CodeCompass
an Extensible Comprehension Framework

Tibor Brunner

Faculty of informatics, E6tvos Lorand University,
Budapest, Hungary
bruntibQcaesar.elte.hu

Abstract. CodeCompass is an open source tool to help understanding
large legacy software systems. Based on the LLVM/Clang compiler in-
frastructure, CodeCompass gives exact information on complex C/C++
language elements. The wide range of interactive visualizations includes
class and function call diagrams; architectural, component and interface
diagrams and “points to” diagrams and many others. CodeCompass also
utilizes build information to explore the system architecture as well as
version control information when available. Clang based static analysis
results are also integrated. Although the tool focuses mainly on C and
C++, it also supports Java and Python languages. Having a web-based,
pluginable, extensible architecture, the CodeCompass framework can be
an open platform to further code comprehension, static analysis and
software metrics efforts.

1 Introduction

Bug fixing or new feature development requires a confident understanding of all
details and consequences of the planned changes. Code comprehension tools can
help to reveal the original intentions and implementation details by building a
model from the source code and other available information. Although a number
of such tools are available either as proprietary or free software, their feature set
is limited.

CodeCompass was developed to eliminate these restrictions. The CodeCom-
pass project is a joint open source effort of Ericsson Ltd. and the E6tvos Lorand
University, Budapest to help understanding large software systems. To provide
exact information on complex C/C++ language elements like overloading, in-
heritance, the usage of variables and types, possible uses of function pointers and
the virtual functions — features that various existing tools support only partially
— CodeCompass is based on a real compiler, the LLVM/Clang infrastructure.
Thus, it eliminates the weaknesses of the usual “light-weight” comprehension
tools, like OpenGrok.

CodeCompass, however, is not restricted to the source code. It uses the build
information of the system to reveal architectural connections. It also employs
the version control information if available, so one can identify connections be-
tween different source files “accidentally” modified in the same commit. To help

2 Tibor Brunner

fast and precise perception CodeCompass uses both textual and graphical rep-
resentation of the software system to comprehend. A number of (interactive)
diagrams are accessible from the usual function call graphs to the unique ar-
chitectural diagrams. To provide easy access for the users, CodeCompass has
a web-based architecture. The client can be a standard web browser, an editor
plug-in or any 3rd party application. The communication is based on a REST
API and scales well for parallel client requests.

In this paper we will compare CodeCompass to existing comprehension tools
and describe its feature set. In Section 2 we overview the main archetypes of
existing tools for code comprehension. We introduce the extendible architecture
of CodeCompass in 3. The main features of the tool are discussed in Section 4.
We summarize the paper in Section 5.

2 Related work

On the software market there are several tools which aim some kind of source
code comprehension. Some of them uses static analysis, others examine also the
dynamic behavior of the parsed program. These tools can be divided into dif-
ferent archetypes based on their architectures and their main principles. On the
one hand tools are having server-client architecture. Generally these tools parse
the project and store all necessary information in a database. The (usually web-
based) clients are served from the database. These tools can be integrated into
the workflow as nightly CI runs. This way the developers can always browse and
analyze the whole, large, legacy codebase. Also there are client-heavy applica-
tions where smaller part of the code base is parsed. This is the use case for IDE
editors where the frequent modification of the source requires quick update of
the database about analyzed results. In this section we present some tools used
in industrial environment from each categories.

Wobogq [3] is a web-based code browser for C and C++. This tool has
extensive features which aim for fast browsing of a software project. The user
can quickly find the files and named entities by a search field which provides
code completion for easy usability. The navigation in the code base is enabled
through a web page consisting of static HTML files. These files are generated
during a parsing process. The advantage of this approach is that the web client
will be fast since no on-the-fly computation is needed on the server side while
browsing.

Hovering the mouse on a specific function, class, variable, macro, etc. can
show the properties of that element. For example, in case of functions one can
see its signature, place of its definition and place of usages. For classes one can
check the size of its objects, the class layout and offset of its members and the
inheritance diagram. For variables one can inspect their type and locations where
they are written or read.

In C and C++ macros form a sublanguage which is evaluated in a precom-
pilation step. This evaluation is a textual substitution of macro tokens which

CodeCompass an Extensible Comprehension Framework 3

means that the compilation phase works with another code than the original
one. In Woboq, the final value of macro expansions can also be inspected.

A very handy feature of the tool is the semantic highlighting. By this fea-
ture the different language elements can easily be distinguished: the formatting
of local, global or member variables, virtual functions, types, typedefs, classes,
macros, etc. are all different.

Woboq can provide the aforementioned features because the information
needed is collected in a real compilation phase. The examined project first has
to be compiled and parsed by Woboq. The parsing is done by LLVM/Clang
infrastructure which makes the whole abstract syntax tree available. This way
all pieces of semantic information can be extracted with the same semantics
the final program is to have. This also gives a disadvantage of the tool, namely
Woboq can only be used for browsing C and C++ projects.

OpenGrok [4] is a fast source code search and cross reference engine. Op-
posed to Wobogq, this tool doesn’t perform deep language analysis, therefore it is
not able to provide semantic information about the particular entities. Instead,
it uses Ctags [5] for parsing the source code only textually, and to determine
the type of the specific elements. Simple syntactic analysis enables the distin-
guishing of function, variable or class names, etc. The search among these is
highly optimized, and therefore very fast even on large code bases. The search
can be accomplished via compound expressions (e.g. defs:target), containing
even wild cards, furthermore, results can be restricted to subdirectories. In addi-
tion to text search there is opportunity to find symbols or definitions separately.
The lack of semantic analysis allows Ctags to support several (41) programming
languages. Also an advantage of this approach is that it is possible to incre-
mentally update the index database. OpenGrok also gives opportunity to gather
information from version control systems like Mercurial, SVN, CSV, etc.

Understand [6] is not only a code browsing tool, but a a complete IDE. Its
great advantage is that the source code can be edited and the changes of the
analysis can be seen immediately.

Besides code browsing functions already mentioned for previous tools, Un-
derstand provides a lot of metrics and reports. Some of these are the lines of code
(total/average/maximum globally or per class), number of coupled /base/derived
classes, lack of cohesion [2], McCabe complexity [1] and many others. Treemap
is a common representation method for all metrics. It is a nested rectangular
view where nesting represents the hierarchy of elements, and the color and size
dimensions represent the metric chosen by the user.

For large code bases, the inspection of the architecture is necessary. Under-
stand can show dependency diagrams based on various relations such as function
call hierarchy, class inheritance, file dependency, file inclusion/import. The users
can also create their custom diagram type via the API provided by the tool.

In programming, the core concepts are common across languages, but there
are some concepts which are interpreted differently in a particular language.
Understand can handle ~ 15 languages and can provide language specific in-

4 Tibor Brunner

formation about the code e.g. function pointer analysis in C/C++ or package
hierarchy diagrams in Ada.

Understand builds a database from the code base. All information can be
gathered via a programmable API. This way the user can query all the necessary
information which are not included in the user interface.

CodeSurfer [7] is similar to Understand in the sense that it is also a thick
client, static analysis application. Its target is understanding C/C++ or x86
machine code projects. CodeSurfer accomplishes deep language analysis which
provides detailed information about the software behavior. For example, it im-
plements pointer analysis to check which pointers may point to a given variable,
lists the statements which depend on a selected statement by impact analysis,
and uses data flow analysis to pinpoint where a variable was assigned its value,
etc.

3 The CodeCompass Architecture

In the previous section we have listed some aspects concerning the goals and
architectures of code comprehension tools. Now we present where CodeCompass
stands among these tools.

CodeCompass has a client-server architecture in which it presents the infor-
mation gathered in a preceding parsing phase. The reason why this architecture
was chosen comes from the goal of the tool. As opposed to code editors, Code-
Compass has been planned to be a code comprehension tool. There are funda-
mental differences between these two use-cases. During code writing, program-
mers are manipulating only a few files at the same time. In code comprehension,
however, it is needed to consider the sources of multiple modules through the
code base. In editors code completion is one of the most useful features: the
programmer doesn’t want to remember all methods and fields of a class, but
requires the editor to list these. In code comprehension the wide range of visual-
izations is needed in order to overview the relations of code parts. While editing
the source, the programmer focuses only to a relatively small fragment of the
code, like a function or a class. In code comprehension it is not only the low-level
behavior of the functions, but their dependencies and effects are considered in
the context of high-level module system.

The main user interface of CodeCompass is web-based. All the aforemen-
tioned visualizations and functionalities can be queried via a public API which
is assigned to a server application. The web interface handles the use-cases that
aim fast and handy browsing, inspection and comprehension tasks. However,
CodeCompass is more than just a code browsing tool. It is also a framework,
i.e. an extensible collector and presenter of static analysis processes. That is
why the intention was not to create a client-heavy application which stores the
analysis results on the client side, but being able to serve the various needs of
users. This way it is possible to implement a script for example which collects
the set of functions that form a closure by function call relation, thus specifying
a coherent slice of the software.

CodeCompass an Extensible Comprehension Framework 5

Another design requirement of CodeCompass was to handle large-scale code
bases and still answering user requests very fast, i.e. in terms of seconds at
most. This is accomplished by storing all the least amount of information in a
database which are sufficient to answer the requests. Since we intended to give
precise results for the queries, a preceding parsing process is required. In the first
we stored the whole abstract syntax tree of the source, but this resulted a 1:1000
ratio between the source code and the database size. However, it turned out that
most cases the users are interested in named entities only (function, variables,
classes, macros, etc.), so it was unnecessary to store anything else, such as control
structures or other statements. Nonetheless, there are some tasks which require
more than the stored information, like a slicing algorithm. If the user wants to
see the effects of changing the value of a variable then state modifying statements
have to be taken into account too. This requires the reparsing of the code on the
fly.

4 CodeCompass features

In this section we will give an overview about the features available through
the standard GUI. When describing language specific features, such as listing
callers of a method, we will always assume the project’s language to be C++ as
that has the most advanced support in CodeCompass, but similar features are
available for Java and Python.

4.1 Search

Probably the most fundamental use-case of a code comprehension tool is search-
ing. One may search either for a file or source code. For finding source code
elements the tool provides 3 different search possibilities:

In full text search mode the search phrase is a group of words such as “returns
an astnode*”. A query phrase matches a text block, if the searched words are
next to each other in the source code in that particular order. Wildcards, such as
* or 7 can be used, matching any multiple or single character. Logical operators
such as AND, OR, NOT can be used to join multiple query phrases at the same
time.

On a higher level it is possible to find symbols in source codes by definition
search. Here we are using CTags for indexing the code base thus being able to
find variables, functions, classes, macros, etc. It is important to know that this
language entity search has nothing to do with deep language parsing.

While debugging a program, sometimes the only information to start with is
an output message in the console log emitted by our software. This is the only
trace where one may start, e.g. "DEBUG INFO: TSTHan: sys_offset=-0.019821,
drift_comp=-90.4996, sys_poll=5". Note that such a message can contains
timestamps or other dynamically generated fragments, so it is impossible to find
this message as a direct string. However, in CodeCompass a fuzzy search can be
done by log search.

6 Tibor Brunner

4.2 Information about language symbols

When the element has been found, the next step is gathering information about
it. The user can choose “Info tree” from the pop-up menu after selecting a named
entity. This tree contains all information that is provided by a language parser.
In case of C/C++ we are using the LLVM/Clang compiler in order to fetch
information about the symbols.

Info Tree Browsing History
- @ Function: AbstractDOMParser (= Open file: AbstractDOMParser.cpp
[Z) Name: AbstractDOMParser ~| (= Open file: AbstractDOMParser.hpp
E Qualified name: xercesc_3_1:AbstractDOM -/ = Jump to definition: PARSERS_EXPORT

From: AbstractDOMParser.hpp, line: 54
- (= Jump to definition: XMLUTIL_EXPOF

@ Signature: AbstractDOMParser(class xerce:

|5/ Defined: AbstractDOMParser.cpp:80:1 From: XercesDefs.hpp, line: 162
2| Declarations (= Jump to definition: XMLUINt16 (X
1 *¢. Parameters From: XercesDefs.hpp, line: 66

(= Open file: XercesVersion.hpp
-| (= Open file: XMLWin1252Transcoder.hpp

| [Local Variables

~ & Callees
Ccall - = Jump to definition: XMLWin1252Transct
=) i Callers From: XMLWin1252Transcoder.hpp, line.
- (= DOMLSParserimpl.cpp (1) (= Jump to definition: XMLCh (Xerces_:
- = DOMLSParserimpl(class xercesc 3 From: XMLWin1252Transcoder.hpp, |
+ & Callers (== Open file: XMemory.cpp
[E] 81:1: AbstractDOMParser(valTo. & Open fla: XMamary.hpp
[XercesDOMParser.cpp (1) -I (= Open file: XMLWin1252Transcoder.hpp
" (= Jump to definition: XERCES_CPP_NAM
+ TC Assigned To Function Pointer From: XML Win1262Transcoderhpp, line: ~
» »
(a) Info tree of a function (b) Browsing history

Fig. 1: Information collector panels

For functions we can check their parameters, local variables, callers and
callees. An interesting feature of the tree is that the callers are presented re-
cursively i.e. the children of a node are the callers of a function. Their children
nodes are the callers of these functions, and this goes on recursively, theoreti-
cally back to the main function. However, function calls are not always direct,
but can happen via function pointers. Even though this is a dynamic behavior,
CodeCompass summons all the occurrences where a function was assigned to a
function pointer and the invocation happens through this pointer.

In case of classes the collected information are the aliases (by typedef the
class can have a synonym), inheritance relations (grouped by visibility), friends,
methods/fields (direct or inherited) and usages (as local/global variable, function
parameter/return type or field of another class).

For variables it is useful to know the places in the code where it was written
and read. For enumeration types the enumeration constants are listed with their
integer values.

4.3 Diagrams

Visualizations are one of the most helpful representations for humans to overview
a system. CodeCompass presents several symbol and file based diagrams. These

CodeCompass an Extensible Comprehension Framework 7

diagrams are graph-based, i.e. they represent entities and their connections.
These are also interactive diagrams: hovering the mouse over the nodes the rep-
resented entity is displayed in the text view, and by clicking them the selected
entity becomes the center node showing its relations according to the diagram
type.

Function call diagram shows all callers and callees of a function in a graph.
UML class inheritance diagram shows the full inheritance chain up until the
root base class and recursively for all derived classes. We have also implemented
a pointer analysis diagram which shows the allocated objects and the pointers
which possibly point to them. Of course this is a dynamic information which can
only partly be collected in a static analysis.

An interface diagram called for a C/C++ source file shows which headers
are “used only” or “implemented” by the given file. Usage means that a source
file uses another file if there is a symbol usage in it which is declared in the
other file. Implementation relationship means that a symbol is declared in a file
(thus forming an interface) and defined in an other. These relations are also
applicable for directories considering the contained files. In case of a compiled
language there are also the output files like objects and executables. Based on
linkage information we can present which sources make a binary file up.

Search: | Textsearch | settings + | © | Menu =
File Filter: [File name fifter regex (."cpp) 8]@ Directory Fitter: [Patn fiter regex (click on a dir below) 3| @ xerces
[«] [»]

File Manager _/parser MC Style

8 Project: xerces

#8 Jump to sourcedir

o libs

[E) AbstractDOMParser.cpp
[E) AbstractDOMParser.npp
= AbstiaciDOMParserio . | IFully parsed) poMLsParserImpl.cpp :: /ssd/whisperity/CodeConpass/xerces-c/src/xercesc/parsers/D0

~ Context Buttons [1

=T Find in this file: (Us € prev nextd G EEEI

S Rt 874 AbstractDOMParser: :XHLDecl (v ing eStr, actualEncstr); | Ry aE) | =
Info Tree 75 |} R —)
Browsing History 877 DOMNode* DOMLSParserInpl::parseWithContext(const DOMLSInput* s e

7 DOMN —_—————
CodeChecker const ActionTyp (Export SVG]
Revision Control Navigator if (getParseInProgress()) [Legend)
Similarity Tree 82 throw DOMException(DOMException: :INVALID STATE ERR, XMLDOMMsq::LSParser ParseInPrg (Non-reduced view |

Pigfert infomation 84 /4 romave the ahart filtar if nrocant

Fig. 2: Interface diagram

CodeBites provides a different visualization of the inspected source code. In
this view the nodes of the graph are the definitions of specific named symbols,
like classes, functions, etc. The idea is that a programmer would like to discover
this entity by understanding its behavior but without loosing the focus. So the
parts of the code text in a node are clickable which triggers the addition of the
selected element’s definition.

8 Tibor Brunner

4.4 Version control visualizations

Visualization of version control information is an important aid to understand
software evolution. Git blame view shows line-by-line the changes (commits) to a
given file. Changes that happened recently are colored lighter green, while older
changes are darker red. This view is excellent to review why certain lines were
added to a source file. CodeCompass can also show Git commits in a filterable
list ordered by the time of commit. This search facility can be used to list changes
made by a person or to filter commits by relevant words in the commit message.

4.5 Metrics

CodeCompass can show the McCabe Cyclomatic Complexity [1], the lines of code
and the number of bugs found by Clang Static Analyzer metrics for individual
files and summarized over directory hierarchies. These metrics can be visualized
on a tree map, where directories are indicated by boxes. The box size and its
color shade is proportional to the chosen metric.

4.6 Browsing history

De Alwis and Murphy studied why programmers experience disorientation when
using the Eclipse Java integrated development environment (IDE) [8]. They use
visual momentum [9] technique to identify three factors that may lead to disori-
entation: i the absence of connecting navigation context during program explo-
ration, ii thrashing between displays to view necessary pieces of code, and iii the
pursuit of sometimes unrelated subtasks.

The first factor means that the programmer, during investigating a problem
visits several files as follows a call chain, or explores usage of a variable. At the
end of a long exploration session, it is hard to remember why the investigation
ended up in a specific file. The second reason for disorientation is the frequent
change of different views in Eclipse. The third contributor to the problem is that
a developer, when solving a program change task, evaluates several hypotheses,
which are all individual comprehension subtasks. Programmers tend to suspend a
subtask (before finishing it) and switch to another. For example, the programmer
investigates how a return value of a function is used, but then changes to a
subtask understanding the implementation of the function itself. It was observed
that, for a developer, it is hard to remind themselves about a suspended subtask
[10].

CodeCompass implements a browsing history view which records (in a tree
form) the path of navigation in the source code. A new subtask is represented
by a new branch of the tree, while the nodes are navigation jumps in the code
labeled by the connecting context (such as “jump to the definition of init”). So
problem i) and ii) is addressed, by the labeled nodes in the browsing history,
while problem iii) is handled by the branches assigned to subtasks.

CodeCompass an Extensible Comprehension Framework 9

4.7 CodeChecker - C/C++ Bug Reporting

Clang Static Analyzer implements an advanced symbolic execution engine to
report programming faults. CodeCompass can visualize the bugs identified the
Clang Static Analyzer and Clang Tidy by connecting it to a CodeChecker server
[11]. CodeCompass shows the bug position, and the symbolic execution path
that lead to a fault.

4.8 Namespace and type catalog

CodeCompass processes Doxygen documentation and stores them for the func-
tion, type, variable definitions. It also provides a type catalog view that lists types
declared in the workspace organized by a hierarchical tree view of namespaces.

5 Summary

We presented CodeCompass, a static analysis tool for comprehension of large-
scale software. It was designed to avoid the various shortages of the existing
comprehension tools which are either lightweight, easy to use but without the
deep knowledge of a real compiler; or heavyweight, non-scalable installed on
the client machine. Having a web-based, pluginable, extensible architecture, the
framework can be an open platform to further code comprehension, static analy-
sis and software metrics efforts. Initial user feedback and usage statistics suggests
that the tool is useful for developers in comprehension activities and it is used
besides traditional IDEs and other cross-reference tools.

Acknowledgement

This paper is part of the Intellectual Output O2 of the Erasmus+ Key Action
2 (Strategic partnership for higher education) project No. 2017-1-SK01-KA203-
035402: “Focusing Education on Composability, Comprehensibility and Correct-
ness of Working Software”. The information and views set out in this paper are
those of the author(s) and do not necessarily reflect the official opinion of the
European Union. Neither the European Union institutions and bodies nor any
person acting on their behalf may be held responsible for the use which may be
made of the information contained therein.

References

1. Thomas J. McCabe, A Complezity Measure, IEEE Transactions on Software Engi-
neering: 308-320, December 1976

2. Henderson-Sellers, Object-Oriented Metrics: Measures of Complezity Prentice-Hall,

1996, Upper Saddle River, NJ, ISBN-13: 978-0132398725

Woboq, https://woboq.com/codebrowser.html, 18. 03. 2018

4. OpenGrok, https://opengrok.github.io/OpenGrok, 18. 03. 2018

w

10 Tibor Brunner

CTAGS, http://ctags.sourceforge.net, 18. 03. 2018

Understand, https://scitools.com, 18. 03. 2018

CodeSurfer, https://www.grammatech.com/products/codesurfer, 18. 03. 2018

B. De Alwis and G.C. Murphy, Using Visual Momentum to Explain Disorienta-

tion in the Eclipse IDE, Proc. IEEE Symp. Visual Languages and Human Centric

Computing, pp. 51-54, 2006. [2] E. Baniassad and G. Murphy, Conceptual Module

Querying for Software Engineering, Proc. Intl Conf. Software Eng., pp. 64-73, 1998.

9. D. D. Woods., Visual momentum, A concept to improve the cognitive coupling of
person and computer. Int. J. Man-Mach. St., 21:229244, 1984.

10. D. Herrmann, B. Brubaker, C. Yoder, V. Sheets, and A. Tio. Devices that remind,
In F. T. Durso et al., editors, Handbook of Applied Cognition, pages 377407. Wiley,
1999.

11. Daniel Krupp, Gyorgy Orban, Gabor Horvath and Bence Babati, Industrial Expe-

riences with the Clang Static Analysis Toolset, EuroLLVM 2015 Confernece, April

2015

® N o

