
Towards an Engineering Discipline for
Green Software ?

João Paulo Fernandes1 and João Saraiva2

1 CISUC & Universidade de Coimbra, Portugal
2 HASLab/INESC TEC & Depart. de Informática, Univ. do Minho, Portugal

jpf@dei.uc.pt , saraiva@di.uminho.pt

Abstract. This technical report describes the research developed at the
Green Software Laboratory at Coimbra and Minho Universities, which
was presented at the first teachers training meeting of the Erasmus+
project “Focusing Education on Composability, Comprehensibility and
Correctness of Working Software”. It presents both a green ranking for
programming languages and data structures, and techniques to locate
abnormal energy usage in software systems.

Keywords: Green Computing, Energy-aware Software, Source Code
Analysis

1 Motivation

The current widespread use of non-wired but powerful computing devices, such
as, smartphones, laptops, etc., is changing the way both computer manufactur-
ers and software engineers develop their products. In fact, computer/software
execution time, which was the primary goal in the last century, is no longer the
only concern. Energy consumption is becoming an increasing bottleneck for both
hardware and software systems. As a consequence, research on green software is
a relevant and active area of research.

This report briefly describes the research that is being developed in green
software in the Green Software Laboratory (GSL). GSL consists of various Por-
tuguese research groups, including two sites of the project “Focusing Education
on Composability, Comprehensibility and Correctness of Working Software”.
GSL is an initiative to develop techniques and tools aiming at reducing energy
consumption across various computing systems (mobile, programs, databases,
etc.). GSL specifically focus on the software side, where it applies (source code)
analysis and transformation techniques to detect anomalies in energy consump-
tion and to define optimizations to reduce such consumption.

? This work is financed by the ERDF European Regional Development Fund
through the Operational Programme for Competitiveness and Internationalisa-
tion - COMPETE 2020 Programme within project POCI-01-0145-FEDER-006961,
and by National Funds through the Portuguese funding agency, FCT - Fundação
para a Ciencia e a Tecnologia within project POCI-01-0145-FEDER-016718 and
UID/EEA/50014/2013.



2 J. P. Fernandes, J. Saraiva

In the last century efficiency of a software system was mainly focused on exe-
cution time and memory consumption efficiency. Nowadays, software developers
often ask the question “is a faster program also a greener program?”. There
are many aspects of a software system that influences its energy performance:
the programming language and its execution model (compiled to binary code
or to a virtual machine, interpreted code, lazy versus strict evaluation, use of
runtime partial evaluation, etc). The efficiency of the memory model and lan-
guage libraries also influence performance. The complexity of the algorithm used
to implement the desired computer problem, also influences performance: if the
implemented algorithm has to do more work than what is strictly needed, then,
more CPU and energy will be used.

In this document we briefly report the research results achieved in the GSL,
namely in analyzing the energy efficiency of programming languages (Section 2),
data structure libraries (Section 3), and of software’s source code (Section 4).

2 Greenness in Programming Languages

An interesting question that arises when discussing energy in programming lan-
guages is whether a faster language is also an energy efficient language, or not.
Comparing software languages, however, is an extremely complex task, since the
performance of a language is influenced by the quality of its compiler, virtual
machine, garbage collector, etc.

In the Green Software Laboratory we studied, assessed and compared the
performance of (a total of) 27 of the most widely used software languages. We
used two different computer problem repositories: Computer Language Bench-
mark Game (CLBG)3 and the Rosetta Code4 repositories [1–3]. Both repositories
define a set of computer tasks and provide implementations in a large group of
programming languages. While CLBG was tailored to analyze execution time
performance of languages, Rosetta Code was defined with more program com-
prehension purposes.

We compiled/executed such programs using the state-of-the-art compilers,
virtual machines, interpreters, and libraries for each language. Then, we mon-
itored the execution time, peak and overall memory consumption, and CPU/-
DRAM/GPU energy consumption. We produced a energy ranking of the 27 lan-
guages and we also analyzed those results according to the languages’ execution
type (compiled, virtual machine and interpreted), and programming paradigm
(imperative, functional, object oriented, scripting) used. For each of the ex-
ecution types and programming paradigms, we compiled a software language
ranking according to each objective individually considered (e.g., time or energy
consumption). Our first experiments show expected results, like the C language
being both the faster and greener language, however, it also show slower lan-
guages that are more energy efficient than others [2, 3].

3 http://benchmarksgame.alioth.debian.org/
4 http://www.rosetta.org



Towards an Engineering Discipline for Green Software 3

3 Greenness in Data Structures

Programming language/paradigm, and its powerful compiler optimizations, is
not the only aspect that influences the energy consumption of a software sys-
tem. In fact, a program may also become more efficient by “just” optimizing
its libraries [4, 5]. Most languages offer powerful libraries to manipulate data
structures. In GSL we studied the energy performance of two advanced data
structures widely used in the Java and Haskell programming languages.

In Java, we conducted a detailed study in terms of energy consumption of
the Java Collections Framework (JCF) library 5. We considered the usual three
different groups of data structures, namely Sets, Lists, and Maps, and for each of
these groups, we studied the energy consumption of each of its different imple-
mentations and methods [4]. This JCF energy-awareness can not only be used
to steer software developers in writing greener Java software, but also in opti-
mizing legacy Java code. We have developed a Java data structure refactoring
tool, named jStanley, which refactors Java source code when a greener collec-
tion is available [6]. We have also executed an initial evaluation with 7 publicly
available Java projects where we were able to improve the energy consumption
between 2% and 17%.

In Haskell, we studied the energy consumption of Edison6, a fully mature and
well documented library of purely functional data structures [7]. Edison provides
different functional data structures for implementing three types of abstractions:
Sequences (lists, queues and staks), Collections (sets and heaps) and Associative
Collections (maps and finite relations). We analyzed 16 implementations of such
data structures while measuring detailed energy and time metrics [5]. We further
investigated the energy consumption impact of using different compilation opti-
mizations. We have concluded that energy consumption is directly proportional
to execution time and that the energy consumption of DRAM representing be-
tween 15 and 31% of the total energy consumption. Finally, we also concluded
that optimizations can have both positive or negative impact on energy con-
sumption.

4 Greenness in Source Code

Not only languages and data structure libraries do influence energy consump-
tion, algorithms and programming practices also play a key role on the efficiency
of programs. In GSL we have adapted well-know fault localization techniques to
statically locate “energy leaks” (seen as energy inefficiency, thus, energy faults)
in the source code of applications [8–11]. We defined SPELL - SPectrum-based
Energy Leak Localization to determine red (energy inefficient) areas in software.
A first experimental study shows that expert programmers, with access to the
energy leaks detects by SPELL, were able to better optimize the energy consump-
tion of the programs (between 15% and 74%), than experts with no information

5 docs.oracle.com/javase/7/docs/technotes/guides/collections/index.html
6 hackage.haskell.org/package/EdisonAPI-1.3/docs/Data-Edison.html



4 J. P. Fernandes, J. Saraiva

or the information provided by a standard programs (runtime) profiler. We have
also studied the energy behaviour of C/C++ programs [12].

The widespread use of non-wired devices and the advent of the internet-of-
things, is changing the way software engineers develop their software. Software
has to run on a variety of mobile devices and energy consumption is a main
concern when developing software. Software Product Lines (SPL) have emerged
as an important software engineering discipline allowing the development of soft-
ware that shares a common set of features. In GSL we have defined static analysis
techniques to reason about energy consumption in SPLs based on conditional
compilation. Such techniques allow software developers to identify (non) green
products and/or features in a SPL [13].

Android is a widely used ecosystem for non-wired devices, and software en-
ergy analysis and optimization is an active area of research. The GSL team has
developed several techniques [14, 15] and tools to analyze and optimize energy
consumption in the source code of Android applications [16, 17].

Nowadays, most of the data stored in our mobile devices (files, photos, videos)
is also stored in the cloud provided by the ecosystem of the device’s operating
system. Such cloud systems are data centers that daily run a large amount
of data querying processes, monitored and controlled by highly sophisticated
database management systems, which are responsible to establish efficient query
processing plans to support them. Database systems usually rely on plans that
optimize response time. We designed and developed an alternative method to
define energy consumption plans for database queries [18, 19]. Our first experi-
mental results show that the use of optimization heuristics allows for significant
gains, both in terms of energy consumption and the time spent with the execu-
tion of queries.

5 Conclusions

This technical report described the research developed at the Green Software
Laboratory, namely a green ranking of programming languages and data struc-
tures, techniques to detect energy inefficiency in a software system’s source code,
and an energy-aware query execution plan for database systems.

Acknowledgment

This paper is part of the Intellectual Output O2 of the Erasmus+ Key Action
2 (Strategic partnership for higher education) project No. 2017-1-SK01-KA203-
035402: “Focusing Education on Composability, Comprehensibility and Correct-
ness of Working Software”. The information and views set out in this paper are
those of the author(s) and do not necessarily reflect the official opinion of the
European Union. Neither the European Union institutions and bodies nor any
person acting on their behalf may be held responsible for the use which may be
made of the information contained therein.



Towards an Engineering Discipline for Green Software 5

References

1. Couto, M., Pereira, R., Ribeiro, F., Rua, R., Saraiva, J.: Towards a green ranking
for programming languages. In: Proceedings of the 21st Brazilian Symposium on
Programming Languages. SBLP (2017) 7:1–7:8 (best paper award).

2. Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J.P., Saraiva,
J.: Energy efficiency across programming languages: How do energy, time, and
memory relate? In: Proc. of the 10th ACM SIGPLAN Int. Conference on Software
Language Engineering. SLE 2017, New York, NY, USA, ACM (2017) 256–267

3. Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J.P., Saraiva,
J.: Ranking programming languages by energy efficiency. Science of Computer
Programming (2018) Submitted.

4. Pereira, R., Couto, M., Saraiva, J., Cunha, J., Fernandes, J.P.: The Influence
of the Java Collection Framework on Overall Energy Consumption. In: 5th Int.
Workshop on Green and Sustainable Software. GREENS ’16, ACM (2016) 15–21

5. Melfe, G., Fonseca, A., Fernandes, J.P.: Helping developers write energy efficient
haskell through a data-structure evaluation. In: Proceedings of the 6th Interna-
tional Workshop on Green and Sustainable Software. GREENS ’18, New York,
NY, USA, ACM (2018) 9–15

6. Pereira, R., Simão, P., Cunha, J., Saraiva, J.: jStanley: Placing a Green Thumb
on Java Collections. In: 33rd ACM/IEEE International Conference on Automated
Software Engineering. ASE 2018, New York, NY, USA, ACM (2018) 856–859

7. Lima, L.G., Melfe, G., Soares-Neto, F., Lieuthier, P., Fernandes, J.P., Castor, F.:
Haskell in Green Land: Analyzing the Energy Behavior of a Purely Functional
Language. In: Proc. of the 23rd IEEE Int. Conf. on Software Analysis, Evolution,
and Reengineering (SANER’2016), IEEE (2016) 517–528

8. Pereira, R., Carção, T., Couto, M., Cunha, J., Fernandes, J.P., Saraiva, J.: Helping
programmers improve the energy efficiency of source code. In: Proc. of the 39th
Int. Conf. on Soft. Eng. Companion, ACM (2017)

9. Pereira, R.: Locating energy hotspots in source code. In: Proceedings of the
39th International Conference on Software Engineering Companion. ICSE-C ’17,
Piscataway, NJ, USA, IEEE Press (2017) 88–90 (ACM SRC silver award).

10. Pereira, R.: Energyware Engineering: Techniques and Tools for Green Software
Development. PhD thesis, Depart. de Informática, Universidade do Minho (2018)

11. Pereira, R., Carção, T., Couto, M., Cunha, J., Fernandes, J.P., Saraiva, J.: Spelling
out energy leaks: Aiding developers locate energy inefficient code. (2018) (submit-
ted).

12. Santos, M., Saraiva, J., Porkolb, Z., Krupp, D.: Energy consumption measure-
ment of c/c++ programs using clang tooling. SQAMIA’17 - CEUR Workshop
Proceedings 1938 (2017)

13. Couto, M., Borba, P., Cunha, J., Fernandes, J.P., Pereira, R., Saraiva, J.: Products
go green: Worst-case energy consumption in software product lines. In: Proceedings
of the 21st International Systems and Software Product Line Conference - Volume
A. SPLC ’17, ACM (2017) 84–93

14. Couto, M., Carção, T., Cunha, J., Fernandes, J.P., Saraiva, J.: Detecting anoma-
lous energy consumption in android applications. In Quintão Pereira, F.M., ed.:
Programming Languages: 18th Brazilian Symposium, SBLP 2014, Maceio, Brazil,
October 2-3, 2014. Proceedings. (2014) 77–91

15. Cruz, L., Abreu, R.: Performance-based guidelines for energy efficient mobile ap-
plications. In: 4th International Conference on Mobile Software Engineering and
Systems. MOBILESoft ’17, Piscataway, NJ, USA, IEEE Press (2017) 46–57



6 J. P. Fernandes, J. Saraiva

16. Couto, M., Cunha, J., Fernandes, J.P., Pereira, R., Saraiva, J.: Greendroid: A tool
for analysing power consumption in the android ecosystem. In: 2015 IEEE 13th
International Scientific Conference on Informatics. (Nov 2015) 73–78

17. Cruz, L., Abreu, R., Rouvignac, J.N.: Leafactor: Improving energy efficiency of
android apps via automatic refactoring. In: IEEE/ACM International Conference
on Mobile Software Engineering and Systems, MobileSoft 2017. (2017)

18. Gonçalves, R., Saraiva, J., Belo, O.: Defining energy consumption plans for data
querying processes. In: 2014 IEEE International Conference on Big Data and Cloud
Computing (BdCloud)(BDCLOUD). Volume 00. (Dec. 2015) 641–647

19. Belo, O., Gonçalves, R., Saraiva, J.: Establishing energy consumption plans for
green star-queries in data warehousing systems. In: 2015 IEEE International Con-
ference on Data Science and Data Intensive Systems. (Dec 2015) 226–231


