Combinatorial Optimization and Applications

Tamás Király

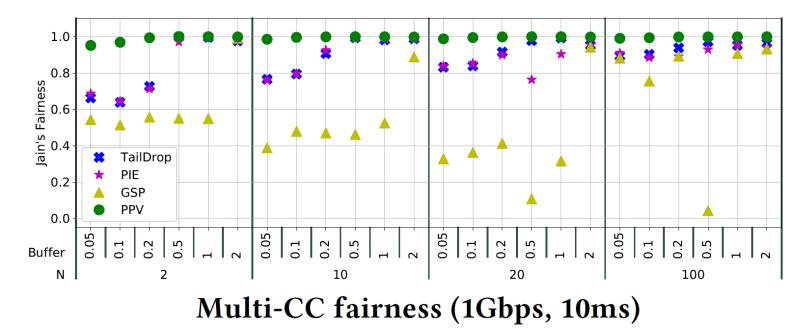
Department of Operations Research

RG Mathematics and Optimization

NATIONAL RESEARCH, DEVELOPMENT AND INNOVATION OFFICE HUNGARY PROGRAM FINANCED FROM THE NRDI FUND

Reliable solutions using combinatorial optimization

• Provably efficient algorithms

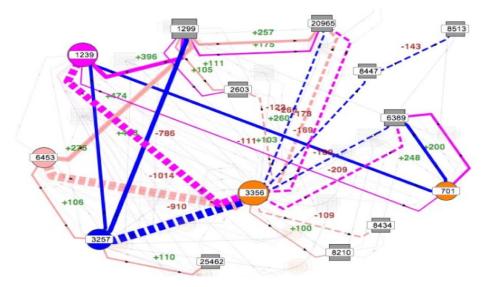

- Upper bounds on the running time
- Guaranteed correctness within the mathematical model
- Guaranteed quality of solutions
- Widely applicable results
 - Can be used in any application that fits the mathematical model
 - Results do not depend on specific implementation issues

Two examples of mathematical contributions to this project:

- Mathematical analysis of the Per Packet Value (PPV) framework
- Algorithms for scheduling problems

The Per Packet Value framework

- PPV is a proposed framework for resource sharing in networks
- Developed by ELTE in cooperation with Ericsson Research
- PPV aims to achieve fairness at a low control cost
- Should accomodate multiple Congestion Control (CC) algorithms


Mathematical analysis of PPV

- We developed a mathematical model of the PPV framework
- We showed that a fair and stable state exists in any network
- We showed that convergence to a fair state is guaranteed for a large class of CC algorithms
- We showed that under PPV, classical CCs achieve sufficient throughput even against aggressive CCs, in any network.

These results confirm that PPV is a viable solution for fair resource sharing in networks with heterogeneous congestion controllers

PPV – future work

- Give bounds on the rate of convergence
- Examine other aspects of fairness
- Analyze the performance of PPV in multi-path routing scenarios

Route changes in a network [Lad, Massey, Zhang: Visualizing Internet Routing Changes, 2006]

Scheduling problems

- Scheduling involves assigning dates to tasks (jobs) under various contraints
- Applications:
 - Manufacturing
 - Timetabling
 - Crew scheduling
 - Financial planning
 - Etc.
- Most scheduling problems are hard: finding the optimal solution is not possible for large instances
- Reliability can be achieved using algorithms that are guaranteed to give near-optimal solutions for any instance

Scheduling under resource constraints

- Resource constraints arise when
 - Each job consumes a fixed amount of a resource
 - Various quantities of the resource arrive at specified dates
 - Jobs cannot be processed until the resource is available
- Examples
 - Availability of raw materials in manufacturing
 - Energy consumption
 - Availability of funding

We have developed general reliable algorithms that can be used for all of the above examples

Our results

- (1+ε)-approximation for arbitrary small ε if processing times are negligible
 - Examples: financial scheduling, production using rare raw materials
- 3/2-approximation if jobs have identical resource requirements
 - Example: ingredient/activity required for every job
- 4-approximation if resource arrival times are unknown

- Joint work with TU Hamburg
- Presented this week at the International Symposium on Combinatorial Optimization