
Interactive Approach to Coloured Petri Nets
Teaching

Štefan Korečko

Department of Computers and Informatics,
Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 041 20 Košice, Slovakia
stefan.korecko@tuke.sk

Abstract. Formal methods belong to the techniques that, when used
appropriately, can significantly contribute to the correctness of a software
or hardware system under development. One of the suitable methods for
systems with concurrent or non-deterministic behaviour is the Coloured
Petri Nets modelling language. In this paper a teaching activity aimed
at an explanation of the basic principles of the language and some of
its functional programming-related features is described. The activity
duration has been two and half hours and it involved an interactive
model building with active audience participation.

1 Introduction

Considering the increasing dependency of the contemporary human society on
computer systems, their correctness should be of utmost importance. And one
of the approaches that can significantly contribute to the correctness is a uti-
lization of formal methods during the software and hardware development. A
formal method is a mathematically-based technique, which provides a formal
language with unambiguously defined syntax and semantics and an apparatus,
which allows performing verification, development and simulation tasks with sys-
tem specifications, written in the language. One of the significant members of the
formal methods family is the Coloured Petri Nets (CPN) modelling language.
CPN [4, 3] combine the Petri nets formalism [1] with a functional language to
handle data manipulation and decision procedures. The functional language is
called CPN ML and it is a slightly modified version of Standard ML [2, 5]. The
CPN language and corresponding specification, verification and simulation tasks
are supported by the CPN Tools [6] software.

For more than a decade, CPN are a part of undergraduate courses related to
formal methods, modeling and simulation at the home institution of the author.
One of the methods, applied by the author when explaining CPN concepts is an
interactive approach with an active audience participation. Here, the audience
picks out the domain and process for which a CPN model will be designed and
helps to create its selected parts. The experience from a particular implementa-
tion of this approach in a training activity for university teachers is described in
the rest of this paper.



2 Štefan Korečko

2 Training Activity with Interactive CPN Model
Creation

The training activity was organized for about 10 participants, who were uni-
versity teachers with certain functional languages background. The participants
had limited to no previous knowledge of CPN. The total duration of the activity
was about 2.5 hours, excluding breaks, and it was split into three phases.

The first phase took about 30 minutes and explained the basic principles of
CPN. Namely, that CPN have a graphical form, a bipartite graph with two types
of vertices: places, drawn as ellipses and transitions, drawn as rectangles. The
places hold tokens, which represent a state of the net and the transitions can be
understood as events, which change the state by consuming existing tokens and
creating new ones.

Fig. 1. The starter CPN model given to the activity participants

The second and third phase were devoted to a creation of a CPN model.
As one of the goals of the activity was to show how some more advanced Stan-
dard ML concepts, namely structures and functors, can be used in CPN models,
the participants had been given a starter CPN model, which already used the
concepts, before the second phase begun. The starter model is shown in Fig. 1.
The part consisting of the nodes nextId, arrival and customer represents an
arrival of customers, which arrive one by one to be served. The serving itself
is not presented in the starter model. Instead, there is the transition toList,
which takes a token from customer and adds its value to a list, held in the
place customerList. The transition takeAndSortList is fired at regular inter-
vals, defined by the value prPeriod. Each firing of takeAndSortList empties
the list in customerList, sorts its content and stores the ordered version in
customerListOrdered. The place nextProcessing is auxiliary and ensures that
takeAndSortList is fired only at the regular intervals. The sorting is provided
by a function called descending, which implements the Quicksort algorithm.
The function utilizes Standard ML structures and functors.

For the serving part, the activity participants decided to model a coffee vend-
ing machine. During the second phase they participated on a creation of a CPN



Interactive Approach to Coloured Petri Nets Teaching 3

Fig. 2. CPN model of the serving part, created interactively during the second phase

model that captures the basic operation of the machine. The model is shown in
Fig. 2. In its initial state the machine is ready to serve a customer (one token in
the place ready) and is filled with 100 coffee doses (100 tokens in coffeeStack).
The serving starts with a customer ordering a coffee by a firing of the transi-
tion order. Then the machine waits for the customer’s next step (a token in
waitingForMoney). The customer can insert money (by firing insertMoney) or
cancel the order (by firing cancelOrder). The cancellation returns the machine
to the “ready” state. If the money is inserted, the machine prepares the coffee
(by firing makeCoffee). Finally, by a firing of takeCoffee, the customer takes
the prepared coffee and the machine returns to the “ready” state.

After the second phase there was about 70 minutes long break. During the
break the lecturer connected the model from the phase 2 to the parts of the
starter model and added vertices and arcs describing the customer behaviour.
He also corrected some inconsistencies in the model, pointed out by one of the
participants. The resulting, final, CPN model can be seen in Fig. 3. The vertices
taken from the starter model (Fig. 1) without any change are rendered in grey.
The place customer is replaced by customerQueue, which holds a token with a
list of values, representing a queue of customers waiting for the machine. Instead
of the transition toList there is a serving part, created from the result of the
second phase (Fig. 2). The serving part of the final model differs from Fig. 2 in
three key aspects:

– The tokens carry information about the customer being served and arc ex-
pressions define durations of corresponding actions.

– Inconsistencies regarding the role of places and transitions are corrected.
Now, all the transitions represent instantaneous events. For example, the
transition makeCoffee from Fig. 2 is replaced by the place makingCoffee

and the transition takeCoffee is replaced by the vertices startTakingCoffee,
takingCoffee and finishTakingCoffee.

– Actions and states of the customers and the machine are modelled separately.
The vertices customerQueue, insertingDecidingEtc, waitingForCoffee,



4 Štefan Korečko

Fig. 3. The final form of the coffee machine CPN model



Interactive Approach to Coloured Petri Nets Teaching 5

coffeeReady, startTakingCoffee, takingCoffee and finishTakingCoffee

belong to the customers while the rest of the serving part represents the ma-
chine or both parties.

The third phase of the training activity has been devoted to the explana-
tion of the final model and a discussion about the place of such models in the
development of correct computer systems. It took about 30 minutes.

3 Conclusion

The interactive training activity, presented here, is suitable for short, intensive
courses, which often take place during summer schools or other similar teaching
events. The described test run of the activity revealed that the original time
donation, which was 2 hours, was not sufficient. Therefore the third phase has
been needed, where the lecturer presented the final model. Considering the time
needed to construct the final model by the lecturer, it will require another at
least two hours to perform the whole model creation process interactively with
the auditory. All the CPN models presented or mentioned here can be obtained
by request from the author.

Acknowledgement

This paper is part of the Intellectual Output O2 of the Erasmus+ Key Action
2 (Strategic partnership for higher education) project No. 2017-1-SK01-KA203-
035402: “Focusing Education on Composability, Comprehensibility and Correct-
ness of Working Software”. The information and views set out in this paper are
those of the author(s) and do not necessarily reflect the official opinion of the
European Union. Neither the European Union institutions and bodies nor any
person acting on their behalf may be held responsible for the use which may be
made of the information contained therein.

References

1. Desel, J., Reisig, W.: Place/transition petri nets. In: Reisig, W., Rozenberg, G. (eds.)
Lectures on Petri Nets I: Basic Models, Lecture Notes in Computer Science, vol.
1491, pp. 122–173. Springer Berlin Heidelberg. DOI: 10.1007/3-540-65306-6 (1998)

2. Harper, R.: Programming in Standard ML. Carnegie Mellon University (2011),
http://www.cs.cmu.edu/~rwh/smlbook/book.pdf

3. Jensen, K.: An introduction to the theoretical aspects of coloured petri nets. In: A
Decade of Concurrency, Reflections and Perspectives, REX School/Symposium. pp.
230–272. Springer-Verlag, London, UK. DOI: https://doi.org/10.1007/3-540-58043-
3 21 (1994)

4. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of
Concurrent Systems. Springer. DOI: 10.1007/b95112 (2009)

5. Milner, R., Tofte, M., Macqueen, D.: The Definition of Standard ML. MIT Press,
Cambridge, MA, USA (1997), http://sml-family.org/sml97-defn.pdf

6. Cpn tools homepage (2018), http://cpntools.org/


