Titokmegosztások és elosztott protokollok

Péter Sziklai ${ }^{1}$, Péter Ligeti ${ }^{2}$
${ }^{1}$ ELTE, Faculty of Science, Dept. of Computer Science
${ }^{2}$ ELTE, Faculty of Informatics, Dept. of Computeralgebra

10-11 June, 2021
Teams, Hungary

Part I: Secret Sharing

Motivation

Secret sharing scheme

- Some secret data is distributed into shares
- Each participant gets a share
- The "good" guys can recover the secret
- Perfect SSS: the other guys can learn „nothing"

Parameters

- Dealer has secret s
- Participants $\mathcal{P}=\{1, \ldots, n\}$
- Qualified sets $\mathcal{A} \subseteq 2^{\mathcal{P}}$

Motivation

Algorithmic point of view

- Distribution: $s \rightarrow\left(s_{1}, \ldots, s_{n}\right)$ by the dealer
- Reconstruction $\left(s_{i_{1}}, \ldots, s_{i_{k}}\right) \rightarrow s$ by $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq \mathcal{P}$

Security point of view

Given \mathcal{P}, \mathcal{A} choose s and compute shares s_{i} such that

- $\left\{i_{1}, \ldots, i_{k}\right\} \in \mathcal{A} \Rightarrow s$ can be computed from $s_{i_{1}}, \ldots, s_{i_{k}}$
- $\left\{j_{1}, \ldots, j_{l}\right\} \notin \mathcal{A} \Rightarrow$ all possible s can be computed with the same probability from $s_{j_{1}}, \ldots, s_{j_{j}}$ (i.e. independence)

Hungary

Motivation

Problems

- For which \mathcal{A} exists a SSS? (\forall)
- Are these methods efficient? (Efficient???)

Efficient schemes

- Storage: low information ratio + ideal schemes
- Computational (Reconstruction)

Generalized threshold schemes

Multilevel hierarchical threshold scheme

- $\mathcal{P}=\bigcup_{i=1}^{m} \mathcal{L}_{i}$
- Different thresholds for different levels: $t_{1}<\cdots<t_{m}$
- $\left|A \cap \bigcup_{i=1}^{j} \mathcal{L}_{j}\right| \geq t_{j}$
- Disjunctive: $\mathcal{A}=\left\{A \subseteq \mathcal{P}: \exists j\left(\left|A \cap \bigcup_{i=1}^{j} \mathcal{L}_{j}\right| \geq t_{j}\right)\right\}$
- Conjunctive: $\mathcal{A}=\left\{A \subseteq \mathcal{P}: \forall j\left(\left|A \cap \bigcup_{i=1}^{j} \mathcal{L}_{j}\right| \geq t_{j}\right)\right\}$

Multilevel hierarchical constructions

- Disjunctive: several solutions
- Conjunctive: some sporadic constructions only

Generalized threshold schemes

Multilevel conjunctive hierarchical threshold scheme

- Construction: random or monotone allocation of elements (Tassa '04)
- Reconstruction: Birkhoff interpolation (Tassa '04)
- Reconstruction: bivariate Lagrange interpolation (Tassa, Dyn '09)
- Drawback: extremely large q

Generalized threshold schemes

2-level conjunctive hierarchical threshold scheme

- $\mathcal{P}=\mathcal{U} \cup \mathcal{L}$
- $\mathcal{A}^{*}=\binom{\mathcal{U} \cup \mathcal{L}}{k} \backslash\binom{\mathcal{L}}{k}$
- $(k, 1)$-scheme
- Construction: intersection properties in a projective plane (Fuji-Hara, Miao '08)
- Reconstruction: linear algebra (Brickell, Stinson '92)

Generalized threshold schemes

Result (LP, SzP, Takáts)

- 3-level construction: $(4,2,1)$ scheme
- Based on finite geometry tools
- $\left|\mathcal{L}_{1}\right|=\left|\mathcal{L}_{2}\right|=q^{1 / 3},\left|\mathcal{L}_{3}\right|=1 / 3 \cdot q$
- Ideal scheme

Result (Gyarmati, LP, SzP, Takáts)

- 3-level construction: $(r, s, n+1)$ scheme
- Based on finite geometry tools
- $\left|\mathcal{L}_{1}\right|=\left|\mathcal{L}_{2}\right|=c \cdot q^{1 / n},\left|\mathcal{L}_{3}\right|=c \cdot q$
- Ideal scheme

Generalized threshold schemes

Result (Gyarmati, LP, SzP, Takáts)

- 4-level construction: $(r, s, u, n+1)$ scheme
- Based on finite geometry tools
- $\left|\mathcal{L}_{1}\right|=\left|\mathcal{L}_{2}\right|=\left|\mathcal{L}_{3}\right|=c \cdot q^{1 / n},\left|\mathcal{L}_{4}\right|=c \cdot q$
- Ideal scheme

The geometric constructions, part 1

Definition: pencil arc (k-parc)
Let $\Psi_{0}, \ldots, \Psi_{q}$ be a pencil through some Π_{n-2} in $P G(n, q)$. A k-parc $\mathcal{K} \subseteq P G(n, q)$, $|\mathcal{K}|=k$, such that:

1. Each $\mathcal{K} \cap \Psi_{i}$ is a k_{i}-arc in Π_{n-1} for $0 \leq i \leq q$, where $k_{i}=\left|\mathcal{K} \cap \Psi_{i}\right|$;
2. $\mathcal{K} \cap \Psi_{i} \cap \Psi_{j}=\emptyset$ for $0 \leq i \neq j \leq q$;
3. Any $n+1$ points of \mathcal{K} not contained in any single Ψ_{i} are independent.

Note (Fuji-Hara, Miao): if there is a k-parc in $P G(t-1, q)$ as above, with $k=k_{0}+k_{1}+\ldots+k_{m}$ points, $k_{i} \geq 1$ for $0 \leq i \leq m$ and $k_{0}=\min \left\{k_{i}\right\}$, then there exists an ideal secret sharing scheme realizing compartmented access structure with upper bounds $t_{1}=\cdots=t_{m}=t-1$ on $|\mathcal{P}|=k-k_{0}$ participants.

The geometric constructions, part 1

Pencil arcs from planar arcs (Ligeti, SzP, Takáts) $\quad P G\left(2, q^{h}\right)=A G\left(2, q^{h}\right) \cup\left(\ell_{\infty}\right)$

Identify $A G\left(2, q^{h}\right) \sim X \times Y$, where $X \sim \mathbb{F}_{q}^{h}$ and $Y \sim \mathbb{F}_{q}^{h}$ are the horizontal and the vertical axes. Let's call here the translates of the first factor (horizontal axis) the horizontal lines $\ell_{0}, \ldots, \ell_{q^{h}-1}$, which, together with ℓ_{∞}, form the pencil with center P. Let L_{1} be a $(h-1)$-dim q-subspace of the horizontal axis, i.e. $X=L_{0} \times L_{1}$ for some 1-dim q-vectorspace $L_{0} \subset X$, wlog $L_{0}=\mathbb{F}_{q}$. Let L_{2} be a 1-dim q-subspace of the vertical axis Y, again wlog $L_{2}=\mathbb{F}_{q}$. Finally, suppose wlog $\ell_{0}, \ldots, \ell_{\boldsymbol{q}-1}$ are the pencil lines intersecting L_{2}.
Let $A_{0}=L_{1} \times L_{2}$. Any horizontal translate of it is either disjoint from A_{0} or identical with it, hence they form a partition $\cup_{\lambda \in \mathbb{F}_{q}}\left(A_{0}+\lambda\right)=\ell_{0} \cup \ldots \cup \ell_{q-1}$. Note that here, for any point $Q \in \ell_{0} \cup \ldots \cup \ell_{q-1}$, it has coordinates $Q=(a+\lambda, y)$, where $a \in L_{1}, \lambda \in L_{0}$ and $y \in L_{2}$.
Consider the affine plane $A G(2, q) \sim L_{0} \times L_{2}$ and an arc S in it. Define

$$
K:=\left\{(a+\lambda, y): a \in L_{1},(\lambda, y) \in S\right\} .
$$

The geometric constructions, part 1

Pencil arcs from planar arcs

$$
K:=\left\{(a+\lambda, y): a \in L_{1},(\lambda, y) \in S\right\}
$$

Observe that K consists of $|S|$ "line segments", each contained in one of the pencil lines ℓ_{i} and of size $\left|L_{1}\right|=q^{h-1}$.
K is a pencil arc (of size $|S| q^{h-1}$)
There exist arcs of size $q+1$ in $A G(2, q)$ for q odd and arcs of size $q+2$ in $A G(2, q)$ for q even \Longrightarrow (many) k-parcs with $k=q^{h}+q^{h-1}$ in planes of odd order q^{h}; and k-parcs with $k=q^{h}+2 q^{h-1}$ in planes of even order q^{h}.

The geometric constructions, part 2

Pencil arcs from caps (LP, SzP, Takáts) $\quad P G\left(2, q^{h}\right)=A G\left(2, q^{h}\right) \cup\left(\ell_{\infty}\right)$

Let L_{1} be a $(h-s)$-dim \mathbb{F}_{q}-subspace of the horizontal axis, i.e. $X=L_{0} \times L_{1}$ for some s-dim \mathbb{F}_{q}-vectorspace $L_{0} \subset X$. Let L_{2} be a 1 - $\operatorname{dim} \mathbb{F}_{q}$-subspace of the vertical axis Y, wlog we may assume $L_{2}=\mathbb{F}_{q}$. Suppose wlog that $\ell_{0}, \ldots, \ell_{\boldsymbol{q}-1}$ are the pencil lines intersecting L_{2}.
Let $A_{0}=L_{1} \times L_{2}$. Any horizontal translate of it is either disjoint from A_{0} or identical with it, hence they form a partition $\cup_{v \in L_{0}}\left(A_{0}+v\right)=\ell_{0} \cup \ldots \cup \ell_{q-1}$. Note that here, for any point $Q \in \ell_{0} \cup \ldots \cup \ell_{q-1}$, it has coordinates $Q=(a+v, y)$, where $a \in L_{1}, v \in L_{0}$ and $y \in L_{2}$.
Consider the affine space $A G(s+1, q) \sim L_{0} \times L_{2}$ and a cap S in it. (cap: a pointset with no collinear triple of points) Now define

$$
K:=\left\{(a+v, y): a \in L_{1},(v, y) \in S\right\} .
$$

Observe that K consists of $|S|$ line segments', each contained in one of the pencil lines ℓ_{i} and of size $\left|L_{1}\right|=q^{h-s}$. Claim: K is a pencil arc (of size $\left.|S| q^{h-s}\right)$.

The geometric constructions, part 3

Definition: hierarchical arc (harc)
Let Ψ be a hyperplane of $P G(n, q), \mathcal{K}_{1}$ be a set of k_{1} points in $P G(n, q) \backslash \Psi$, and \mathcal{K}_{2} be a set of k_{2} points in Ψ. A hierarchical arc in $\operatorname{PG}(n, q)$ is a set $\mathcal{K}=\mathcal{K}_{1} \cup \mathcal{K}_{2}$ of $k_{1}+k_{2}$ points in $P G(n, q)$, also called a $\left(k_{1}, k_{2}\right)$-harc, satisfying the following conditions:
(1) \mathcal{K}_{1} is a k_{1}-arc in $P G(n, q)$;
(2) \mathcal{K}_{2} is a k_{2}-arc in $P G(n-1, q)$;
(3) Any $n+1$ points of \mathcal{K} not contained in the hyperplane Ψ are independent.

Fuji-Hara and Miao showed that if there is a (k_{1}, k_{2})-harc in $P G(t-1, q)$ with $k_{1} \geq 2$ and $k_{2} \geq 0$ then there exists an ideal conjunctive ($1, t$)-hierarchical scheme with $|\mathcal{P}|=k_{1}+k_{2}-1$.

The geometric constructions, part 3

A conjunctive hierarchical ($1,2, n+1$)-scheme ($n \geq 3$): new constructions for harcs in $P G(n, q)$ (LP, SzP, Takáts)

A geometric scheme composed of 3 levels $\mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}$. A valid subset should contain at least $n+1$ elements from $\mathcal{L}_{1} \cup \mathcal{L}_{2} \cup \mathcal{L}_{3}$, such that at least 2 elements are from $\mathcal{L}_{1} \cup \mathcal{L}_{2}$ and at least 1 element from \mathcal{L}_{1}.
In $P G(n, q)=A G(n, q) \cup H_{\infty}$ we will choose our sets as follows. Let

- $\left|\mathcal{L}_{1}\right|=k_{1}=c_{1} q^{1 / n}$ be a subset of an arc (e.g. a so-called normal rational curve) in $A G(n, q)$;
- $\left|\mathcal{L}_{2}\right|=k_{2}=c_{2} q^{1 / n}$ be a subset of an arc, e.g. a normal rational curve in H_{∞}) and
- $\left|\mathcal{L}_{3}\right|=k_{3}=c_{3} q^{1 / n}$ be a subset of an arc, e.g. a normal rational curve in H, which is a $(n-2)$-dimensional subspace of H_{∞};
- furthermore, a set $\mathcal{D} \subset A G(n, q)$ of size $c_{4} q$ is determined, such that the dealer, i.e. a point D will be chosen from \mathcal{D}.

Generalized threshold schemes

Results

- Novel construction: finite geometry tools (LP, SzP, Takáts DCC)
- For special parameters: $(1, n),(1,2, n)$
- Advantages: ideal, smaller field size $\left(O\left(n^{3}\right)\right.$ improvement)
- Drawbacks: restrictions on the number/value of thresholds

Generalized threshold schemes

Results

- Goal: generalize the constructions
- Done: arbitrary levels, arbitrary thresholds, ideal, improved field size

TODO

- Optimization (size of levels \& field)
- Additional constructions
- Disjunctive schemes
- Constructions based on polynomials

Results

Conference talks

- M. Gyarmati, P. Ligeti, P. Sziklai, M. Takáts: Multilevel secret sharing by finite geometry, 21st Central European Conference on Cryptology (CECC 2021)

Papers

- P. Ligeti, P. Sziklai, M. Takáts: Generalized threshold secret sharing and finite geometry, Designs, Codes and Crypt. DOI 10.1007/s10623-021-00900-9
- M. Gyarmati, P. Ligeti: On the information ratio of graphs without high-degree neighbours, Discrete Applied Mathematics, under review
- M. Gyarmati, P. Ligeti, P. Sziklai, M. Takáts: Conjunctive hierarchical secret sharing by finite geometry, under construction

Part II: Secure Distributed Applications

Motivation

Problems

- Centralized vs. distributed protocols
- Security drawbacks: DOS, TTP, ...
- Device constraints: computation, communication, location, ...
- Crypto drawbacks: efficient tools only

Examples

- Buzzwords: loT + cloud
- Data validation in loT
- ABE in cloud
- Distributed resource discovery (location-based, IoT/ABE support)

Motivation

Resource discovery in loT

- Gather and discover real-time generated data by loT (re)sources
- Gather: gateways
- Discover: clients

Motivation

Problems

- Diversity of loT perception layer
- Avoid TTPs - distributed communication + computation
- Location-awareness
- Security requirements
- Fine-grained access control
- Privacy
- Availability

Solutions - distributed*

Ideas

- Computation: additive secret sharing
- Discoverability: region-based ID generation + DHT

Solution - security*

Ideas

- Attribute-based access control
- Multi-authority scheme

Solution

Results (Kamel, Reich, Yan, LP '21 Sensors)

- Precise security requirements + proofs
- Preliminary implementation results (on few Raspberry PI 3)

Next steps

- Validation on large scale test-network
- Extend the security model
- Formal protocol verification

Results

Conference talks

- Y. Yan, P. Ligeti: Improving Security and Privacy in Attribute-based Encryption with Anonymous Credential, 4th International Conference on Recent Innovations in Computing (ICRIC-2021)
- M. Yaseen, M.B.M. Kamel, P. Ligeti: Security Analysis and Deployment Measurement of Transport Layer Security Protocol, (ICRIC-2021)

Papers

- M. Kamel, Y. Yan, P. Ligeti, C. Reich: Attred: Attribute based Resource Discovery for loT, Sensors under review
- M. Kamel, P. Ligeti, Á. Nagy, C. Reich: Distributed Address Table (DAT): A Decentralized Model for End-to-End Communication in IoT, Peer-to-Peer Networking and Applications, under review
- M. Kamel, P. Ligeti, C. Reich: Lamred: Location-Aware and Privacy Preserving

Q\&A

