Knowledge-enriched Schema Mapping: A Preliminary Case Study of e-MedSolution System

This work has been supported by the European Institute of Innovation & Technology (EIT) Project (18346-A2002)

Author: Chuangtao Ma

Advisor: Dr. Bálint Molnár and Ádám Tarcsi

Faculty of Informatics
Eötvös Loránd University (ELTE)

Budapest, Hungary
2020
Knowledge-enriched Schema Mapping: A Preliminary Case Study of e-MedSolution System

Abstract

Data integration is a process of accessing and integrating the various data from multi sources database. Generally, this process is composed of three phases, i.e., schema alignment and mapping, record linkage, and data fusion. Schema matching is the critical phase of migrating and integrating the heterogeneous databases into a centralized database, in which the semantic correspondences between source schema and target schema are usually identified for creating schema mappings. Typically, there are three essential steps of mapping the source schema onto target schema: vocabulary mapping, data table mapping, data transformation. The terminology and attribute of source schema could be easily mapped to the target schema if there exits the equivalent terminology and attribute in target schema. Contrarily, the domain knowledge and manual mapping are required to determine whether this terminology and attribute should be merged.

Knowledge-based integration are regarded as one of the efficient integration methods due to the excellent semantic interoperability of knowledge base. Ontologies, a representative and formalized knowledge bases, which provides a rich semantic reference for the schema mapping and data integration due to its semantic interoperability and rigorous mathematical foundation. Accordingly, ontology-based data integration (OBDI) has played a critical role in heterogeneous data integration and schema mapping. However, the traditional methods for constructing ontology are manual, in which a lot of effort and experience from domain experts are required.

In recent years, several knowledge bases, i.e., ontologies, linked data, knowledge graph, etc, were constructed accompanied by the knowledge representation learning and natural language processing (NLP), which yield an opportunity for enriching the knowledge and eliminate ambiguous mapping during the schema mapping and the migration of legacy information systems. In particular, ontology learning (OL) was proposed to (semi-) automatically construct ontologies, in which entities and relationship are usually extracted based on the computation and inference. Accordingly, a large number ontologies could be (semi-) automatically constructed to provide the rich semantic reference for schema mapping.

In this work, we investigated the framework of knowledge-enriched schema mapping and ontology learning, and highlighted the feasibility of utilizing these frameworks in heterogeneous schema mapping and data integration. In particular, a preliminary case study was conducted to illustrate how the knowledge-enriched schema mapping and ontology leaning could be utilized to migration and integration of heterogeneous database. More precisely, we introduced the structure and data tables of e-MedSolution and OMOP CDM, and analyzed the heterogeneity of these two data models initially. Furthermore, we designed a schematic diagram for schema mapping between clinical module of e-MedSolution and OMOP CDM clinical data and health system data. Moreover, we investigated how the existing knowledge bases and ontology learning could provides a semantic reference for vocabulary mapping and data table mapping between e-MedSolution and OMOP CDM. Finally, we summarized the main contribution of this work and gave the directions of future work.
1 Introduction

In the past few decades, various information systems have been developed in different sub-organizations within an organization to provide business process management and decision-making. Currently, with the expansion of business and the revolution of information technology, most of these information systems are gradually becoming the legacy information systems. In particular, it is a challenge task to integrate these legacy information systems due to the non-standardized data-access protocol and database design paradigm, and diverse naming conventions. As we all know, the most of the data and knowledge of information systems reside in the relational database, thus, the major task of legacy information system integration is to integrate heterogenous database.

Typically, there are two alternative solutions for heterogenous database integration: physical integration and logical integration [1]. In physical database integration, the several heterogenous database are migrated and mapped into a global data model, in which the various databases could be stored in a centralized database. In contrast to the physical database integration, the logical database integration just provides a common data access interface by query rewriting, while the data still resides in its original database. Although, it is a cost task to physically integrate the heterogenous database into a centralized data model, in the long term, physical integration could achieve the efficient data access and data management.

However, physical database integration is a challenging work, since the various inconsistencies and conflicts should be resolved during the integrating and migrating of the heterogeneous database into a global data model. In particular, due to the diversity of the database schema and the variety of naming conventions in heterogenous database, there are various inconsistencies, e.g., format inconsistency, structure inconsistency, syntax inconsistency, semantic inconsistency, etc, in which results the different kinds of conflicts and redundancies. Accordingly, the crucial task of physical database integration is to identify the semantic correspondences between source and target database and handle aforementioned conflicts and redundancies.

In general, there are three critical steps in heterogeneous database integration, i.e., schema alignment and mapping, record linkage, and data fusion [2]. In the phase of schema alignment and mapping, the conflicts are usually resolved based on semantic correspondence of the entities and attributes between target schema and source schema. In the phase of record linkage, the various database instance are linked by measuring the similarity between target record and source record. In the phase of data fusion, the different kinds of conflicts and redundancies are eliminated by the merging the similar records.

Knowledge bases (KBs) is a reference repository of entities, types, and attributes of entities with open-ended scope, in which a rich of taxonomy of types and terminology, attributes of entities, and relationships between entities are included [3]. Knowledge-based integration are regarded as one of the efficient integration methods due to the excellent semantic interoperability of KBs. Typically, constructing knowledge bases are based on manual transformation and mapping, hence the quality of knowledge bases are heavily dependent on the experience from domain experts [4]. Recently, driven by the increasing requirement of dynamic business process, the knowledge bases are required to update and maintain periodically. Hence, it is cost and tedious task to construct and maintain knowledge bases by using of the
traditional manual mapping and transformation.

KBs contains the class hierarchy and logical connections of knowledge, the former one is called taxonomy, and the latter one is referred to as ontologies. In addition to the class hierarchy and logical connections, KBs can also contains the logical constraints and rules, in which the consistency of KBs could be checked based on the inference. Ontologies, one of the representative and formalized knowledge bases, which provides a rich semantic reference for the schema mapping and data integration due to its semantic interoperability and rigorous mathematical foundation [5]. Similarity, the traditional methods for constructing ontology are manual, in which a lots of effort and the experience from domain experts are required. Due to the the biases and limitations of human knowledge, some accidental errors and inconsistencies will inevitably occur.

Ontology learning (OL) as one of the knowledge representation learning methods was proposed to (semi-)automatically construct ontologies from various data-sources, in which entities and relationship are usually extracted based on the computation and inference. The techniques of ontology learning are classified into four categories: association rule mining (ARM), formal concept analysis(FCA), inductive logic programming (ILP), neural networks(NN) and machine learning [6]. In particular, ontology learning could free human’s hands from the tedious mapping and transformation, minimize the negative influence of human knowledge biases. On the basis of knowledge representation learning and natural language process (NLP), several knowledge bases, i.e., ontologies, linked data, knowledge graph, etc, are constructed in recent years. These knowledge bases could provide the knowledge for identifying and enriching the semantic correspondence, by which the conflicts and redundancies could be resolved and eliminated.

The motivation of this work is to investigate how to utilize knowledge representation learning and knowledge base to enrich the semantic correspondence between the target schema and source schema during the schema mapping. More specifically, we investigated the framework of ontology learning, and presented a knowledge-enriched schema mapping method. Additionally, a case study was conducted to map the clinical data model of e-MedSolution system to the data model of OMOP CDM clinical data and the datatbale of health information systems by employing the knowledge enriched schema mapping.

2 Related Work

2.1 Schema Matching and Mapping

Schema mapping is a process of generating the assertions and mappings from the identified semantic correspondence, by which the source schema could be mapped onto the target schema to provide a common interface for accessing and querying of heterogenous data [7]. Schema matching is a process of establishing semantic associations between different schema, in which the semantic correspondences between source schema and target schema are usually identified [8]. In contrast to the schema matching, schema mappings is a kind of formal and intermediate language that are employed to describe the semantic correspondence between source schema and target schema, e.g., XML, R2RML, etc., which provides a semantic reference for the schema mapping.
Schema matching is a preliminary work in several fields, e.g., schema mapping, data integration, data exchange, etc. Accordingly, there are several approaches were proposed to identify the semantic correspondence between source and target schema. Rahm. et al [9] classified the approach of schema matching into the following categories based on the matching level: schema-level, instance-level, element-level, structure-level, and constraint-based approach. As shown in Fig. 1, they also classified the matching technique of each matching approach, accordingly, a conclusion could be drawn that the mainstream techniques of schema matching are similarity-based matching and graph-based matching in the early research. However, there is a room for improving the accuracy of schema matching based on similarity and graph matching, since lacking the evidence and knowledge during the matching. To address this issues, a corpus enriched schema matching method was proposed for augmenting the schema matching [10]. In this approach, the similar concepts and their relationships in source and target schema were identified to infer the constrains for pruning the candidate mappings. In addition to improve the method of schema mapping, how to verify the the quality of these generated mappings is a crucial task. To address this issue, the three-layers system was designed to verify the quality of schema mapping, in which the structure analysis was employed to check and select the optimal mapping transformation [11].

In general, the correspondences between two schema were identified based domain experts manually, in which a lot of human effort and experience were required. To achieve the automatic schema mapping, an automatch system was designed to support the automatically schema matching based on machine learning [12]. More specifically, an probability knowledge was obtained from the domain experts based on Bayesian learning, which provides a attribute dictionary to find an optimal mappings. Similarity, a probabilistic and logic-based formal framework sPPLMap was proposed to learning schema mapping rules, in which a probabilistic interpretation of predicting weights was given to help selecting the matching with high mappings.
probability from candidate mappings [13]. Considering the strengths of similarity-based mapping and machine learning based mapping, a hybrid schema mapping model was proposed by combing the lexical and semantic similarity with machine learning [14].

Despite of aforementioned schema matching methods could learn the mappings from example mappings, these expression of mapping was identified and encoded at the lexical level. With the increasing number of matching at meta-level and instance level, how to identify the correspondence between various vocabulary and terminology at the semantic level is an insight direction [15]. In particular, the ontologies and linked data yields a new opportunity of entity resolution, in which the entity and its terminologies could be semantically mapped onto the global database model [16]. Aim to free human's hand from tedious and time-consuming task of mitigating data from multiple legacy systems into a global one, a new semi-automatic schema mapping approach was proposed [17]. In this approach, the domain ontologies and sample instance were reused to identify and determine the semantic correspondences between schema. Similarly, a schema matching method was proposed to match schema based on analysis of attributes values, in which the external knowledge, namely, background ontologies, was utilized to provide the semantic reference based on ontology alignment [18]. In view of the hierarchy of ontologies is conducive to identify the semantic correspondences with various levels, a schema matching method based on ontology and rule clustering was proposed [19].

2.2 Ontology Learning

Ontology learning (OL) is a kind of ontology construction approach based on the machine learning technique [20], which was proposed to (semi-)automatically extract the knowledge from the text document or database for constructing ontology efficiently [21]. The majority techniques of ontology learning were borrowed from the NLP and data mining. The typical techniques of the terms and entities extraction are originated from NLP, e.g., tagging, syntactic segmentation, parsing, and so forth. The alternative approaches for implementing the NLP including machine learning and statistical inference. Moreover, the representative techniques of the relationship extraction were proposed based on the data mining algorithm, e.g., clustering algorithms, association rule mining, occurrence analysis.

In recent years, there is a great technological advancement in the fields of ontology construction, ontology mapping and semantic integration accompanied by the development of machine learning and computational intelligence [22]. To improve the knowledge representation of ontology, a domain ontology learning method based on LDA (Latent Dirichlet Allocation) model was proposed [23]. Similarly, a partial multi-dividing ontology algorithm was proposed to improve the efficiency of ontology learning by optimizing the partial multi-dividing ontology learning model [24].

In addition to ontology learning from text, there are several works focus on the ontology learning from RDB. There are two critical phases of ontology learning from relational databases. In the first phase, the RDB schema was usually transformed into RDFS (RDF Schema) based on the description logic (DL) and rule mapping. In the second phase, the semantic relationships were extracted, and the ontology instance was generated from RDB data by using semantic measurement and machine learning. The specified process and mainstream techniques of constructing ontology
from RDB are depicted in Fig. 2

The mainstream techniques of the OL from RDB could be classified into four categories: reverse engineering, schema mapping, data mining, and machine learning. The corresponding work could be illustrated as follows. Considering the richer semantic of the conceptual model (E-R model), reverse engineering was to analyze and transform the relational model to the conceptual model for building ontology from RDB [25]. This method could recover the lost semantic information and database table during the transformation. There are two alternative solutions for constructing ontology from RDB schema: transform RDB to RDF and mapping RDB to OWL. To implement the transformation from RDB to ontology, a graph-based conceptual was introduced as a intermediate model [26]. This method consists of three steps: extract information (Meta-data) from RDB, build graph middle conceptual model and create the final ontology. Due to the RDB model does not store the semantic relationship among entities directly, there are some limitations of the automatic ontology learning from RDB, i.e., identify the incorrect semantic relationships between entities, ignore the implicit relations. To tackle the above issues, a novel approach of ontology learning from RDB based on semantic enrichment was proposed [27], in which the meta-model was introduced to augment the semantic of RDB model. The case study shows that this approach could deduce the relationship in various domains.

Given that not only the schema information is implied in RDB SQL, but also the data information is represented in RDB SQL. Hence, a new paradigm of ontology learning from SQL scripts was proposed in recent years. For instance, a method for translating SQL algebra into SPARQL queries based on mapping rules was proposed [28]. In general, ontology learning from RDB SQL consists of three phases: pre-process, semantic enrichment, and transformation mapping. Before the

Figure 2: Techniques of Ontology Learning from RDB
Knowledge-enriched Schema Mapping: A Preliminary Case Study of e-MedSolution System

2.3 Brief Summary

To summarize, the prevailing methods of schema matching are similarity based matching[14], graph-based matching [9], corpus enriched matching [10], machine learning [12, 13], hybrid schema mapping [14], and ontology-based mapping [18, 19]. Considering the hierarchy of ontologies is conducive to identify the semantic correspondences, especially, ontology mapping and alignment between global ontology and local ontology could provide an excellent semantic reference for identifying the semantic correspondences between source schema and target schema during schema mapping.

Due to the ontology is domain specific, the corresponding ontologies should be constructed for each domain. In particular, several ontologies should be correctly and efficiently constructed for large-scale schema mapping, [8]. Therefore, how to efficiently construct ontologies is a bottleneck of ontology-based schema mapping. Although, there are several methods on the topic of ontology learning, e.g., reverse engineering [25], graph-based mapping [26], semantic enrichment [27], and machine learning [31, 32]. However, the majority knowledge source of existing ontology learning method is text, and Web resource, accordingly, the most of aforementioned methods has employed to construct domain knowledge for machine translation [33, 34], intelligent question answering system (QAs) [35] and recommendation systems [36].

In contrast to the above fields, using ontology learning in schema mapping and data integration still is a new topic. Moreover, the most of existing works on the topic of ontology-based mapping focus on the technique of ontology mapping and matching, there is a minority number of the existing works [37, 38] on the topic of data integration based on ontology learning. Therefore, it is a meaningful work to investigate the automatic method to construct domain ontologies from RDB, and study how to employ these ontologies and other knowledge bases to enrich the schema mapping for legacy database integration.

3 Proposed Framework

3.1 Knowledge-enriched Mapping

The goal of schema mapping is to establish semantic correspondences between source and target schema. Typically, this kind of semantic correspondences could be formally represented by logic formula [7]. In general, the traditional schema mapping could be formally defined as a \mathcal{M} that is a specification between instance of source and target schema. Given a source schema \mathcal{S} and its instance I_S, and target schema

transform and mapping, it is necessary to pre-process the RDB SQL. The majority of techniques of the pre-processing is parsing and lemmatization. To tackle the existing parsing methods that ignore the structure of database schema, there are two parsing methods of Text-to-SQL was proposed based on Graph Neural Network [29] and IRNet [30] respectively, which provide an essential theoretical foundation to construct ontology based on the approach of ontology learning from RDB SQL automatically.
and its instance \(I_T \), we can say that the instance of source \(I_S \) and target schema \(I_T \) satisfies the mapping \(\mathcal{M} \), which is formally represented as: \((I_T, I_S) \models \mathcal{M} \).

In general, the schema mapping \(\mathcal{M} \) is specified by the matchings and mappings, which are usually represented as a set of attribute-value pairs (AVP). The traditional methods for identifying and constructing mappings is mainly based on the lexical similarity and syntactic inference. Due to the similarity of attributes was measured and correspondence was inferred at the syntactic level, the constructed matchings and mappings are incapable of representing the full semantic correspondence between schema and its instance. For example, the outputs of traditional schema mapping model is a pair of mappings, where only the equivalent relationship is identified and taxonomic relationships is neglected.

Knowledge bases is a encyclopedic knowledge repository, where the open-ended knowledge, i.e., entities, taxonomic classes, attributes of entities, and relationship between entities are contained. Along with the technical advancement of knowledge representation and NLP, a increasing knowledge bases, e.g., WordNet, DBpedia, Linked Data, Ontologies, and Knowledge Graph (KG), etc., are constructed from the various Web and text data, which provides a reference repository of entities, types, and taxonomic and logical relationship of terminologies. In view of KBs contains the class hierarchy and logical connections of knowledge, a framework of knowledge enriched schema mapping is proposed in Fig. 4, to tackle the aforementioned issue.

![Figure 3: Framework of Knowledge Enriched Schema Mapping](image)

We can see from Fig. 3, the different elements, i.e., entity, properties, datatype, relationships, integrity and referential constraints of various source schema could be obtained by using schema analysis, then the different elements of database schema could be mapped respectively based on the semantic reference of the KBs. Accordingly, the elements of the global schema is obtained, and the global schema are generated by using the reverse engineering.

Ontologies, one of the representative and formalized knowledge bases, which
provides a rich semantic reference for the schema mapping and data integration. In particular, not only does the ontology represent the various relationship, e.g., equivalent, inverse, subclass, etc, but also contains the constraints, e.g., type-constraints, disjoint constraints, inclusions and functional dependencies. Considering the excellent semantic interoperability of ontology and formalized representation, the ontology is selected as an example to illustrate how the KBs could provide the semantic reference for schema mapping. Thereby, a enriched ontology-based schema mapping was designed in Fig. 4, through which the heterogenous database with diverse property names could be mapped and integrated.

![Figure 4: Enriched ontology-based schema mapping](image)

As shown in Fig.4, a enriched domain ontologies was constructed in the middle part of the figure, which provides a semantic reference of the diversity of properties between source schema and target schema during the schema mapping. As we can see, this tailored ontology not only conveys the equivalent relationship, e.g., is synonym with, is abbreviation of, but also comprises the taxonomic relationships, e.g, is subclass of, is property of, etc. Accordingly, the properties with diverse name from different schema were connected by the dotted arrow, which represents the semantic correspondences between source and target schema. To conclude, the ontology-based schema mapping could map and integrate the heterogeneous database from legacy information systems at the semantic level.

3.2 Ontology Learning from RDB

As mentioned earlier, the crucial element of ontology-based mapping is ontologies. Due to the ontology is domain specific, the corresponding ontologies should be constructed for each domain. Especially, in some case, a tailored ontologies should be constructed from the heterogenous database schema for providing the precise semantic interoperability. Therefore, how to efficiently construct ontologies from relational database is a bottleneck of ontology-based schema mapping.

In general, there are two critical phases of ontology learning from relational databases: (1) Construct ontology from RDB schema; (2) Generate ontology instance from RDB data. For each critical phase, there are several corresponding sub-phases, e.g., pre-processing, transformation, mapping, enrichment, etc. Considering RDB SQL is a kind of text document, in which all entities, attributes, and their semantic relationships can be inferred. Moreover, SQL scripts can be accessed...
Knowledge-enriched Schema Mapping: A Preliminary Case Study of e-MedSolution System

easily via the DBMS or database driver, and there is no requirement for the special interface. Therefore, a framework of ontology learning from multiple RDB SQL is designed in Fig. 4, to efficiently construct ontology from RDB.

As shown in Fig. 5, the framework of ontology learning from RDB consists of multiple modules, e.g., data access, pre-processing, term extraction, relationship extraction, quality evaluation. Accordingly, the detailed process of learning from SQL scripts could be illustrated as followings:

- **Data access from heterogeneous database.** To integrate and map the heterogeneous database to a global database, it is necessary to access these database. Considering the features of legacy information systems, we intend to directly access data through DBMS, the SQL scripts are exported from heterogeneous DBMS and stored in text documents.

- **Knowledge extraction from the relational database.** Initially, the NLP techniques, i.e., parsing, named entity recognition (NER), and so forth, are utilized to pre-process the RDB SQL scripts and extract the terms. After that, the ontology learning model is employed to extract the relationships between these terms, which is represented as a RDF triples.

- **Generate OWL object from RDF schema.** On the basis of knowledge extraction, the OWL (Web Ontology Language) objects are generated for representing the entities, terminologies and their relationships between various knowledge rigidly and accurately. In addition, these ontologies was stored in graph database after evaluating its quality.

Given that both the schema information and instance information are implied in RDB SQL, thus, the paradigm of ontology learning from RDB not only construct ontology individuals from RDB schema, but also generate ontology concepts and attributes from RDB data. By employing the above framework of ontology learning from RDB, the tailored ontologies could be efficiently constructed from various database, which could provides a excellent semantic reference for schema matching and mapping.
4 Case Study

In this section, a case study is conducted to illustrate the feasibility of knowledge-enriched schema mapping by mapping the schema of e-MedSolution into the OMOP CDM (Common Data Model).

4.1 Problem Statement

e-MedSolution is a centralized health information system (HIS) that has been deployed and applied in various healthcare institutions, hospital, and medical university in Hungary. This Web-based system has been developed almost twenty years since the released the first version of e-MedSolution, which is conducive to implement the virtual hospital model. By using this systems, not only does the medical staff could access the healthcare data, but also the patient could view their healthcare information. Considering the primary challenge of HIS, namely, integration and globalization, the reversed communication interface of e-MedSolution were considered at the beginning, which provided an opportunity for integrating with sub-applications. Additionally, e-MedSolution system could be easily integrated with the MedSAPSol module, which provides a possibility for user to customized development according to their requirement.

In recent years, there are several modernized HIS have being developed, in which the advanced technology of architecture and the standardized paradigm of database design was utilized. In contrast to these modernized HIS, e-MedSolution system is a kind of legacy HIS, since the non-standardized designing paradigm of the database, and the diversity naming conventions of specified entities and properties. In particular, all of the data of e-MedSolution system resides in a centralized database that was designed two decades ago. Accordingly, the database schema is poor standardization, which has been the obstacle of integrating with other modernized HIS.

Thereby, it is necessary to map the existing database schema of e-MedSolution to a standardized database schema, which could yield a new opportunity to integrate with other modernized HIS. OMOP CDM that is an international, de facto standard for observational medical data, which provides a uniform data representation and standardized analysis of healthcare and clinical data [39].

4.2 Introduction of OMOP CDM

Aim to provide a comprehensive view of clinical and healthcare data for patient and medical staff, a common data standard (OMOP Common Data Model (CDM)) was proposed and employed to access and analysis the heterogenous data from multiple sources. There are several design principles, e.g., data protect, domains, standardized vocabularies, reuses, scalability, backwards compatibility, etc., were considered in OMOP CDM [40]. In particular, the OMOP CDM includes both the standardized vocabularies of terms and the entity domain tables, which provides a potential opportunity to integrate with other healthcare data model.

The Fig.6 depicts the structure of OMOP CDM Version 6.0, in this figure, the data models has been classified into the following categories according to the domain: standardized clinical data, standardized health system data, standardized derived elements, standardized health economics, standardized metadata, standardized vocabularies, and results schema.
Additionally, the OMOP CDM defines several entities in different data model domains, for instance, the various entities, e.g., Person, Visit Occurrence, Drug Exposure, Condition Occurrence, Measurement, Observation, etc, from different sub-domains of healthcare systems were defined in the standardized clinical data. The tables from standardized clinical data were introduced as followings.

- **Person.** This table serves as the central identity management for all Persons in the database. It contains records that uniquely identify each person or patient, and some demographic information.

- **Observation_period.** This table contains records which define spans of time during which two conditions are expected to hold: (i) Clinical Events that happened to the Person are recorded in the Event tables, and (ii) absense of records indicate such Events did not occur during this span of time.

- **Visit_occurrence.** This table table contains Events where Persons engage with the healthcare system for a duration of time. They are often also called “Encounters”. Visits are defined by a configuration of circumstances under which they occur, such as (i) whether the patient comes to a healthcare institution, the other way around, or the interaction is remote, (ii) whether and what kind of trained medical staff is delivering the service during the Visit, and (iii) whether the Visit is transient or for a longer period involving a stay in bed.

- **Visit_detail.** This table is an optional table used to represents details of each record in the parent Visit_occurrence table.

Figure 6: The structure of the OMOP CDM Version 6.0 [39]
• **Condition occurrence.** This table contains records of Events of a Person suggesting the presence of a disease or medical condition stated as a diagnosis, a sign, or a symptom, which is either observed by a Provider or reported by the patient.

• **Drug exposure.** This table captures records about the exposure to a Drug ingested or otherwise introduced into the body. Drugs include prescription and over-the-counter medicines, vaccines, and large-molecule biologic therapies.

• **Procedure occurrence.** This table contains records of activities or processes ordered by, or carried out by, a healthcare provider on the patient with a diagnostic or therapeutic purpose.

• **Device exposure.** This table captures information about a person’s exposure to a foreign physical object or instrument which is used for diagnostic or therapeutic purposes through a mechanism beyond chemical action. Devices include implantable objects (e.g. pacemakers, stents, artificial joints), medical equipment and supplies (e.g. bandages, crutches, syringes), other instruments used in medical procedures (e.g. sutures, defibrillators) and material used in clinical care (e.g. adhesives, body material, dental material, surgical material).

• **Measurement.** This table contains records of Measurements, i.e. structured values (numerical or categorical) obtained through systematic and standardized examination or testing of a Person or Person’s sample. The Measurement table contains both orders and results of such Measurements as laboratory tests, vital signs, quantitative findings from pathology reports, etc.

• **Observation.** This table captures clinical facts about a Person obtained in the context of examination, questioning or a procedure. Any data that cannot be represented by any other domains, such as social and lifestyle facts, medical history, family history, etc. are recorded in this table.

• **Note.** This table captures the unstructured information that was recorded by a provider about a patient in free text (in ASCII, or preferably in UTF8 format) notes on a given date.

• **Note NLP.** This table encodes all output of NLP on clinical notes. Each row represents a single extracted term from a note.

• **Specimen.** This table contains the records identifying biological samples from a person.

• **Fact relationship.** This table contains records about the relationships between facts stored as records in any table of the CDM. This relationships can be defined between facts from the same domain, or different domains.

• **Survey conduct.** This table is used to store an instance of a completed survey or questionnaire.

In the standardized health system data, there are several data tables were defined as well, which provides the location, healthcare, and the responsible medical worker of each diagnosis and measurement.

• **Location.** This table represents a generic way to capture physical location or address information of Persons and Care Sites.

• **Location history.** This table stores relationships between Persons or Care Sites and geographic locations over time.

• **Care site.** This table contains a list of uniquely identified institutional (physical or organizational) units where healthcare delivery is practiced (offices, wards, hospitals, clinics, etc.).
Knowledge-enriched Schema Mapping: A Preliminary Case Study of e-MedSolution System

- **Provider.** This table contains a list of uniquely identified healthcare providers. These are individuals providing hands-on healthcare to patients, such as physicians, nurses, midwives, physical therapists etc.

In addition to the aforementioned tables, there are several tables from standardized derived elements, standardized health economics, standardized metadata, and standardized vocabularies were defined. Essentially, the standardized vocabularies, e.g., concept, vocabulary, domain, concept relationship, etc. were utilized in all of CDM fact tables for specifying the concepts and their relationships from various sub-domains. For example, concept represents the clinical information across all of the sub-domains by specifying the codes and associated descriptions. Based on the standardized vocabularies, the various data from multiple data-sources could be unified accessed and retrieved without perverse the diverse concept codes and their relationships of the original data table.

4.3 Database Schema of e-MedSolution

As we mentioned previously, despite of the e-MedSolution is a centralized HIS, the healthcare data of each institutions were still stored and maintained in the local database, which creates an obstacle for integration. In particular, it will poses a challenges when integrating with external HIS due to the no-standardized naming conventions of the database schema. Before mapping the source schema into the target schema, the schema of source and target schema should be analyzed. In previous subsection, we introduced the target schema (OMOP CDM), in this subsection, we will introduce the target schema (e-MedSolution).

The e-MedSolution system covers the several modules of healthcare system, for instance, medical organizations and sub-organizations (e.g. hun_institution, hun_hosp_par, hun_department, hun_nursest, etc.), economics and accounting (e.g. hun_bl_contract, hun_bl_invoice, etc.), and clinical data (e.g. hun_case, hun_diag, hun_patient, hun_medication, hun_drug, etc.).

We address the mapping between the data model of clinical module for e-MedSolution into the OMOP CDM clinical data model in this case study. Thereby, an concise data structure of the clinical module for e-MedSolution system was presented in the Fig. 7.

In this concise data structure \(^1\), the basic data tables of the clinical module for e-MedSolution system were defined. To construct the schematic diagram for mapping, the basic information of each data tables of the clinical module for e-MedSolution system were described as followings.

- **hun_user.** This table contains various users (e.g., doctor, nurse, patient, internal physicians, etc.).
- **hun_doctor.** This table contain the unique number, name, internal ID, and the qualification of doctor.
- **hun_workhour.** This table contains the available appointment time for each doctor’s clinic.
- **hun_patient.** This table contains the basic data (e.g. name, birth date, birthplace, title, and TAJ number, etc) of patient.
- **hun_case.** This table contains the basic data of different kinds of case (e.g. outpatient case, inpatient case, and similar cured case) and their status (e.g.

\(^1\)The detailed fields of each data tables could be found in the Appendix A.1.
canceled, booked, record, dismissed, and closed), case description, and the corresponding doctor and department, etc.

- **hun_case_diag.** This table contains the basic data (e.g. diagnoses description, date and time) of the specific diagnoses and indicate the its attending doctor (e.g. external doctor, internal doctor).
- **hun_case_i.** This table records the basic data of (e.g. patient number, date of admission and discharge, room and bed, interventions, results, payment and reimbursement category, etc.) the inpatient case.
- **hun_case_o.** This table records the basic data of (e.g. patient number, admission date, attend doctor, reason, results and indicators, payment and reimbursement category, etc.) the outpatient case.
- **hun_order.** This table contains the basic data (e.g. order status, testing date and time, testing or service items, etc.) of testing order for cases.
- **hun_perform_acc.** This table contains the performance and results (sending date and time, amount of interventions, results of lab test, and the accident information) of the onsite intervention of the case.
- **hun_outp_sched_spec.** This table contains the appointment information (e.g. department, date, available days, etc.) for outpatient appointment.
- **hun_medication**. This tables contains the medication and prescription information (e.g. patient number, drug, dosage, date and time, indication, quantity, alternative drug, contraindications, etc).
- **hun_drug**. This table contains the basic data (e.g. drug ID, ISOCode, description, brand-name, factor, category, warning, description, deleted information, etc.) of drug.
- **hun_drug_package**. This table contains the package information (e.g. package type, register, expiration date, etc.) of drug.
- **hun_drug_package**. This table records the price and tax information of drug.
- **hun_drug_ingredient**. This tables contains the active ingredients (e.g. classification, strength, unit, factor, valid period, etc.) of drug.
- **hun_drug_side_effect**. This table records the side effects (e.g. name, description of side effect, valid period, etc.) of drug.
- **hun_drug_drug_text**. This table records the additional information of drug in text.
- **hun_drug_generic**. This table records the generic information of drug.
- **hun_drug_atc**. This table records the ATC information (e.g. code, status, level, valid period, etc.) of each drug.

Despite of this concise schema does not contain and record all of the data of the clinical module for e-MedSolution system, this concise schema is the core and representative module of the e-MedSolution system.

4.4 Mapping e-MedSolution Schema to OMOP CDM

In this subsection, we attempt to map this clinical data model of e-MedSolution system to the OMOP CDM clinical modules by employing the knowledge-enriched schema mapping. Considering the correspondence between clinical module of e-MedSolution and OMOP CDM, a schematic diagram for schema mapping was designed in Fig. 8.

In the proposed schematic diagram of mapping between e-MedSolution and OMOP CDM, the clinical data model will be mapped into the OMOP clinical data and health system data. The preliminary correspondences between e-MedSolution and OMOP CDM were identified, which are represented by the dashed lines.

According to the identified correspondences, there are different kinds of mappings, e.g., one-to-one, one-to-many, and many-to-many. In the one-to-one mapping, one table from the source schema could be exactly mapped into the corresponding table in the target schema. In contrast to the one-to-one mapping, the one-to-many and many-to many mapping require the merging the duplicates fields and splitting the compound fields.

As we mentioned earlier, the semantic correspondences between various vocabulary, terms, and fields is crucial reference for the mapping, merging and splitting. Regardless of which kinds of mapping, the identification of the semantic correspondences based on existing knowledge is the foundation of schema mapping. In general, there are three steps of mapping the source schema onto target schema: vocabulary mapping, data table mapping, data transformation (ETL). Considering the knowledge bases could provide the semantic reference for the mapping and the ELT process could be easily executed by the scripts based on the vocabulary and data table mapping, thereby, we only consider the vocabulary mapping and data table
Relationship should

Figure 8: Schematic diagram of mapping between e-MedSolution and OMOP CDM

mapping in this work.

4.4.1 Vocabulary Mapping

Vocabulary mapping is a mapping process that map the relevant classifications and terminologies of source schema to the OMOP CDM standardized vocabularies. In the vocabulary mapping, the prepared local codes should be added to the OMOP CDM tables Vocabulary, thereby, the Concept and Concept_Relationship should mapped into the OMOP Standard Concepts (as shown in Fig. 9).

Figure 9: Standard representation of vocabulary concepts in the OMOP CDM [39]

In standardized vocabulary, each clinical events in the OMOP CDM are expressed as concepts, which represent the semantic notion of each event. Each concept is assigned a concept ID and Domain_ID to indicate the primary key and the
Knowledge-enriched Schema Mapping: A Preliminary Case Study of e-MedSolution System

domain (e.g. Condition, Device, Measurement, Observation, Place of service, and Procedure) of these concept belong. Additionally, the other fields Vocabulary_ID, Concept_Class, Standard_Concept, and valid periods are defined to specify the classifications, corresponding standard concept and their validity.

The traditional method for mapping the local concept into the standardized vocabulary is mainly based on the measurement of lexical similarity (e.g. Levenshtein distance, Euclidean distance, etc.) between vocabulary, which could achieve the mapping at the lexical level. However, this method will cause some errors (e.g. missing matching, redundancies, etc.), when it meets some complex case (e.g. polysemy vocabulary, synonymy vocabulary, etc.).

Athena\(^2\) repository already contains the related terms and synonyms of the monitory number of concepts, which resides as a tabular data in the database. Thereby, these concepts and their related terms could be transformed onto the ontology by the ontology learning from tabular data. However, the synonyms and related concepts of the majority terms is missing, in this case, the ontology learning and existing knowledge bases could be utilized to construct and enrich the ontology. As depicted in Fig. 10, the standard vocabulary ontology of OMOP CM provides the hierarchical relationship of object property and data property between different fields in the OMOP CDM standard concept. However, ontology is a general data model,

![Fig. 10: Visualized ontology of the OMOP CDM Standard Vocabulary](image)

namely, it only model general types of things that share certain properties, but does not contain information of the specific individuals (data). In this case, we may construct the knowledge graphs (KGs) based on the ontology, which will contains the knowledge of both general hierarchical and specific individuals.

In general, there are three different cases when mapping the local vocabulary into the OMOP CDM standardized vocabulary.

\(^2\)https://athena.ohdsi.org/
- **Exact Mapping.** The local vocabulary included by the OMOP CDM standardized vocabulary, which could be mapped into the OMOP CDM standardized vocabulary exactly.
- **Equivalent Mapping.** The local vocabulary does not included by the OMOP CDM standardized vocabulary, while the semantic equivalent concept exists in the OMOP CDM standardized vocabulary.
- **Missing Mapping.** The local vocabulary does not included by the OMOP CDM standardized vocabulary, and there does not exists the equivalent concepts in the OMOP CDM standardized vocabulary.

The different methods will be employed to tackle above cases, for instance, the local vocabulary will be imported into the OMOP CDM standardized vocabulary in the exact mapping and equivalent mapping.

4.4.2 Data Table Mapping

Data tables mapping is a mapping process that map the names of data tables and columns in the source schema to the corresponding data-tables in the target schema. The column mapping is a essential process of the data tables mapping, in which the correspondences of the columns name and type between data source table and target table plays a crucial roles.

In our case, the relevant fields of data tables in e-MedSolution will be mapped into the corresponding fields of data tables in the OMOP CDM. Considering the correspondence between the hun_case and hun_case_diag, we attempt to map these two tables in e-MedSolution system to the OMOP CDM CONDITION_OCCURRENCE table. The Fig. 13 in the Appendix A.2 depicts the correspondence between different fields. In this schematic diagram of data table mapping, the solid line represents the certain matching, while the dashed line represents the uncertain matching. The main reason behind these uncertain matching is the heterogeneity (e.g. fields name, fields type, etc.), which requires the domain experts to confirm.

As we mentioned in Sec.3.1, the existing knowledge bases could provides a semantic reference between these column name and type. More precisely, an ontology was constructed by considering the correspondence between OMOP CDM Condition_Occurrence and hun_case_diag in Fig. 11.

In this preliminary ontology, we transformed the Condition_Occurrence and its related data table onto the ontology, in which only the referential relationships (object property relationship) between different tables are considered. Nevertheless, it is worth to mention that the relationship (data property relationships) between the column or properties in e-MedSolution data model and the column or properties OMOP CDM determine the semantic correspondence. Therefore, a tailored ontology could be constructed by utilizing the the existing knowledge bases and employing ontology learning, which will enrich the semantic reference for the schema matching.

5 Summary and Future Work

5.1 Summary

It is a tedious work to identify the semantic correspondences among multiple schemas while mapping and migrating the large-scale data models from source database
into the target database. To address this issue, a general framework of ontology learning and knowledge-enriched schema mapping was proposed and a preliminary case study was conducted in this work. Accordingly, the main contribution of this work could be summarized as followings: (i) we proposed a framework of knowledge-enriched schema mapping and ontology learning, (ii) we analyzed and compared the heterogeneity between e-MedSolution data model and OMOP CDM data model, and (iii) we designed a schematic diagram of schema mapping and constructed a tailored ontology for the vocabulary mapping and data table mapping. Additionally, we investigated how the ontology and other knowledge bases (e.g., knowledge graph) could be employed in vocabulary mapping and data table mapping.

5.2 Future Work

Despite of knowledge-enriched schema mapping could greatly harmonize the heterogeneity between source schema and target schema, the bottleneck of this approach is how to (semi-)automatically constructed tailored knowledge bases (e.g., ontology, knowledge graph, etc). In particular, the healthcare information systems (HIS) is a comprehensive information systems, which contains a several sub-modules e.g., clinical module, medication module, occurrence module, etc, and terminology. Accordingly, a lot of tailored knowledge bases should be constructed to provide the excellent semantic reference for vocabulary mapping and data table mapping. This is work a preliminary work currently, there are several works need to be investigated in the future: (i) investigate an ontology learning algorithm from relational data and tabular data, (ii) design an tailored ontology and knowledge graph based on ontology learning to provide the semantic reference for identifying the semantic correspondence between source and target schema mapping, and (iii) develop a (semi-)method for eliminating the duplicated mappings and transforming and loading the data from source database to the target database based on the mappings.
References

A Appendix

A.1 Concise database schema version of e-MedSolution

A.2 Table matching between e-MedSolution and OMOP CDM
Figure 12: Concise database schema of the clinical module for e-MedSolution
<table>
<thead>
<tr>
<th>Clinical database schema of e-MedSolution (Source Schema)</th>
<th>OMOP CDM Clinical Data Module (Target Schema)</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>hun_case_i(o)</code></td>
<td><code>CONDITION_OCCURRENCE</code></td>
</tr>
<tr>
<td>PK CASE_NO</td>
<td>PK condition_occurrence_id</td>
</tr>
<tr>
<td>MRN</td>
<td>person_id</td>
</tr>
<tr>
<td>ADMIT_DATE</td>
<td>condition_start_date</td>
</tr>
<tr>
<td>ADMIT_TIME</td>
<td>condition_concept_id</td>
</tr>
<tr>
<td>ADMIT_REASON</td>
<td>condition_start_datetime</td>
</tr>
<tr>
<td>DISCH_DATE</td>
<td>condition_end_date</td>
</tr>
<tr>
<td>DISCH_TIME</td>
<td>condition_end_datetime</td>
</tr>
<tr>
<td>CASE_STAT</td>
<td>condition_status_concept_id</td>
</tr>
<tr>
<td>ATTEND_DOCTOR</td>
<td>condition_type_concept_id</td>
</tr>
<tr>
<td>INTERN_TYPE</td>
<td>stop_reason</td>
</tr>
<tr>
<td><code>hun_case_diag</code></td>
<td>provider_id</td>
</tr>
<tr>
<td>PK CASE_NO</td>
<td>visit_occurrence_id</td>
</tr>
<tr>
<td>CODE</td>
<td>condition_source_value</td>
</tr>
<tr>
<td>TYPE</td>
<td>condition_source_concept_id</td>
</tr>
<tr>
<td>DESCR_ORIG</td>
<td>condition_status_source_value</td>
</tr>
<tr>
<td>DOCTOR</td>
<td>visit_detail_id</td>
</tr>
<tr>
<td>DESCR_USER</td>
<td></td>
</tr>
<tr>
<td>DIAG_DATE</td>
<td></td>
</tr>
<tr>
<td>DIAG_TIME</td>
<td></td>
</tr>
</tbody>
</table>

Figure 13: A schematic diagram of data tables matching between `hun_case_i(o)`, `hun_case_diag` and `CONDITION_OCCURRENCE` of OMOP CDM