Titokmegosztások és elosztott protokollok

Péter Sziklai¹, Péter Ligeti²

¹ELTE, Faculty of Science, Dept. of Computer Science ²ELTE, Faculty of Informatics, Dept. of Computeralgebra

10-11 June, 2021 Teams, Hungary

Part I: Secret Sharing

Secret sharing scheme

- Some secret data is distributed into shares
- Each participant gets a share
- ► The "good" guys can recover the secret
- Perfect SSS: the other guys can learn "nothing"

Parameters

- Dealer has secret s
- Participants $\mathcal{P} = \{1, \ldots, n\}$
- $\blacktriangleright \text{ Qualified sets } \mathcal{A} \subseteq 2^{\mathcal{P}}$

THE NRDI F

Algorithmic point of view

- ▶ Distribution: $s \rightarrow (s_1, \ldots, s_n)$ by the dealer
- ▶ Reconstruction $(s_{i_1}, \ldots, s_{i_k}) \rightarrow s$ by $\{i_1, \ldots, i_k\} \subseteq \mathcal{P}$

Security point of view

Given \mathcal{P}, \mathcal{A} choose s and compute shares s_i such that

- ▶ $\{i_1, ..., i_k\} \in A \Rightarrow s$ can be computed from $s_{i_1}, ..., s_{i_k}$
- $\{j_1, \ldots, j_l\} \notin A \Rightarrow$ all possible *s* can be computed with the same probability from s_{j_1}, \ldots, s_{j_l} (i.e. independence)

FINANCED FROM THE NRDI FUND

Problems

- ▶ For which A exists a SSS? (\forall)
- ► Are these methods efficient? (Efficient???)

Efficient schemes

- ► Storage: low information ratio + ideal schemes
- Computational (Reconstruction)

Multilevel hierarchical threshold scheme

- $\blacktriangleright \mathcal{P} = \bigcup_{i=1}^m \mathcal{L}_i$
- Different thresholds for different levels: $t_1 < \cdots < t_m$
- $\blacktriangleright |A \cap \bigcup_{i=1}^{j} \mathcal{L}_{j}| \geq t_{j}$
- Disjunctive: $\mathcal{A} = \{A \subseteq \mathcal{P} : \exists j (|A \cap \bigcup_{i=1}^{j} \mathcal{L}_{j}| \geq t_{j})\}$
- Conjunctive: $\mathcal{A} = \{A \subseteq \mathcal{P} : \forall j (|A \cap \bigcup_{i=1}^{j} \mathcal{L}_{j}| \geq t_{j})\}$

Multilevel hierarchical constructions

- ► Disjunctive: several solutions
- Conjunctive: some sporadic constructions only

THF NRDI

Multilevel conjunctive hierarchical threshold scheme

- ► Construction: random or monotone allocation of elements (Tassa '04)
- ▶ Reconstruction: Birkhoff interpolation (Tassa '04)
- Reconstruction: bivariate Lagrange interpolation (Tassa, Dyn '09)
- Drawback: extremely large q

2-level conjunctive hierarchical threshold scheme

- $\blacktriangleright \ \mathcal{P} = \mathcal{U} \bigcup \mathcal{L}$
- $\blacktriangleright \ \mathcal{A}^* = \binom{\mathcal{U} \cup \mathcal{L}}{k} \setminus \binom{\mathcal{L}}{k}$
- (k, 1)-scheme
- ► Construction: intersection properties in a projective plane (Fuji-Hara, Miao '08)
- Reconstruction: linear algebra (Brickell, Stinson '92)

Result (LP, SzP, Takáts)

- ► 3-level construction: (4,2,1) scheme
- Based on finite geometry tools

►
$$|\mathcal{L}_1| = |\mathcal{L}_2| = q^{1/3}, |\mathcal{L}_3| = 1/3 \cdot q$$

Ideal scheme

Result (Gyarmati, LP, SzP, Takáts)

- ▶ 3-level construction: (r, s, n+1) scheme
- Based on finite geometry tools

$$\blacktriangleright |\mathcal{L}_1| = |\mathcal{L}_2| = c \cdot q^{1/n}, |\mathcal{L}_3| = c \cdot q$$

Ideal scheme

M

Result (Gyarmati, LP, SzP, Takáts)

- 4-level construction: (r, s, u, n+1) scheme
- Based on finite geometry tools

►
$$|\mathcal{L}_1| = |\mathcal{L}_2| = |\mathcal{L}_3| = c \cdot q^{1/n}, |\mathcal{L}_4| = c \cdot q$$

► Ideal scheme

Definition: pencil arc (k-parc)

Let $\Psi_0, ..., \Psi_q$ be a pencil through some \prod_{n-2} in PG(n, q). A k-parc $\mathcal{K} \subseteq PG(n, q)$, $|\mathcal{K}| = k$, such that:

- 1. Each $\mathcal{K} \cap \Psi_i$ is a k_i -arc in $\prod_{n=1}$ for $0 \le i \le q$, where $k_i = |\mathcal{K} \cap \Psi_i|$;
- 2. $\mathcal{K} \cap \Psi_i \cap \Psi_j = \emptyset$ for $0 \le i \ne j \le q$;

3. Any n+1 points of $\mathcal K$ not contained in any single Ψ_i are independent.

Note (Fuji-Hara, Miao): if there is a k-parc in PG(t-1, q) as above, with $k = k_0 + k_1 + ... + k_m$ points, $k_i \ge 1$ for $0 \le i \le m$ and $k_0 = \min\{k_i\}$, then there exists an ideal secret sharing scheme realizing compartmented access structure with upper bounds $t_1 = \cdots = t_m = t - 1$ on $|\mathcal{P}| = k - k_0$ participants.

FINANCED FROM THE NRDI FUND

Pencil arcs from planar arcs (Ligeti, SzP, Takáts) $PG(2, q^h) = AG(2, q^h) \cup (\ell_{\infty})$ Identify $AG(2, q^h) \sim X \times Y$, where $X \sim \mathbb{F}_q^h$ and $Y \sim \mathbb{F}_q^h$ are the horizontal and the vertical axes. Let's call here the translates of the first factor (horizontal axis) the horizontal lines $\ell_0, ..., \ell_{q^h-1}$, which, together with ℓ_{∞} , form the pencil with center P. Let L_1 be a (h-1)-dim q-subspace of the horizontal axis, i.e. $X = L_0 \times L_1$ for some 1-dim q-vectorspace $L_0 \subset X$, wlog $L_0 = \mathbb{F}_q$. Let L_2 be a 1-dim q-subspace of the vertical axis Y, again wlog $L_2 = \mathbb{F}_q$. Finally, suppose wlog $\ell_0, ..., \ell_{q-1}$ are the pencil lines intersecting L_2 .

Let $A_0 = L_1 \times L_2$. Any horizontal translate of it is either disjoint from A_0 or identical with it, hence they form a partition $\bigcup_{\lambda \in \mathbb{F}_q} (A_0 + \lambda) = \ell_0 \bigcup ... \cup \ell_{q-1}$. Note that here, for any point $Q \in \ell_0 \cup ... \cup \ell_{q-1}$, it has coordinates $Q = (a + \lambda, y)$, where $a \in L_1, \lambda \in L_0$ and $y \in L_2$. Consider the affine plane $AG(2, q) \sim L_0 \times L_2$ and an arc S in it. Define

$$\mathcal{K} := \{ (\mathbf{a} + \lambda, \mathbf{y}) : \mathbf{a} \in L_1, (\lambda, \mathbf{y}) \in S \}.$$

M D

Pencil arcs from planar arcs

$$\mathcal{K}:=\{(a+\lambda,y):a\in L_1,(\lambda,y)\in S\}$$

Observe that K consists of |S| "line segments", each contained in one of the pencil lines ℓ_i and of size $|L_1| = q^{h-1}$. K is a pencil arc (of size $|S|q^{h-1}$) There exist arcs of size q + 1 in AG(2, q) for q odd and arcs of size q + 2 in AG(2, q)for q even \implies (many) k-parcs with $k = q^h + q^{h-1}$ in planes of odd order q^h ; and k-parcs with $k = q^h + 2q^{h-1}$ in planes of even order q^h .

Pencil arcs from caps (LP, SzP, Takáts) $PG(2, q^h) = AG(2, q^h) \cup (\ell_{\infty})$

Let L_1 be a (h-s)-dim \mathbb{F}_q -subspace of the horizontal axis, i.e. $X = L_0 \times L_1$ for some s-dim \mathbb{F}_q -vectorspace $L_0 \subset X$. Let L_2 be a 1-dim \mathbb{F}_q -subspace of the vertical axis Y, wlog we may assume $L_2 = \mathbb{F}_q$. Suppose wlog that $\ell_0, ..., \ell_{q-1}$ are the pencil lines intersecting L_2 .

Let $A_0 = L_1 \times L_2$. Any horizontal translate of it is either disjoint from A_0 or identical with it, hence they form a partition $\bigcup_{v \in L_0} (A_0 + v) = \ell_0 \cup ... \cup \ell_{q-1}$. Note that here, for any point $Q \in \ell_0 \cup ... \cup \ell_{q-1}$, it has coordinates Q = (a + v, y), where $a \in L_1, v \in L_0$ and $y \in L_2$. Consider the affine space $AG(s + 1, q) \sim L_0 \times L_2$ and a **cap** *S* in it. (cap: a pointset with no collinear triple of points) Now define

$$K := \{(a + v, y) : a \in L_1, (v, y) \in S\}.$$

Observe that K consists of |S| line segments', each contained in one of the pencil lines ${}_{D}^{M}$ ℓ_{i} and of size $|L_{1}| = q^{h-s}$. Claim: K is a pencil arc (of size $|S|q^{h-s}$).

Definition: hierarchical arc (harc)

Let Ψ be a hyperplane of PG(n, q), \mathcal{K}_1 be a set of k_1 points in $PG(n, q) \setminus \Psi$, and \mathcal{K}_2 be a set of k_2 points in Ψ . A hierarchical arc in PG(n, q) is a set $\mathcal{K} = \mathcal{K}_1 \cup \mathcal{K}_2$ of $k_1 + k_2$ points in PG(n, q), also called a (k_1, k_2) -harc, satisfying the following conditions: (1) \mathcal{K}_1 is a k_1 -arc in PG(n, q); (2) \mathcal{K}_2 is a k_2 -arc in PG(n-1, q); (3) Any n + 1 points of \mathcal{K} not contained in the hyperplane Ψ are independent. Fuji-Hara and Miao showed that if there is a (k_1, k_2) -harc in PG(t - 1, q) with $k_1 \ge 2$ and $k_2 \ge 0$ then there exists an ideal conjunctive (1, t)-hierarchical scheme with $|\mathcal{P}| = k_1 + k_2 - 1$.

A conjunctive hierarchical (1, 2, n + 1)-scheme $(n \ge 3)$: new constructions for harcs in PG(n, q) (LP, SzP, Takáts)

A geometric scheme composed of 3 levels $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3$. A valid subset should contain at least n + 1 elements from $\mathcal{L}_1 \cup \mathcal{L}_2 \cup \mathcal{L}_3$, such that at least 2 elements are from $\mathcal{L}_1 \cup \mathcal{L}_2$ and at least 1 element from \mathcal{L}_1 . In $PG(n, q) = AG(n, q) \cup H_{\infty}$ we will choose our sets as follows. Let

- ► $|\mathcal{L}_1| = k_1 = c_1 q^{1/n}$ be a subset of an arc (e.g. a so-called normal rational curve) in AG(n, q);
- ▶ $|\mathcal{L}_2| = k_2 = c_2 q^{1/n}$ be a subset of an arc, e.g. a normal rational curve in H_∞) and
- $|\mathcal{L}_3| = k_3 = c_3 q^{1/n}$ be a subset of an arc, e.g. a normal rational curve in H, which is a (n-2)-dimensional subspace of H_{∞} ;
- furthermore, a set $\mathcal{D} \subset AG(n,q)$ of size c_4q is determined, such that the *dealer*, i.e. a point D will be chosen from \mathcal{D} .

Results

- ▶ Novel construction: finite geometry tools (LP, SzP, Takáts DCC)
- For special parameters: (1, n), (1, 2, n)
- Advantages: ideal, smaller field size $(O(n^3) \text{ improvement})$
- Drawbacks: restrictions on the number/value of thresholds

Results

- ► Goal: generalize the constructions
- ► Done: arbitrary levels, arbitrary thresholds, ideal, improved field size

TODO

- Optimization (size of levels & field)
- Additional constructions
- Disjunctive schemes
- Constructions based on polynomials

NATIONAL RESEARCH, DEVELOPMENT AND INNOVATION OFFICE HUNGARY FINANCED FROM THE NRDI FUND

Results

Conference talks

 M. Gyarmati, P. Ligeti, P. Sziklai, M. Takáts: Multilevel secret sharing by finite geometry, 21st Central European Conference on Cryptology (CECC 2021)

Papers

- P. Ligeti, P. Sziklai, M. Takáts: Generalized threshold secret sharing and finite geometry, *Designs, Codes and Crypt.* DOI 10.1007/s10623-021-00900-9
- M. Gyarmati, P. Ligeti: On the information ratio of graphs without high-degree neighbours, Discrete Applied Mathematics, under review
- M. Gyarmati, P. Ligeti, P. Sziklai, M. Takáts: Conjunctive hierarchical secret sharing by finite geometry, under construction

THE NRDI FUND

Part II: Secure Distributed Applications

Problems

- Centralized vs. distributed protocols
- ► Security drawbacks: DOS, TTP, ...
- Device constraints: computation, communication, location, ...
- Crypto drawbacks: efficient tools only

Examples

- Buzzwords: IoT + cloud
- Data validation in IoT
- ABE in cloud
- Distributed resource discovery (location-based, loT/ABE support)

M

THE INNULTUIND

Resource discovery in IoT

► Gather and discover real-time generated data by IoT (re)sources

- ► Gather: gateways
- Discover: clients

Problems

- Diversity of IoT perception layer
- Avoid TTPs distributed communication + computation

Location-awareness

- Security requirements
 - ► Fine-grained access control
 - Privacy
 - Availability

Solutions – distributed*

Ideas

- Computation: additive secret sharing
- ► Discoverability: region-based ID generation + DHT

Solution – security*

Ideas

- Attribute-based access control
- Multi-authority scheme

Solution

Results (Kamel, Reich, Yan, LP '21 Sensors)

- Precise security requirements + proofs
- Preliminary implementation results (on few Raspberry PI 3)

Next steps

- ► Validation on large scale test-network
- Extend the security model
- Formal protocol verification

Results

Conference talks

- Y. Yan, P. Ligeti: Improving Security and Privacy in Attribute-based Encryption with Anonymous Credential, 4th International Conference on Recent Innovations in Computing (ICRIC-2021)
- M. Yaseen, M.B.M. Kamel, P. Ligeti: Security Analysis and Deployment Measurement of Transport Layer Security Protocol, (ICRIC-2021)

Papers

- M. Kamel, Y. Yan, P. Ligeti, C. Reich: Attred: Attribute based Resource Discovery for IoT, Sensors under review
- M. Kamel, P. Ligeti, Á. Nagy, C. Reich: Distributed Address Table (DAT): A Decentralized Model for End-to-End Communication in IoT, *Peer-to-Peer Networking and Applications*, under review
- M. Kamel, P. Ligeti, C. Reich: Lamred: Location-Aware and Privacy Preserving Multi-Layer Resource Discovery for IoT, Acta Cybernetica to appear

M D

