 1;

(d)
√

4x2 + 4x+ 1−
√

4x2 − 12x+ 9 = 4;

(e)

√
x− 3

2
+
√

2x =
√
x+ 3;

(f)
√
x+ 2 + 2

√
x+ 1 +

√
x+ 2− 2

√
x+ 1 = 2;

(g)
√

3x2 − |x| − 1 = 3− 2x;
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(h)
√

3x+ 10 ≤ x+ 4;

(i)
√

3x+ 7 < x− 1;

(j)
√

5x+ 16 > x+ 2;

(k)
√
x− 5−

√
x ≤ 5;

(l)
√
x− 5−

√
x ≤ 5.

8. Are there any rational numbers x so that:

(a)

√
x− 1√
x− 10

=

√
3x+ 22√
3x− 14

;

(b)
√

4− 2
√
x2 − 1 = 2x ?

9. Prove that the following inequality holds for all 1 ≤ n ∈ N:

1√
n
<
√
n+ 1−

√
n− 1.

10. Prove that for all 1 ≤ n ∈ N we have:

2
√
n+ 1− 2

√
n <

1√
n
< 2
√
n− 2

√
n− 1.

Functions, sequences and greatness preserving estimates

11. Dividing by the dominant term write the following expressions in a form of a function

depending on
1

n
so in a form of f

(
1

n

)
:

(a)
3n4 + 5n3 − 7n+ 4

5n4 − 10n2 + 2
;

(b)

√
2n2 + 5n√

n2 + 6 + 3n+ 1
;

(c)
3
√
n2 + n+ 1 + 3

√
n2 + 6

3
√
n2 + 1 + 3

√
n2 − 1

.

12. Rationalize the following expressions and then write them in a form of a function

of
1

n
:

(a)
√
n4 + n2 + 5−

√
n4 − 2n2 − 7 ;

(b)

√
n√

n3 + n2 + 2−
√
n3 − n2 + 3

;
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(c) 3
√
n3 + n2 + 3− n .

13. Consider the following sequences (xn) . Give the quotient-sequence

(∣∣∣∣xn+1

xn

∣∣∣∣) :

(a) xn =
5n+2

(n+ 1)!
(n ∈ N+) ;

(b) xn =
(3n)!

(n!)3
(n ∈ N+) ;

(c) xn =
(n+ 2)!

4n · (n2 + 3)
(n ∈ N+) ;

(d) xn =
(−n− 2)n

(2n+ 2)!
(n ∈ N+) .

14. Consider the following sequences (xn). Evaluate the new sequence ( n
√
|xn|) :

(a) xn =
32n−1

(n3 + 1)5n
(n ∈ N+) ;

(b) xn =
(−1)n+1

32−n + 3n
(n ∈ N+) ;

(c) xn =

(
1− 1

n

)3n2−n

(n ∈ N+) .



4. Exponential and logarithmic expressions,
equations and inequalities

4.1. Theoretic review

It is highly recommended to look through the following topics:

1. Exponential computations, expressions.

2. Exponential functions and their properties, graphs.

3. Exponential equations and inequalities.

4. The definition of the logarithm and its properties.

5. Logarithmic functions and their properties, graphs.

6. Logarithmic equations and inequalities.

4.1.1. Checking questions to the theory and its use

1. What is the definition of loga b and what conditions should satisfy a and b ?

2. For what real number x is true that: 2x = 3?

3. What real numbers x satisfy that :
1

2
√
3x

= 4−3/2?

4. Give the formula to evaluate the logarithm of a product and give the necessary
conditions as well.

5. Give the formula related to the logarithm of a quotient and the needed conditions
as well.

6. Write the number log5 2 in a form of logarithms with base 3.

7. Simplify the following expression:

13

lg (ln13)

lg13 .

8. Give the most simple form of the following expression:

4
√
x4+logx 36 (1 6= x ∈ (0; +∞)).
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9. Solve the following equation:

ln2x− lnx3 + lne2 = 0.

10. Solve the following equation:

x+ log2(9− 2x) = 3.

11. Solve the following inequality:

|lg (x− 1)− 10| < 1.

12. Draw the graph of the following function:

f(x) := e1−x (x ∈ R).

13. Draw the graph of the function:

f(x) := 3|x|+1 (x ∈ R).

14. Draw the graph of the function:

f(x) := log2 x
2 (x ∈ R \ {0}).

15. Find the minimal and maximal values of f and their place, if:

f(x) :=
√

lnx+ 1−
√

lnx− 1 (x ∈ [e; e2]).

4.2. Exercises

4.2.1. Exercises for class work

Exponential equations and inequalities

1. Solve the following equations and inequalities:

2x = 128; 2x ≥ 128; 2x < 128;

(
1

27

)x
= 81;

(
3

5

)x
>

25

9
.

2. Solve the following equation on the set of the real numbers:

2x+3 + 41−x/2 = 33.
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3. Solve the following equations and inequalities on the set of the real numbers:

(a) 9 · 3x−2 + 6 · 3x−1 + 5 · 3x = 2 · 3x+1 + 18 ;

(b) 16 · 3x = 9 · 22x ;

(c) 3x+2 · 2x − 2 · 36x + 18 = 0 ;

(d) 3 · 4x +
1

3
· 9x+2 = 6 · 4x+1 − 1

2
· 9x+1 ;

(e)
√

(17− 12
√

2)x +
√

(17 + 12
√

2)x =
10

3
;

(f) 4x+1 − 9 · 2x + 2 > 0 .

4. Using the substitution x =
et + e−t

2
(t ∈ R) solve the equation:

4x3 − 3x− a = 0 (a > 1).

5. Solve the inequality:
ex + e−x > 3.

6. Find the least and the greatest values of the function f .

f(x) :=
1√

2x + 2−
√

2x − 2
(x ∈ [1; 2]).

Where does f take these values?

Computations with logarithms, logarithmic equations and inequalities

7. Determine the exact value of:

52 · 5log25 36−1 + 51+log125 8.

8. Determine the exact value of:

32+log9 25 + 251−log5 2 + 10−lg 4.

9. Give the most simple form of the following expression:

logx
3

√√√√x2 ·
√

1

y
· 1√

x−1 · y−1
(1 6= x ∈ (0; +∞); y > 0).

10. Determine the exact value of:

1

2
· lg 52 + 3 · lg 2 + lg125 + lg

√
325− lg 13.
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11. Find x expressed with a, b, c, if

loga x = 3 · (loga b− loga2 c) (1 6= a > 0; b, c > 0).

12. Knowing that log16(54) = a express with a the value of log12(18).

13. Knowing that 20x2 − y2 + 8xy = 0 is valid evaluate the exact value of:

lgx− lgy.

14. Solve the following equations and inequalities:

log5 x = −1; log5 x ≤ −1; log5 x ≥ −1;

log 1
3
x < −2; log 1

3
x > −2; log 1

3
x = −2.

15. Solve the following equations and inequalities on the set of the real numbers:

(a) log3 (log2 (lg(2x))) = 0;

(b) log25

[
1

5
· log3

(
2− log 1

2
x
)]

= −1

2
;

(c) log3(x+ 1)− log3(x+ 10) = 2 log3 4, 5− 4;

(d) log2(x− 2) + log2(x+ 3) = 1 + 2 log4 3;

(e) log32(2x)− log8(4x) + log2(x) = 3;

(f) logx(8)− log4x(8) = log2x(16);

(g) x(2·lg
2x−1,5·lg x) =

√
10 ;

(h) log3

3x− 1

x+ 2
> 1;

(i) log3

3x− 1

x+ 2
< 1;

(j) log 1
2

(
3− x
3x− 1

)
≥ 0;

(k) log 1
2

(
3− x
3x− 1

)
≤ 0;

(l) logx(lg(x)) > 0;

(m) log1/x

2x− 1

x− 1
≤ −1.

16. Find the minimal and maximal values of the following function and give their place
too:

f : [1; 64]→ R f(x) = (log2 x)4 + 12 · (log2 x)2 · log2

8

x
.

17. For what real numbers x can we define the following expression:

E(x) =

√
2−
√

1− x
ln(x2 − 1)

?
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18. Draw the graph of the following function:

f(x) := ln
1

x
(x ∈ (0; +∞)).

19. Prove that for all positive numbers a, b we have:

ln
a+ b

2
≥ lna+ lnb

2
.

What is the geometric meaning of this inequality?

20. Prove that for all real numbers a, b we have:

ea + eb

2
≥ e(a+b)/2.

What is the geometric meaning of this inequality?

4.2.2. Homework and exercises to practice

Exponential equations and inequalities

1. Find all the real numbers x ∈ R for which:

(a) 8x−1 − 23x−2 + 8 = 0;

(b) 23x+1 + 32x+2 = 11;

(c) 2x+1 · 5x+1 = 0.01−x;

(d) 2x − 0.5x = 3.75;

(e) 3x + 3−x = p (p ∈ R is a parameter);

(f) (x− 1)x = 3
√
x− 1;

(g) 53x−4 <
1

25
;

(h)
3

7

4−3x
≥ 49

9
;

(i) 2x + 21−x < 3.

Computations with logarithms, logarithmic equations and inequalities:

2. Knowing that log12(27) = a express with a the value of: log6(16).

3. Solve the equation:
ln(10x) = lg (ex).

4. Solve the equation:
xlnx = e.
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5. Solve the equation:
(2x + 2)1/x = 4.

6. Solve the following equations and inequalities on the set of the real numbers:

(a) log4−x(x
2 + 16) + log4−x(2x+ 1) = log4−x(2x) + log4−x(x

2 + 21);

(b) logx+1 (2x2 + 8x+ 6) = 2;

(c) log3(x
3 − 1)− log3(x

2 + x+ 1) = 2;

(d) lg (x4) + lg (x2) = 6;

(e) logx−1(x
2 − 2x+ 1) = 2;

(f) lg(x+ 24) = 2− 2 lg(
√
x+ 3);

(g) 4 loga(x)− 4 loga2(x) + 4 loga4(x) = 3 (a ∈ R);

(h) lg(x) + lg(x− 3) = 1;

(i) 2 · lg(2) + lg(2x+ 1)− lg(−12x) = lg(1− 2x);

(j)
log3(2x)

log3(4x− 15)
= 2;

(k) logx (x3 + 3x2 − 27) = 3;

(l) log2(x) + 2 · log4(x) = 3 · log8(x) + 1;

(m) (log2(x)) · (log4(2x)) = 2 · log4(2);

(n) log2 (17− 2x) + log2 (2x + 15) = 8;

(o) xlogx2 (x
2−1) = 5;

(p)
√
xlg
√
x = 10;

(q) xlg(x) = 0.1 · x2;
(r) log3

(
log2

3(x)− 3 · log2(x) + 5
)

= 2;

(s) log 1
5
(x2 + x− 30) < 0;

(t) log1−x
2x+ 3

4(2x+ 1)
≥ 1;

(u) log3 x ≥ logx 3.

7. Solve the following inequality:

log1/2(x
2 − 1) + log2(x− 1) < log4(x+ 1).

8. Solve the following inequality:

ln(x− 1)− ln(x+ 1) ≥ −lnx.

9. Solve the following inequality:
(lnx)x > ex.
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10. Prove that:
1

log2(π)
+

1

logπ(2)
> 2.

11. Prove that:
loga(a

2 + 1) + loga2+1(a
2) > 3 (a ∈ (1,+∞)) .

12. Prove that, if a, b ∈ (0; 1) then:

loga
2ab

a+ b
+ logb

2ab

a+ b
≥ 2.

13. Prove that:
log2 3 + log3 4 + log4 5 + log5 6 > 5.

14. For what real numbers x can we define the following expression:

E(x) =

√
2x − 1

logx(|x| − 3)
?

15. Consider the parameter a ∈ (0; 1) and the function f(x) := ax + (1− a)x (x ∈ R).
Prove that:

(a) If x > 1 =⇒ f(x) < 1;

(b) If x < 1 =⇒ f(x) > 1.

16. Prove that for all a 6= b ∈ (0; +∞) we have:

aa · bb > ab · ba.

17. Prove that for all a 6= b ∈ (0; +∞) and α ∈ (0; 1) we have:

aα · b1−α < a+ b.

18. Prove that:
∃ ! x ∈ [1; +∞) : 1 + 2 · lnx = e1−x.

19. Find the minimal and maximal value of the following function f and give their place
too:

f(x) := log2
2 x+ log2

x 2 (x ∈ (0; +∞) \ {1}).

20. For what real numbers x, y holds the following inequality:√
logx(π −

√
y) + 2 cos(3π cos

√
y) +

√
logπ−√y x ≤ 0?



5. Trigonometric computations, equations
and inequalities

5.1. Theoretic review

It is recommended to review the following topics:

1. Measuring angles (degree, radian).

2. Definition of trigonometric functions (sin, cos, tg, ctg).

3. Important trigonometric values.

4. The graphs and properties of the following trigonometric functions:

sin, cos, tg, ctg.

5. Some basic trigonometric identities:

(a) sin2 α + cos2 α = 1;

(b) sin(α + β) = sinα · cos β + cosα · sin β;

(c) sin(α− β) = sinα · cos β − cosα · sin β;

(d) cos(α + β) = cosα · cos β − sinα · sin β;

(e) cos(α− β) = cosα · cos β + sinα · sin β;

(f) sin 2α = 2 sinα · cosα;

(g) cos 2α = cos2 α− sin2 α;

(h) sin2 α =
1− cos 2α

2
, cos2 α =

1 + cos 2α

2
(Linearization formulas).

Here α, β ∈ R are real numbers (angles given in radian).

5.1.1. Checking questions to the theory and its use

1. Give the angle of 120◦ in radian.

2. Give the exact value of:

sin π/3; cosπ; sinπ/4; cosπ/2; tgπ/4; ctgπ/6; tgπ/3.

3. Evaluate the exact value of:

(sinπ/7 + cos π/7)2 − sin 2π/7.
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4. Evaluate sin3 π/3− cos3 π/3.

5. For what real numbers a ∈ R holds the following equality for all the given real
numbers x:

1

sin2 x
+

1

cos2 x
=

a

sin2(2x)
(∀ x ∈ R \ {kπ/2 | k ∈ Z})?

6. Evaluate sin(x− y) using the additional theorem.

7. Evaluate cos(x+ y) using the proper formula.

8. Determine the exact value of the following expression:

sin π/7 · cosπ/42 + sin π/42 · cosπ/7.

9. Determine the exact value of sinπ/8.

10. Solve the following equation on the set of the real numbers:

cos2 x = 1 + sin2 x.

11. Draw the graph of the function f(x) := sin4 x− cos4 x (x ∈ [0; π]).

12. Give the most simple form of the following expression:

E(x) := (sin x+ cosx)4 − (sinx− cosx)4 (x ∈ R).

For what real numbers x do we have:

E(x) = −2 ?

13. Solve the following inequality on the interval [π/2;π]:

sin 2x > cosx.

14. Find the largest set D for which f is a function:

f(x) :=
√

sinx+
1√

sinx
(x ∈ D).

What is the minimal value of f and where does f take this value.

15. Determine the exact value of:

sin2 4037π

4
1− cos3 7π

.

16. Draw the graph of the function f(x) := sin x (x ∈ [0; 3π]).

17. Draw the graph of the following function g(x) := cos x (x ∈ [−π; 3π]).

18. Define and draw the graph of the function tg.

19. Write down the linearization formulas.

20. Determine the exact value of:

cos 9π/20 · cos π/5 + sin 9π/20 · sin π/5.
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5.2. Exercises

5.2.1. Exercises for class work

Trigonometric identities, equations

1. Evaluate the exact value of tgπ/12.

2. Give a linearization formula for cos3 α, if α ∈ R.

3. Solve the following equations on the set of the real numbers:

sinx = −1

2
; sin

(
x+

π

7

)
=

√
3

2
; cos

(
3x− π

4

)
=

1

2
.

tg x =
√

3; tg

(
2x− 2π

3

)
= −1; ctg 2

(
2x− π

5

)
=

1

3
.

4. For what real numbers x ∈ R do we have:

(a) sin 4x = sinx;

(b) cos 10x = cos 2x;

(c) cos 4x = sin 3x;

(d) cos 2x− 3 cosx+ 2 = 0;

(e) ctg x− tg x = 2
√

3;

(f)
cosx

tgx
=

3

2
;

(g)
4

cos2 x
− 5tg 2x = 1;

(h)
√

3 · sinx+ cosx =
√

3;

(i)
√

2 · sinx cos
x

2
=
√

1 + cos x;

(j) 2 sin2 x+ sinx+
1

2 sin2 x
+

1

2 sinx
= 1;

(k) sin2 x+
1

4
sin2 3x = sinx · sin2 3x;

(l) 9sin2 x + 9cos2 x = 6 ?

(m) cos 2x = cosx− sinx?

Inequalities

5. Solve the following inequalities on the set of the real numbers:

sinx < −1

2
; sinx > −1

2
; cosx ≤ −1

2
; cosx ≥ −1

2
.
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6. For what numbers x ∈ R is true that:

−
√

2 ≤ sinx+ cosx ≤
√

2 ?

7. Find all the real numbers x ∈ R for which:

(a) 2 sin2 x− sinx− 1 > 0 ;

(b) 2 cos2 x+ sinx− 1 < 0 ;

(c)
2 sinx+ 1

2 cosx
≤ 0 ;

(d)
tg2x− sin2 x

ctg2x− cos2 x
> 1 ;

(e)
∣∣∣sinx− cosx

sinx+ cosx

∣∣∣ ≤ 1 .

Some other types

8. a) Simplify the following expression, where x denotes real number for which the
following expression is well defined:

E(x) =

sin

(
5π

2
+ x

)
+ cos 3x+ sin

(π
2
− 5x

)
sin 3x− cos

(π
2

+ x
)

+ sin 5x
.

b) Solve the following equation:

E(x) +
1

E(x)
=

4√
3
.

9. Prove that the following function is constant on the given interval:

f(x) =

√
cos2 x+

√
cos 2x+

√
cos2 x−

√
cos 2x (x ∈ [−π/4; π/4]).

10. Find the largest set D so that the following expression is well defined for all numbers
x ∈ D:

f(x) =

sin2

(
3π

8
− x
)
− sin2

(π
8
− x
)

sin
(π

4
− x
) (x ∈ D).

Solve the following equation:

f(x) + (2 +
√

3)f(−x) = 0.
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11. Using the properties of the cos function find the range Rf (set of the values of f)
of the following function:

f(x) := cos
1

x

(
x ∈

[ 3

2π
;

2

π

))
?

12. Give the largest set D so that the following function is well defined:

f(x) := (
√

tg −
√

ctgx)2 (x ∈ D).

What are the minimal and maximal values of f on the interval [π/8; 5π/12]? Where
does f take them?

13. Evaluate the minimal and maximal values of the function

f(x) := sin2 x

2
· cos2

x

2
(x ∈ [0;π/4]).

Where does f take them?

14. Prove the following identity for all 1 ≤ n ∈ N and real numbers x 6= λπ

2k

(k = 0, 1, 2, 3, . . . , n;λ ∈ Z) :

1

sin 2x
+

1

sin 4x
+

1

sin 8x
+ · · ·+ 1

sin 2nx
= ctgx− ctg2nx.

15. Give an explicit formula to evaluate xn , where 1 ≤ n ∈ N and in this expression we
have n square roots:

xn =

√√√√√√1

2
+

1

2

√√√√√1

2
+

1

2

√√√√1

2
+ · · ·+ 1

2

√
1

2
+

1

2

√
1

2
(1 ≤ n ∈ N).

5.2.2. Homework and exercises to practice

Trigonometric identities, equations

1. Express tg (x+ y) using tgx and tgy.

2. What is the exact value of tgπ/8.

3. Determine the exact value of:

tgπ/16 + ctgπ/16.

4. Give a linearization formula for sin3 α, where α ∈ R.
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5. Prove the following identities for all the real numbers x for which both sides of the
following identities are well defined:

(a) sin4 x+ cos4 x = 1− sin2 2x

2
;

(b) sin4 x+ cos4 x =
3

4
+

1

4
cos 4x;

(c)
1

cos2 x
= 1 + tg 2x;

(d) tg 2x− sin2 x = tg 2x · sin2 x;

(e) sin 2x =
2ctg x

1 + ctg 2x
.

6. Find those real numbers x ∈ R for which we have:

(a) 4 cos3 x+ 3 cos(π − x) = 0;

(b) tg x+ ctg x =
2

sin 2x
;

(c) sinx =
√

3 · cosx;

(d) sin2 x− 2 cosx · sinx− 3 cos2 x = 0;

(e) sinx · tg x =
1

2
√

3
;

(f) 2 cos 2x+ 4 sinx+ 1 = 0;

(g) sinx+
√

3 · cosx = 2.

7. Prove that for all x ∈ R \ {mπ | m ∈ Z} and n ∈ N we have:

n∏
k=0

cos(2k · x) =
sin(2n+1x)

2n+1 sinx
.

8. Solve the following equation on the set of the real numbers:

3(log2 sinx)2 + log2(1− cos 2x) = 2.

9. Solve the following equation:

1 + 2tg x = 3 · 4f(x),

where f(x) =
sin(π/4− x)√

2 · cosx
.

10. Solve the following equation:
2cos2 x = sinx.
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Inequalities

11. Find all the real numbers x ∈ R so that:

cosx < cos4 x.

12. Find all the real numbers x ∈ R so that:

(a) | sinx− cosx | ≤
√

2;

(b) sin4 x+ cos4 x ≥ 1

2
;

(c)
1

4
≤ sin6 x+ cos6 x ≤ 1 ;

(d) sinx cos 6x > cosx sin 6x ;

(e) sin2 x−
√

3 +
√

2

2
· | sinx|+

√
6

4
< 0.

Other types

13. a) Simplify the following fraction:

E(x) =
sin 6x− cos

(π
2

+ 4x
)

+ 2 sinx cosx

sin

(
9π

2
+ 2x

)
+ cos 6x+ sin

(π
2

+ 4x
) .

b) Solve the equation:

E(x)− 1

E(x)
= −2.

14. Give the largest set D so that the following function is well defined:

f(x) :=
√

sinx+
1

2
√

cosx
(x ∈ D).

Find the minimal and maximal values of f on the interval: [0; π/4]. Where does f
take them?

15. What are the minimal and maximal values of f and where does it take them:

f(x) := sin
π

x
· cos

x

π
+ sin

x

π
· cos

π

x
(x ∈ [π; 2π])?

16. Draw the graph of f(x) := sin4 x+ cos4 x (x ∈ [0; π/2]).

17. Find the minimal and maximal value of f :

f(x) = tg
π cos2 x

4
+ tg

π sin2 x

4
(x ∈ R).

18. The angles α, β, γ of a triangle have the property, that ctg
α

2
, ctg

β

2
, ctg

γ

2
are conse-

qutive natural numbers. Find the largest angle of the triangle.



6. Order preserving estimates

6.1. Theory

Polynomials

Let n ∈ N be a natural number and a real polinomal of degree n is defined as follows:

P (x) = an · xn + an−1 · xn−1 + . . .+ a1 · x+ a0 (x ∈ R),

where an, an−1, ..., a1, a0 are real numbers (the coefficients of P ) and an 6= 0. Here an
is called the main coefficient of P and x denotes the variable of P which can be any
real number. When n = 0 we have a constant polynomial, with the value a0 for all real
numbers x. For the constant P = 0 polynomial: P (x) = 0 (x ∈ R) we do not define its
degree and its main coefficient.

The order preserving estimates of polynomials

Consider a real polynomial of degree n with a positive main coefficient (an > 0).
We would like to examine the behaviour of the values P (x) when x takes great enough
positive values. One can make the intuition that when 0 < x is great, then the value P (x)
is determined by its dominant term: an · xn, and the ”rest” of P (x) is negligible. More
precisely this means that if:

P (x) = an · xn + an−1 · xn−1 + . . .+ a1 · x+ a0 (an > 0, x ∈ R),

we can find some fixed positive numbers R > 0, m > 0, M > 0 so that for all x ≥ R we
have:

m · xn ≤ P (x) ≤M · xn (x ∈ [R; +∞)).

So for all great enough positive numbers x the values P (x) are between the values of some
constants times xn.

The polynomial
L(x) := m · xn (x ∈ R)

(by giving the number R > 0 as well ) is called the order preserving lower estimate
(OPL-estimate) of P and the polynomial

U(x) := M · xn (x ∈ R)

(by giving the number R > 0 as well ) is called the order preserving upper estimate (OPU-
estimate) of P . These two estimates toegether are called the order preserving estimates
or shortly OP-estimates of P .

The method of finding the constants R > 0, m > 0, M > 0 will be presented at class.
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The estimates of rational expressions

Consider the polynomials

P1(x) = an · xn + an−1 · xn−1 + . . .+ a1 · x+ a0 (an 6= 0, x ∈ R)

and
P2(x) = bk · xk + bk−1 · xk−1 + . . .+ b1 · x+ b0 (bk 6= 0, x ∈ R)

and define their ratio by:

R(x) =
P1(x)

P2(x)
(x ∈ R \ {x ∈ R | P2(x) = 0}).

We call the ratio of two polynomials a rational function or rational expression or a rational
fraction.We can also give order preserving OP-estimates for such type of rational expres-
sions R. Suppose that n and k are the degrees of the given polynomials, an, bk > 0 and
we already have the OP-estimates for the polynomials P1 and P2 , so there exist positive
real numbers R1,m1,M1 > 0 and R2,m2,M2 > 0 so that:

m1 · xn ≤ P1(x) ≤M1 · xn (x ≥ R1),

and
m2 · xk ≤ P2(x) ≤M2 · xk (x ≥ R2).

If x ≥ R := max{R1, R2} then we have:

R(x) =
P1(x)

P2(x)
≤ M1 · xn

m2 · xk
=
M1

m2

· xn−k,

and

R(x) =
P1(x)

P2(x)
≥ m1 · xn

M2 · xk
=
m1

M2

· xn−k.

Putting these estimates toegether we get the following OP-estimate for the rational frac-
tion R :

m1

M2

· xn−k ≤ R(x) =
P1(x)

P2(x)
≤ M1

m2

· xn−k (x ∈ [R; +∞)).

See this method as well at the class exercises.

6.1.1. Checking questions to the theory and its use

1. What is the OPU-estimate of a polynomial P (Order Preserving Upper estimate)?

2. What is the OPL-estimate of a polynomial P (Order Preserving Lower estimate)?

3. Using the OP estimates of the polynomials P,Q give the OP estimates for the
rational fraction P/Q.

4. Give the OPU and OPL estimates for the polynomial

P (x) := x5 + 3x3 − 2x2 + 7x+ 21 (x ∈ R).
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5. Give the OPU and the OPL estimates for

f(x) :=
2x7 − 3x4 + 5x2 − x+ 6

x2 + x+ 1
(x ∈ R).

6. Give the OPL and the OPU estimates for the sequence

xn := n4 − 2n3 −+7n2 − n+ 13 (n ∈ N).

7. Give the OPU and OPL estimates for

xn :=
n5 − 2n4 + 3n3 − 4n2 + 5n+ 111

n3 − 2n+ 3
(n ∈ N).

8. Consider the function f(x) :=
1

x2 + x+ 1
(x ∈ R). Give a positive number K > 0

so that:

|f(x)− 0| < 1

100

holds, if x > K.

9. Let f(x) := x4 + 2x2 + x− 5000 (x ∈ R) be a function. Give a K > 0, so that

f(x) > 80000

is ture for all numbers x > K.

10. Consider the function f(x) :=
x4 + 2x3 − x+ 12

x2 + x+ 1
(x ∈ R). Find a number K > 0

so that:
f(x) > 1000,

if x > K.

6.2. Exercises

6.2.1. Exercises for class work

OP estimates

1. Give an OPU estimate for the following polynomials:

(Give numbers M > 0 and K > 0 so that for all x ≥ K we have P (x) ≤M · xn .)

(a) P (x) = 4x5 − 3x4 − 2x2 − 5 ;
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(b) P (x) = 2x3 − 3x2 + 6x+ 7 ;

(c) P (x) = 6x5 + 7x4 + 10x3 + x2 + 2x+ 3 .

2. Give an OPL estimate for the following polynomials:

(So: find numbers m > 0 and k > 0 so that for all x ≥ k we have P (x) ≥ m · xn .)

(a) P (x) = 6x5 + 7x4 + 10x3 + x2 + 2x+ 3 ;

(b) P (x) = 2x3 − 3x2 + 6x+ 7 ;

(c) P (x) = 4x5 − 3x4 − 2x2 − 5 .

3. Give OPL and OPU estimates for the following fractions:

(a) f(x) =
3x4 + 2x3 + 5x2 + 7x+ 6

5x2 − 3x− 10
;

(b) f(x) =
4x3 − 10x2 + 20x− 15

7x4 − 5x3 − 10x2 + 6x+ 9
.

4. Give OPL and OPU estimates for the following sequences:

(a) an = 7n3 − 4n2 + 5n− 17 (n ∈ N+) ;

(b) an =
3n4 + 7n3 − 10n2 − 13n+ 6

2n5 − 8n3 + 5n2 + 9n− 7
(n ∈ N+) .

5. Consider the function: f(x) :=
x+ 1

x4 + x2 + 1
(x ∈ R). Find a number K > 0, so that

|f(x)− 0| < 1

1000
,

if x > K.

6. Consider the function: f(x) := x3 − 2x2 + 3 (x ∈ R) függvényt. Find a number
K > 0, so that

f(x) > 200,

if x > K.

7. For the function f(x) :=
x3 − x2 + 3x+ 1

x2 − x+ 1
(x ∈ R) find a number K > 0, so that

f(x) > 100,

if x > K.
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8. For the function f(x) :=
√
x+ 1−

√
x (x ∈ [0; +∞)) find a number K > 0, so that

|f(x)− 0| < 1

1000
,

if x > K.

6.2.2. Homework and exercises to practice

1. Give OPU and OPL estimates for the following polynomials:

(a) P (x) = 7x5 − x4 − 2x3 − x2 − 6x− 10 ;

(b) P (x) = 12x4 + 8x3 + 3x2 − 6x− 20 ;

(c) P (x) = x5 + 9x4 + 9x3 + 102 + 11x+ 33 ;

(d) P (x) = 4x5 + 4x4 + 2x3 + 3x2 + 10x+ 5 ;

(e) P (x) = x3 − 7x2 − 6x+ 20 ;

(f) P (x) =
1

10
x5 − 99x4 − 88x3 − 67x2 − 61x− 60 .

2. Give OPU and OPL estimates for the following fractions:

(a) f(x) =
x5 + x4 + 4x3 + 7x2 + x+ 8

3x2 − 5x− 7
;

(b) f(x) =
5x3 − 9x2 + 8x− 12

4x6 − 10x5 + 3x4 − 9x3 − 11x2 + 3x+ 6
.

3. Give OPU and OPL estimates for the following sequences:

(a) an = n3 − 7n2 + 9n− 13 (n ∈ N+) ;

(b) an =
5n4 + 3n3 − 14n2 − 9n+ 7

2n5 + 11n3 − 4n2 + 5n− 17
(n ∈ N+) .

4. For the function f(x) :=
x2 + x+ 8

x3 + 2x2 + 1
(x ∈ (0; +∞)) find a nmumber K > 0 so

that

|f(x)− 0| < 1

100

holds, if x > K.
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5. Consider the function:f(x) := 2x4 − 2x3 + 3x2 − x + 1 (x ∈ R). Find a number
K > 0 so that:

f(x) > 2018

holds, if x > K.

6. Consider the function f(x) :=
x4 − x+ 13

x2 + x
(x ∈ (0; +∞)). Find a number K > 0

so that:
f(x) > 1000

holds, if x > K.

7. For the function f(x) :=
√
x2 + 1− x (x ∈ R) find a number K > 0 , so that

|f(x)− 0| < 1

100

holds, if x > K.



7. Statements, logical operations

7.1. Theory

We are going to learn some basic notions like: logical statements, operations with state-
ments (conjunction, disjunction, negation, implication, equivalence).

Logical statements

We consider the logical statements/arguments as basic notions, and we will denote them
by letters like: p, q, r . . . or A,B,C . . . . A logical statement always has a unique logical
value: true or false. We say that a logical statement has a value of truth. This means that
if we have a logical statement we can decide if it is true or false. For example:

1. 5 > 4. Logical value: true. In other words: this statement is true.

2. 10 ≥ 25. This statement is false.

We also associate to a logical statement as its logical value a 0 if the statement is false,
or a 1 if it is true.
Sometimes a statement is depending on one or more variables, which can take values from
the so called basic set or universe. For example:

1. P (x) : x+ 3 ≤ 5 (x ∈ R),

2. P (x; y) : x2 + y2 > 1 (x ∈ R, y ∈ R).

These type of statements or sentences are called open statements or predicates, because
their value of truth depends on the value(s) of the variable(s). For example the open
statement

P (x) : x+ 3 ≤ 5

is true for x = 1, but is false if x = 8.

The set of all values of the possible variables for which the statement is true is called the
set of truth.

For the previous open statement:

P (x) : x+ 3 ≤ 5 (x ∈ R)

the variable x can take real values (so the basic set is R) and the set of truth is the set of
all real solutions of the inequality

x+ 3 ≤ 5,

which is x ∈ (−∞; 2].
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Operations with logical statements, truth table

Using the following basic operations we can define new logical statements: negation: ¬,
conjunction: ∧, disjunction : ∨, implication: =⇒ and equivalence: ⇐⇒ . It is common
to define the logical values of these statements using the truth table. In the columns we
denote the statements that occur in the operation and in the rows we write all the possible
logical values (1: true, 0: false) in all combinations.

p q ¬ p p ∧ q p ∨ q p =⇒ q p ⇐⇒ q
1 1 0 1 1 1 1
1 0 0 0 1 0 0
0 1 1 0 1 1 0
0 0 1 0 0 1 1

The truth table will be used to find the truth value of some composed statements or to
prove the equality of two or more statements. See exercises at class work.

Quantifiers

Let us introduce the so called universal quantifier: ∀ and the existential quantifier: ∃ .
These two symbols are the logical quantifiers. Using these quantifiers we can define new
statements from open sentences. For example if P (x) is a statement depending on some
variable denoted by x from a set T , then we can formulate new statements using our
quantifiers in the following way:

∀ x ∈ T : P (x).

This means, that the statement P (x) is true for all the values of x from the set T .

In a similar way the statement:
∃ x ∈ T : P (x)

means that there is at least one x value from the set T for which the statement P (x) is
true.

Examples:

1. A(x) : ∀x ∈ R : x2 + 1 > 0. This statement is obviously true.

2. B(x) : ∀x ∈ R : x+ 3 ≤ 5. This is false, because for example if x = 6 then we get:
6 + 3 = 9, what is not less or equal to 5.

3. P (x) : ∃x ∈ R : x + 3 ≤ 5. This is true, since for example if x = 0, then we get
P (0) : 3 + 0 = 3 ≤ 5 . Here is enough to give only one value of x for which the
statement is true, there is no need to find all the x values for which P (x) is true.

4. P (x) : ∃x ∈ [7, +∞) : x + 3 ≤ 5. This statement is false, because whenever x ≥ 7
we get x+ 3 ≥ 10.

5. ∃x ∈ R : x2 − 3x+ 2 = 0.

This is true since this quadratic equation has two roots, so x = 1 or x = 2 satisfies
our statement.
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6. ∃x ∈ R : −x2 + x− 1 = 0.

This is false because the discriminant of the equation is D = −3 < 0 , so we can
conclude that there are no real roots.

7. ∀x ∈ R : −x2 + x− 1 < 0.

This is true (sketch the graph of this parabola).

8. P (x; y) : ∀ (x, y) ∈ R2 : x2 + y2 > 1.

This is false, since for example (x, y) = (0, 0) does not satisfy the given inequality.

9. ∀ y ∈ R : x2 + y2 > 1.

This is an open statement with variable x ∈ R. (It is open, because there is also a
variable x which is influencing the inequality).

10. ∃ x ∈ R ∀ y ∈ R : x2 + y2 > 1.

This statement is true, because for example if x = 2 then we have:

4 + y2 > 1,

which holds for all y ∈ R.

11. ∀ x ∈ [y, +∞) : x+ 3 ≤ 5 (y ∈ R).

This is an open statement (open by the variable y).

12. ∃ y ∈ R ∀x ∈ [y, +∞) : x+ 3 ≤ 5.

This statement is not open anymore and its logical value is false. To prove this let
us take an arbitrary y ∈ R.

If y ≤ 2, then for example with x := 3 we have 3 ∈ [y, +∞), but 3 + 3 ≤ 5 is not
true.

When y > 2, then with x := y + 1 we get y + 1 ∈ [y, +∞), but y + 1 + 3 ≤ 5 is not
true, so there is no such y ∈ R.

13. ∀ ε > 0 ∃ δ > 0 : 2δ < ε.

This statement is true, because for a given arbitrary positive number ε any positive
δ is good, wich satisfies the inequality

δ <
ε

2
,

so for example δ :=
ε

3
∈ (0; +∞) will do.
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14. ∃K > 0 ∀n ∈ N : 2n < K.

This statement is false, because if we suppose that there is a positive number K
with the upper property, then putting

n :=
[K] + 1

2
∈ N

will fail to fulfill the condition above, since 2n = [K] + 1 > K. Here [K] denotes the
integer part of K.

Negation of expressions containing quantifiers

1. Consider statement 12 from above:

∃ y ∈ R ∀x ∈ [y, +∞) : x+ 3 ≤ 5.

It’s negation will be:
∀ y ∈ R ∃x ∈ [y, +∞) : x+ 3 > 5.

So what we have to do is: to replace the quantifiers with the opposite ones (instead of ∀
we put ∃ and conversely) and we take the negation of the last statement part. Formally:

¬ (∃ y ∈ R ∀x ∈ [y, +∞) : x+ 3 ≤ 5) = ∀ y ∈ R ∃x ∈ [y, +∞) : x+ 3 > 5.

2. Consider now the true statement in 13:

∀ ε > 0 ∃ δ > 0 : 2δ < ε.

It’s negation (of course is a false statement) is:

∃ ε > 0 ∀ δ > 0 : 2δ ≥ ε.

”
If-then” statements, implications Cosnider the open statements A(x) and B(x) with

the variable x which takes values from the type-set denoted by T . In this case the:

”
if A(x) is true, then B(x) is also true”

statement is called an implication and we denote it in a short way by:

A(x) =⇒ B(x).

In other words, we can refer to an implication as one of the following statements:

•
”
Statement A(x) implies statement B(x).”

•
”
From A(x) we can conclude B(x).”

•
”
Statement A(x) is a sufficient condition for B(x) to be true.”
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•
”
Statement A(x) is sufficient to B(x).”

It is remarkable, that the sufficient condition A(x) is at the left-hand side of the
implication-arrow =⇒.

•
”
The condition B(x) is a necessary condition for A(x) to be true.”

•
”
B(x) is a necessary condition for A(x).”

We can also emphasize that formally the necessary condition B(x) is at the right-
hand side of the implication-arrow =⇒.

•
”
For all values x ∈ T when A(x) is true, B(x) is also true.”

We can shortly write this using the quantifier ∀ :

∀ x ∈ T A(x) : B(x).

Remark: Using the ∀ quantifier to formalize an
”
if-then” statement it makes easier to

understand the statement itself, the proofs, or the negation of the original statement.

Example:

Consider the implication x ≥ 3 =⇒ x > 1 for real numbers x. Some ways to formulate
this statement are the following:

• If x ≥ 3, then x > 1.

• From x ≥ 3 we can conclude that x > 1.

• The condition x ≥ 3 is sufficient for x > 1 to be true.

• x ≥ 3 is a sufficient condition for x > 1.

• The condition x > 1 is necessary to the condtion x ≥ 3 to be true.

• x > 1 is a necessary condition for x ≥ 3.

• For all x ∈ R for which x ≥ 3 is ture, x > 1 is also true, or using the quantifier:

∀x ∈ R x ≥ 3 : x > 1.

Obviously the upper implication is true.

”
If and only if ” statements or equivalences

Let again A(x) and B(x) be two open statements depending on the variable x ∈ T . The

statement
”
B(x) =⇒ A(x)” is called the reversal of the statement

”
A(x) =⇒ B(x)” . If

the reversal of a true statement is also true, then we say that the original statement is
reversable.
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Examples:

Consider the last implication, which was true:

x ≥ 3 =⇒ x > 1.

Its reversed statement is:
x > 1 =⇒ x ≥ 3,

which can also be formulated in in the following way:

∀x ∈ R x > 1 : x ≥ 3.

From this form we can conclude that this implication (so the reversal of the original
statement) is false, since for example if x = 2 then 2 ∈ R and 2 > 1, but 2 ≥ 3 is not
true. So the x ≥ 3 =⇒ x > 1 statement is not reversable.

When A(x) =⇒ B(x) and its reversed implication B(x) =⇒ A(x) is also true, then we
say that:

”
A(x) is equivalent to B(x)”.

This means that:
(A(x) =⇒ B(x) ) and (B(x) =⇒ A(x) ).

This new statement is called equivalence and we use the following notation for it:

A(x)⇐⇒ B(x).

Other ways to fromulate this:

•
”
A(x) and B(x) are equivalent.”

•
”
A(x) is true if and only if B(x) is true as well.”

•
”
A(x) is true iff B(x) is true as well.”

•
”
A(x) is a sufficient and necessary condition for B(x) to be true.”

•
”
A(x) is true exactly when B(x) is true as well.”

Since an equivalence consists of two (reversed) implications, and these last ones can be
given by the

”
for all” quantifier, the equivalence:

A(x)⇐⇒ B(x)

can also be given in the following form:

(∀x ∈ T A(x) : B(x) ) and (∀x ∈ T B(x) : A(x) ).

This last fromulation is very useful when we deal with the proofs of some theorems or
exercises.
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Examples:

1. If x ∈ R consider the following implication:

x 6= 0 =⇒ x2 > 0.

Reversing it we get the implication:

x2 > 0 =⇒ x 6= 0.

It can be proved, that both implications are true, so we have the following equivalence:

x 6= 0⇐⇒ x2 > 0 .

Some forms of this equivalence:

• x 6= 0 is equivalent to x2 > 0.

• x 6= 0 if and only if x2 > 0.

• x 6= 0 iff x2 > 0.

• x 6= 0 is a sufficient and necessary condition for x2 > 0 to be true.

• x 6= 0 is true exactly when x2 > 0.

2. Consider the fixed numbers a, b, c ∈ R, a 6= 0 and the variable x ∈ T := R.

We know that the following statement is true:

∃ x ∈ R : ax2 + bx+ c = 0 ⇐⇒ D = b2 − 4ac ≥ 0.

7.1.1. Checking questions to the theory and its use

1. Consider the functions f(x) := 1 − x2 (x ∈ R) and g(x) := 2x (x ∈ R). Give a
sufficient and necessary condition A(x) so that the following statements to be true:

(a) f(x) = g(x) ⇐⇒ A(x);

(b) ∀ x ∈ R : f(x) ≤ g(x) ⇐⇒ A(x);

(c) ∀ x ∈ R : f(x) ≥ g(x) ⇐⇒ A(x).

2. Consider the following open statement, where n ∈ N:

A(n) : 3n ≥ n2 + 2n+ 1.

Are the following statements true:

(a) A(0), A(1), A(2) .
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(b) ∃ N ∈ N : A(N) is false.

(c) ∃ N ∈ N ∀ n ∈ N n ≥ N : A(n) is true.

3. Give the negation of statement (c), so negate the following statement:

∃ N ∈ N ∀ n ∈ N n ≥ N : 3n ≥ n2 + 2n+ 1.

4. Give the negation of the following statement, and decide if the statement or its
negation is true or false:

∀ x ∈ R ∃ y ∈ [x; +∞) : y − 5 < 21.

5. Give a sufficient and necessary condition on the real numbers x, y ∈ R so that the
points A(0; 1), B(1; 0), C(−1; 0) and D(x+ y;x− y) form a square ABCD.

6. Give a sufficient and necessary condition on the real numbers x, y ∈ R so that the
point C(x; y) has the same distance from A(−1; 0) and from B(1; 2).

7. Give the mathematical/logical description of the following statements, using quan-
tifiers, and decide if the statement is true or false:

(a) The sum of the square of two real numbers equals 0, if and only if both numbers
are 0;

(b) One triangle is rectangular, iff the sum of the square of two proper sides equals
the square of the third of its sides.

(c) An integer can be deivided by 6 iff we can divide it by 2 and 3 as well.

(d) One point (x; y) ∈ R2 in the plane is on the circle with centre (0; 0) and radius
of 2 iff the sum of the squares of its coordinates equals 4.

(e) If the square of a number is 4, then this number is 2.

(f) The square of a number is 4, if its absolute value is 2.

(g) The distance of a number from 1 is less then 3, if this number is at least −2
and at most 4.

(h) The set of the natural numbers has a minimal value.

8. Consider the following open statements. Put in the place of the � one of the
symbols : =⇒, ⇐=, ⇐⇒ so that the statement to become true (where we can
write ⇐⇒ put only this one there):

(a) x =
√

16 � x = 4;

(b) 4x2 = 16 � x = −2;

(c) x2 > 0 � x 6= 0.
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9. Write down the following statement with mathematical and logical symbols and
then decide if it is true or false. Give its negation as well.

For almost all big natural numbers n we have:

n4 − n2

n+ 1
> 4000.

10. Decide whether the following statement is true or false. Give its negation too.

∃K > 0 ∀ x ∈ (K; +∞) :
x2 + x

x3 + 10
<

1

1000
.

11. Consider the functions: f(x) := x2 − 2x+ 2 (x ∈ R) and g(x) := a (x ∈ R), where
a is a real parameter. Give sufficient and necessary conditions A(a) so that the
following statements to become true:

(a) {x ∈ R : f(x) = g(x)} = ∅ ⇐⇒ A(a);

(b) ∃ ! x ∈ R : f(x) = g(x) ⇐⇒ A(a);

(c) The set A := {x ∈ R : f(x) = g(x)} has exactly two elements ⇐⇒ A(a).

12. Consider the following open statement for natural numbers n ∈ N:

A(n) :
n4 + n+ 1

n2 + 2
> 100.

Are the following statements true or false:

(a) A(0);A(1);A(2).

(b) ∃ N ∈ N : A(N) is true.

(c) ∃ N ∈ N ∀ n ∈ N n ≥ N : A(n) is false.

13. Is the following statement true:

∃ y ∈ R ∀ x ∈ (−∞; y] : x− 5 < 21?

14. Let a ∈ R be a real parameter. Consider the following curves given by these two
equations x2 + y2 = 1 and y = x + a (x, y ∈ R). Give conditions A(a) so that the
following statements to be true:

(a) The given curves have no common points ⇐⇒ A(a);

(b) The given curves have exactly one common point ⇐⇒ A(a);

(c) The given curves have exactly two common points ⇐⇒ A(a).

15. Is the following implication true (x denotes a real number):

|x− 1| < x ⇐⇒ x >
1

2
.
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16. Give the negation of the following statement and decide whether the statement or
its negation is true or false:

∃K > 0 ∀ x ∈ (K; +∞) :
x3 + 2x2 + x+ 10

x2 + x+ 1
> 2018.

17. Give the following statement in mathematical form:

There exists a positive number K so that for all the positive numbers x greater then

K we have:

√
x

x
< 100−1.

Is this statement true?

18. Is the following statement true:

∃ A ⊆ R : (|x2 − 4| = 1 ⇐⇒ x ∈ A) ?

19. Is the following statement true, if x denotes a real number:

∃ A ⊆ R : ((|x− 1| < 1/2 ∧ |x− 1/3| < 3/4|) ⇐⇒ x ∈ A) ?

20. Consider the following function:

f(x) :=
x2 + 1

x
(x > 0).

Is it true that:

∀ y ∈ [2; +∞) ∃ x ∈ (0; +∞) : f(x) = y ?

21. Consider the following function:

f(x) := cos x (x ∈ (−π/2; +π/2)).

Is the following implication true:

If x ∈ R satisfies the condition |2x| < 1 =⇒ f(x) >
1√
2

?

What is the reversed statement? Is it true or false?
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7.2. Exercises

7.2.1. Exercises for class work

Statements and quantifiers

1. Use the truth table to prove the following statements:

(a) (A ∧B) ∨ C = (A ∨ C) ∧ (B ∨ C);

(b) (A ∨B) ∧ C = (A ∧ C) ∨ (B ∧ C);

(c) ¬(¬A) = A;

(d) ¬(A ∧B) = ¬A ∨ ¬B;

(e) ¬(A ∨B) = ¬A ∧ ¬B;

(f) A⇒ B = ¬A ∨B;

(g) ¬A⇒ ¬B = B ⇒ A;

(h) (¬A ∨B)⇒ B = A ∨B;

2. Consider the open statements A(x), B(x), C(x) and D(x) on the universe R of real
numbers:

A(x) : x is a real positive number;

B(x) : x is a real number for which we have: x2 + x− 6 = 0;

C(x) : x = −3;

D(x) : x = 2.

Explain in different ways the following statements and check if they are true or false:

1. C =⇒ B; 2. C =⇒ ¬A; 3. D =⇒ A;
4. D =⇒ B; 5. B =⇒ (C ∨D); 6. B ⇐⇒ (C ∨D);
7. (A ∧B) ⇐⇒ D; 8. ¬(¬A ∧D); 9. (¬A ∧B) ⇐⇒ C.

3. Consider the following statements (all the variables are real numbers):

(a) x = 0 and y = 0 =⇒ x2 + y2 = 0;

(b) xy = xz =⇒ y = z;

(c) x > y2 =⇒ x > 0;

(d) x2 + y2 = 12x+ 16y − 75 =⇒ 25 ≤ x2 + y2 ≤ 225.

What are the reversed statements here? In each case decide which implication is
true or false.
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4. Consider the following open statements:

i) n ≥ 5 (n ∈ N);

ii)
1

n+ 5
< 0, 03 (n ∈ N);

iii) x2 + x− 1 = 0 (x ∈ R)

For each of them solve the following exercises:

(a) Give a few values of the variables for which the statement is true.

(b) Give a few values of the variables for which the statement is false.

(c) Give all the values of the variables for which the statement is true.

(d) Formulate a new statement using the quantifier ∀. What is the logical value of
this statement? Give its negation too.

(e) Formulate a new statement using the quantifier ∃. What is the logical value of
this statemet? Give its negation too.

5. Consider the following statement:

1

n
< 0, 01 (n ∈ N+).

(a) Formulate a new statement using the quantifier ∀. What is the logical value of
this statement! Give its negation too!

(b) Formulate a new statement using the quantifier∃. What is the logical value of
this statement! Give its negation too!

(c) Consider the following statement:

∀ n ≥ N :
1

n
< 0, 01 (N ∈ N+).

What type of statement is it?

(d) Consider the following statement:

∃ N ∈ N+ ∀ n ≥ N :
1

n
< 0, 01.

Is it true or false? Give the negation of the statement too.

6. Formulate the following statements mathematically. Give their negations too, and
decide which of them is true or false.

(a) There exists a natural number n so that:
n2

10n− 7
> 100.

(b) For all natural numbers n we have:
n2

10n− 7
> 100.
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(c) There exists a natural numberN so that for all natural numbers n greater then

N we have
n2

10n− 7
> 100.

Remarks: The statement from point 3 we will also say in the following forms:

a) For all great enough natural numbers n we have
n2

10n− 7
> 100.

b) The fraction
n2

10n− 7
is greater then 100, whenever n is a great enough natural

number.

7. Formulate the following statements mathematically. Give their negations too, and
decide which of them is true or false.

(a) For all great enough natural numbers n we have:

n4 − 35n3 − 15n2 + 13n+ 10 > 2000.

(b) For all great enough natural numbers n we have:

2n3 + 3

n5 − 3n4 − 7n3 + 2n2 − 10n+ 1
< 0, 05.

(c) For all great enough natural numbers n we have:

2n6 − 20n5 + 3n4 − 6n3 + 3

13n3 + 100n2 + 200
> 230.

8. Let a, b, x, y be real numbers. Are the following statements true or false:

(a) a+ b = 0⇐⇒ a2 + b2 = −2ab ?

(b) a+ b = 1⇐⇒ a2 + b2 = 1− 2ab ?

(c) x = −1⇐⇒ x2 + x = 0 ?

(d) x =
√

2⇐⇒ x2 = 2 ?

(e) x2 + y2 − 2(x− y) = 7⇐⇒

⇐⇒ (x, y) is on the circle of center (1;−1) and radius 3 ?

(f) Let a and b be non-negative real numbers. Is this statement true or false:

a2 + b2 = 0⇐⇒
√
a+ b =

√
a+
√
b ?

(g) x ≥ 2⇐⇒ |1− x| = x− 1 ?

(h) |x− 5| < 2⇐⇒ 3 < x < 7 ?

(i) y − x = |x| ⇐⇒ y = x · (1 + sign(x)) ?
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(j) ∃ logx2−1/4(1− x2) ∈ R⇐⇒

[
1

|x|

]
= 1 ,

( where [a] denotes the integer value/part of a )?

(k) a = b ∨ a = 3b⇐⇒ a3 − 3a2b− ab2 + 3b3 = 0 ?

(l) x = 0 ∨ x =
ln3

ln3− ln2
⇐⇒ 27x − 3 · 18x − 12x + 3 · 8x = 0 ?

(m) x = ±π
4

+ kπ (k ∈ Z) ∨ tgx = 3⇐⇒

⇐⇒ sin3 x− 3 sin2 x cosx− sinx cos2 x+ 3 cos3 x = 0 ?

9. Are the following statements true? Answer the given questions as well.

(a) ∀x ∈ R : (x− 1)2 + (x− 5)2 + (x− 12)2 ≥ 62 and we have equality here if and
only if x = 6 ;

(b) Consider the function f(x) := x+ |x| (x ∈ [−1; 1]). In this case:

a) ∀ x ∈ R : 0 ≤ f(x) ≤ 2;

b) f(x) = 2 iff x = 1;

c) f has a minimum value if and only if x = 0 or x = −1.

10. Consider the following function:

f(x) = |1− |x|| (x ∈ [−3; 2)).

Are the following statements true or false:

(a) ∀ x ∈ Df : f(x) ≥ 0.

(b) ∀ x ∈ Df : f(x) ≤ 2.

(c) ∃ ! a ∈ Df so that ∀ x ∈ Df : f(a) ≤ f(x).

(d) ∃ a ∈ Df so that ∀ x ∈ Df : f(a) ≤ f(x).

(e) ∃ ! a ∈ Df so that ∀ x ∈ Df : f(x) ≤ f(a).

(f) ∃ ! b ∈ Df so that f(b) = 1.

(g) ∃ c ∈ Df so that f(c) = 0.

(h) ∃ ! x ∈ Df so that f(x) = x.

(i) ∀ c ∈ R the equation f(x) = c has at least one solution.

(j) The equation f(x) = c has at least one solution ⇐⇒ c ∈ [0; 2].

(k) The equation f(x) = c (c ∈ R) has exactly 4 solutions, iff c ∈ (0; 1).

(l) The equation f(x) = c (c ∈ R) has exactly 3 solutions, iff c = 1.
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(m) The equation f(x) = c (c ∈ R) has exactly 2 solutions, iff c = 0.

(n) The equation f(x) = c (c ∈ R) has exactly 1 solution iff, c ∈ (1; 2].

11. Are the following transformations/solutions true, if x denotes a real number:

(a) lnx6 = 6⇐⇒ 6 · lnx = 6⇐⇒ lnx = 1⇐⇒ x = e ?

(b)
√

2x2 − 2 > x (x ∈ (−∞;−1] ∪ [1; +∞)) ⇐⇒ 2x2 − 2 > x2 ⇐⇒ x2 > 2 ⇐⇒
x ∈ (−∞;−

√
2) ∪ (

√
2; +∞) ?

(c) x2 + 2xy− 3y2 = 0⇐⇒
(
x

y

)2

+ 2 · x
y
− 3 = 0⇐⇒

(
x

y
= 1 ∨ x

y
= −3

)
⇐⇒

⇐⇒ (y = x ∨ x = −3y) ?

(d) x2 + 2xy − 3y2 = 0⇐⇒ (x+ y)2 − 4y2 = 0⇐⇒ (x− y) · (x+ 3y) = 0⇐⇒

⇐⇒ (y = x ∨ x = −3y) ?

(e) If x, y ∈ Z, then:

x2 + 2xy − 3y2 = 5⇐⇒ (x− y) · (x+ 3y) = 5⇐⇒ (x; y) ∈ {(2; 1); (−4; 1)} ?

(f) If x, y ∈ Z, then :

x2 + 2xy − 3y2 = 3⇐⇒ (x− y) · (x+ 3y) = 3⇐⇒ (x; y) ∈ ∅ ?

12. For what statements A will be the following equivalences become true

(a) 4
√
x = x4 ⇐⇒ A(x)?

(b) 3
√
x = x3 ⇐⇒ A(x)?

(c)
√

1− cosx = −2 · sin π
4
· sin x

2
⇐⇒ A(x)?

(d)
√

cosx > 1− sin2 x ⇐⇒ A(x)?

(e) cos x = x2 − 4π · x+ 4π2 + 1 ⇐⇒ A(x)?

(f)
x · 20181/x +

1

x
· 2018x

2
= 2018 ⇐⇒ A(x)?

(g) tg (x− y) = tgx− tgy ⇐⇒ A(x; y)?

(h) x2 + y2 + 1 = xy + x+ y ⇐⇒ A(x; y)?

(i) max{a, b} =
|a− b|+ a+ b

2
⇐⇒ A(a; b)?

(j) Consider the function f(x) :=
x+ 1

x− 2
(x ∈ R \ {2}). The equation f(x) = y

can be solved (for x) ⇐⇒ A(y)?
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7.2.2. Homework and exercises to practice

Statements and quantifiers

1. Use the truth table to prove the following statements:

(a) A ∧ ¬(B ∧ A) = A ∧ ¬B;

(b) A ∨ ¬(B ∨ A) = A ∨ ¬B;

(c) ¬((A ∨B) ∧ ¬A) = A ∨ ¬B;

(d) A⇔ B = (A ∧B) ∨ (¬A ∧ ¬B);

(e) ((A⇒ B) ∧B)⇒ A = A ∨ ¬B;

(f) ((A⇒ B) ∧ A)⇒ B = ¬A;

2. Consider the following statements for the integers n ∈ Z :

A(n) : n is divisible by 10;

B(n) : n can be divided by 5;

C(n) : n can be divided by 2.

Give the following statements, and decide if they are false or true:

(a) A =⇒ B;

(b) A ⇐⇒ B ∨ C;

(c) A ⇐⇒ B ∧ C;

(d) A =⇒ C.

Check that in case (a) the reversed statement B =⇒ A is not true.

What can we say about the implication C =⇒ A?

3. Formulate the following statements in different ways, using the structures if-then,
=⇒, sufficient, necessary, quantifiers ∀ , etc.

(a) The equality of two real numbers is a necessary condition, for their square to
be equal too.

(b) The positivity of the discriminant of a quadratic equation is a sufficient condi-
tion for the equation to have real roots.

(c) The equality of the sides of a quadrangle is a necessary condition for this
quadrangle to be a square.

(d) The equality of three line segments is a sufficient condition for these segments
to be the sides of a triangle.
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(e) The fact that a number is 5 and another one is 2 is a sufficient but not necessary
condition for their sum to be 7.

4. Give a sufficient and necessary condition so that:

(a) the square of a real number to be positive.

(b) the quadratic expression ax2 + bx+ c to be positive (non negative) (negative)
(non positive) for all real numbers x ? a, b, c are fixed real numbers (a 6= 0).

(c) the triangle ABC to be rectangular with hypotenuse c and other sides a, b?

(d) some convex quadrangle to be tangent to a circle?

(e) a given line segment to be seen under a rectangle from a point in the space?

(f) the quadratic equation ax2 + bx+ c = 0 to have two different real roots? a, b, c
are fixed real numbers and a 6= 0.

(g) for the real number x to have a real number y so that y2 = x?

5. All the variables in the following open statements are real numbers. Put in the place
of the � one of the following symbols: =⇒, ⇐=, ⇐⇒ so that the statement to
become true. (where we can put ⇐⇒ put only this one):

(a) x =
√

4 � x = 2;

(b) x2 = 4 � x = 2;

(c) x2 > 0 � x > 0;

(d) x2 < 9 � x < 3;

(e) x(x2 + 1) = 0 � x = 0;

(f) x(x+ 3) < 0 � x > −3 .

6. Consider the following open statement:

n2

2n+ 1
> 100 (n ∈ N).

(a) Give some values of the variable so that the statement becomes true.

(b) Give some values of the variable so that the statement becomes false.

(c) Give all the values of the variable when the statement is true!

(d) Make a new statement using the quantifier ∀. Is this statement true or false?
Give the negation of this statement!

(e) Make a new statement using the quantifier ∃. Is this statement true or false?
Give the negation of this statement!
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7. Consider the following statements:

i)
1

n+ 5
< 0, 03 (n ∈ N);

ii)
n2 + 5

2n− 1
> 213 (n ∈ N);

iii)
n2

2n+ 1
> 308 (n ∈ N);

iv)
73 + 10n− n2

2n+ 1
< −157 (n ∈ N).

For each of them solve the following exercises:

(a) Make a new statement using the quantifier ∀. Is this statement true or false?
Give the negation of this statement!

(b) Make a new statement using the quantifier ∃. Is this statement true or false?
Give the negation of this statement!

(c) If A(n) denotes the statement in point i), ..., iv) consider the following state-
ment:

∀n ≥ N : A(n) (N ∈ N).

What kind of statement is it?

(d) If A(n) denotes the statement in point i), ..., iv) consider the following state-
ment:

∃N ∈ N+ ∀n ≥ N : A(n).

Is this statement true or false? Give the negation of this statement!

8. Using the quantifiers give the mathematical/logical form of the following statements.
Give their negation as well and decide, which one of them is true or false?

(a) There exists a natural number n so that :
n− 2

n2 − 4n+ 2
< 0, 07.

(b) For all nautral numbers n we have :
n− 2

n2 − 4n+ 2
< 0, 07.

(c) There is a natural number so that for all natural numbers n greater then that

we have:
n− 2

n2 − 4n+ 2
< 0, 07.

(d) For almost all great enough natural numbers n we have:
n− 2

n2 − 4n+ 2
< 0, 07.

(e) For almost all great enough natural numbers n we have:

1

2
n3 − 25n2 − 14n+ 9 > 1000.
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(f) For almost all great enough natural numbers n we have:

n3 + 4n2 − 3n+ 20

3n5 − 7n4 + 4n3 − 12n2 − 12n+ 5
< 0, 01.

(g) For almost all great enough natural numbers n we have:

2n5 − 25n4 − 17n3 + 4n2 + 5n− 4

18n3 + 17n2 − 16n+ 15
> 185.

9. Give the statement A so that the following equivalences to become true:

(a)
∣∣∣1
x

∣∣∣ = x3 ⇐⇒ A(x).

(b)
1
3
√
x

=
√
x2 ⇐⇒ A(x).

(c)
√

1 + cos x = cos
x

2
⇐⇒ A(x).

(d)
√

sinx = 1− cos2 x ⇐⇒ A(x).

(e)
√

sinx > 1− cos2 x ⇐⇒ A(x).

(f)
√

cosx < 1− sin2 x ⇐⇒ A(x).

(g) x2 + sinx+ π · x+
π2

4
= −1 ⇐⇒ A(x).

(h) tg (x+ y) = tgx+ tgy ⇐⇒ A(x; y).

(i)
√

(x− 2)2 + (y + 1)2 < 2 ⇐⇒ A(x; y). Illustrate the points of A(x; y) in
the geometric plane (2-dimensional coordinate system).

(j) |x − 3| + |y − 2| < 1 ⇐⇒ A(x; y). Illustrate the points of A(x; y) in the
geometric plane (2-dimensional coordinate system).

(k) min{a, b} =
a+ b− |a− b|

2
⇐⇒ A(a; b).

(l) Consider the function f(x) :=
3x+ 2

x+ 1
(x ∈ R \ {−1}) . In this case:

The equation f(x) = y can be solved (for x) ⇐⇒ A(y).

10. Are the following methods of solutions true:

(a)
sinx

x
+

x

sinx
= 0⇐⇒ sin2 x+ x2 = 0⇐⇒ (sinx = 0 ∧ x = 0)⇐⇒ x = 0 ?

(b)
√
x− 3−

√
2− x > 0⇐⇒

√
x− 3 >

√
2− x⇐⇒ x− 3 > 2− x⇐⇒ x >

5

2
?

(c) x2 − 3xy + 2y2 = 0⇐⇒
(
x

y

)2

− 3 · x
y

+ 2 = 0⇐⇒
(
x

y
= 2 ∨ x

y
= 1

)
⇐⇒

⇐⇒ (y = x ∨ x = 2y) ?
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(d) x2 − 3xy + 2y2 = 0⇐⇒ (x− y)2 + y2 − xy = 0⇐⇒

⇐⇒ (x−y)2−y ·(x−y) = 0⇐⇒ (x−y)·(x−2y) = 0⇐⇒ (y = x∨x = 2y) ?

(e) If x, y ∈ Z, then:

x2 + 3xy+ 2y2 = 2⇐⇒ (x+y)2 +y · (x+y) = 2⇐⇒ (x+y) · (x+ 2y) = 2⇐⇒

⇐⇒ (x; y) ∈ {(0; 1); (3;−1); (0;−1); (−3; 1)} ?

11. Consider the function:

f(x) =

√
1−
√
x (x ∈ [0; 1]).

Are the following statemnts true or false:

(a) ∀ x ∈ Df : f(x) ≥ 0?

(b) ∀ x ∈ Df : f(x) ≤ 1?

(c) ∃ ! a ∈ Df so that ∀ x ∈ Df : f(a) ≤ f(x)?

(d) ∃ ! a ∈ Df so that ∀ x ∈ Df : f(x) ≤ f(a)?

(e) ∃ c ∈ Df so that f(c) = 0?

(f) ∃ x ∈ Df so that f(x) =
√
x?

(g) ∀ x, t ∈ [1/8; 1/4] : |f(x)− f(t)| ≤ |x− t|?

12. Are the following statements true:

(a)
∃ x ∈ R ∀ y ∈ R : (x+ y = y)?

(b)
∀ y ∈ R ∃ x ∈ R : (x+ y = 0)?

(c)
∃ y ∈ R ∀ x ∈ R : (xy3 = −x)?

(d)
∀ x ∈ R ∃ y ∈ R : (y3 = x)?

(e)
∃ y ∈ R ∀ x ∈ R : (x < y)?

(f)
∀ x ∈ R ∃ y ∈ R : (x < y)?
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8.1. Theoretic review

Theorem: (The principle of mathematical (complete) induction)

Let A(n) (n ∈ N) be statements defined on the natural numbers. If

1. A(0) is true and

2. Whenever for an n ∈ N statement A(n) true =⇒ A(n+ 1) is true as well, then

A(n) is true for all n ∈ N.

Remarks:

1. The condition ”A(0) is true” is called the first step or the starting step.

2. The implication ”Whenever for an n ∈ N : A(n) is true =⇒ A(n + 1) is true as
well” is the inductional ”step” form n to n+ 1.

3. In many exercises the ”first” or starting statement is not for n = 0, but n = 1 or
n = 2 or some specified m ∈ N. The statement can be formulated in this form as
well:

Theorem: (The principle of mathematical (complete) induction)

Let A(n) (n ∈ N) be statements defined on the natural numbers and m ∈ N fixed.
If

(a) A(m) is true and

(b) Whenever for an m ≤ n ∈ N statement A(n) true =⇒ A(n + 1) is true as
well, then

A(n) is true for all m ≤ n ∈ N.

4. This principle of induction can also be extended to the set Z of inegers.

Binomial coefficients

Let k, n ∈ N, k ≤ n and

0! := 1 , n! :=
n∏
j=1

j (1 ≤ n) ,

(
n

k

)
:=

n!

k!(n− k)!
.

Some properties of the binomial coefficients:(
n

0

)
=

(
n

n

)
= 1,

(
n

1

)
=

(
n

n− 1

)
= n,

(
n

k

)
=

(
n

n− k

)
,
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And (
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
(k = 1, . . . , n) .

Examples:

Equalities

1. Prove that for all 2 ≤ n ∈ N statement A(n) is true, if:

A(n) :
n∏
k=2

(
1− 1

k2

)
=
n+ 1

2n
.

Solution: First we chek it for n = 2:

A(2) : 1− 1

22
=

2 + 1

2 · 2
⇐⇒ 3

4
=

3

4

√
.

Suppose that A(n) is true for a natural number 2 ≤ n ∈ N:

A(n) :

(
1− 1

22

)
·
(

1− 1

32

)
· · · · ·

(
1− 1

n2

)
=
n+ 1

2n
,

and we have to prove it for n+ 1, so:

A(n+ 1) :

(
1− 1

22

)
·
(

1− 1

32

)
· · · · ·

(
1− 1

(n+ 1)2

)
=

n+ 2

2n+ 2
.

Using the statement for n we get:(
1− 1

22

)
·
(

1− 1

32

)
· · · · ·

(
1− 1

(n+ 1)2

)
=

=

(
1− 1

22

)
·
(

1− 1

32

)
· · · · ·

(
1− 1

n2

)
·
(

1− 1

(n+ 1)2

)
= (A(n) is true) =

=
n+ 1

2n
·
(

1− 1

(n+ 1)2

)
=
n+ 1

2n
· n

2 + 2n

(n+ 1)2
=

n · (n+ 2)

2n · (n+ 1)
=

n+ 2

2n+ 2

√
.

So we proved that A(2) is true and whenever A(n) is true for a 2 ≤ n ∈ N then
A(n+ 1) is true as well. This means according to the complete induction principle,
that A(n) is true for all natural numbers n greater or equal to 2.

Remark: We can also prove this statement without induction in the following way
(is a telescopic product):

n∏
k=2

(
1− 1

k2

)
=

n∏
k=2

k2 − 1

k2
=

n∏
k=2

(k − 1) · (k + 1)

k2
=

=
1 · 3
22
· 2 · 4

32
· 3 · 5

42
· 4 · 6

52
· · · (n− 1) · (n+ 1)

n2
=

=
1

2
· n+ 1

n
=
n+ 1

2n
.
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2. Prove that for all natural numbers 1 ≤ n the following statement A(n) is true:

A(n) : 1− 1

2
+

1

3
− 1

4
+ · · · − 1

2n
=

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
(1 ≤ n ∈ N).

Solution: Let’s check it for the first allowed natural number, so for n = 1:

A(1) : 1− 1

2
=

1

1 + 1
⇐⇒ 1

2
=

1

2

√
.

Suppose that A(n) is true for a fixed 1 ≤ n ∈ N. Does it also imply A(n+ 1) to be
true?

A(n+ 1) :

1− 1

2
+

1

3
− 1

4
+· · ·− 1

2 · (n+ 1)
=

1

(n+ 1) + 1
+

1

(n+ 1) + 2
+· · ·+ 1

2 · (n+ 1)
⇐⇒

⇐⇒ 1− 1

2
+

1

3
− 1

4
+ · · ·− 1

2n
+

1

2n+ 1
− 1

2n+ 2
=

1

n+ 2
+

1

n+ 3
+ · · ·+ 1

2n+ 2
.

In the left hand side substitute the formula for A(n) (which is supposed to be true):(
1− 1

2
+

1

3
− 1

4
+ · · · − 1

2n

)
+

1

2n+ 1
− 1

2n+ 2
= inductional supposing =

=

(
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n

)
+

1

2n+ 1
− 1

2n+ 2
=

=
1

n+ 2
+

1

n+ 3
+ · · ·+ 1

2n+ 1
+

1

2n+ 2

√
.

So according to the principle of mathematical induction we can conclude that A(n)
is true for all natural numbers 1 ≤ n ∈ N.

Remark: The upper equality is called the Catalan identity.

Inequalities

1. Give all the natural numbers n ∈ N for which the following statement A(n) is true:

A(n) : 2n > n2 + 4n+ 5.

Solution: Checking it for the first few natural numbers we find that n = 7 is the
first to be true:

A(7) : 27 > 72 + 4 · 7 + 5 ⇐⇒ 128 > 82
√
.

Suppose that A(n) is true for a fixed natural number 7 ≤ n ∈ N:

A(n) : 2n > n2 + 4n+ 5.
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Using this let’s prove it for n+ 1 so that A(n+ 1) is true as well, so:

A(n+ 1) : 2n+1 > (n+ 1)2 + 4 · (n+ 1) + 5.

Take the left-hand side of this inequality and use the inductional supposing:

2n+1 = 2n · 2 > (A(n) is true) > 2 · (n2 + 4n+ 5) = 2n2 + 8n+ 10.

Looking at the statement we have to prove is enough to check, that:

2n2 + 8n+ 10 > (n+ 1)2 + 4 · (n+ 1) + 5.

This last inequality is:

2n2 + 8n+ 10 > n2 + 6n+ 10 ⇐⇒ n2 + 2n > 0,

which obviously holds if n ≥ 7. ”Putting toegether” all these estimates we get:

2n+1 > 2n2 + 8n+ 10 > (n+ 1)2 + 4 · (n+ 1) + 5 =⇒ A(n+ 1)
√
.

This implies by induction that A(n) is true for all 7 ≤ n ∈ N.

2. Prove that for all 1 ≤ n ∈ N we have:

A(n) :
n∑
k=1

1

k!
≤ 5n− 2

2n
.

Solution: The first step is to check it for n = 1:

A(1) :
1

1!
≤ 3

2
⇐⇒ 1 ≤ 3

2

√
.

Suppose that A(n) is true for a natural number 1 ≤ n ∈ N:

A(n) :
1

1!
+

1

2!
+ ·+ 1

n!
≤ 5n− 2

2n
.

Using this, let’s prove A(n+ 1) :

A(n+ 1) :
1

1!
+

1

2!
+ ·+ 1

n!
+

1

(n+ 1)!
≤ 5n+ 3

2n+ 2
.

Starting from the left-hand side of this inequality and using the inductional suppos-
ing we can estimate in the following way:(

1

1!
+

1

2!
+ ·+ 1

n!

)
+

1

(n+ 1)!
≤ (inductional supposing) ≤ 5n− 2

2n
+

1

(n+ 1)!
.

Comparing this with the right-hand side of A(n+ 1) is enough to check, that:

5n− 2

2n
+

1

(n+ 1)!
≤ 5n+ 3

2n+ 2
.
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Transforming this last inequality we get:

1

(n+ 1)!
≤ 5n+ 3

2n+ 2
− 5n− 2

2n
=

4

4n · (n+ 1)
=

1

n · (n+ 1)
⇐⇒

⇐⇒ n · (n+ 1) ≤ (n+ 1)! ⇐⇒ 1 ≤ (n− 1)!,

which is obviously true if n ≥ 1. So we are ready to conclude by induction that A(n)
is true for all 1 ≤ n ∈ N.

3. Prove that if 1 ≤ n ∈ N is a natural number and x1, x2, . . . , xn ∈ (0; +∞) with the
following property:

x1 · x2 · · ·xn = 1,

then A(n) is true:

A(n) : x1 + x2 + · · ·+ xn ≥ n.

Solution: We prove this by induction on n. If n = 1, then we only have one positive
number x1 > 0 so that x1 = 1. We have to prove for this x1 that:

A(1) : x1 ≥ 1 ⇐⇒ 1 ≥ 1.
√
.

Suppose that A(n) is true for some fixed natural number 1 ≤ n ∈ N, which means
in this case that if we choose n arbitrary positive real numbers, having their product
1 we will have their sum greater or equal to n. We prove using this, that A(n + 1)
also holds, so if

x1, x2, · · · , xn+1 > 0

and their product is 1, then:

A(n+ 1) : x1 + x2 + · · ·+ xn+1 ≥ n+ 1.

There are two possible cases. In the first case all the n + 1 positive numbers are
equal to 1. In this case A(n+ 1) is also true, because this means that:

1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n+1 terms

= n+ 1 ≥ n+ 1,

which is true.

The second case is when not all the numbers are equal to 1. This implies that at
least one of them must be less then 1. Let this number be xn. In this case there
also must be another number, which is greater then 1 (why?). Let this number be
xn+1 > 1. So we have now:

x1, x2, · · · , xn, xn+1 > 0

and

x1 · x2 · · ·xn+1 = 1 ∧ xn < 1 ∧ xn+1 > 1.
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We can use the inductional supposing for the following n numbers, whose product
is obviously 1:

x1, x2, x3, · · · , xn−1, xn · xn+1.

For these numbers A(n) is true, so we have:

x1 + x2 + · · ·+ xn−1 + xn · xn+1 ≥ n.

Taking the left-hand side of statement A(n+ 1) and using the upper inequality we
can use the following estimation:

x1+x2+ · · ·+xn+1 = (x1 + x2 + · · ·+ xn−1)+xn+xn+1 ≥ n− xn · xn+1+xn+xn+1.

Comparing this to what we need is enough to prove that:

n− xn · xn+1 + xn + xn+1 ≥ n+ 1.

This can be done as follows:

−xn · (xn+1 − 1) + xn+1 − 1 ≥ 0 ⇐⇒ (1− xn) · (xn+1 − 1) ≥ 0.

Using the previous conditions on xn and xn+1:

1− xn > 0 ∧ xn+1 − 1 > 0,

so their product is non-negative. We have proved A(n + 1). Using the induction
principle A(n) is true for all natural numbers 1 ≤ n ∈ N.

Remark: We can also conclude from the upper proof that equality holds if and
only if all the numbers are equal to 1. So, if the product of the positive numbers
x1, x2 · · · xn is 1, then:

x1 + x2 + · · ·+ xn = n ⇐⇒ x1 = x2 = · · · = xn = 1.

Special case: Let 1 ≤ n ∈ N and x1, x2, · · · , xn ∈ (0; +∞) fixed positive arbitrary
real numbers. Using the upper exercise for the following n positive numbers, with
their product 1:

x1
n
√
x1 · x2 · · ·xn

;
x2

n
√
x1 · x2 · · ·xn

;
x3

n
√
x1 · x2 · · ·xn

; · · · ;
xn

n
√
x1 · x2 · · ·xn

.

we get the following inequality:

x1
n
√
x1 · x2 · · ·xn

+
x2

n
√
x1 · x2 · · ·xn

+
x3

n
√
x1 · x2 · · ·xn

+ · · ·+ xn
n
√
x1 · x2 · · · xn

≥ n

and equality holds here iff:

x1
n
√
x1 · x2 · · ·xn

=
x2

n
√
x1 · x2 · · ·xn

=
x3

n
√
x1 · x2 · · ·xn

= · · · = xn
n
√
x1 · x2 · · ·xn

= 1 ⇐⇒

⇐⇒ x1 = x2 = · · · = xn = n
√
x1 · x2 · · ·xn.
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With some rearrangements we get the following: for all 1 ≤ n ∈ N and positive real
numbers:

x1, x2, · · · , xn > 0

we have:
x1 + x2 + x3 + · · ·+ xn

n
≥ n
√
x1 · x2 · · ·xn,

and equality holds here if and only if:

x1 = x2 = · · · = xn.

It is easy to check, that if we choose these numbers to be non-negative (instead of
beeing positive) the upper statements will still be true, so the following theorem
holds:

Theorem: (The inequality of arithmetic and geometric means)

For all 1 ≤ n ∈ N and x1, x2, · · · , xn ∈ [0; +∞) we have:

x1 + x2 + x3 + · · ·+ xn
n

≥ n
√
x1 · x2 · · ·xn

and equality holds here if and only if:

x1 = x2 = · · · = xn.

8.2. Exercises

8.2.1. Exercises for class work

Proving equalities

1. Prove that for all positive natural numbers n ∈ N+ we have:

(a)
n∑
k=1

k =
n(n+ 1)

2
;

(b)
n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
;

(c)
n∑
k=1

1

k(k + 1)
=

n

n+ 1
;

(d)
n∑
k=1

sin(kx) =
sin

(n+ 1)x

2
· sin nx

2

sin
x

2

(1 ≤ n ∈ N;x ∈ R \ {2kπ | k ∈ Z}).



8.2. Exercises 81

2. (Binomial theorem.)

(a) Prove that for all a, b ∈ R, n ∈ N+ we have:

(a+ b)n =
n∑
k=0

(
n

k

)
an−kbk .

(b) Using this theorem prove that:

n∑
k=0

(
n

k

)
= 2n ;

n∑
k=0

(−1)k
(
n

k

)
= 0 (n ∈ N+).

3. Prove that if n ∈ N+ and a1, q ∈ R, q 6= 1, then:

a1 + a1q + a1q
2 + . . .+ a1q

n−1 = a1 ·
qn − 1

q − 1

(the sum of the first n terms of a geometric sequence).

Proving inequalities

4. Prove that:

(a) 2
√
n+ 1− 2 <

n∑
k=1

1√
k
≤ 2
√
n− 1 (n ∈ N+);

(b) (2n)! < 22n · (n!)2 (n ∈ N+);

(c)
1

2
√
n
<

n∏
k=1

2k − 1

2k
<

1√
3n+ 1

(2 ≤ n ∈ N);

(d)
1

n+ 1
+

1

n+ 2
+

1

n+ 3
+ · · · 1

3n+ 1
> 1 (1 ≤ n ∈ N);

(e) | sin(nx)| ≤ n · | sinx| (∀x ∈ R; n ∈ N).

5. (The Bernoulli−inequality.) Prove that, if n ∈ N+ and −1 ≤ h ∈ R, then

(1 + h)n ≥ 1 + nh.

Consequence: For all n ∈ N+ and h :=
1

n
we get that:

(
1 +

1

n

)n
≥ 2.
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Sequences

6. Consider the sequence: a1 :=
√

2 and an+1 :=
√

2 · an (n ∈ N+) defined by recursion.
Prove that:

(a) ∀ n ∈ N+ : an < an+1;

(b) ∀ n ∈ N+ : an < 2.

Give an explicite formula for evaluating the n−th term of the sequence and prove
it by induction. Using this fromula prove point ( b ) again.

7. Consider the sequence: a1 :=
√

2 and an+1 :=
√

2 + an (n ∈ N+) defined by recur-
sion. Prove that:

(a) ∀ n ∈ N+ : an < an+1;

(b) ∀ n ∈ N+ : an < 2;

(c) ∀ n ∈ N+ : an = 2 · cos
π

2n+1
.

Prove the implication (c) =⇒ (b).

8. Consider the following sequence defined by recursion:

a1 :=
1

2
; a2 :=

1

3
∧ an+2 :=

an · an+1

3an − 2an+1

(n ∈ N+).

Prove that:

an =
1

1 + 2n−1
(n ∈ N+).

Other types

9. Prove that for all natural numbers n ∈ N the following number can be divided by
23:

27n+3 + 32n+1 · 54n+1.

10. Prove that for all natural numbers n ∈ N if x = (2 +
√

3)n, then
x2 + 2x− 3

12
is a

perfect square.

11. Let a ∈ R \ {0} be a number so that: a+
1

a
∈ Z. Prove that in this case we have:

an +
1

an
∈ Z (∀ n ∈ N).
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8.2.2. Homework and exercises to practice

Proving equalities

1. Prove that for all positive natural numbers n ∈ N+ we have:

(a)
n∑
k=1

(−1)k−1 · k2 = (−1)n−1 · n(n+ 1)

2
;

(b)
n∑
k=1

k3 =
n2(n+ 1)2

4
;

(c)
n∑
k=1

k(3k + 1) = n(n+ 1)2;

(d)
n∑
k=1

k(k + 1) =
n(n+ 1)(n+ 2)

3
;

(e)
n∑
k=1

k(k + 1)(k + 2) =
n(n+ 1)(n+ 2)(n+ 3)

4
;

(f)
n∑
k=1

(2k − 1) = n2;

(g)
n∑
k=1

k · k! = (n+ 1)!− 1;

(h)
n∏
k=1

(
1 +

1

k

)
= n+ 1;

(i)
n∑
k=1

1

(2k − 1)2k
=

n∑
k=1

1

n+ k
;

(j)
n∑
k=0

cos(kx) =
sin

(n+ 1)x

2
· cos

nx

2

sin
x

2

(1 ≤ n ∈ N;x ∈ R \ {2kπ | k ∈ Z}).

Proving inequalities

2. Prove that:

(a) 2n > n2 (4 < n ∈ N);

(b) 3n > n3 (4 ≤ n ∈ N);

(c)
n∑
k=1

1

k2
<

2n− 1

n
(2 ≤ n ∈ N);

(d)
n∑
k=1

1

n+ k
>

1

2
(2 ≤ n ∈ N);

(e)
n∑
k=1

1

n+ k
>

13

24
(2 ≤ n ∈ N);
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(f)
n

2
<

2n−1∑
k=1

1

k
< n (2 ≤ n ∈ N);

(g)
n∑
k=1

1√
k
>
√
n (2 ≤ n ∈ N);

(h)
n∏
k=1

(2k)! > ((n+ 1)!)n (2 ≤ n ∈ N);

(i) 2n > 1 + n ·
√

2n−1 (2 ≤ n ∈ N).

3. (Generalized inequality of Bernoulli).

Prove that if n ∈ N+; x1, . . . , xn ∈ [−1, +∞), and x1, . . . , xn have all the same sign,
then:

(1 + x1) · (1 + x2) · . . . · (1 + xn) ≥ 1 + x1 + x2 + . . .+ xn .

4. Prove the following inequalities:

(a) n! <

(
n+ 1

2

)n
(2 ≤ n ∈ N);

(b)
n∏
k=1

(
k +

1

2

)
<

(
n+ 1

2

)n+1

(3 ≤ n ∈ N).

Sequences

5. Consider the sequence: a1 :=

√
1

2
and an+1 :=

√
1

2
· an (n ∈ N+). Prove that:

(a) ∀ n ∈ N+ : an > an+1;

(b) ∀ n ∈ N+ :
1

2
< an ≤

1√
2
.

Give an explicit formula for the n−th term of the sequence, and prove it by induc-
tion.

6. Consider the sequence: a1 :=
1√
2

and an+1 :=

√
1

2
+ an (n ∈ N+). Prove that:

(a) ∀ n ∈ N+ : an < an+1;

(b) ∀ n ∈ N+ : an <
1 +
√

3

2
.
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Other types

7. Prove that for all natural numbers 1 ≤ n ∈ N the following number can be divided
by 9:

4n + 15n− 1.



9. Complex numbers

9.1. Theory

9.1.1. The notion of a complex number

When solving quadratic equations we met the situation when the discriminant was neg-
ative, so we had to take the square root of a negative number, which cannot be made in
the ”world” of the real numbers. In these cases we took the conclusion, that the equation
had no real roots. For example there is no real number x so that:

x2 + 1 = 0,

or in other words: there is no x ∈ R for which we have:

x2 = −1.

Let’s make one brave step and define a ”new number” denoted by i and calling it the
imaginary unit with the following property:

i2 = −1.

It is obvious that i 6∈ R. Using this newly introduced ”object” we can define the so called
complex numbers.

Definition: Let x, y ∈ R arbitrary real numbers and i the imaginary unit, so i2 = −1.
We will call the expressions

z := x+ i · y (x, y ∈ R)

complex (composed) numbers. We will use z, w, ε, ... or z1; z2, w1; ... to denote complex
numbers.

For example:

z = 1 + 2 · i; w = −3−
√

2 · i; ε =
2

3
− i;

z1 = 2 + 0 · i = 2; z2 = 0− 6 · i = −6 · i; . . .

If

z = x+ i · y

is a complex number, then we call x the real part of z and y the imaginary part of z. In
notation:

z = x+ i · y ⇐⇒ x = Re(z) ∧ y = Im(z).
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In the upper examples:

Re(1 + 2 · i) = 1 ∧ Im(1 + 2 · i) = 2;

Re(w) = Re(−3−
√

2 · i) = −3 ∧ Im(w) = Im(−3−
√

2 · i) = −
√

2;

Re(ε) = Re

(
2

3
− i
)

=
2

3
∧ Im(ε) = Im

(
2

3
− i
)

= −1;

Re(z1) = Re(2 + 0 · i) = 2 ∧ Im(z1) = Im(2 + 0 · i) = 0.

We can see here that the imaginary part is 0, so z = x + 0 · i = x (x ∈ R) is a ”pure”
real number. So we can conclude that all the real numbers are also complex numbers with
their imaginary part beeing 0.

Re(z2) = Re(0− 6 · i) = 0 ∧ Im(z2) = Im(0− 6 · i) = −6.

In this case the real part is 0. These complex numbers of form:

z = 0 + y · i = yi (y ∈ R)

will be called ”pure” imaginary numbers. Let us denote by C the set of all complex
numbers, so:

C := {z = x+ i · y
∣∣∣ x, y ∈ R}.

A more ”precise” algebraic definition of the complex numbers will be done later in the
next semester. Our first aim in this material is to be able to make some basic algerbraic
calculations with complex numbers, so we introduce them in this quite simple way. So
now we can also state that:

R ⊂ C,
but C is a larger set then R, since for example i ∈ C \ R.

Two complex numbers are considered to be equal if and only if their real and imaginary
parts are equal respectively. So, if z = x+ iy and w = a+ ib (x, y, a, b ∈ R) are complex
numbers, then:

z = w ⇐⇒ x+ iy = a+ ib ⇐⇒ (x = a ∧ y = b).

This gives us the possibility to find a unique correspondence between the complex numbers
of form z = x+iy ∈ C and ordered pairs (x; y) ∈ R2 (points of the two-dimensional plane).
These last points may be familiar to the reader from geometry as 2-dimensional vectors or
points in the cartesian coordinate system of the plane. Having this correspondence we can
use many properties of the vectors or the ordered pairs in case of the complex numbers
as well. For example we can represent them in a plane, the so called Gauss-plane of the
complex numbers.

In the upper examples we have the following correspondences:

z = 1 + 2 · i ←→ P = (1; 2);

w = −3−
√

2 · i ←→ Q = (−3;−
√

2);

ε =
2

3
− i ←→ A = (2/3;−1);

z1 = 2 + 0 · i = 2 ←→ B = (2; 0);

z2 = 0− 6 · i = −6 · i ←→ S = (0;−6).
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9.1.2. Representing complex numbers in the Gauss-plane

Consider the complex number z = x+ iy ∈ C with x, y ∈ R. Represent the real numbers x
and y on two perpendicular axis of a coordinate system, where the horizontal axis (where
x takes all the possible real values) is called the real axe and the vertical line (where
we represent the y values) is called the imaginary axis. These two perpendicular axes
intersect each other in point (0; 0), the so called origin. As on the usual real line we also
indicate the positive direction on both axes. This ”new” coordinate system is called the
Gauss-complex plane, and each complex point z = x + iy ∈ C corresponds to one and
only one point (x; y) ∈ R2 in the cartesian two-dimensional plane denoted by R2.

As for the vectors we can also introduce the length/absolute value or modulus of a complex
number. It is useful to define the conjugate of a complex number as well as follows:

Definition: Let z = x+ iy (x, y ∈ R) be an arbitrary complex number. Its absolute value
or length or modulus is the nonnegative real number:

|z| :=
√
x2 + y2 ∈ [0; +∞),

and its conjugate is the complex number:

z := x− iy ∈ C.

For example:
|7− 4i| =

√
49 + 16 =

√
65;

| − 1 + 2i| =
√

1 + 4 =
√

5;

|i| =
√

1 = 1;

1− 2i = 1 + 2i;

−1 + 2i = −1− 2i;

−5i = 5i.

Remark: Using the so called polar coordinates of a point in the geometric plane R2 we can
also introduce the trigonometric form of a complex number, but as we mentioned before,
we only need algebraic computations and some properties of the complex numbers, so the
trigonometric representation and its use will come later in the next semester. We will only
use the so called algebraic form: z = x+ iy ∈ C of a complex number.

9.1.3. Operations with complex numbers

Definition: Let us introduce the four basic algebraic operations (addition, substraction,
multiplication, division) in C. Consider for this the complex numbers z1 = x1 + iy1 and
z2 = x2 + iy2 (x1, x2, y1, y2 ∈ R). We have by definition the following:

z1 + z2 := (x1 + iy1) + (x2 + iy2) := (x1 + x2) + (y1 + y2) · i;

z1 − z2 := (x1 + iy1)− (x2 + iy2) := (x1 − x2) + (y1 − y2) · i;
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z1 · z2 := (x1 + iy1) · (x2 + iy2) := (x1 · x2 − y1 · y2) + (x1 · y2 + x2 · y1) · i;

z1/z2 :=
z1
z2

:=
x1 + iy1
x2 + iy2

:=
x1 · x2 + y1 · y2

x22 + y22
+
−x1 · y2 + x2 · y1

x22 + y22
· i.

The results of the upper operations (the new complex numbers) are given in their algebraic
form (we can read their real and imaginary parts). Think of it for a minute why exactly
these definitions are the ones we want to use?

For example:

If z1 := 2 + 3i and z2 := −1 + 5i, then we have:

z1 + z2 = (2 + 3i) + (−1 + 5i) = 1 + 8i;

z1 − z2 = (2 + 3i)− (−1 + 5i) = 2 + 3i+ 1− 5i = 3− 2i;

z1 · z2 = (2 + 3i) · (−1 + 5i) = −2 + 10i− 3i+ 15i2 = −2 + 7i− 15 = −17 + 7i;

z1/z2 =
z1
z2

=
2 + 3i

−1 + 5i
=

(2 + 3i) · (−1− 5i)

(−1 + 5i) · (−1− 5i)
=

13− 13i

1− 25i2
=

13− 13i

26
=

1

2
− 1

2
· i;

1

1 + i
=

1− i
(1 + i) · (1− i)

=
1− i
1− i2

=
1− i

2
=

1

2
− 1

2
· i;

3z1 := 3 · z1 = 3 · (2 + 3i) = 6 + 9i;

iz1 := i · z1 = i · (2 + 3i) = 2i+ 3i2 = −3 + 2i;

z21 = (2 + 3i)2 = 4 + 12i+ 9i2 = −5 + 12i;

2z1 = 2 · (2 + 3i) = 4 + 6i;

1

z1 + 2z2
=

1

(2 + 3i) + 2 · (−1 + 5i)
=

1

13i
=

i

13i2
= − 1

13
· i.

Remark: We can observe, that the addition, substraction and multiplication with a real
scalar of complex numbers is very similar to the correspondent operations in the world
of (two dimnsional) plane-vectors, including the representations of these vectors as well.
There is no such analogy for the multiplication and the division of complex numbers and
the scalar or vectorial product (cross-product) of two vectors. We don’t even speak of
dividing two vectors.

If z = x+ iy (x, y ∈ R) is a complex number, then we have the following (in many cases
useful) identity:

z · z = (x+ iy) · (x− iy) = x2 − y2 · i2 = x2 + y2 = |z|2 (z ∈ C),

so for any complex number z we have:

z · z = |z|2 (z ∈ C),

or
|z| =

√
z · z (z ∈ C).
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If z = x + 0i = x ∈ R is a real number, then z = x and we get back the well-known
property of the real numbers:

|z| = |x| =
√
z · z =

√
x · x =

√
x2,

or √
x2 = |x| (x ∈ R).

Questions:

1. What is the geometric meaning of the following nonnegative real number, if z1 and
z2 are two arbitrary complex numbers:

|z1 − z2| ?

2. Where are in the Gauss-plane all the complex numbers z for which we have:

|z − i− 1| < 1?

3. Where are in the Gauss-plane all the complex numbers z for which we have:

|z − i| = 2?

4. Where are in the Gauss-plane all the complex numbers z for which we have:

1

|2z + 1/i− 2|
≤ 4?

9.1.4. Complex roots of polynomials with real coefficients

As a last point let us return to the initial problem of solving quadratic equations with
negative discriminant and extend this question for some (easy-solvable) equations of higher
degree, with real coefficients. For example solve the following quadratic equation (in this
case with x ∈ C):

x2 + 2x+ 4 = 0.

Using the well-known formula we get:

x1,2 =
−2±

√
−12

2
= −1±

√
−3.

Since the discriminant is −3 we still don’t have real solutions, but now on C what should
we mean by

√
−3?

Now that we have introduced the imaginary unit i, for which we have i2 = −1 we can
make the following transformations (complete square form):

(x+1)2+3 = 0 ⇐⇒ (x+1)2 = −3 ⇐⇒ (x+1)2 = 3·i2 ⇐⇒ (x+1)2−(
√

3·i)2 = 0 ⇐⇒

⇐⇒ (x+ 1−
√

3 · i) · (x+ 1 +
√

3 · i) = 0.
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From here we can see the two complex solutions:

x1,2 = −1±
√

3 · i.

We can see that the two complex solutions are the conjugate of each other. Comparing
our result to the numbers we have got from the solving formula, we can answer what

√
−3

should be, since : √
−1 = i

and √
−3 =

√
3 ·
√
−1 =

√
3 · i.

Remarks:

1. As you will see later (the next semester) the ”square root” (or more generally the
n−th (2 ≤ n ∈ N) root) of a complex number will have two (in the general case n)
values, but now we make the following agreement: when x ∈ (0; +∞) is a positive
real number, then √

−x :=
√
x · i.

Using this we can extend and use the quadratic equation’s solving formula to all the
cases when the discriminant is neagtive.

2. For example we will see later, that the complex square root of −1 is:

√
−1 = ±i,

since

(±i)2 = i2 = −1.

Let a, b, c ∈ R be arbitrary real numbers with a 6= 0 and consider the general quadratic
equation:

ax2 + bx+ c = 0 (x ∈ C),

where x can take complex values now, and suppose that the discriminant is negative (the
other cases are the same, as we saw them in our preliminary studies at school):

b2 − 4ac < 0.

With the upper agreement, we get as complex solutions the following ones:

x1,2 =
−b±

√
b2 − 4ac

2a
=
−b±

√
4ac− b2 ·

√
−1

2a
=
−b± i ·

√
4ac− b2

2a
.

Remark:

1. It can be proved, that the higher order polynomials P (for now only with real coeffi-
cients) can be factorized on R to the product of only linear or quadratic polynomials
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with real coefficients. If we have this factorization (generally it is not easy to do it),
then we can find all the real and complex solutions of the equation:

P (x) = 0 (x ∈ C).

For example solve on C the following equation (so find those numbers x ∈ C for
which P (x) = 0):

x4 − x3 − 8x2 + 9x− 9 = 0 (x ∈ C).

Solution: Observe, that (sometimes is not easy...):

x4 − x3 − 8x2 + 9x− 9 = 0 ⇐⇒ x4 − 9x2 − x3 + 9x+ x2 − 9 = 0 ⇐⇒

⇐⇒ x2 ·(x2−9)−x ·(x2−9)+(x2−9) = 0 ⇐⇒ (x2−9) ·(x2−x+1) = 0 ⇐⇒

⇐⇒ (x− 3) · (x+ 3) · (x2 − x+ 1) = 0 ⇐⇒

⇐⇒ x− 3 = 0 ∨ x+ 3 = 0 ∨ x2 − x+ 1 = 0.

We get the solutions:

x1,2 = ±3; x3,4 =
1±
√

3 · i
2

.

9.1.5. Checking questions to the theory and its use

1. When can we say that z = w, if z, w ∈ C are complex numbers?

2. What is the definition of C?

3. What is the definition of the conjugate of a complex number z?

4. Give the real and imaginary parts of the complex number
2i− 1

5 + 3i
.

5. If z = x + iy ∈ C;x, y ∈ R is a complex number, then give the real and imaginary
parts of z2.

6. Consider the following complex numbers: z1 6= 0 and z2 ∈ C. Give the real and

imaginary parts of
z2
z1

.

7. For what complex numbers z do we have:

z2 + z2 = 0 ?

8. Illustrate all the complex numbers z in the complex plane for which:

Re(z − 1 + i) = 2 .
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9. Give all the complex numbers z in the complex plane for which:

−1 < Rez ≤ 3 ?

10. Evaluate |z| for z = (
√

2− i · 4
√

3)2.

11. Where are the complex numbers z in the complex plane, for which z3 is a real
number?

12. Evaluate

(
1− i
1 + i

)2018

.

13. Evaluate 1 +
1 + i

1− i
· i.

14. Solve the following equation in C :

x3 − 1 = 0.

15. What are the real and imaginary parts of
1

z
, if z = x+ iy ∈ C \ {0}.

16. Define the absolute value of a complex number z.

17. When is it true that: z = z ?

18. What is the geometric meaning of |z −
√

3 + i|?

19. Evaluate z − z.

20. Find all the complex numbers z (and illustrate them on the complex plane) for
which we have:

|Imz| > 2.

21. Find all the complex numbers z (and illustrate them) for which we have:

|Imz + 1| < 1 ∧ |Rez − 1| ≤ 2.

22. Solve the following equation on the set of the complex numbers:

x2 + 2x+ 3 = 0.

23. Solve the following equation on the set of the complex numbers:

x3 + 1 = 0.

24. Solve the following equation on the set of the complex numbers:

x2 + 8 = 0.

25. Solve the following equation on the set of the complex numbers:

x4 − 16 = 0.

26. Solve the following equation on the set of the complex numbers:

x4 + x2 − 1 = 0.
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9.2. Exercises

9.2.1. Exercises for class work

1. Find all the numbers x, y ∈ R for which the following equalities are true (i is the
imaginary unit : i2 = −1):

(a) (1− 2i) · x+ (1 + 2i) · y = 1 + i;

(b) (2 + i) · x− (2− i) · y = x− y + 2i;

(c) (4− 3i) · x2 + (3 + 2i) · xy = 4y2 − 1

2
x2 + (3xy − 2y2) · i;

(d)
x− 3

3 + i
+
y − 3

3− i
= i.

2. Evaluate the following complex numbers and give their algebric form:

(a)
1

2− 3i
;

(b)
1 + 5i

3 + 2i
;

(c) (1− 2i) · (5 + i);

(d)
1

1 +
1

1 +
1

1 + i

;

(e) (2− i)2 + (2 + i)3;

(f) (3−
√

2i)3 · (3 +
√

2i);

(g)
1 + i

3− i
+

3− i
1 + i

;

(h)
(1 + i)2

1− i
+

(1− i)3

(1 + i)2
;

(i)

(
1 + i

1− i

)2018

+

(
1− i
1 + i

)2019

.

3. Prove that the given complex numbers are roots of the following equations:

(a) x3 − x2 + 8x+ 10 = 0; z1 := 1 + 3i ∧ z2 := 1− 3i;

(b) x4 + x2 + 1 = 0; z1 := −1

2
+ i ·

√
3

2
∧ z2 := −1

2
− i ·

√
3

2
.
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4. Consider the following complex numbers:

z1 =

√
2 + i√
2− i

∧ z2 =
i

−2
√

2 + 2i
.

Evaluate:

z1 + z2; z1 · z2;
z1
z2

; z21 + z22 ; z31 + z32 ; z41 + z42 ; z−31 · z52 .

5. Evaluate:

(a) S2018 =
2018∑
k=0

ik;

(b) S2019 =
2019∑
k=0

(−1)k · ik.

6. Suppose that for the complex numbers z, w ∈ C we have: |z| = |w| = 1. Prove that
in this case:

z + w

1 + z · w
∈ R.

7. Evaluate |z|, if:

z =

(√
2 +
√

2 + i ·
√

2−
√

2

)4

.

8. Find all those complex numbers z for which z3 is an imaginary number.

9. Which complex numbers z ∈ C satisfy the following equations:

(a) z2 = 1 + i;

(b) z3 = z ?

Illustrate these numbers on the complex plane.

10. Prove that for all complex numbers z, w ∈ C we have:

|z + w|2 + |z − w|2 = 2 · (|z|2 + |w|2).

What is the geometric meaning of this equation?

11. What is the smallest and the greatest value of |z − i− 1| and at which values of z
will it take them, if:

(a) Imz = −2 ?
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(b) Imz = 2 · Rez?

(c) |z + 1| = 1?

Polynomials with real coefficients

12. Solve the following equations on C:

(a) x3 − 1 = 0;

(b) x4 − 1 = 0;

(c) x2 − 2
√

2 · x+ 5 = 0;

(d) x3 − 9x2 + 18x+ 28 = 0;

(e) x4 − 30x2 + 289 = 0.

9.2.2. Homework and more exercises to practice

1. Find x, y ∈ R so that:

(a) 2x+ i+ x · i · (x+ y) = 3 + y · (1− i);
(b) 3 ·

√
x2 − 2y + (1− i)x2 = 2 · (1 + 2i)y + 4− 19i;

(c)
2

3x+ iy
− 3

5 + i
= 2;

(d)
x− 1

1 + i
+
y + 1

1− i
=
i

2
.

2. Evaluate the following expressions, and give their algebraic form:

(a)
3√

2− i
;

(b)
i−
√

5

i+
√

5
;

(c) (i2 − 7i) · (2 + i);

(d)
1

1 +
1

1 +
1

i− 1

;

(e) (2 + i)2 + (2− 3i)3;

(f)
i− 6

2 + 5i
+

2− i
2 + i

;

(g)

(
−1 + i

√
3

2

)6

+

(
−1− i

√
3

2

)6

;
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(h)

(
−1 + i

√
3

2

)5

+

(
−1− i

√
3

2

)5

;

(i)

(√
3− i√
3 + i

)6

;

(j)
(1/
√

2 + i)3 − (1/
√

2− i)3

(1/
√

2 + i)2 − (1/
√

2− i)2
;

(k)

(
19 + 7i

9− i

)4

+

(
20 + 5i

7 + 6i

)4

.

3. Prove that the given numbers are the roots of the correspondent equation:

(a) x3 − 3
√

2 · x2 + 7x− 3
√

2 = 0; z1 :=
√

2− i ∧ z2 :=
√

2 + i;

(b) x4−2x3+(6+
√

2)x2−8x+4·(
√

2+2) = 0; z1,2 := ±2i ∧ z3,4 := 1±i·
√

1 +
√

2.

4. Consider the following complex numbers:

z1 =
5i√

3 +
√

2 · i
∧ z2 =

5√
2 +
√

3 · i
.

Evaluate the following expressions and give their algebraic form:

z1 + z2; z1 · z2;
z1
z2

; z21 + z22 ; z31 + z32 ; z41 + z42 ; z31 · z−32 − z−31 · z32 .

5. Find all the numbers n ∈ N+ for which we have:

(1 + i)n = (1− i)n .

6. Prove that for all natural numbers n ∈ N we have:

(1 + i)n + (1− i)n ∈ R .

7. Evaluate:

(a) S2018 =
2018∑
k=1

(1 + i)k;

(b) S2019 =
2019∑
k=1

(
1− i
1 + i

)3k

.
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8. Prove that for all the parameters a ∈ R the absolute value of the following complex
number is 1:

z :=
1 + ia

1− ia
.

9. Find |z|, if:

z =
1(√√

2 + 1− i ·
√√

2− 1
)4 .

10. Find all the complex numbers z for which z4 is a real number. Illustrate these
numbers on the complex plane.

11. Find all the complex numbers z for which z4 is an imaginary number. Illustrate
them on the complex plane.

12. Find all the complex numbers z for which we have:

(a) |z + i| = |z − 1| = |z − iz|;
(b) |z + 1− i| = 1 ∧ |z − 1 + i| =

√
5;

(c) |z + 2 + i| = 1 ∧ |z| =
√

5− 1;

(d) |z − 1| = |1 + iz| =
√
z · z.

13. What complex numbers z ∈ C satisfy the following conditions:

(a) z2 = 1− i
√

3;

(b) z3 =
i

z
?

Illustrate these numbers on the complex plane.

14. What will be the smallest and the greatest value of |z − 1 + i| (and for what values
of z does it take them), if:

(a) Imz = 2;

(b) Rez = −1;

(c) |z − i| = 1.

Polynomials with real coefficients

15. Solve the following equations on C:

(a) x2 + 2x+ 3 = 0;
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(b) x3 + 1 = 0;

(c) x6 + 1 = 0;

(d) x3 −
√

2 · x2 + 4x− 4
√

2 = 0;

(e) x4 − 4x3 + 10x2 − 20x+ 25 = 0.


